EP2959242A2 - Station for reducing gas pressure and liquefying gas - Google Patents

Station for reducing gas pressure and liquefying gas

Info

Publication number
EP2959242A2
EP2959242A2 EP14711813.7A EP14711813A EP2959242A2 EP 2959242 A2 EP2959242 A2 EP 2959242A2 EP 14711813 A EP14711813 A EP 14711813A EP 2959242 A2 EP2959242 A2 EP 2959242A2
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
station according
station
lowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14711813.7A
Other languages
German (de)
French (fr)
Other versions
EP2959242B1 (en
Inventor
Guillaume Pages
Frédéric MARCUCCILI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryostar SAS
Original Assignee
Cryostar SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryostar SAS filed Critical Cryostar SAS
Publication of EP2959242A2 publication Critical patent/EP2959242A2/en
Application granted granted Critical
Publication of EP2959242B1 publication Critical patent/EP2959242B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Definitions

  • the present invention relates to a station for lowering the pressure of a gas and liquefying the gas, especially natural gas.
  • the field of the present invention is that of the treatment of gases, in particular natural gases, for the production of liquid natural gas.
  • Liquid natural gas is used in different applications. It is mainly used as fuel for vehicles, including transport trucks.
  • the fuel generally used for such vehicles can indeed be replaced by pressurized gas or liquid natural gas.
  • the use of liquefied gas has an advantage in terms of volume and weight, on the one hand, where the liquefied liquid natural gas by cooling occupies much less the same amount of gaseous natural gas and, on the other hand, where the thermal insulation of the cryogenic tanks is much lighter than the envelope of the gas cylinders.
  • the vehicles have a lot more autonomy.
  • Liquid natural gas is also a source of clean energy, limiting the release of fine particles such as soot, etc. .
  • Liquid natural gas can also be used to power small gas plants or to power small networks in villages.
  • Pipelines, or pipelines, are pipelines for the transport of gaseous substances under pressure.
  • the majority of pipelines transport natural gas between extraction zones and consumption or export zones. From deposit processing or storage sites, the gas is transported at high pressure (from 16 to over 100 bar) to delivery sites where it must be brought to a much reduced pressure to allow its use.
  • the gas passes through pressure reducing stations, in which the pressure of the gas is reduced by expansion through a valve or a turbine. Reducing the pressure in this way produces energy that, in the case of a valve, is lost.
  • gas expansion systems using natural gas entering the pressure lowering stations as a refrigerant in a system that can be described as open loop (Linde, Solvay or Claude cycles). In these systems, we use the fact that natural gas comes under high pressure. Natural gas is expanded in a valve and during this expansion a small part of the gas is liquefied. The resulting liquid is collected and cold low pressure natural gas leaving the valve is routed to the low pressure conduit of the lowering station.
  • the liquefied gases with these systems are mainly heavy gases such as the butane or propane but not methane. This method of gas liquefaction is also known as flashing.
  • the present invention aims in particular to provide means for, at a pressure lowering station, liquefying gas, including natural gas, by controlling the composition of the liquid gas obtained.
  • a device according to the invention will recover relaxation energy resulting from the pressure difference of the gas between the inlet and the outlet of the pressure lowering station to produce a fraction of liquid natural gas while avoiding the formation of ice inside the ducts of these stations.
  • the device will also be easy preference to implement and simple design.
  • the present invention provides a station for lowering the pressure of a gas and liquefying gas, in particular natural gas, comprising:
  • a refrigeration system comprising compression means, and
  • condensation means for liquefying gas.
  • this station also comprises heat recovery means produced by the compression means of the refrigeration system associated with means for heating the gas upstream of the expansion turbine.
  • Such a station thus plans to integrate the heating of natural gas before its expansion and the cooling of the refrigerant while saving a significant amount of energy and / or gas for the manufacture of (natural) liquid gas.
  • a gas flow (natural) in gaseous form is always kept between a high pressure line and a low pressure line associated with a pressure lowering station.
  • On a volume of 100 m 3 of natural gas is transformed for example 5 to 15 m 3 liquid natural gas.
  • work can be recovered during the relaxation between the two pressure levels to be used for the transformation of a small part (5 to 15%) of the (natural) gas into liquefied (natural) gas.
  • the heating of the gas is carried out for example at the inlet of the pressure lowering station (that is to say upstream of the expansion turbine) by recovering the heat emitted by the compression means used for the liquefaction of the gas.
  • the gas from the high pressure duct to the low pressure duct is thus heated before entering the pressure lowering station so that it is at the outlet thereof with a temperature greater than solidification of the water.
  • the station comprises a closed loop between the condensation means, the compression means and the means for heating the natural gas.
  • This closed loop makes it possible to combine a refrigeration system (compressor and condenser) for the liquefaction of the gas with a heat exchanger achieving the thermal integration between the lowering of the pressure of the gas and the production of liquid gas.
  • the station comprises a first closed loop between the compression means, the condensation means and at least one intermediate heat exchanger and a second closed loop, optionally using a coolant distinct from a coolant used in the first loop, between at least one intermediate exchanger and the means for heating the gas.
  • a station with an intermediate system similar to a closed loop, possibly double, for cooling a fraction of the gas to liquefaction is proposed here, with these two embodiments.
  • the advantage of an independent closed-loop system is that it makes it possible to reach significantly lower temperatures insofar as it is not related to the pressure drop achieved within the pressure lowering station. Thanks to this system, the composition of the liquid gas hardly varies with respect to the inlet gas, since the change of state is obtained by direct cooling inside a heat exchanger reserved for this operation. place of the classic flashing system.
  • the means for recovering a mechanical work produced during the lowering of the gas pressure are associated with mechanical work conversion means. electric energy.
  • the means for recovering a mechanical work produced during the lowering of the pressure of the gas can be mechanically coupled to an electric generator, and the compression means are then advantageously driven by a motor supplied with electrical energy by the electric generator.
  • the means for recovering a mechanical work produced during the lowering of the gas pressure are mechanically associated with the compression means.
  • An auxiliary motor may optionally be provided for driving the compression means.
  • the liquid natural gas can be produced in a station according to the invention from a refrigeration unit involving a refrigerating system using either nitrogen and / or a mixture of hydrocarbons.
  • a refrigeration system used in a station according to the invention may for example comprise a heat exchanger and / or a PFHE type aluminum condenser.
  • the refrigeration system comprises compressors and / or radial flow expander.
  • the station according to the invention comprises means for treating the water and carbon dioxide of the low-pressure natural gas by adsorption and / or absorption arranged upstream of the gas condensation means.
  • FIG. 1 is a very schematic overall view illustrating a station according to the present invention
  • FIG. 2 is a more detailed schematic view showing a first embodiment of the present invention
  • FIG. 3 is a view similar to the view of FIG. 2 illustrating a second embodiment of the invention
  • FIG. 4 is a view similar to that of FIGS. 2 and 3 for a third embodiment of the present invention.
  • Figure 5 is a view similar to that of Figures 2 to 4 for a fourth embodiment of the present invention.
  • FIG. 1 schematically represents a gas pipeline 2 carrying a gas, for example natural gas composed mainly of methane, under high pressure, for example of the order of 60 to 100 bar (generally in the present application, the examples and numerical values are illustrative and not limiting).
  • a gas pressure lowering station called PLD is shown in FIG. 1 to supply a pipe 4 intended to feed a domestic network or the like with gas (gas). natural to resume the previous example) under low pressure, usually of the order of a few bars.
  • a liquefied gas production unit 6 is associated with the PLD pressure lowering station. It is supplied with gas from the pipeline 2, downstream of the pressure lowering station PLD, passes through a treatment unit 8 performing a gas treatment before entering the production unit 6 to eliminate gas impurities that are usually found in "raw" gas. At the output of the production unit 6, LNG liquid natural gas is obtained which is for example stored in a storage unit (not shown in FIG. 1).
  • the gas yields mechanical work WM. It is proposed here to recover all or part of this work, in any form, mechanical or electrical for example, to power the production unit 6 which requires energy to pass the gas from its gaseous state to a state liquid. Since the recovered energy is not sufficient for the production of liquid gas, it is possible to feed the production unit with a complementary energy source, for example electrical energy represented schematically by WE in Figure 1. Finally, at the level of the Production 6, there is generally a compressor (not shown in Figure 1) or other device that releases heat, schematized by Q in Figure 1. It is proposed in an original way to recover this amount of heat Q to heat the gas input of the pressure lowering station PLD. Indeed, during a relaxation, the relaxed gas cools. It may fall below the solidification temperature of the water and thus cause frost formation that may lead to a partial or complete obstruction of the corresponding pipe. By heating the gas before the relaxation, it can thus limit the risk of icing and obstruction.
  • FIG. 2 shows in more detail a first embodiment of the invention embodying the overall diagram of FIG. 1.
  • FIG. 2 as in the following, the references in FIG. 1 have been used to designate similar elements.
  • FIG. 2 there is a gas pipeline 2 which supplies a pressure lowering station PLD for supplying gas under less pressure in a pipe 4.
  • a production unit 6 supplies liquefied gas LNG.
  • the production unit 6 essentially comprises a condenser 14.
  • the gas supplying the production unit 6 is supplied from a bypass G9 of the pipe G7 before reaching a valve 16 at which an additional pressure reduction is performed.
  • the gas is led via a line G10 to the treatment unit 8 which carries out a purification of the gas, for example by absorption or preferably by adsorption.
  • the purified gas is led by G1 1 to a desuperheater 18 before being introduced by G12 into the condenser 14.
  • liquefied gas is obtained which passes through a line L1 to a control valve 20 then by L2 for arrive at a liquefied natural gas storage LNG.
  • the turbine 12 is passed through both the gas intended to feed the low pressure line 4 and the gas intended to feed the production unit 6, c that is, called to be liquefied.
  • the thermal integration is performed by a closed loop circuit described below.
  • the fluid used may be, by way of non-limiting example, nitrogen or a mixture of hydrocarbons.
  • the refrigerant arrives in the compressor C1 by a pipe R1 and leaves through a pipe R2. It then arrives in a first preheating device 10 to heat gas from the pipeline 2 and for supplying the turbine 12 of the pressure lowering station PLD.
  • the fluid is then fed via a line R3 to a cooler 22 in order to carry out a control of the temperature of the refrigerant before being returned to the compression unit via a line R4.
  • the fluid is then compressed by the second compressor C2, then brought by R5 to the second preheating device 10 before being driven by R6 to a second cooler 22 and to reach by R7 a third compression stage of the second unit. compression.
  • a third cooler 22 connected to the third compressor C3 via a line R8 makes it possible to control the temperature of the fluid at the outlet of the compression unit.
  • a line R9 leads the refrigerant to a countercurrent exchanger 24 and is then fed by R10 to a pressure reducer 26.
  • the latter is mechanically connected to the motor M and the compression unit.
  • the fluid is then fed (R1 1) to the condenser 14 of the production unit 6 where it absorbs calories from the portion of natural gas that is desired to be liquefied to obtain liquid natural gas ( LNG).
  • the fluid is led (R12) to the desuperheater 18 before reaching by R13 the countercurrent exchanger 24 which is connected downstream to the first compressor C1 of the compression unit.
  • the refrigerant fluid is used to achieve a thermal integration between the production unit and the pressure lowering station by recovering in particular the calories released during the compression of the fluid for use in the heating of the gas natural entry PLD pressure lowering station.
  • tank 28 which is conventionally used as an expansion tank for the refrigerant.
  • FIG. 3 illustrates an alternative embodiment that incorporates certain references of the preceding figures to designate similar elements.
  • a pressurized closed water loop or another heat transfer fluid such as a thermal oil
  • An air cooler can for example be placed on this line to adjust the cooling capacity at the request of the compression loop.
  • a positive displacement pump is used to allow the circulation of the coolant (pressurized water) and an expansion tank can be classically integrated into this circuit.
  • FIG. 3 thus recognizes a refrigerant circuit between the compression unit and its three compressors C1, C2 and C3 and the production unit 6. with its condenser 14.
  • This circuit is simplified. It passes successively through the three stages of the compression unit and after each stage through a preheating device 10. The refrigerant circuit then passes through the countercurrent exchanger 24 before passing into the expander 26 and then into the condenser 14, reverse the counter-current heat exchanger 24 before returning to the first compression stage and its compressor C1.
  • the main difference with the first embodiment of FIG. 2 is that the preheating devices 10 do not directly transfer the calories extracted from the compression stages to the natural gas but to another heat transfer fluid, such as, for example, pressurized water.
  • These preheating devices 10 thus form intermediate exchangers.
  • a positive displacement pump 142 for circulating the coolant in the corresponding circuit and a cooler 122 to control the temperature of the coolant in this circuit.
  • an expansion tank 144 is advantageously integrated with this refrigerant circuit.
  • FIG. 4 illustrates a simplified version of the first embodiment illustrated in FIG. 2.
  • the references already used to designate similar elements are reused in order to simplify the understanding. reading.
  • the compression unit comprises only one stage with a single compressor C.
  • the natural gas is then heated in a single preheating device 10 which makes it possible to exchange directly the calories coming from the compressor with the natural gas at the PLD station inlet, upstream of the expansion turbine 12.
  • the refrigerant circuit uses for example a mixture of hydrocarbons and nitrogen as heat transfer fluid.
  • the latter is compressed by the compressor C driven by the electric motor M (electrically coupled to the generator G of the turbine 12 of the PLD station)
  • the fluid is then cooled in contact with the natural gas in the preheating device 10 at the inlet of the the turbine 12 (it should be noted that one could also provide another refrigerant circuit between the preheating device 10 and the natural gas as in the previous figure).
  • a cooler 22 or (aero-refrigerant) can be introduced into the circuit to adjust the cooling capacity at the request of the compression loop.
  • the heat transfer fluid is then sent through a heat exchanger 214, for example of the PHFE type (acronym for Plate Fin Heat Exchanger or French heat exchanger plates and fins), where
  • FIG. 5 also shows a motor M which is used here as an additional energy source (corresponds to WE in FIG. 1) for adjusting the power required for the liquefied gas production unit with the power delivered to the level of the pressure lowering station.
  • a motor M which is used here as an additional energy source (corresponds to WE in FIG. 1) for adjusting the power required for the liquefied gas production unit with the power delivered to the level of the pressure lowering station.
  • the quantity (mass) of gas passing through the liquefied gas production unit 6 is of the order of 5 to 20. % of the quantity (mass) of gas passing through the PLD pressure lowering station, the rest of the gas (80 to 95%) supplying the pipe 4.
  • the systems described above make it possible to perfectly control the production of liquid natural gas.
  • the composition of this gas can be controlled. It does not depend on the pressure difference within the pressure lowering station.
  • the preheating of the gas at the inlet of the pressure lowering station avoids problems of icing and pipe obstruction.
  • Energy recovery is performed at the pressure lowering station, and more precisely at its expansion turbine. This recovery is optimized by passing all the gas flow in this turbine, both the gas that is intended to be expanded in gaseous form and the gas to be liquefied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to a station comprising: an expansion turbine, means for recovering mechanical work produced during the gas pressure reduction, a cooling system comprising compression means (C1, C2, C3), condensation means (14) for liquefying gas, and means for recovering heat produced by the compression means (C1, C2, C3) of the cooling system associated with means (10) for heating the gas upstream of the expansion turbine.

Description

STATION D'ABAISSEMENT DE PRESSION D'UN GAZ ET DE  STATION FOR REDUCING THE PRESSURE OF A GAS AND
LIQUÉFACTION DU GAZ  LIQUEFACTION OF GAS
La présente invention concerne une station d'abaissement de pression d'un gaz et de liquéfaction du gaz, notamment du gaz naturel. The present invention relates to a station for lowering the pressure of a gas and liquefying the gas, especially natural gas.
Ainsi, le domaine de la présente invention est celui du traitement des gaz, notamment des gaz naturels, pour la production de gaz naturel liquide.  Thus, the field of the present invention is that of the treatment of gases, in particular natural gases, for the production of liquid natural gas.
Le gaz naturel liquide est utilisé dans différentes applications. Il est principalement utilisé comme carburant pour des véhicules, notamment des camions de transport. Le fioul généralement utilisé pour de tels véhicules peut en effet être remplacé par du gaz sous pression ou du gaz naturel liquide. Par rapport à l'utilisation de bonbonnes de gaz sous pression, l'utilisation de gaz liquéfié présente un avantage en termes de volume et de poids dans la mesure, d'une part, où le gaz naturel liquide liquéfié par refroidissement occupe beaucoup moins de volume qu'une même quantité de gaz naturel gazeux et, d'autre part, où l'isolation thermique des réservoirs cryogéniques est beaucoup moins lourde que l'enveloppe des bouteilles de gaz. Les véhicules ont donc beaucoup plus d'autonomie. Le gaz naturel liquide est en outre une source d'énergie propre, limitant les rejets de particules fines comme la suie, etc. .  Liquid natural gas is used in different applications. It is mainly used as fuel for vehicles, including transport trucks. The fuel generally used for such vehicles can indeed be replaced by pressurized gas or liquid natural gas. Compared with the use of gas cylinders under pressure, the use of liquefied gas has an advantage in terms of volume and weight, on the one hand, where the liquefied liquid natural gas by cooling occupies much less the same amount of gaseous natural gas and, on the other hand, where the thermal insulation of the cryogenic tanks is much lighter than the envelope of the gas cylinders. The vehicles have a lot more autonomy. Liquid natural gas is also a source of clean energy, limiting the release of fine particles such as soot, etc. .
Le gaz naturel liquide peut aussi être utilisé pour alimenter de petites centrales à gaz ou pour alimenter de petits réseaux dans des villages.  Liquid natural gas can also be used to power small gas plants or to power small networks in villages.
Des gazoducs, ou pipelines, sont des canalisations destinées au transport de matières gazeuses sous pression. La majorité des gazoducs acheminent du gaz naturel entre des zones d'extraction et des zones de consommation ou d'exportation. À partir de sites de traitement des gisements ou de stockage, le gaz est transporté à haute pression (de 16 jusqu'à plus de 100 bars) jusqu'à des sites de livraison où il doit être porté à une pression beaucoup plus réduite pour permettre son utilisation.  Pipelines, or pipelines, are pipelines for the transport of gaseous substances under pressure. The majority of pipelines transport natural gas between extraction zones and consumption or export zones. From deposit processing or storage sites, the gas is transported at high pressure (from 16 to over 100 bar) to delivery sites where it must be brought to a much reduced pressure to allow its use.
À cet effet, le gaz passe par des stations d'abaissement de pression, dans lesquelles la pression du gaz est réduite par détente à travers une vanne ou une turbine. La réduction de la pression effectuée de cette façon produit de l'énergie qui, dans le cas d'une vanne, est perdue. On connaît des systèmes de détente de gaz utilisant le gaz naturel entrant dans les stations d'abaissement de pression comme réfrigérant dans un système que l'on peut qualifier de boucle ouverte (cycles Linde, Solvay ou Claude). Dans ces systèmes, on utilise le fait que le gaz naturel se présente sous haute pression. Le gaz naturel est détendu dans une vanne et lors de cette détente une petite partie du gaz est liquéfiée. Le liquide obtenu est collecté et le gaz naturel basse pression froid qui sort de la vanne est acheminé vers le conduit à basse pression de la station d'abaissement. Ces systèmes présentent l'avantage d'être relativement simples mais la température obtenue à la sortie de la vanne dépendant de la composition du gaz et la composition du gaz naturel étant variable, les gaz liquéfiés avec ces systèmes sont principalement des gaz lourds tels que le butane ou le propane mais pas le méthane. Cette méthode de liquéfaction de gaz est aussi connue sous le nom de flashing. For this purpose, the gas passes through pressure reducing stations, in which the pressure of the gas is reduced by expansion through a valve or a turbine. Reducing the pressure in this way produces energy that, in the case of a valve, is lost. There are known gas expansion systems using natural gas entering the pressure lowering stations as a refrigerant in a system that can be described as open loop (Linde, Solvay or Claude cycles). In these systems, we use the fact that natural gas comes under high pressure. Natural gas is expanded in a valve and during this expansion a small part of the gas is liquefied. The resulting liquid is collected and cold low pressure natural gas leaving the valve is routed to the low pressure conduit of the lowering station. These systems have the advantage of being relatively simple but the temperature obtained at the outlet of the valve depending on the composition of the gas and the composition of the natural gas being variable, the liquefied gases with these systems are mainly heavy gases such as the butane or propane but not methane. This method of gas liquefaction is also known as flashing.
L'ensemble du gaz entrant dans la station d'abaissement de pression et passant par la vanne ou la turbine est refroidi au cours de la chute de pression qui est réalisée. Le gaz contient encore de l'eau et du dioxyde de carbone à des teneurs de l'ordre de la centaine de ppm voire du pourcent. Un phénomène de condensation peut alors intervenir au cours de cette étape de détente, susceptible d'engendrer la formation de glace (hydrates) pouvant obturer les conduits. Il est donc nécessaire de traiter le flux de gaz pour éviter que l'eau et le dioxyde de carbone contenu dans le gaz naturel ne se transforment en glace dans les conduits et provoquent ainsi des problèmes d'acheminement du gaz naturel lors de son traitement dans les stations d'abaissement de pression.  All the gas entering the pressure reducing station and passing through the valve or the turbine is cooled during the pressure drop that is performed. The gas still contains water and carbon dioxide at levels of the order of one hundred ppm or even one percent. A condensation phenomenon can then occur during this relaxation step, likely to cause the formation of ice (hydrates) can close the ducts. It is therefore necessary to treat the flow of gas to prevent the water and carbon dioxide contained in the natural gas from becoming ice in the ducts and thus cause problems of routing the natural gas during its treatment in the pressure lowering stations.
La présente invention vise notamment à fournir des moyens permettant, au niveau d'une station d'abaissement de pression, de liquéfier du gaz, notamment du gaz naturel, en contrôlant la composition du gaz liquide obtenu. Avantageusement, un dispositif selon l'invention permettra de récupérer de l'énergie de détente résultant de la différence de pression du gaz entre l'entrée et la sortie de la station d'abaissement de pression pour produire une fraction de gaz naturel liquide tout en évitant la formation de glace à l'intérieur des conduits de ces stations. Le dispositif sera également de préférence facile à mettre en œuvre et de conception simple. The present invention aims in particular to provide means for, at a pressure lowering station, liquefying gas, including natural gas, by controlling the composition of the liquid gas obtained. Advantageously, a device according to the invention will recover relaxation energy resulting from the pressure difference of the gas between the inlet and the outlet of the pressure lowering station to produce a fraction of liquid natural gas while avoiding the formation of ice inside the ducts of these stations. The device will also be easy preference to implement and simple design.
À cet effet, la présente invention propose une station d'abaissement de pression d'un gaz et de liquéfaction de gaz, notamment du gaz naturel, comprenant :  For this purpose, the present invention provides a station for lowering the pressure of a gas and liquefying gas, in particular natural gas, comprising:
- une turbine de détente,  - a relaxation turbine,
- des moyens de récupération d'un travail mécanique produit lors de l'abaissement de la pression du gaz,  means for recovering a mechanical work produced during the lowering of the pressure of the gas,
- un système de réfrigération comprenant des moyens de compression, et  a refrigeration system comprising compression means, and
- des moyens de condensation pour liquéfier du gaz.  condensation means for liquefying gas.
Selon l'invention, cette station comporte en outre, des moyens de récupération de chaleur produite par les moyens de compression du système de réfrigération associés à des moyens pour chauffer le gaz en amont de la turbine de détente.  According to the invention, this station also comprises heat recovery means produced by the compression means of the refrigeration system associated with means for heating the gas upstream of the expansion turbine.
Une telle station prévoit ainsi d'intégrer le réchauffement du gaz naturel avant son expansion et le refroidissement du réfrigérant tout en économisant une quantité significative d'énergie et/ou de gaz pour la fabrication du gaz (naturel) liquide.  Such a station thus plans to integrate the heating of natural gas before its expansion and the cooling of the refrigerant while saving a significant amount of energy and / or gas for the manufacture of (natural) liquid gas.
Un débit de gaz (naturel) sous forme gazeuse est toujours conservé entre une conduite haute pression et une conduite basse pression associées à une station d'abaissement de pression. Sur un volume de 100 m3 de gaz naturel on transforme par exemple 5 à 15 m3 en gaz naturel liquide. Du travail peut ici être récupéré lors de la détente entre les deux niveaux de pression pour être utilisé ensuite à la transformation d'une petite partie (5 à 15 %) du gaz (naturel) en gaz (naturel) liquéfié. A gas flow (natural) in gaseous form is always kept between a high pressure line and a low pressure line associated with a pressure lowering station. On a volume of 100 m 3 of natural gas is transformed for example 5 to 15 m 3 liquid natural gas. Here work can be recovered during the relaxation between the two pressure levels to be used for the transformation of a small part (5 to 15%) of the (natural) gas into liquefied (natural) gas.
Le chauffage du gaz est réalisé par exemple à l'entrée de la station d'abaissement de pression (c'est-à-dire en amont de la turbine de détente) par la récupération de la chaleur émise par les moyens de compression utilisés pour la liquéfaction du gaz. Le gaz allant du conduit de haute pression vers le conduit basse pression est ainsi réchauffé avant d'entrer dans la station d'abaissement de pression de telle sorte qu'il se présente à la sortie de celle-ci avec une température supérieure au point de solidification de l'eau.  The heating of the gas is carried out for example at the inlet of the pressure lowering station (that is to say upstream of the expansion turbine) by recovering the heat emitted by the compression means used for the liquefaction of the gas. The gas from the high pressure duct to the low pressure duct is thus heated before entering the pressure lowering station so that it is at the outlet thereof with a temperature greater than solidification of the water.
Pour optimiser la station décrite ici et récupérer un maximum d'énergie, il est prévu de faire passer le gaz sous haute pression tout d'abord dans la turbine de détente et de prélever par la suite, en aval de cette turbine, une partie du gaz détendu pour l'envoyer vers les moyens de condensation. On prévoit ainsi que ces moyens de condensation sont alimentés par une canalisation dérivée en aval de la turbine de détente. To optimize the station described here and recover a maximum of energy, it is intended to pass gas under high pressure firstly in the expansion turbine and subsequently to take downstream of the turbine, a portion of the expanded gas to send it to the condensing means. It is thus expected that these condensing means are fed by a branch pipe downstream of the expansion turbine.
Selon une première forme de réalisation, la station comprend une boucle fermée entre les moyens de condensation, les moyens de compression et les moyens pour réchauffer le gaz naturel. Cette boucle fermée permet de combiner un système de réfrigération (compresseur et condenseur) pour la liquéfaction du gaz avec un échangeur thermique réalisant l'intégration thermique entre l'abaissement de la pression du gaz et la production de gaz liquide.  According to a first embodiment, the station comprises a closed loop between the condensation means, the compression means and the means for heating the natural gas. This closed loop makes it possible to combine a refrigeration system (compressor and condenser) for the liquefaction of the gas with a heat exchanger achieving the thermal integration between the lowering of the pressure of the gas and the production of liquid gas.
Selon une deuxième forme de réalisation, la station comporte une première boucle fermée entre les moyens de compression, les moyens de condensation et au moins un échangeur intermédiaire ainsi qu'une seconde boucle fermée, utilisant éventuellement un fluide caloporteur distinct d'un fluide caloporteur utilisé dans la première boucle, entre au moins un échangeur intermédiaire et les moyens pour chauffer le gaz.  According to a second embodiment, the station comprises a first closed loop between the compression means, the condensation means and at least one intermediate heat exchanger and a second closed loop, optionally using a coolant distinct from a coolant used in the first loop, between at least one intermediate exchanger and the means for heating the gas.
Il est proposé ici, avec ces deux formes de réalisation, une station avec un système intermédiaire assimilable à une boucle fermée, éventuellement double, permettant de refroidir une fraction du gaz jusqu'à sa liquéfaction. L'avantage d'un système en boucle fermée indépendant est qu'il permet d'atteindre des températures significativement basses dans la mesure où il n'est pas lié à la baisse de pression réalisée au sein de la station d'abaissement de pression. Grâce à ce système, la composition du gaz liquide ne varie presque pas par rapport au gaz d'entrée, étant donné que le changement d'état est obtenu par refroidissement direct à l'intérieur d'un échangeur de chaleur réservé à cette opération au lieu du système classique de flashing.  It is proposed here, with these two embodiments, a station with an intermediate system similar to a closed loop, possibly double, for cooling a fraction of the gas to liquefaction. The advantage of an independent closed-loop system is that it makes it possible to reach significantly lower temperatures insofar as it is not related to the pressure drop achieved within the pressure lowering station. Thanks to this system, the composition of the liquid gas hardly varies with respect to the inlet gas, since the change of state is obtained by direct cooling inside a heat exchanger reserved for this operation. place of the classic flashing system.
Dans un mode particulier de réalisation d'une station d'abaissement de pression et de liquéfaction, les moyens de récupération d'un travail mécanique produit lors de l'abaissement de la pression du gaz sont associés à des moyens de conversion de travail mécanique en énergie électrique. Dans ce mode de réalisation, les moyens de récupération d'un travail mécanique produit lors de l'abaissement de la pression du gaz peuvent être couplés mécaniquement à un générateur électrique, et les moyens de compression sont alors avantageusement entraînés par un moteur alimenté en énergie électrique par le générateur électrique. In a particular embodiment of a pressure lowering and liquefaction station, the means for recovering a mechanical work produced during the lowering of the gas pressure are associated with mechanical work conversion means. electric energy. In this embodiment, the means for recovering a mechanical work produced during the lowering of the pressure of the gas can be mechanically coupled to an electric generator, and the compression means are then advantageously driven by a motor supplied with electrical energy by the electric generator.
Dans un autre mode de réalisation d'une station d'abaissement de pression et de liquéfaction, les moyens de récupération d'un travail mécanique produit lors de l'abaissement de la pression du gaz sont associés mécaniquement aux moyens de compression. Un moteur auxiliaire peut éventuellement être prévu pour l'entraînement des moyens de compression.  In another embodiment of a pressure lowering and liquefaction station, the means for recovering a mechanical work produced during the lowering of the gas pressure are mechanically associated with the compression means. An auxiliary motor may optionally be provided for driving the compression means.
Au sein d'une telle station, on a donc l'intégration d'une boucle de réfrigération pour liquéfier du gaz et de préchauffage de l'entrée de la turbine de détente.  Within such a station, there is therefore the integration of a refrigeration loop to liquefy gas and preheat the inlet of the expansion turbine.
Le gaz naturel liquide peut être produit au sein d'une station selon l'invention à partir d'un groupe de réfrigération mettant en jeu un système frigorifique utilisant indifféremment de l'azote et/ou un mélange d'hydrocarbures.  The liquid natural gas can be produced in a station according to the invention from a refrigeration unit involving a refrigerating system using either nitrogen and / or a mixture of hydrocarbons.
Un système de réfrigération utilisé dans une station selon l'invention peut par exemple comprendre un échangeur de chaleur et/ou un condenseur du type aluminium PFHE.  A refrigeration system used in a station according to the invention may for example comprise a heat exchanger and / or a PFHE type aluminum condenser.
Dans un mode de réalisation particulier, le système de réfrigération comprend des compresseurs et/ou des détendeurs à flux radial.  In a particular embodiment, the refrigeration system comprises compressors and / or radial flow expander.
Dans un autre mode de réalisation, la station selon l'invention comprend des moyens de traitement de l'eau et du dioxyde de carbone du gaz naturel à basse pression par adsorption et/ou absorption disposés en amont des moyens de condensation du gaz.  In another embodiment, the station according to the invention comprises means for treating the water and carbon dioxide of the low-pressure natural gas by adsorption and / or absorption arranged upstream of the gas condensation means.
Des détails et avantages de la présente invention apparaîtront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :  Details and advantages of the present invention will become more apparent from the description which follows, given with reference to the appended schematic drawing in which:
La figure 1 est une vue très schématique d'ensemble illustrant une station selon la présente invention,  FIG. 1 is a very schematic overall view illustrating a station according to the present invention,
La figure 2 est une vue schématique plus détaillée montrant une première forme de réalisation de la présente invention, La figure 3 est une vue similaire à la vue de la figure 2 illustrant deuxième forme de réalisation de l'invention, FIG. 2 is a more detailed schematic view showing a first embodiment of the present invention, FIG. 3 is a view similar to the view of FIG. 2 illustrating a second embodiment of the invention,
La figure 4 est une vue similaire à celle des figures 2 et 3 pour une troisième forme de réalisation de la présente invention, et  FIG. 4 is a view similar to that of FIGS. 2 and 3 for a third embodiment of the present invention, and
La figure 5 est une vue similaire à celle des figures 2 à 4 pour une quatrième forme de réalisation de la présente invention.  Figure 5 is a view similar to that of Figures 2 to 4 for a fourth embodiment of the present invention.
La figure 1 représente schématiquement un gazoduc 2 conduisant un gaz, par exemple du gaz naturel composé majoritairement de méthane, sous haute pression, par exemple de l'ordre de 60 à 100 bars (de manière générale dans la présente demande, les exemples et les valeurs numériques sont illustratifs et non limitatifs). Une station d'abaissement de pression de gaz dénommée PLD (acronyme anglais pour Pressure Let Down, soit en français baisse de pression) sur la figure 1 permet d'alimenter une conduite 4 destinée à alimenter un réseau domestique ou similaire avec du gaz (gaz naturel pour reprendre l'exemple précédent) sous basse pression, généralement de l'ordre de quelques bars.  FIG. 1 schematically represents a gas pipeline 2 carrying a gas, for example natural gas composed mainly of methane, under high pressure, for example of the order of 60 to 100 bar (generally in the present application, the examples and numerical values are illustrative and not limiting). A gas pressure lowering station called PLD (acronym for Pressure Let Down) is shown in FIG. 1 to supply a pipe 4 intended to feed a domestic network or the like with gas (gas). natural to resume the previous example) under low pressure, usually of the order of a few bars.
Une unité de production 6 de gaz liquéfié est associée à la station d'abaissement de pression PLD. Elle est alimentée en gaz depuis le gazoduc 2, en aval de la station d'abaissement de pression PLD, passe par une unité de traitement 8 réalisant un traitement du gaz avant son entrée dans l'unité de production 6 afin d'éliminer du gaz des impuretés que l'on trouve généralement dans du gaz "brut". En sortie de l'unité de production 6, on obtient un gaz naturel liquide LNG qui est par exemple stocké dans une unité de stockage (non illustrée sur la figure 1 ).  A liquefied gas production unit 6 is associated with the PLD pressure lowering station. It is supplied with gas from the pipeline 2, downstream of the pressure lowering station PLD, passes through a treatment unit 8 performing a gas treatment before entering the production unit 6 to eliminate gas impurities that are usually found in "raw" gas. At the output of the production unit 6, LNG liquid natural gas is obtained which is for example stored in a storage unit (not shown in FIG. 1).
Lorsque du gaz est détendu dans la station d'abaissement de pression When gas is expanded in the pressure lowering station
PLD, le gaz cède du travail mécanique WM. Il est proposé ici de récupérer tout ou partie de ce travail, sous une forme quelconque, mécanique ou électrique par exemple, pour alimenter l'unité de production 6 qui nécessite de l'énergie pour faire passer le gaz de son état gazeux à un état liquide. Dans la mesure où l'énergie récupérée n'est pas suffisante pour la production de gaz liquide, il est possible d'alimenter l'unité de production avec une source d'énergie complémentaire, par exemple de l'énergie électrique représentée schématiquement par WE sur la figure 1 . Enfin, au niveau de l'unité de production 6, on a généralement un compresseur (non représenté sur la figure 1 ) ou autre dispositif qui libère de la chaleur, schématisée par Q sur la figure 1 . Il est proposé de manière originale de récupérer cette quantité de chaleur Q pour réchauffer le gaz en entrée de la station d'abaissement de pression PLD. En effet, au cours d'une détente, le gaz détendu se refroidit. Il risque de descendre en-dessous de la température de solidification de l'eau et ainsi d'entraîner une formation de givre pouvant conduire à une obstruction partielle ou complète de la canalisation correspondante. En réchauffant le gaz avant la détente, on peut ainsi limiter les risques de givrage et d'obstruction. PLD, the gas yields mechanical work WM. It is proposed here to recover all or part of this work, in any form, mechanical or electrical for example, to power the production unit 6 which requires energy to pass the gas from its gaseous state to a state liquid. Since the recovered energy is not sufficient for the production of liquid gas, it is possible to feed the production unit with a complementary energy source, for example electrical energy represented schematically by WE in Figure 1. Finally, at the level of the Production 6, there is generally a compressor (not shown in Figure 1) or other device that releases heat, schematized by Q in Figure 1. It is proposed in an original way to recover this amount of heat Q to heat the gas input of the pressure lowering station PLD. Indeed, during a relaxation, the relaxed gas cools. It may fall below the solidification temperature of the water and thus cause frost formation that may lead to a partial or complete obstruction of the corresponding pipe. By heating the gas before the relaxation, it can thus limit the risk of icing and obstruction.
La figure 2 montre plus en détails une première forme de réalisation de l'invention mettant en œuvre le schéma global de la figure 1 .  FIG. 2 shows in more detail a first embodiment of the invention embodying the overall diagram of FIG. 1.
Sur la figure 2, de même que sur les suivantes, on a repris les références de la figure 1 pour désigner des éléments similaires.  In FIG. 2, as in the following, the references in FIG. 1 have been used to designate similar elements.
On retrouve ainsi sur la figure 2 un gazoduc 2 qui alimente une station d'abaissement de pression PLD pour fournir du gaz sous pression moindre dans une conduite 4. En outre, une unité de production 6 fournit du gaz liquéfié LNG.  Thus, in FIG. 2, there is a gas pipeline 2 which supplies a pressure lowering station PLD for supplying gas under less pressure in a pipe 4. In addition, a production unit 6 supplies liquefied gas LNG.
Au niveau de la station d'abaissement de pression PLD, du gaz en provenance du gazoduc 2 passe par des conduites G2 et G3. Il est réchauffé dans chacune de ces conduites par un dispositif de préchauffage 10. En sortie de ces dispositifs de préchauffage, des conduites G4 et G5 sont collectées dans une conduite G6 qui alimente une turbine 12 de détente. En sortie de turbine, le gaz est détendu et peut rejoindre la conduite 4 directement par une conduite G7.  At the PLD pressure lowering station, gas from the pipeline 2 passes through lines G2 and G3. It is heated in each of these pipes by a preheating device 10. At the outlet of these preheating devices, lines G4 and G5 are collected in a line G6 which supplies a turbine 12 for expansion. At the turbine outlet, the gas is expanded and can join the pipe 4 directly via a pipe G7.
L'unité de production 6 comporte essentiellement un condenseur 14. The production unit 6 essentially comprises a condenser 14.
Le gaz alimentant l'unité de production 6 est alimenté à partir d'une dérivation G9 de la conduite G7 avant d'arriver à une valve 16 au niveau de laquelle une réduction de pression supplémentaire est réalisée. Le gaz est conduit par une conduite G10 jusqu'à l'unité de traitement 8 qui réalise une purification du gaz par exemple par absorption ou de préférence par adsorption. Le gaz purifié est conduit par G1 1 jusqu'à un désurchauffeur 18 avant d'être introduit par G12 dans le condenseur 14. En sortie de ce dernier, on obtient du gaz liquéfié qui passe par une conduite L1 jusqu'à une vanne de contrôle 20 puis par L2 pour arriver à un dispositif de stockage de gaz naturel liquéfié LNG. The gas supplying the production unit 6 is supplied from a bypass G9 of the pipe G7 before reaching a valve 16 at which an additional pressure reduction is performed. The gas is led via a line G10 to the treatment unit 8 which carries out a purification of the gas, for example by absorption or preferably by adsorption. The purified gas is led by G1 1 to a desuperheater 18 before being introduced by G12 into the condenser 14. At the outlet of the latter, liquefied gas is obtained which passes through a line L1 to a control valve 20 then by L2 for arrive at a liquefied natural gas storage LNG.
Une interaction entre la turbine 12 de détente de la station d'abaissement de pression PLD et l'unité de production 6 est réalisée ici. Dans cette forme de réalisation de la figure 2, de l'énergie récupérée lors de la détente dans la station PLD est utilisée sous forme d'énergie électrique dans l'unité de production 6 et de la chaleur produite dans l'unité de production 6 est utilisée pour réchauffer le gaz en entrée de la station PLD, c'est-à-dire en amont de la turbine 12 de détente.  An interaction between the expansion turbine 12 of the pressure lowering station PLD and the production unit 6 is carried out here. In this embodiment of FIG. 2, energy recovered during expansion in the PLD station is used as electrical energy in the production unit 6 and heat produced in the production unit 6 is used to heat the gas entering the PLD station, that is to say upstream of the turbine 12 expansion.
On remarque sur la figure 2 tout d'abord que la turbine 12 est accouplée à un générateur G. Ainsi, de l'énergie mécanique est récupérée au niveau de la turbine 12 pour être convertie en énergie électrique. L'électricité ainsi récupérée alimente alors un moteur M qui entraine trois compresseurs C1 , C2 et C3 formant chacun un étage d'une unité de compression. On réalise de la sorte un couplage électrique entre la station d'abaissement de pression et l'unité de production.  Note in Figure 2 first that the turbine 12 is coupled to a generator G. Thus, mechanical energy is recovered at the turbine 12 to be converted into electrical energy. The electricity thus recovered then feeds an engine M which drives three compressors C1, C2 and C3 each forming a stage of a compression unit. In this way, electrical coupling is effected between the pressure lowering station and the production unit.
Pour optimiser la quantité d'énergie mécanique récupérée au niveau de la turbine 12, on fait passer dans cette turbine 12 à la fois le gaz destiné à alimenter la conduite 4 basse pression et le gaz destiné à alimenter l'unité de production 6, c'est-à-dire appelé à être liquéfié.  To optimize the amount of mechanical energy recovered at the turbine 12, the turbine 12 is passed through both the gas intended to feed the low pressure line 4 and the gas intended to feed the production unit 6, c that is, called to be liquefied.
L'intégration thermique est réalisée par un circuit en boucle fermée décrit ci-après. Pour cette description, il est proposé par la suite de suivre du fluide frigorifique se déplaçant dans ce circuit. Le fluide utilisé peut être, à titre d'exemple non limitatif, de l'azote ou bien un mélange d'hydrocarbures.  The thermal integration is performed by a closed loop circuit described below. For this description, it is proposed later to follow the refrigerant fluid moving in this circuit. The fluid used may be, by way of non-limiting example, nitrogen or a mixture of hydrocarbons.
Le fluide frigorifique arrive dans le compresseur C1 par une conduite R1 et en sort par une conduite R2. Il arrive alors dans un premier dispositif de préchauffage 10 afin de réchauffer du gaz en provenance du gazoduc 2 et destiné à alimenter la turbine 12 de la station d'abaissement de pression PLD. Le fluide est amené ensuite par une conduite R3 à un refroidisseur 22 afin de réaliser un contrôle de la température du fluide frigorifique avant d'être renvoyé dans l'unité de compression par une conduite R4. Le fluide est alors comprimé par le deuxième compresseur C2, puis amené par R5 au second dispositif de préchauffage 10 avant d'être conduit par R6 à un deuxième refroidisseur 22 et d'atteindre par R7 un troisième étage de compression de l'unité de compression. Un troisième refroidisseur 22, relié au troisième compresseur C3 par une conduite R8, permet de contrôler la température du fluide en sortie de l'unité de compression. The refrigerant arrives in the compressor C1 by a pipe R1 and leaves through a pipe R2. It then arrives in a first preheating device 10 to heat gas from the pipeline 2 and for supplying the turbine 12 of the pressure lowering station PLD. The fluid is then fed via a line R3 to a cooler 22 in order to carry out a control of the temperature of the refrigerant before being returned to the compression unit via a line R4. The fluid is then compressed by the second compressor C2, then brought by R5 to the second preheating device 10 before being driven by R6 to a second cooler 22 and to reach by R7 a third compression stage of the second unit. compression. A third cooler 22 connected to the third compressor C3 via a line R8 makes it possible to control the temperature of the fluid at the outlet of the compression unit.
Une conduite R9 mène le fluide frigorifique à un échangeur à contre courant 24 puis est amené par R10 à un détendeur 26. Ce dernier est mécaniquement lié au moteur M et à l'unité de compression. En sortie du détendeur 26, le fluide est alors amené (R1 1 ) vers le condenseur 14 de l'unité de production 6 où il absorbe des calories de la portion de gaz naturel que l'on souhaite liquéfier pour obtenir du gaz naturel liquide (LNG). En sortie du condenseur 14 le fluide est conduit (R12) vers le désurchauffeur 18 avant d'atteindre par R13 l'échangeur à contre courant 24 qui est relié en aval au premier compresseur C1 de l'unité de compression.  A line R9 leads the refrigerant to a countercurrent exchanger 24 and is then fed by R10 to a pressure reducer 26. The latter is mechanically connected to the motor M and the compression unit. At the outlet of the expander 26, the fluid is then fed (R1 1) to the condenser 14 of the production unit 6 where it absorbs calories from the portion of natural gas that is desired to be liquefied to obtain liquid natural gas ( LNG). At the outlet of the condenser 14 the fluid is led (R12) to the desuperheater 18 before reaching by R13 the countercurrent exchanger 24 which is connected downstream to the first compressor C1 of the compression unit.
Comme il ressort de cette description, le fluide frigorifique est utilisé pour réaliser une intégration thermique entre l'unité de production et la station d'abaissement de pression en récupérant notamment des calories dégagées lors de la compression du fluide pour les utiliser au réchauffage du gaz naturel en entrée de station d'abaissement de pression PLD.  As is apparent from this description, the refrigerant fluid is used to achieve a thermal integration between the production unit and the pressure lowering station by recovering in particular the calories released during the compression of the fluid for use in the heating of the gas natural entry PLD pressure lowering station.
Des éléments accessoires du circuit frigorifique ne sont pas décrits en détails ici. On trouve ainsi par exemple un réservoir 28 qui est utilisé de manière classique comme vase d'expansion pour le fluide frigorifique.  Auxiliary elements of the refrigerant circuit are not described in detail here. Thus, for example, there is a tank 28 which is conventionally used as an expansion tank for the refrigerant.
La figure 3 illustre une variante de réalisation qui reprend certaines références des figures précédentes pour désigner des éléments similaires. Par rapport à la forme de réalisation de la figure 2, une autre forme d'intégration thermique est réalisée. Il est proposé d'avoir une boucle d'eau fermée pressurisée (ou d'un autre fluide caloporteur comme par exemple une huile thermique) pour récupérer la chaleur de compression et la transférer en amont de la turbine de détente. Un aéro-réfrigérant peut par exemple être placé sur cette ligne pour ajuster la capacité de refroidissement à la demande de la boucle de compression. Une pompe volumétrique est utilisée pour permettre la circulation du fluide caloporteur (eau pressurisée) et un vase d'expansion peut être classiquement intégré à ce circuit.  Figure 3 illustrates an alternative embodiment that incorporates certain references of the preceding figures to designate similar elements. With respect to the embodiment of FIG. 2, another form of thermal integration is realized. It is proposed to have a pressurized closed water loop (or another heat transfer fluid such as a thermal oil) to recover the compression heat and transfer it upstream of the expansion turbine. An air cooler can for example be placed on this line to adjust the cooling capacity at the request of the compression loop. A positive displacement pump is used to allow the circulation of the coolant (pressurized water) and an expansion tank can be classically integrated into this circuit.
On reconnaît ainsi sur la figure 3 un circuit réfrigérant entre l'unité de compression et ses trois compresseurs C1 , C2 et C3 et l'unité de production 6 avec son condenseur 14. Ce circuit est simplifié. Il passe successivement par les trois étages de l'unité de compression et après chaque étage traverse un dispositif de préchauffage 10. Le circuit réfrigérant traverse alors l'échangeur à contre courant 24 avant de passer dans le détendeur 26 puis dans le condenseur 14, de retraverser à contre courant l'échangeur à contre courant 24 avant de regagner le premier étage de compression et son compresseur C1 . FIG. 3 thus recognizes a refrigerant circuit between the compression unit and its three compressors C1, C2 and C3 and the production unit 6. with its condenser 14. This circuit is simplified. It passes successively through the three stages of the compression unit and after each stage through a preheating device 10. The refrigerant circuit then passes through the countercurrent exchanger 24 before passing into the expander 26 and then into the condenser 14, reverse the counter-current heat exchanger 24 before returning to the first compression stage and its compressor C1.
La différence principale avec la première forme de réalisation de la figure 2 est que les dispositifs de préchauffage 10 ne transfèrent pas directement les calories extraites des étages de compression au gaz naturel mais à un autre fluide caloporteur, tel par exemple de l'eau pressurisée. On réalise ainsi un second circuit réfrigérant qui passe en parallèle par les trois dispositifs de préchauffage 10 pour alimenter un dispositif de préchauffage 1 10 transférant les calories en provenance des étages de compression au gaz naturel en entrée de la station PLD. Ces dispositifs de préchauffage 10 forment ainsi des échangeurs intermédiaires. Entre les dispositifs de préchauffage 10 et le dispositif de préchauffage 1 10, on remarque la présence d'une pompe volumétrique 142 permettant de faire circuler le fluide caloporteur dans le circuit correspondant ainsi qu'un refroidisseur 122 pour contrôler la température du fluide caloporteur dans ce circuit. De manière classique pour l'homme du métier, un vase d'expansion 144 est avantageusement intégré à ce circuit réfrigérant.  The main difference with the first embodiment of FIG. 2 is that the preheating devices 10 do not directly transfer the calories extracted from the compression stages to the natural gas but to another heat transfer fluid, such as, for example, pressurized water. This produces a second refrigerant circuit which passes in parallel through the three preheating devices 10 to supply a preheating device 1 10 transferring the calories from compression stages to the natural gas input of the PLD station. These preheating devices 10 thus form intermediate exchangers. Between the preheating devices 10 and the preheating device 1 10, there is the presence of a positive displacement pump 142 for circulating the coolant in the corresponding circuit and a cooler 122 to control the temperature of the coolant in this circuit. In a conventional manner for those skilled in the art, an expansion tank 144 is advantageously integrated with this refrigerant circuit.
La figure 4 illustre quant à elle une version simplifiée de la première forme de réalisation illustrée sur la figure 2. Ici aussi, comme de manière générale dans la présente demande, on réutilise les références déjà utilisées pour désigner des éléments similaires afin de simplifier la compréhension de la lecture.  FIG. 4 illustrates a simplified version of the first embodiment illustrated in FIG. 2. Here again, as generally in the present application, the references already used to designate similar elements are reused in order to simplify the understanding. reading.
Dans cette forme de réalisation simplifiée, on remarque que l'unité de compression ne comporte qu'un seul étage avec un unique compresseur C. Le gaz naturel est alors réchauffé au sein d'un unique dispositif de préchauffage 10 qui permet d'échanger directement les calories en provenance du compresseur avec le gaz naturel à l'entrée de la station PLD, en amont de la turbine 12 de détente. Dans cette forme de réalisation, le circuit réfrigérant utilise par exemple un mélange d'hydrocarbures et d'azote comme fluide caloporteur. Ce dernier est comprimé par le compresseur C entraîné par le moteur électrique M (couplé électriquement au générateur G de la turbine 12 de la station PLD. Le fluide est ensuite refroidi au contact du gaz naturel dans le dispositif de préchauffage 10 à l'entrée de la turbine 12 (il convient de remarquer que l'on pourrait ici aussi prévoir un autre circuit réfrigérant entre le dispositif de préchauffage 10 et le gaz naturel comme sur la figure précédente). In this simplified embodiment, it will be noted that the compression unit comprises only one stage with a single compressor C. The natural gas is then heated in a single preheating device 10 which makes it possible to exchange directly the calories coming from the compressor with the natural gas at the PLD station inlet, upstream of the expansion turbine 12. In this embodiment, the refrigerant circuit uses for example a mixture of hydrocarbons and nitrogen as heat transfer fluid. The latter is compressed by the compressor C driven by the electric motor M (electrically coupled to the generator G of the turbine 12 of the PLD station) The fluid is then cooled in contact with the natural gas in the preheating device 10 at the inlet of the the turbine 12 (it should be noted that one could also provide another refrigerant circuit between the preheating device 10 and the natural gas as in the previous figure).
Un refroidisseur 22 ou (aéro-réfrigérant) peut être introduit dans le circuit pour ajuster la capacité de refroidissement à la demande de la boucle de compression. Le fluide caloporteur est ensuite envoyé à travers un échangeur thermique 214, par exemple de type PHFE (acronyme anglais de Plate Fin Heat Exchanger ou en français échangeur de chaleur à plaques et ailettes), où A cooler 22 or (aero-refrigerant) can be introduced into the circuit to adjust the cooling capacity at the request of the compression loop. The heat transfer fluid is then sent through a heat exchanger 214, for example of the PHFE type (acronym for Plate Fin Heat Exchanger or French heat exchanger plates and fins), where
11 est refroidi et condensé au cours d'une première passe. Il est ensuite détendu au travers d'une vanne 246 où, par effet Joule-Thompson, il se vaporise partiellement, provoquant encore une baisse de sa température. Il repasse (2nde passe) dans l'échangeur thermique 214 et se vaporise et se réchauffe au contact du gaz naturel à liquéfier et du mélange réfrigérant à condenser. Après cette seconde passe, en sortie d'échangeur thermique 214, le fluide caloporteur (mélange d'hydrocarbures et d'azote par exemple) revient vers le compresseur C. It is cooled and condensed during a first pass. It is then expanded through a valve 246 where, by the Joule-Thompson effect, it partially vaporizes, causing further lowering of its temperature. It passes (2 nde pass) in the heat exchanger 214 and vaporizes and warms in contact with the natural gas to be liquefied and the refrigerant mixture to be condensed. After this second pass, at the outlet of the heat exchanger 214, the coolant (mixture of hydrocarbons and nitrogen for example) returns to the compressor C.
Dans la forme de réalisation de la figure 5, par rapport aux formes de réalisation des figures précédentes, on réalise entre la station d'abaissement de pression et l'unité de production une intégration mécanique (fig. 5) à la place d'une intégration électrique (fig. 2 à 4).  In the embodiment of FIG. 5, with respect to the embodiments of the preceding figures, a mechanical integration is made between the pressure lowering station and the production unit (FIG. electrical integration (Figures 2 to 4).
En effet, alors que dans la forme de réalisation de la figure 2 la turbine Indeed, while in the embodiment of Figure 2 the turbine
12 entraine un générateur G qui produit de l'électricité consommée dans un moteur M, il est proposé dans la figure 5 de relier mécaniquement la turbine 12 avec les compresseurs C1 , C2 et C3 de l'unité de compression de l'unité de production 6. 12 causes a generator G that produces electricity consumed in a motor M, it is proposed in Figure 5 to mechanically connect the turbine 12 with the compressors C1, C2 and C3 of the compressor unit of the production unit 6.
Il semble inutile de décrire ici les différents éléments de la station d'abaissement de pression qui sont similaires à ceux représentés sur la figure 2. De même on retrouve un circuit frigorifique similaire pour réaliser à la fois l'unité de production de gaz liquéfié et l'intégration thermique de cette unité de production avec la station d'abaissement de pression. It seems unnecessary to describe here the various elements of the pressure lowering station which are similar to those shown in Figure 2. Similarly, there is a similar refrigerant circuit to achieve both the liquefied gas production unit and the thermal integration of this production unit with the pressure lowering station.
Sur cette figure 5, on a aussi représenté un moteur M qui est ici utilisé comme source d'énergie supplémentaire (correspond à WE sur la figure 1 ) pour ajuster la puissance nécessaire à l'unité de production de gaz liquéfié avec la puissance délivrée au niveau de la station d'abaissement de pression.  FIG. 5 also shows a motor M which is used here as an additional energy source (corresponds to WE in FIG. 1) for adjusting the power required for the liquefied gas production unit with the power delivered to the level of the pressure lowering station.
À titre d'exemple purement illustratif, on peut prévoir par exemple, dans les diverses formes de réalisation décrites, que la quantité (masse) de gaz passant dans l'unité de production 6 de gaz liquéfié est de l'ordre de 5 à 20% de la quantité (masse) de gaz passant par la station d'abaissement de pression PLD, le reste du gaz (80 à 95%) alimentant la conduite 4.  By way of a purely illustrative example, it can be provided, for example, in the various embodiments described, that the quantity (mass) of gas passing through the liquefied gas production unit 6 is of the order of 5 to 20. % of the quantity (mass) of gas passing through the PLD pressure lowering station, the rest of the gas (80 to 95%) supplying the pipe 4.
Les systèmes décrits ci-dessus permettent de parfaitement maîtriser la production de gaz naturel liquide. La composition de ce gaz peut être maîtrisée. Elle ne dépend pas de la différence de pression au sein de la station d'abaissement de pression.  The systems described above make it possible to perfectly control the production of liquid natural gas. The composition of this gas can be controlled. It does not depend on the pressure difference within the pressure lowering station.
En outre, le préchauffage du gaz à l'entrée de la station d'abaissement de pression permet d'éviter des problèmes de givrage et d'obstruction de canalisation.  In addition, the preheating of the gas at the inlet of the pressure lowering station avoids problems of icing and pipe obstruction.
Une récupération d'énergie est réalisée au niveau de la station d'abaissement de la pression, et plus précisément au niveau de sa turbine de détente. Cette récupération est optimisée en faisant passer tout le flux de gaz dans cette turbine, aussi bien le gaz qui est destiné à être détendu sous forme gazeuse et le gaz destiné à être liquéfié.  Energy recovery is performed at the pressure lowering station, and more precisely at its expansion turbine. This recovery is optimized by passing all the gas flow in this turbine, both the gas that is intended to be expanded in gaseous form and the gas to be liquefied.
La présente invention ne se limite pas aux formes de réalisation préférées décrites ci-dessus à titre d'exemples non limitatifs. Elle concerne également les variantes de réalisation à la portée de l'homme du métier dans le cadre des revendications ci-après.  The present invention is not limited to the preferred embodiments described above by way of non-limiting examples. It also relates to the variants within the scope of those skilled in the art within the scope of the claims below.

Claims

REVENDICATIONS
1. Station d'abaissement de pression (PLD) d'un gaz et de liquéfaction de gaz, notamment du gaz naturel, comprenant : A pressure lowering station (PLD) of a gas and liquefying gas, including natural gas, comprising:
- une turbine (12) de détente,  - a turbine (12) of relaxation,
- des moyens de récupération d'un travail mécanique (WM) produit lors de l'abaissement de la pression du gaz,  means for recovering a mechanical work (WM) produced during the lowering of the pressure of the gas,
- un système de réfrigération comprenant des moyens de compression (C1 , C2, C3), et  a refrigeration system comprising compression means (C1, C2, C3), and
- des moyens de condensation (14) pour liquéfier du gaz,  condensation means (14) for liquefying gas,
caractérisé en ce qu'il comporte en outre :  characterized in that it further comprises:
- des moyens de récupération de chaleur (Q) produite par les moyens de compression (C1 , C2, C3 ; C) du système de réfrigération associés à des moyens (10 ; 40 ; 1 10) pour chauffer le gaz en amont de la turbine (12) de détente.  heat recovery means (Q) produced by the refrigeration system compression means (C1, C2, C3; C) associated with means (10; 40; 1 10) for heating the gas upstream of the turbine; (12) relaxation.
2. Station selon la revendication 1 , caractérisée en ce que les moyens de condensation (14) sont alimentés par une canalisation (G9) dérivée en aval de la turbine de détente (12).  2. Station according to claim 1, characterized in that the condensing means (14) are fed by a pipe (G9) derived downstream of the expansion turbine (12).
3. Station selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle comprend une boucle fermée entre les moyens de condensation (14), les moyens de compression (C1 , C2, C3 ; C) et les moyens (10 ; 40) pour chauffer le gaz.  3. Station according to one of claims 1 or 2, characterized in that it comprises a closed loop between the condensing means (14), the compression means (C1, C2, C3; C) and the means (10). 40) for heating the gas.
4. Station selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle comprend une première boucle fermée entre les moyens de compression (C1 , C2, C3), les moyens de condensation (14) et au moins un échangeur (10) intermédiaire ainsi qu'une seconde boucle fermée, utilisant éventuellement un fluide caloporteur distinct d'un fluide caloporteur utilisé dans la première boucle, entre au moins un échangeur (10) intermédiaire et les moyens (1 10) pour chauffer le gaz.  4. Station according to one of claims 1 or 2, characterized in that it comprises a first closed loop between the compression means (C1, C2, C3), the condensing means (14) and at least one heat exchanger ( 10) and a second closed loop, optionally using a heat transfer fluid separate from a heat transfer fluid used in the first loop, between at least one exchanger (10) intermediate and the means (1 10) for heating the gas.
5. Station selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comporte des moyens de conversion (G) du travail mécanique en énergie électrique associés aux moyens de récupération d'un travail mécanique (WM) produit lors de l'abaissement de la pression du gaz . 5. Station according to one of claims 1 to 4, characterized in that it comprises conversion means (G) of the mechanical work into electrical energy associated with the recovery means of a mechanical work (WM) produced during the lowering of the gas pressure.
6. Station selon la revendication 5, caractérisée en ce que les moyens de récupération d'un travail mécanique (WM) produit lors de l'abaissement de la pression du gaz sont couplés mécaniquement à un générateur électrique (G), et en ce que les moyens de compression (C1 , C2, C3) sont entraînés par un moteur (M) alimenté en énergie électrique par le générateur électrique (G). 6. Station according to claim 5, characterized in that the means for recovering a mechanical work (WM) produced during the lowering of the pressure of the gas are mechanically coupled to an electric generator (G), and in that the compression means (C1, C2, C3) are driven by a motor (M) supplied with electrical energy by the electric generator (G).
7. Station selon la revendication 1 à 4, caractérisée en ce que les moyens de récupération d'un travail mécanique (WM) produit lors de l'abaissement de la pression du gaz sont reliés mécaniquement aux moyens de compression (C1 , C2, C3 ; C).  7. Station according to claim 1 to 4, characterized in that the means for recovering a mechanical work (WM) produced during the lowering of the pressure of the gas are mechanically connected to the compression means (C1, C2, C3 ; VS).
8. Station selon la revendication 7, caractérisée en ce qu'un moteur auxiliaire (M) est prévu pour l'entraînement des moyens de compression (C1 , C2, C3).  8. Station according to claim 7, characterized in that an auxiliary motor (M) is provided for driving the compression means (C1, C2, C3).
9. Station selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le système de réfrigération utilise un réfrigérant choisi parmi l'azote et/ou un mélange d'hydrocarbures.  9. Station according to any one of claims 1 to 8, characterized in that the refrigeration system uses a refrigerant selected from nitrogen and / or a mixture of hydrocarbons.
10. Station selon l'une quelconque des revendications 1 à 9, caractérisée en ce que le système de réfrigération comprend des compresseurs et/ou des détendeurs à flux radial.  10. Station according to any one of claims 1 to 9, characterized in that the refrigeration system comprises compressors and / or radial flow expander.
11. Station selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'elle comprend des moyens de traitement (8, 36) du gaz naturel par adsorption et/ou absorption disposés en amont des moyens de condensation (14) du gaz.  11. Station according to any one of claims 1 to 10, characterized in that it comprises processing means (8, 36) of the natural gas by adsorption and / or absorption arranged upstream of the condensation means (14) of the gas.
EP14711813.7A 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas Active EP2959242B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300380A FR3002311B1 (en) 2013-02-20 2013-02-20 DEVICE FOR LIQUEFACTING GAS, IN PARTICULAR NATURAL GAS
PCT/FR2014/050349 WO2014128408A2 (en) 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas

Publications (2)

Publication Number Publication Date
EP2959242A2 true EP2959242A2 (en) 2015-12-30
EP2959242B1 EP2959242B1 (en) 2021-03-31

Family

ID=48170651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14711813.7A Active EP2959242B1 (en) 2013-02-20 2014-02-20 Station for reducing gas pressure and liquefying gas

Country Status (10)

Country Link
US (1) US20160003528A1 (en)
EP (1) EP2959242B1 (en)
JP (1) JP2016513230A (en)
CN (1) CN105209841A (en)
BR (1) BR112015019856A2 (en)
ES (1) ES2870082T3 (en)
FR (1) FR3002311B1 (en)
MX (1) MX2015010736A (en)
RU (1) RU2680285C2 (en)
WO (1) WO2014128408A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694566C1 (en) * 2019-02-14 2019-07-16 Юрий Васильевич Белоусов Natural gas liquefaction system at main gas line compressor station

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295252B2 (en) * 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
FR3049341B1 (en) * 2016-03-23 2019-06-14 Cryostar Sas SYSTEM FOR TREATING A GAS FROM THE EVAPORATION OF A CRYOGENIC LIQUID AND THE PRESSURIZED GAS SUPPLY OF A GAS ENGINE
CZ2019618A3 (en) * 2019-10-04 2020-12-16 Siad Macchine Impianti S.P.A. Natural gas processing equipment
RU2738531C1 (en) * 2020-02-21 2020-12-14 Игорь Анатольевич Мнушкин Integrated cooling unit of natural gas
RU2770777C1 (en) * 2021-05-07 2022-04-21 Публичное акционерное общество энергетики и электрификации "Мосэнерго" "mosenergo-turbokon" method for liquishing, storing and gasification of natural gas
IT202100026921A1 (en) * 2021-10-20 2023-04-20 Gruppo Soc Gas Rimini S P A GAS TREATMENT PLANT, IN PARTICULAR NATURAL GAS, COMING FROM A TRANSPORT NETWORK

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA874245A (en) * 1967-01-31 1971-06-29 Canadian Liquid Air Natural gas liquefaction process
US4220009A (en) * 1977-01-20 1980-09-02 Wenzel Joachim O M Power station
RU2002176C1 (en) * 1990-10-22 1993-10-30 Арсланбек Харисович Юлбердин Method and device for gas fluidization
RU2137067C1 (en) * 1997-07-17 1999-09-10 Закрытое акционерное общество "Криогенная технология" Natural gas liquefaction plant
NO20026189D0 (en) * 2002-12-23 2002-12-23 Inst Energiteknik Condensation system for expansion of untreated brönnström from an offshore gas or gas condensate field
US6694774B1 (en) * 2003-02-04 2004-02-24 Praxair Technology, Inc. Gas liquefaction method using natural gas and mixed gas refrigeration
US7065974B2 (en) * 2003-04-01 2006-06-27 Grenfell Conrad Q Method and apparatus for pressurizing a gas
DE102006039616B3 (en) * 2006-08-24 2008-04-03 Eberhard Otten Method and device for storing fuel gas, in particular natural gas
US8601833B2 (en) * 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration
NO328852B1 (en) * 2008-09-24 2010-05-31 Moss Maritime As Gas Process and System
EP3435016A1 (en) * 2013-01-24 2019-01-30 Exxonmobil Upstream Research Company Liquefied natural gas production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014128408A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694566C1 (en) * 2019-02-14 2019-07-16 Юрий Васильевич Белоусов Natural gas liquefaction system at main gas line compressor station

Also Published As

Publication number Publication date
BR112015019856A2 (en) 2017-07-18
RU2680285C2 (en) 2019-02-19
RU2015139854A (en) 2017-03-30
FR3002311A1 (en) 2014-08-22
ES2870082T3 (en) 2021-10-26
JP2016513230A (en) 2016-05-12
MX2015010736A (en) 2016-07-11
FR3002311B1 (en) 2016-08-26
WO2014128408A3 (en) 2015-07-16
EP2959242B1 (en) 2021-03-31
CN105209841A (en) 2015-12-30
US20160003528A1 (en) 2016-01-07
WO2014128408A2 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
EP2959242B1 (en) Station for reducing gas pressure and liquefying gas
TWI616585B (en) Method and device for integrated lng gasification and power production cycle
EP3044527B1 (en) Device for recovering vapours from a cryogenic tank
EP0940624B1 (en) Distribution station and method for expanded gas
CA2775449C (en) Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
EP3433557B1 (en) System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas
WO2010061102A2 (en) Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility
WO2014137573A2 (en) Regasification plant
WO2017037400A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
WO2013079856A1 (en) Nitrogen-heating method and device for regenerating an adsorption unit of an air separation unit
EP2665979B1 (en) Installation and method for producing liquid helium
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
WO2017009341A1 (en) Process for expansion and storage of a flow of liquefied natural gas from a natural gas liquefaction plant, and associated plant
EP2417411A2 (en) Refrigeration process and system for recovering cold from methane by refrigerants
FR2858830A1 (en) Increasing capacity and efficiency of gas installations which include at least one gas turbine comprises cooling air entering turbine
WO2024003236A1 (en) Device and method for cryogenic capture of carbon dioxide contained in a target fluid stream
FR2944095A1 (en) Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine
WO2016091903A2 (en) Gas liquefaction system with absorption machine and stirling heat pump
WO2022254132A1 (en) Method and plant for hydrogen liquefaction
FR3087524A1 (en) NATURAL GAS LIQUEFACTION PROCESS AND PLANT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150921

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200417

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014076134

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210331

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1377383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2870082

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014076134

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230217

Year of fee payment: 10

Ref country code: ES

Payment date: 20230317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331