NO328852B1 - Gas Process and System - Google Patents
Gas Process and System Download PDFInfo
- Publication number
- NO328852B1 NO328852B1 NO20084074A NO20084074A NO328852B1 NO 328852 B1 NO328852 B1 NO 328852B1 NO 20084074 A NO20084074 A NO 20084074A NO 20084074 A NO20084074 A NO 20084074A NO 328852 B1 NO328852 B1 NO 328852B1
- Authority
- NO
- Norway
- Prior art keywords
- unit
- gas
- cooling
- natural gas
- lng
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000003345 natural gas Substances 0.000 claims abstract description 54
- 239000007789 gas Substances 0.000 claims description 76
- 238000001816 cooling Methods 0.000 claims description 61
- 238000004519 manufacturing process Methods 0.000 claims description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000009833 condensation Methods 0.000 claims description 8
- 230000005494 condensation Effects 0.000 claims description 8
- 239000000498 cooling water Substances 0.000 claims description 8
- 238000005057 refrigeration Methods 0.000 claims description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 239000012809 cooling fluid Substances 0.000 claims description 2
- 239000003949 liquefied natural gas Substances 0.000 description 62
- 239000003921 oil Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000010779 crude oil Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B27/00—Arrangement of ship-based loading or unloading equipment for cargo or passengers
- B63B27/24—Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0232—Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
- F25J1/0278—Unit being stationary, e.g. on floating barge or fixed platform
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0282—Steam turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0284—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0287—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
- F25J2270/06—Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Ocean & Marine Engineering (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Foreliggende oppfinnelse angår et system for behandling av naturgass omfattende et LNG-skip (11) som har et lastehåndteringssystem, LNG-tanker og et fremdriftssystem, hvor LNG-skipet mottar naturgassen fra et offshore anlegg eller et landbasert anlegg, og hvor systemet videre omfatter et LNG-prosessanlegg (10) montert på LNG-skipet (11).The present invention relates to a natural gas treatment system comprising an LNG vessel (11) having a cargo handling system, LNG tanks and a propulsion system, wherein the LNG vessel receives the natural gas from an offshore plant or a land-based plant, and wherein the system further comprises a LNG processing plant (10) mounted on the LNG vessel (11).
Description
OPPFINNELSENS FAGOMRÅDE FIELD OF THE INVENTION
Denne oppfinnelsen er knyttet til en fremgangsmåte og system for behandling av gass. Mer presist er oppfinnelsen knyttet til en fremgangsmåte og system for kondensering, lagring og transport av LNG-på en effektiv måte. This invention relates to a method and system for treating gas. More precisely, the invention relates to a method and system for condensing, storing and transporting LNG in an efficient manner.
OPPFINNELSENS BAKGRUNN BACKGROUND OF THE INVENTION
Produksjon av hydrokarboner består, bl.a. av atskillelse og stabilisering av forskjellige hydrokarbonkomponenter som sammen med råolje er en del av tilførselsstrømmen fra brønnhodet. Når tilførselsstrømmen består av en høy prosentandel lette hydrokarboner, hvis bestand er kjent som naturgass, er feltet ofte klassifisert som et "assosiert gassfelt". Naturgassen fra slike felter må behandles på en eller annen måte. Den enkleste og vanligste måten er å brenne gassen ved hjelp av en brenner ved eller nær produksjonsanlegget. Imidlertid representerer slik brenning tapt energi, muligens tapt fortjenester og økt utslipp til atmosfæren. Production of hydrocarbons consists of, among other things of separation and stabilization of various hydrocarbon components which, together with crude oil, are part of the feed stream from the wellhead. When the feed stream consists of a high percentage of light hydrocarbons, the stock of which is known as natural gas, the field is often classified as an "associated gas field". The natural gas from such fields must be treated in one way or another. The simplest and most common way is to burn the gas using a burner at or near the production facility. However, such burning represents lost energy, possibly lost profits and increased emissions to the atmosphere.
I tillegg til brenning finnes det to velkjente måter å behandle assosiert gass. Den første er å føre gassen tilbake til kilden/reservoaret, og den andre er å føre gassen i gasstilstand til markedet gjennom et gassrør. I tilfeller hvor tilførselsstrømmen har en høy prosentandel naturgass, blir salgspotensialet betydelig hvis gassen kan bli solgt istedenfor brent eller tilbakeført. In addition to burning, there are two well-known ways of treating associated gas. The first is to bring the gas back to the source/reservoir, and the second is to bring the gas in a gaseous state to the market through a gas pipe. In cases where the feed stream has a high percentage of natural gas, the sales potential becomes significant if the gas can be sold instead of burned or returned.
Publikasjonen US 2008 0202158 viser et system for kjøling av naturgass ved hjelp av en Braytonsyklus med tre trinn kompresjon og ett trinn ekspansjon. The publication US 2008 0202158 shows a system for cooling natural gas using a Brayton cycle with three stages of compression and one stage of expansion.
Publikasjonen WO 02/095284 viser et offshore reforgassingssystem for kondensert naturgass omfattende en mobil flytende plattform med en reforgassingsenhet. The publication WO 02/095284 shows an offshore regasification system for condensed natural gas comprising a mobile floating platform with a regasification unit.
Formålet med oppfinnelsen er å tilveiebringe en alternativ måte å behandle naturgass på, ved å kondensere gassen LNG-(liquified natural gas) og transportere LNG-til markedet. Dessuten er formålet med oppfinnelsen knyttet til bruk av LNG-skip for kondensering, lagring og transport av kondensert naturgass fra produksjonsanlegget til markedet. The purpose of the invention is to provide an alternative way of treating natural gas, by condensing the gas LNG (liquefied natural gas) and transporting LNG to the market. Furthermore, the purpose of the invention relates to the use of LNG ships for condensing, storing and transporting condensed natural gas from the production facility to the market.
SAMMENDRAG AV OPPFINNELSEN SUMMARY OF THE INVENTION
Den foreliggende oppfinnelsen angår et system for behandling av naturgass, omfattende: et LNG-skip kjølekretsenheten omfattende et lastehåndteringssystem, LNG-tanker og en et fremdriftssystem, hvor LNG-skipet mottar naturgassen fra et offshoreanlegg eller en landbasert anlegg, hvor systemet videre omfatter: et LNG-prosessanlegg kjølekretsenheten tilveiebrakt på LNG-skipet kjølekretsenheten omfattende: en gassekspanderenhet kjølekretsenheten for gjenvinning av arbeid fra naturgass og dermed tilveiebringe initial kjøling av naturgassen; en varmevekslerenhet til nedkjøling og kondensering av naturgassen; en kjøleenhet for å tilveiebringe ytterligere kjøling og for forenkling av kondensering og underkjøling av naturgassen; en ekspansjonsventil for avsluttende nedkjøling gjennom reduksjon av trykket hos den kondenserte gassen før lagring i LNG-tankene ved hjelp av lastehåndteringssystemet; hvor kjøleenheten består av en lukket Brayton-kjølekretsenhet omfattende kompressorenheter og minst en ekspanderenhet, hvor kompressor- og ekspanderenhetene er koblet til en girboks for dermed å utgjøre en enkelt kompanderenhet. The present invention relates to a system for processing natural gas, comprising: an LNG ship, the cooling circuit unit comprising a cargo handling system, LNG tanks and a propulsion system, where the LNG ship receives the natural gas from an offshore facility or a land-based facility, where the system further comprises: a LNG process plant cooling circuit unit provided on the LNG ship the cooling circuit unit comprising: a gas expander unit the cooling circuit unit for recovering work from natural gas and thereby providing initial cooling of the natural gas; a heat exchanger unit for cooling and condensing the natural gas; a cooling unit to provide additional cooling and to facilitate condensation and subcooling of the natural gas; an expansion valve for final cooling through reduction of the pressure of the condensed gas before storage in the LNG tanks by means of the cargo handling system; where the cooling unit consists of a closed Brayton cooling circuit unit comprising compressor units and at least one expander unit, where the compressor and expander units are connected to a gearbox to thereby form a single compander unit.
I et aspekt av oppfinnelsen er kraft gjenvunnet ved minst en aksel hos gassekspanderenheten anvendt til å drive enten et elektriske aggregat eller bidra med mekanisk kraft til kompanderenheten. In one aspect of the invention, power recovered by at least one shaft of the gas expander unit is used to drive either an electrical unit or contribute mechanical power to the compander unit.
I et aspekt av oppfinnelsen er gassekspanderenheten koblet mekanisk til girboksen hos kompanderenheten. In one aspect of the invention, the gas expander unit is mechanically connected to the gearbox of the compander unit.
I et aspekt av oppfinnelsen er trykket til gassen mottatt fra oljeproduksjonsanlegget offshore over 7500 kPa. In one aspect of the invention, the pressure of the gas received from the offshore oil production facility is above 7500 kPa.
I et aspekt av oppfinnelsen er gasstrykket etter gassekspanderenheten ca. 2000 - 300 kPa, normalt 1000 kPa. In one aspect of the invention, the gas pressure after the gas expander unit is approx. 2000 - 300 kPa, normally 1000 kPa.
I et aspekt av oppfinnelsen består varmeveksleren av plate-finne varmevekslere. In one aspect of the invention, the heat exchanger consists of plate-fin heat exchangers.
I et aspekt av oppfinnelsen er varmevekslerenheten isolert. In one aspect of the invention, the heat exchanger unit is insulated.
I et aspekt av oppfinnelsen er kjølefluidet i Brayton-kjølekretsenheten nitrogengass. In one aspect of the invention, the cooling fluid in the Brayton cooling circuit unit is nitrogen gas.
I et aspekt av oppfinnelsen omfatter Brayton-kjølekretsenheten omfatter kompressorenheter med vannavkjølte mellomkjølere og en etterkjøler. In one aspect of the invention, the Brayton refrigeration circuit unit comprises compressor units with water-cooled intercoolers and an aftercooler.
I et aspekt av oppfinnelsen har kompanderenheten en utgående aksel for henholdsvis hver av de 3 kompressorenhetene og ekspanderenheten. In one aspect of the invention, the compander unit has an output shaft for each of the 3 compressor units and the expander unit respectively.
I et aspekt av oppfinnelsen har kompanderenheten en inngående aksel. In one aspect of the invention, the compander unit has an input shaft.
I et aspekt av oppfinnelsen er den inngående akselen mekanisk koblet til akselen hos gassekspanderenheten. In one aspect of the invention, the input shaft is mechanically connected to the shaft of the gas expander unit.
I et aspekt av oppfinnelsen er den inngående akselen til kompanderenheten drevet av dampturbin forsynt med damp fra varmekj elene til skipets fremdriftssystem. In one aspect of the invention, the input shaft of the compander unit is driven by a steam turbine supplied with steam from the boilers of the ship's propulsion system.
I et aspekt av oppfinnelsen består kompanderenheten av tre kompressorenheter og to ekspanderenheter. In one aspect of the invention, the compander unit consists of three compressor units and two expander units.
I et aspekt av oppfinnelsen får kompanderenheten kjølevann fra et kjøle vannsystem hos LNG-skipet. In one aspect of the invention, the compander unit receives cooling water from a cooling water system at the LNG ship.
Den foreliggende oppfinnelsen angår også en fremgangsmåte for behandling av naturgass, omfattende følgende trinn: tilveiebringe et LNG-skip, som har et lastehåndteringssystem, LNG-tanker og et fremdriftssystem, hvor LNG-skipet mottar naturgass fra et offshoreanlegg eller et landbaserte anlegg, og hvor fremgangsmåten omfatter følgende trinn: ekspandering av gassen ved hjelp av en gassekspanderenhet for gjenvinning av arbeid fra naturgass og dermed tilveiebringe initial nedkjøling av naturgassen; nedkjøling, kondensering og underkjøling av naturgassen ved hjelp av en varmevekslerenhet; videre nedkjøling ved hjelp av en kjøleenhet for tilveiebringelse av ytterligere kjøling og for forenkling av kondensering og underkjøling av naturgass; redusering av gasstrykket gjennom en ekspansjonsventil; lagring av flytende gass i LNG-skipets tanker ved hjelp av lastehåndteringssystemet. The present invention also relates to a method for treating natural gas, comprising the following steps: providing an LNG ship, which has a cargo handling system, LNG tanks and a propulsion system, where the LNG ship receives natural gas from an offshore facility or a land-based facility, and where the method comprises the following steps: expanding the gas using a gas expander unit for recovering work from natural gas and thereby providing initial cooling of the natural gas; cooling, condensing and subcooling the natural gas using a heat exchanger unit; further cooling by means of a refrigeration unit for providing additional cooling and for facilitating the condensation and subcooling of natural gas; reducing the gas pressure through an expansion valve; storage of liquefied gas in the LNG ship's tanks using the cargo handling system.
DETALJERT BESKRIVELSE DETAILED DESCRIPTION
Nedenfor blir utførelsesformer av denne oppfinnelsen beskrevet i detalj med henvisning til vedlagte tegninger, hvor: Fig. 1 er et skjematisk oversikt av forskjellige måter å håndtere naturgass fra et olje-og gassfelt; Below, embodiments of this invention are described in detail with reference to the attached drawings, where: Fig. 1 is a schematic overview of different ways of handling natural gas from an oil and gas field;
Fig. 2 illustrerer den første utførelsesformen av oppfinnelsen Fig. 2 illustrates the first embodiment of the invention
Fig. 3 viser detaljene av gassprosesseringssystemet til LNG-skipet i fig. 2. Fig. 3 shows the details of the gas processing system of the LNG ship in fig. 2.
Fig. 4 viser den andre utførelsesformen av oppfinnelsen; og Fig. 4 shows the second embodiment of the invention; and
Fig. 5 viser kompressor/ekspanderprinsippet. Fig. 5 shows the compressor/expander principle.
Det vises til fig. 1, som viser en oversikt over forskjellige måter for behandling av gass produsert i et prosessanlegg. Prosessanlegget 1 kan anta mange forskjellige former, blant annet et skip (kalt FPSO), en rigg (flytende eller bunnplassert) eller andre typer anlegg inkludert landbaserte anlegg. Reference is made to fig. 1, which shows an overview of different ways of treating gas produced in a process plant. The processing plant 1 can take many different forms, including a ship (called an FPSO), a rig (floating or bottom-placed) or other types of facilities including land-based facilities.
I utførelsesformene vist i fig. 1 er hovedproduktet olje som kan bli fraktet til markedet enten på et skip eller gjennom rørledning. De lette In the embodiments shown in fig. 1 the main product is oil which can be transported to the market either on a ship or through a pipeline. They took off
hydrokarbonbestanddelene, også kjent som naturgass, kan bli brent, fraktet til markedet gjennom en rørledning eller reinjiseres i brønnen. the hydrocarbon components, also known as natural gas, can be burned, transported to market through a pipeline or reinjected into the well.
Et alternativ til ovennevnte er å behandle naturgass er ved bruk av et system og en fremgangsmåte for behandling i samsvar med foreliggende oppfinnelse og som vises med stiplet linjer og merket A i fig. 1. An alternative to the above is to treat natural gas using a system and a method for treatment in accordance with the present invention and which is shown with dashed lines and marked A in fig. 1.
Det vises nå til fig. 2. Prosessanlegget 1, som i fig. 2 er vist som en flytende produksjonsrigg, er fortøyd til havbunnen over en undersjøisk brønn 2, hvor en brønnstrøm av hydrokarboner, det vil si olje og assosiert gass, er ledet gjennom rør til produksjonsanlegg 1 fra brønn 2 gjennom et stigerør 3. På produksjonsanlegget er tilførselsstrømmen delt opp i egnede komponenter som råolje, kondensat, tyngre gasskomponenter (LPG) og lettere gasskomponenter eller naturgass. Naturgassen skal behandles på en måte slik at den er klar til nedkjøling og kondensering. Dette betyr at urenheter, karbondioksid og vann har blitt fjernet eller redusert til et akseptabelt nivå for direkte kondensering. I fig. 2 er råoljen eksportert ved bruk av rørledninger på havbunnen eller til en skytteltanker via en lastebøye. Reference is now made to fig. 2. Process plant 1, as in fig. 2 is shown as a floating production rig, is moored to the seabed above a submarine well 2, where a well stream of hydrocarbons, i.e. oil and associated gas, is led through pipes to production facility 1 from well 2 through a riser 3. At the production facility, the feed stream divided into suitable components such as crude oil, condensate, heavier gas components (LPG) and lighter gas components or natural gas. The natural gas must be treated in such a way that it is ready for cooling and condensation. This means that impurities, carbon dioxide and water have been removed or reduced to an acceptable level for direct condensation. In fig. 2, the crude oil is exported using pipelines on the seabed or to a shuttle tanker via a loading buoy.
I fig. 2 er et gassbehandlingssystem eller et LNG-prosessanlegg 10 bygget på LNG-skipet 11. LNG-skipet 11 er fortøyd like ved oljeproduksjonsanlegget 1. LNG-skipet har et lastehåndterings system og andre hjelpeutstyr, som f eks kjølevannssystem og andre hjelpesystemer. LNG-prosessanlegget 10 tar imot naturgass fra produksjonsanlegget 1 gjennom en rørledning 12. In fig. 2 is a gas treatment system or an LNG process plant 10 built on the LNG ship 11. The LNG ship 11 is moored close to the oil production plant 1. The LNG ship has a cargo handling system and other auxiliary equipment, such as cooling water system and other auxiliary systems. The LNG process plant 10 receives natural gas from the production plant 1 through a pipeline 12.
Det vises nå til fig. 3, som grovt sett samsvarer de stiplet linjene merket A i fig. 1. På denne tegningen er LNG-prosessanlegget 10 illustrert sammen med andre relevante deler av et LNG-skip. LNG-prosessanlegget 10 består av en gassekspanderenhet 20 for innledende nedkjøling av gassen ved å gjenvinne mekaniske arbeid eller kraft fra den, en varmevekslerenhet 30 for nedkjøling, kondensering og underkjøling av gassen og en kjøleenhet 40 som forsyner varmevekslerenheten med en kaldstrøm for videre nedkjøling og kondensering av gassen. Reference is now made to fig. 3, which roughly corresponds to the dashed lines marked A in fig. 1. In this drawing, the LNG process plant 10 is illustrated together with other relevant parts of an LNG ship. The LNG process plant 10 consists of a gas expander unit 20 for initial cooling of the gas by recovering mechanical work or power from it, a heat exchanger unit 30 for cooling, condensing and subcooling the gas and a cooling unit 40 which supplies the heat exchanger unit with a cold stream for further cooling and condensation of the gas.
Gassekspanderenheten 20 blir tilført naturgass fra produksjonsanlegget 1. Etter behandlingsprosessen ved prosessanlegget vil som oftest naturgassen ha et høyt trykk, normalt over 7500 kPa. I den foreliggende utførelsesformen vil gassekspanderenheten 20 bestå av to gassekspandere 20a og 20b i serie, som vist i fig. 3. Gasstrykket nedstrøms gassekspanderenheten blir mellom 300 - 2000 kPa, normalt 1000 kPa. The gas expander unit 20 is supplied with natural gas from the production plant 1. After the treatment process at the processing plant, the natural gas will usually have a high pressure, normally above 7500 kPa. In the present embodiment, the gas expander unit 20 will consist of two gas expanders 20a and 20b in series, as shown in fig. 3. The gas pressure downstream of the gas expander unit will be between 300 - 2000 kPa, normally 1000 kPa.
Ekspansjonsprosessen i gassekspanderenheten 20 fører til en gjenvinning av energi og gasstemperaturfall. Den gjenvunnede energien tilgjengelig på ekspanderakslene kan brukes til å drive en strømgenerator eller bli brukt som drivkraft til kjøleenheten 40, som vil bli nærmere beskrivelse nedenfor. The expansion process in the gas expander unit 20 leads to a recovery of energy and gas temperature drop. The recovered energy available on the expander shafts can be used to drive a power generator or be used as drive power for the cooling unit 40, which will be described in more detail below.
Varmevekslerenheten 30 består av en plate-finne-varmeveksler hvor den nedkjølte gassen fra gassekspanderenheten tilføres. Varmevekslerenheten er isolert for å begrense tilførsel av varme fra omgivelsen. I den viste utførelsesformen er en 4-pass plate-finne-varmevekslerenhet brukt. The heat exchanger unit 30 consists of a plate-fin heat exchanger where the cooled gas from the gas expander unit is supplied. The heat exchanger unit is insulated to limit the supply of heat from the surroundings. In the embodiment shown, a 4-pass plate-fin heat exchanger unit is used.
Kjøleenheten 40 i den foreliggende utførelsesformen består av en lukket type kjølekrets som eksempelvis en lukket Brayton-kjølekrets, hvor kjølemediet brukt er nitrogengass. I den påfølgende beskrivelsen er kjøleenheten 40 også angitt som en Brayton-kjølekretsenhet. Brayton-kjølekretsenheten har 3 kompressorenheter; hver av disse definerer et kompressortrinn med vannkjølte mellom- og etterkjølere. Videre består Brayton-kjølekretsenheten også av en ekspanderenhet som definerer et ekspansjonstrinn. The cooling unit 40 in the present embodiment consists of a closed type of cooling circuit such as a closed Brayton cooling circuit, where the cooling medium used is nitrogen gas. In the following description, the cooling unit 40 is also referred to as a Brayton cooling circuit unit. The Brayton refrigeration circuit unit has 3 compressor units; each of these defines a compressor stage with water-cooled intercoolers and aftercoolers. Furthermore, the Brayton refrigeration circuit unit also consists of an expander unit which defines an expansion stage.
Naturgassen som tilføres varmevekslerenheten 30 er fordelt på to strømmer: en hovedstrøm som blir kjølt ned og kondensert og danner LNG-produktet, og en sekundær strøm som varmes opp og som er brukt som drivstoff for å generere den mekaniske energi for driften av Brayton-kjølekretsenheten. The natural gas supplied to the heat exchanger unit 30 is divided into two streams: a main stream that is cooled and condensed to form the LNG product, and a secondary stream that is heated and used as fuel to generate the mechanical energy for the operation of the Brayton refrigeration circuit unit .
De to resterende passasjene i varmevekslingsenheten 30 er brukt til å føre kjølekretsens primære og sekundære kjølestrømmer (nitrogengass). The two remaining passages in the heat exchange unit 30 are used to carry the cooling circuit's primary and secondary cooling flows (nitrogen gas).
I den viste utførelsesformen er de tre kompressortrinnene og det ene ekspandertrinnet i Brayton-kjølekretsenheten sammensatt til en såkalt "kompanderenhet" (eng: compander unit) (kompressor- og ekspanderenhet). In the embodiment shown, the three compressor stages and one expander stage in the Brayton cooling circuit unit are assembled into a so-called "compander unit" (compressor and expander unit).
Prinsippet i kompanderenheten er vist i fig. 5. Kompanderenheten består av en felles girboks 52 som har utgående aksler for hver av kompressorenhetene og ekspanderenheten og en inngående aksel 55. The principle of the compander unit is shown in fig. 5. The compander unit consists of a common gearbox 52 which has output shafts for each of the compressor units and the expander unit and an input shaft 55.
Som nevnt overfor, består kompanderenheten av tre kompressorenheter og en ekspanderenhet for Brayton-kjølekretsenheten som er mekanisk forbundet til den felles girboksen. Den inngående akselen til kompanderenheten er drevet av en driverenhet 55 som enten er drevet av dampturbin med damp fra LNG-skipets dampkjeler 66, som er en del av LNG-skipets fremdriftssystem, eller en elektrisk motor drevet med elektrisitet produsert ombord i LNG-skipet. As mentioned above, the compander unit consists of three compressor units and an expander unit for the Brayton cooling circuit unit mechanically connected to the common gearbox. The input shaft of the compander unit is driven by a drive unit 55 which is either driven by a steam turbine with steam from the LNG ship's steam boilers 66, which is part of the LNG ship's propulsion system, or an electric motor driven by electricity produced on board the LNG ship.
Videre kan ekspanderenhetene til gassekspanderenheten 20 også være fysisk koblet til girboks 52, se fig. 5. Merk at ekspanderenhetene til gassekspanderenheten 20 og ekspanderenhetene til kjøleenheten 40 sammen med driverenheten 55 forsyner energi til den felles girboksen 52, mens kompressorenheten til Brayton-kjølekretsenheten benytter energi fra den felles girboksen 52. Ved å designe en integrert kompanderenhet, som beskrevet ovenfor, vil enheten vil bli kompakt, redusere kostnadene og redusere plassbehovet for installasjon på LNG-skipet. Furthermore, the expander units of the gas expander unit 20 can also be physically connected to the gearbox 52, see fig. 5. Note that the expander units of the gas expander unit 20 and the expander units of the cooling unit 40 together with the driver unit 55 supply energy to the common gearbox 52, while the compressor unit of the Brayton cooling circuit unit uses energy from the common gearbox 52. By designing an integrated compander unit, as described above, the unit will be compact, reduce costs and reduce the space required for installation on the LNG ship.
Mekaniske begrensninger og hastighetsbegrensninger kan gjøre det vanskelig for gassekspanderenheten 20 å bli koblet til girboks 52.1 dette tilfelle kan gassekspanderenheten 20 bli koblet til en generator for produksjon av elektriske strøm. Denne energien kan brukes på skipet og dermed redusere gass- og dampforbruket. I dette tilfelle vil kompanderenheten bestå av kjøleenheten 40 og driverenheten 55.1 dette tilfellet blir dermed gassekspanderenheten 20 en separat enhet og kompanderenheten, bestående av kjøleenheten 40 og driverenheten 55, en separat enhet. Mechanical limitations and speed limitations can make it difficult for the gas expander unit 20 to be connected to the gearbox 52. In this case, the gas expander unit 20 can be connected to a generator for the production of electrical current. This energy can be used on the ship and thus reduce gas and steam consumption. In this case, the compander unit will consist of the cooling unit 40 and the driver unit 55.1 In this case, the gas expander unit 20 thus becomes a separate unit and the compander unit, consisting of the cooling unit 40 and the driver unit 55, a separate unit.
Merk at Brayton-kjølekretsenheten er nærmere beskrevet i norsk patent NO 305525, som er herved inkorporert som referanse. Note that the Brayton cooling circuit unit is described in more detail in Norwegian patent NO 305525, which is hereby incorporated by reference.
Som vist i fig. 3 sirkulerer kald nitrogen fremstilt av Brayton-kjølekretsenheten mellom varmevekslerenheten 30 og kjøleenheten 40. Som følge av denne sirkulering, er naturgassen videre kjølt ned og kondensert og til slutt underkjølt ved varmeveksling mot nitrogen. Nedstrøms LNG-prosessanlegget 10 er en ekspansjonsventil 50 brukt for å redusere trykket på den kondenserte gassen før den er transportert videre til LNG-tankene via LNG-skipets lastehåndteringssystem. Fig. 3 viser transport av LNG-fra ventilen 50 til LNG-tanken 60 gjennom rør 62. As shown in fig. 3, cold nitrogen produced by the Brayton cooling circuit unit circulates between the heat exchanger unit 30 and the cooling unit 40. As a result of this circulation, the natural gas is further cooled down and condensed and finally subcooled by heat exchange against nitrogen. Downstream of the LNG processing plant 10, an expansion valve 50 is used to reduce the pressure on the condensed gas before it is transported further to the LNG tanks via the LNG ship's cargo handling system. Fig. 3 shows the transport of LNG from the valve 50 to the LNG tank 60 through pipe 62.
Videre er kjøleenheten 40 forsynt med kjølevann fra et kjølevannssystem 64 hos LNG-skipet. Furthermore, the cooling unit 40 is supplied with cooling water from a cooling water system 64 at the LNG ship.
Naturgassen fra produksjonsanlegg 1 kan brukes som drivstoff av skipets dampkjeler 66 for produksjon av damp som vil drive driverenheten 55 når skipet er i LNG-produksjonsmodus, som vist i fig. 2. Brennstoffrøret er merket med 68 i fig. 3. Dermed har skipets dampkjeler 66 generert den nødvendige mekaniske arbeidet til driverenheten 55 i kompanderenheten. The natural gas from production plant 1 can be used as fuel by the ship's steam boilers 66 for the production of steam that will power the driver unit 55 when the ship is in LNG production mode, as shown in fig. 2. The fuel pipe is marked with 68 in fig. 3. Thus, the ship's steam boiler 66 has generated the necessary mechanical work for the driver unit 55 in the compander unit.
På denne måten er en metode for håndtering av naturgass angitt, med følgende trinn: - tilveiebringe et LNG-skip som har et lastehåndteringssystem, LNG-tanker og et fremdriftssystem, hvor skipet mottar naturgass fra en flytende produksjonsanlegg eller et landbasert produksjonsanlegg, og hvor framgangsmåten videre omfatter følgende trinn: - ekspansjon av gassen ved bruk av en gassekspanderenhet for gjenvinning av energi fra naturgassen og derved tilveiebringe initial kjøling av naturgassen; - kjøling, kondensering og underkjøling av naturgassen ved hjelp av en varmevekslingsenhet; - ytterligere kjøling ved hjelp av en kjøleenhet for å tilveiebringe ytterligere kjøling og bidra til kondensering og underkjøling av naturgassen; - reduksjon av gasstrykket ved bruk av en ekspansjonsventil; - lagring av kondensert gass i LNG-tankene ved bruk av skipets lastehåndteringssystem. In this way, a method for handling natural gas is indicated, with the following steps: - providing an LNG ship that has a cargo handling system, LNG tanks and a propulsion system, where the ship receives natural gas from a floating production facility or a land-based production facility, and where the procedure further comprises the following steps: - expansion of the gas using a gas expander unit for recovering energy from the natural gas and thereby providing initial cooling of the natural gas; - cooling, condensing and subcooling the natural gas using a heat exchange unit; - additional cooling by means of a cooling unit to provide additional cooling and contribute to the condensation and subcooling of the natural gas; - reduction of the gas pressure using an expansion valve; - storage of condensed gas in the LNG tanks using the ship's cargo handling system.
Gjenvunnet energien fra ekspanderenheten er utnyttet prosessanleggets totale energibalanse eller LNG-skipets energibalanse. Recovered energy from the expander unit is utilized for the process plant's total energy balance or the LNG ship's energy balance.
Ifølge oppfinnelsen kan et LNG-skip med et prosessanlegg 10 ombord bli bruk til å håndtere, det vil si motta, kondensere og transportere naturgass fra anlegget 1. Som beskrevet ovenfor er flere av systemene til LNG-skipet gjenbrukt. De fleste tradisjonelle LNG-skip er utstyrt med dampdrevet fremdriftssystem som består av 2 gassfyrte dampkjeler som leverer damp til en dampturbiner som driver LNG-skipets propell. Når LNG-prosessanlegget er i drift er dampen i stedet ført til dampturbindrivenheten 55 på kompanderenhetens drivaksling. Alternativt kan drivenheten 55 være en elektrisk motor som får strøm fra LNG-skipets kraftforsyningssystem. Et slikt alternativ er mulig for LNG-skip som har installert et elektrisk fremdriftssystem drevet av mellomhastighets gassmotorer. According to the invention, an LNG ship with a process plant 10 on board can be used to handle, that is to say receive, condense and transport natural gas from plant 1. As described above, several of the systems of the LNG ship are reused. Most traditional LNG ships are equipped with a steam-driven propulsion system consisting of 2 gas-fired steam boilers that supply steam to a steam turbine that drives the LNG ship's propeller. When the LNG process plant is in operation, the steam is instead led to the steam turbine drive unit 55 on the compander unit's drive shaft. Alternatively, the drive unit 55 can be an electric motor that receives power from the LNG ship's power supply system. Such an option is possible for LNG ships that have installed an electric propulsion system powered by medium speed gas engines.
Når LNG-lastetankene er fulle, stopper gasstilførsel gjennom rørledning 12 fra produksjonsanlegget. LNG-skipet blir da frakoblet fortøyningen og seiler til en LNG-mottaksterminal for lossing av LNG. Deretter reiser skipet tilbake til produksjonsanlegg, bli fortøyd og tilkoblet for et ny syklus med gasskondensering, lagring og transport. Når LNG-skipet ikke er tilkoblet til rørledningen 12 kan gassen på produksjonsanlegget enten bli brent eller reinjisert i brønnen. When the LNG cargo tanks are full, gas supply through pipeline 12 from the production plant stops. The LNG ship is then disconnected from the mooring and sails to an LNG receiving terminal for unloading LNG. The ship then travels back to the production facility, is moored and connected for another cycle of gas condensing, storage and transport. When the LNG ship is not connected to the pipeline 12, the gas at the production facility can either be burned or reinjected into the well.
En synergieffekt er også oppnådd ved bruk av deler av sjøvannkjølesystemet for fremdriftsturbinkondensatoren som en del av kjølesystemet for anlegget 10. A synergy effect has also been achieved by using parts of the seawater cooling system for the propulsion turbine condenser as part of the cooling system for plant 10.
Prosessanlegget er montert og integrert i LNG-skipets hjelpesystemer. Dette medfører at de aller viktigste hjelpesystemene som er nødvendige for drift av prosessanlegget er tilveiebrakt fra de eksisterende skipssystemene. Dette omfatter for eksempel dampkraft, elektrisk kraft, kjølevann samt eksisterende LNG-rørsystemer. Denne systemintegreringen kan gjøres uten at det påvirker av LNG-skipets normal funksjoner som passering ved full hastighet, terminaltiIgang, fortøying og lossing av last. The process plant is installed and integrated into the LNG ship's auxiliary systems. This means that the most important auxiliary systems that are necessary for the operation of the process plant are provided from the existing ship systems. This includes, for example, steam power, electric power, cooling water and existing LNG pipe systems. This system integration can be done without affecting the LNG ship's normal functions such as passage at full speed, terminal access, mooring and unloading of cargo.
Det vises nå til fig. 4. LNG-skipet 11 med LNG-prosessanlegget 10 vist på fig. 4 tilsvarer LNG-skip 11 og LNG-prosessanlegget 10 som beskrevet ovenfor. Fig. 4 viser prosessanlegget 1 som et landbasert gasseksportanlegg med en havn. Som vist er LNG-prosessanlegget 10 koblet til anlegg 1 via rørledning 12 A, for transport av naturgass fra anlegget til skipet. Følgelig kan foreliggende oppfinnelse brukes for håndtering av enhver type naturgass, både assosiert gass fra oljefelter, for håndtering av naturgass fra gassfelter eller gasseksportanlegg. Når LNG-skipet mottar gass fra et landbasert anlegg er det mulig at gasstrykket ikke er høyt, men tilnærmet atmosfærisk trykk. I dette tilfelle kan gassekspanderenheten i prosessanlegget sløyfes eller erstattets med en kompressor. Reference is now made to fig. 4. The LNG ship 11 with the LNG process plant 10 shown in fig. 4 corresponds to the LNG ship 11 and the LNG processing plant 10 as described above. Fig. 4 shows the process plant 1 as a land-based gas export plant with a port. As shown, the LNG process plant 10 is connected to plant 1 via pipeline 12 A, for the transport of natural gas from the plant to the ship. Consequently, the present invention can be used for handling any type of natural gas, both associated gas from oil fields, for handling natural gas from gas fields or gas export facilities. When the LNG ship receives gas from a land-based facility, it is possible that the gas pressure is not high, but approximately atmospheric pressure. In this case, the gas expander unit in the process plant can be bypassed or replaced with a compressor.
Det skal bemerkes at kjøleenheten 40 bør utformes basert på de tekniske kravene den skal anvendes for. For eksempel kan Brayton-kjølekretsenheten bestå av flere eller færre enn 3 kompressorer, mer enn en ekspander, osv. Videre kan en av mellomkjølerne utelattes. Dette vil følgelig påvirke formgivningen av kompanderenheten. It should be noted that the cooling unit 40 should be designed based on the technical requirements for which it is to be used. For example, the Brayton refrigeration circuit unit may consist of more or fewer than 3 compressors, more than one expander, etc. Furthermore, one of the intercoolers may be omitted. This will consequently affect the design of the compander unit.
Dessuten skal det bemerkes at dampkjelene 66 kan erstattes med gassmotorgeneratorer, etc. Also, it should be noted that the steam boilers 66 can be replaced with gas engine generators, etc.
Ytterligere endringer og variasjoner vil være innlysende for en fagperson på området etter å ha lest beskrivelsen ovenfor. Omfanget av oppfinnelsen fremgår av følgende krav og deres ekvivalenter. Further changes and variations will be apparent to one skilled in the art after reading the above description. The scope of the invention appears from the following claims and their equivalents.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20084074A NO328852B1 (en) | 2008-09-24 | 2008-09-24 | Gas Process and System |
PCT/NO2009/000317 WO2010036121A2 (en) | 2008-09-24 | 2009-09-10 | Method and system for handling gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20084074A NO328852B1 (en) | 2008-09-24 | 2008-09-24 | Gas Process and System |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20084074L NO20084074L (en) | 2010-03-25 |
NO328852B1 true NO328852B1 (en) | 2010-05-31 |
Family
ID=42060323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20084074A NO328852B1 (en) | 2008-09-24 | 2008-09-24 | Gas Process and System |
Country Status (2)
Country | Link |
---|---|
NO (1) | NO328852B1 (en) |
WO (1) | WO2010036121A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO337280B1 (en) * | 2014-03-17 | 2016-02-29 | Global Lng Services Ltd | Improvement in air-cooled heat exchangers |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5660845B2 (en) * | 2010-10-13 | 2015-01-28 | 三菱重工業株式会社 | Liquefaction method, liquefaction apparatus, and floating liquefied gas production facility equipped with the same |
SG194615A1 (en) * | 2011-05-25 | 2013-12-30 | Novartis Ag | Biomarkers for lung cancer |
FR3002311B1 (en) * | 2013-02-20 | 2016-08-26 | Cryostar Sas | DEVICE FOR LIQUEFACTING GAS, IN PARTICULAR NATURAL GAS |
KR101797199B1 (en) | 2013-04-12 | 2017-11-13 | 엑셀러레이트 리쿼팩션 솔루션즈, 엘엘씨 | Systems and methods for floating dockside liquefaction of natural gas |
US10865209B2 (en) * | 2016-12-20 | 2020-12-15 | Cristália Produtos Químicos Farmacêuticos Ltda | Process for preparing temozolomide and an intermediary |
US20190120548A1 (en) * | 2017-10-25 | 2019-04-25 | Fritz Pierre, JR. | Natural Gas Liquefaction by a High Pressure Expansion Process using Multiple Turboexpander Compressors |
CZ2019618A3 (en) * | 2019-10-04 | 2020-12-16 | Siad Macchine Impianti S.P.A. | Natural gas processing equipment |
US11808518B2 (en) * | 2020-05-21 | 2023-11-07 | EnFlex, Inc. | Advanced method of heavy hydrocarbon removal and natural gas liquefaction using closed-loop refrigeration system |
US20220333855A1 (en) * | 2021-04-15 | 2022-10-20 | Henry Edward Howard | System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine |
US20220333854A1 (en) * | 2021-04-15 | 2022-10-20 | Henry Edward Howard | System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine |
US20220333856A1 (en) * | 2021-04-15 | 2022-10-20 | Henry Edward Howard | System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3200958A1 (en) * | 1982-01-14 | 1983-07-21 | Linde Ag, 6200 Wiesbaden | Method of extracting natural gas from maritime deposits |
NO962776A (en) * | 1996-07-01 | 1997-12-08 | Statoil Asa | Method and plant for liquefaction / conditioning of a compressed gas / hydrocarbon stream extracted from a petroleum deposit |
US6484533B1 (en) * | 2000-11-02 | 2002-11-26 | Air Products And Chemicals, Inc. | Method and apparatus for the production of a liquid cryogen |
US6546739B2 (en) * | 2001-05-23 | 2003-04-15 | Exmar Offshore Company | Method and apparatus for offshore LNG regasification |
NO20026189D0 (en) * | 2002-12-23 | 2002-12-23 | Inst Energiteknik | Condensation system for expansion of untreated brönnström from an offshore gas or gas condensate field |
JP2008509374A (en) * | 2004-08-06 | 2008-03-27 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | Natural gas liquefaction method |
NO20051315L (en) * | 2005-03-14 | 2006-09-15 | Hamworthy Kse Gas Systems As | System and method for cooling a BOG stream |
WO2007064209A1 (en) * | 2005-12-01 | 2007-06-07 | Single Buoy Moorings Inc. | Hydrocarbon liquefaction system and method |
-
2008
- 2008-09-24 NO NO20084074A patent/NO328852B1/en not_active IP Right Cessation
-
2009
- 2009-09-10 WO PCT/NO2009/000317 patent/WO2010036121A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO337280B1 (en) * | 2014-03-17 | 2016-02-29 | Global Lng Services Ltd | Improvement in air-cooled heat exchangers |
US10012420B2 (en) | 2014-03-17 | 2018-07-03 | Tor Christensen | Weather-vaning air-cooled heat exchangers |
Also Published As
Publication number | Publication date |
---|---|
WO2010036121A3 (en) | 2010-08-19 |
WO2010036121A2 (en) | 2010-04-01 |
NO20084074L (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO328852B1 (en) | Gas Process and System | |
KR102092313B1 (en) | Ship | |
JP5395089B2 (en) | Floating LNG storage and regasification unit, and LPG regasification method in the same unit | |
DK178654B1 (en) | METHOD AND APPARATUS FOR CONTINUOUSING A GASCAR CARBON HYDRAULIC CURRENT | |
KR101763697B1 (en) | Fuel gas supplying system in ships | |
CN107735561B (en) | Gas supply system | |
KR102192811B1 (en) | Method and apparatus for reliquefying natural gas | |
RU2597930C1 (en) | Liquefied gas processing system for ship | |
KR102197284B1 (en) | Power generation system | |
WO2015110443A2 (en) | Coastal liquefaction | |
JP5932985B2 (en) | Use of LNG as fuel to liquefy LPG boil-off gas | |
RU2503900C2 (en) | Method and device for cooling and liquefaction of hydrocarbon flow | |
AU2008281777B2 (en) | Method and apparatus for cooling a gaseous hydrocarbon stream | |
NO180005B (en) | Procedure for extracting natural gas | |
CN103562536A (en) | Method and system for supplying fuel to high-pressure natural gas injection engine | |
CN103547787A (en) | System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means | |
KR20140049981A (en) | Method of cooling boil off gas and an apparatus therefor | |
RU2719258C2 (en) | System and method of treating gas obtained during cryogenic liquid evaporation | |
JP4745456B1 (en) | LPG fraction collection device | |
WO2015140197A2 (en) | A method for liquefaction of a pre-processed natural gas | |
KR101711951B1 (en) | Fuel gas supply system | |
KR102548332B1 (en) | Fuel gas treating system in ships | |
KR20150039442A (en) | A Treatment System of Liquefied Gas | |
KR101623092B1 (en) | Method and apparatus for reliquefying boil-off gas using cold-heat power generation | |
KR102516615B1 (en) | Fuel gas treating system in ships |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |