WO2020109607A1 - Device for generating gas in gaseous form from liquefied gas - Google Patents

Device for generating gas in gaseous form from liquefied gas Download PDF

Info

Publication number
WO2020109607A1
WO2020109607A1 PCT/EP2019/083187 EP2019083187W WO2020109607A1 WO 2020109607 A1 WO2020109607 A1 WO 2020109607A1 EP 2019083187 W EP2019083187 W EP 2019083187W WO 2020109607 A1 WO2020109607 A1 WO 2020109607A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
gas
outlet
compressor
liquefied gas
Prior art date
Application number
PCT/EP2019/083187
Other languages
French (fr)
Inventor
Bernard Aoun
Martin BUISSART
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020217020048A priority Critical patent/KR20210095930A/en
Priority to CN201980079322.0A priority patent/CN113316696B/en
Publication of WO2020109607A1 publication Critical patent/WO2020109607A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • F17C2225/044Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/036"Joule-Thompson" effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • TITLE DEVICE FOR GENERATING GAS IN THE FORM
  • the invention relates in particular to a device for generating gas in gaseous form from liquefied gas.
  • the prior art includes documents FR-A1 -3 066 257, WO-A1 - 2017/192136 and KR-A-2018 0093577.
  • the gas In order to more easily transport gas, such as natural gas, over long distances, the gas is generally liquefied (to become liquefied natural gas - LNG) by cooling it to cryogenic temperatures, for example -160 ° C at atmospheric pressure. The liquefied gas is then loaded into specialized vessels.
  • gas such as natural gas
  • an energy production installation is provided to supply the energy needs of the operation of the ship, in particular for the propulsion of the ship and / or the production of electricity for the on-board equipment.
  • Such an installation commonly includes thermal machines consuming gas from an evaporator which is supplied from the cargo of liquefied gas transported in the tank or tanks of the ship.
  • Document FR-A-2 837 783 provides for supplying such an evaporator and / or other systems necessary for propulsion by means of a submerged pump at the bottom of a tank of the ship.
  • NBOG Natural evaporation of the gas is however inevitable, this phenomenon being called NBOG which is the acronym of the English Natural Boil-Off Gas (as opposed to the forced evaporation of gas or FBOG, acronym of the English Forced Boil- Off Gas).
  • the gas which evaporates naturally in the tank of a ship is generally used to supply the above-mentioned installation.
  • the submerged pump in the tank is actuated to supply more combustible gas after forced evaporation.
  • the excess gas is generally burned in a gas combustion unit, which represents a gas loss combustible.
  • the improvements in the tanks are such that the natural evaporation rates (BOR - acronym for the Boil-Off Rate) of the liquefied gases are increasingly low, while the machines of a ship are increasingly more efficient. This has the consequence, in each of the first and second cases mentioned above, that the difference is very large between the quantity of gas naturally produced by evaporation and that required by the installation of a ship.
  • This vacuum evaporator comprises a phase separation flask which is mounted between means for vaporizing liquefied gas taken from the tank, and means for depressurizing the flask. This provides greater cooling power which can be used to cool the gas in the main tank.
  • the present invention provides an improvement to the current technique, which is simple, effective and economical.
  • the invention provides a device for generating gas in gaseous form from liquefied gas, comprising:
  • a first heat exchanger comprising a first cooling circuit comprising an inlet for liquefied gas connected to a first pipe which is intended to be connected to an outlet for liquefied gas from at least one liquefied gas storage tank,
  • a heater comprising a gas inlet at least partly in liquid form, which is connected to an outlet of said first circuit, and a gas outlet only in gaseous form which is connected to said at least one compressor.
  • the separation tank of the vacuum evaporator (ESV) of the prior art is thus replaced by a heater.
  • the heater is configured to supply only gas in gaseous form. This simplifies the architecture of the device because it is no longer necessary to independently manage the liquid and the gas in the balloon.
  • the device according to the invention may include one or more of the following characteristics, taken in isolation from one another or in combination with each other:
  • said first circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -165 ° C to a temperature greater than or equal to -165 ° C,
  • - Said heater is a heat exchanger which comprises a third circuit comprising a gas inlet at least partly in liquid form, which is connected to the outlet of said first circuit, and a gas outlet only in gaseous form which is connected to said minus a compressor,
  • said third circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -165 ° C to a temperature greater than or equal to -50 ° C,
  • the exchanger forming a heater comprises a fourth circuit in which a heating fluid circulates
  • said fourth circuit is configured to cool the fluid flowing therein from a temperature greater than or equal to 50 ° C to a temperature less than or equal to 0 ° C,
  • said heating fluid is compressed gas taken from the outlet of said at least one compressor
  • an outlet, preferably a single outlet, from said at least one compressor is connected to an inlet of said fourth circuit of the exchanger forming a heater
  • the device comprises at least two compressors connected in series, an outlet of an upstream compressor being connected to the inlet of said fourth circuit of the exchanger forming a heater, one outlet of which is connected to an inlet of a downstream compressor,
  • the device comprises at least two compressors connected in series, an output of an upstream compressor being connected to an input of a downstream compressor one output of which is connected to the input of said fourth circuit of the heat exchanger forming a heater,
  • said fourth circuit has an output connected to at least one compressor
  • said third circuit has its inlet which is further connected to an outlet (45) of gas in gaseous form from said tank,
  • said first heat exchanger comprises a second circuit comprising an inlet for liquefied gas connected to a third pipe which is intended to be connected to an outlet for liquefied gas from said tank; this second circuit can be sequentially a cooling circuit and a heating circuit according to the operating mode of the device,
  • said first heat exchanger comprises a fifth heating circuit comprising a gas inlet in gaseous form connected to a fourth pipe which is intended to be connected to an outlet of said compressor, or of a downstream compressor in the case of two compressors in series,
  • said second circuit is configured to cool the fluid flowing there from a temperature less than or equal to -160 ° C to a temperature less than or equal to -165 ° C
  • / or said fifth circuit is configured to cool the fluid y circulating from a temperature less than or equal to -100 ° C to a temperature less than or equal to -130 ° C
  • the device comprises a fifth pipe fitted with expansion means comprising an inlet connected to an outlet of said fifth circuit, and an outlet intended to be connected to an inlet of liquefied gas from said tank,
  • the device comprises a sixth pipe, an inlet of which is connected to an outlet of said second circuit and an outlet of which is connected to an inlet of liquefied gas from said tank,
  • said gas inlet of said fifth circuit is connected to the outlet of said compressor, or of a downstream compressor in the case of two compressors in series, via a sixth circuit of a second heat exchanger, said sixth circuit is configured to cool the fluid flowing therein from a temperature greater than or equal to 0 ° C to a temperature less than or equal to -100 ° C,
  • said second heat exchanger comprises a seventh circuit, an input of which is connected to a gas outlet in the gaseous form of said tank, and an outlet of which is connected to said compressor, or a downstream compressor in the case of two compressors in series,
  • said seventh circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -100 ° C to a temperature greater than or equal to -50 ° C.
  • the present invention also relates to a ship, in particular for transporting liquefied gas, comprising at least one device as described above.
  • the invention also relates to a method for generating gas in gaseous form from liquefied gas, by means of a device according to one of the preceding claims, characterized in that it comprises a step of withdrawing liquefied gas and of complete vaporization of this gas, before supplying said at least one compressor.
  • the vaporization can be obtained by heating the liquefied gas with a heating fluid which can be compressed gas taken from the outlet of said at least one compressor.
  • the compressed gas is preferably taken between two compressors connected in series or at the outlet of two compressors connected in series.
  • FIG. 1 is a schematic view of a first embodiment of a device according to the invention, which here equips a ship
  • FIG. 2 is a schematic view of a second embodiment of a device according to the invention, which is fitted here on a ship
  • Figure 3 is a schematic view of a third embodiment of a device according to the invention, which here equips a ship;
  • FIG.4 is a schematic view of a fourth embodiment of a device according to the invention, which equips a ship here,
  • FIG. 5 is a schematic view of a fifth embodiment of a device according to the invention, which is fitted here to a ship, and
  • Figure 6 is a schematic view illustrating an operating mode of the device of Figure 5.
  • Figure 7 is a schematic view illustrating another mode of operation of the device of Figure 5.
  • FIG. 1 shows a first embodiment of a device 10 according to the invention which makes it possible in particular to generate gas in gaseous form from liquefied gas.
  • the device 10 is particularly suitable, but not exclusively, for the supply of combustible gas to a ship, such as a liquefied gas transport ship ( Figures 1 to 3).
  • a ship comprises a tank or several tanks 14 for liquefied gas storage.
  • the gas is for example methane or a mixture of gases comprising methane.
  • the or each reservoir 14 can contain gas in liquefied form at a predetermined pressure and temperature, for example at atmospheric pressure and a temperature of the order of -160 ° C.
  • One or more of the tanks 14 of the ship can be connected to an installation 12 for producing energy from the ship.
  • the number of tanks is therefore not limiting. It is for example between 1 and 6.
  • Each reservoir 14 can have a capacity of between 1,000 and 50,000m3.
  • the tank 14 contains liquefied gas 14a as well as gas 14b resulting from evaporation, in particular natural, of the liquefied gas 14a in the tank 14.
  • the liquefied gas 14a is stored at the bottom of the tank 14 while the gas d evaporation 14b is located above the level of liquefied gas in the tank, schematically represented by the letter N.
  • LNG means liquefied gas, that is to say gas in liquid form
  • BOG means evaporation gas
  • NBOG indicates natural evaporation gas
  • FBOG Designates forced evaporation gas, these acronyms being known to those skilled in the art because they correspond to the initials of the associated English expressions.
  • pumps 16a, 16b are immersed in the LNG of the tank 14, and are preferably located at the bottom of the tank in order to ensure that they are only supplied with LNG.
  • the pump 16a is connected to one end, here lower, of a pipe 18.
  • the pump 16b is connected to one end, here lower, of a pipe 20.
  • Line 20 includes an upper end connected to a ramp 22 for spraying LNG droplets located in the upper part of the tank 14, above the level N.
  • the ramp 22 is thus configured to spray droplets of LNG in the NBOG. This makes it possible to force the recondensation of the NBOG in the tank 14.
  • the pump 16b is configured to force the circulation of LNG in the line 20, from the bottom of the tank 14 to the ramp 22 and ensure that the LNG is sprayed under droplet shape.
  • a gaseous sky can be present in the main tank while the NBOG can circulate in the pipes.
  • the pump 16a is configured to force the circulation of LNG in the line 18 from the bottom of the tank 14 to a heat exchanger 24.
  • the line 18 comprises depressurization means 19 so as to reduce the pressure of the LNG circulating in the line 18 before reaching the exchanger 24.
  • the depressurization means 19 comprise for example a Joule-Thomson effect valve.
  • the heat exchanger 24 comprises three heat exchange circuits, a first circuit 24a of which has an input connected to the pipe 18, for supplying the first circuit 24a with two-phase gas leaving the depressurization means 19.
  • the output of the first circuit 24a is connected to an input of a heater 25, an output of which is connected to a single input here of a first compressor 26.
  • the compressor 26, called upstream compressor has a single output here which is connected to a first input of a compressor 28, called downstream compressor.
  • the compressor 28 has a single output here which is connected by one of the channels of a three-way valve 46 to the installation 12.
  • the heat exchanger 24 comprises a second circuit 24b comprising an inlet connected by a pipe 30 to one of the tracks of a three-way valve 38a, the other two tracks of which are connected respectively to the pipe 20 and to the ramp 22.
  • the output of the second circuit 24b is connected to a line 32 which is also connected to one of the channels of a three-way valve 38b, another channel of which is connected to the ramp 22.
  • the heat exchanger 24 comprises a third circuit 24c comprising an outlet connected by a pipe 34 to the last of the tracks of the three-way valve 38b as well as to a system 35 of the plunger type for reinjecting LNG into the tank 14, preferably at the bottom of the tank.
  • Line 34 is equipped with expansion means 36 configured to reduce the pressure of the gas and recondense it, before its reinjection into the reservoir 24.
  • the expansion means 36 comprise for example a Joule-Thomson effect valve, for the purpose of reducing the temperature of the gas by adiabatic expansion.
  • a Joule-Thomson expansion or depressurization is a stationary and slow laminar expansion performed by passing a flow of gas through a pad (cotton wool or raw silk in general) in an insulated and horizontal pipe, the pressure prevailing on the left and to the right of the stamp being different.
  • the Joule-Thomson expansion is generally accompanied by a temperature variation: this is the Joule-Thomson effect.
  • Line 32 is also connected by other three-way valves 38a ’, 38b’ to spray booms 22 and to LNG reinjection systems 35 of other tanks 14 of the ship.
  • the input of the third circuit 24c is connected to an output of a circuit 42b of another heat exchanger 42 whose input is connected to the remaining path of the three-way valve 46.
  • This exchanger 42 includes another circuit 42a one output of which is connected to a second input of compressor 28.
  • circuit 42a The input of circuit 42a is connected to an output of BOG 45 from reservoir 14 or from each reservoir 14.
  • Circuit 24a is a cold circuit, the fluid circulating in this circuit and in this case the depressurized LNG, being intended to be heated by circulation in this circuit so as to partially vaporize it. It is intended to be heated and therefore to transmit cold.
  • the circuit 24a is thus considered as a cooling circuit.
  • the circuit 24b is a hot circuit and therefore of heating in the first case and a cold circuit therefore of cooling in the second case, the fluid circulating in this circuit and in this case the LNG coming from the tank 14, being intended to be cooled by circulation in this circuit. It is understood that the depressurization upstream of the circuit 24a makes it possible to lower the vaporization temperature, which makes it possible to generate FBOG from an exchange of heat with the LNG taken from the tank and circulating in the circuit 24b.
  • the vaporization in FBOG requires a contribution of heat supplied by the LNG circulating in the circuit 24b, it is therefore a refrigerating source for the cooling of the LNG circulating in the circuit 24b.
  • the circuit 24c is a hot circuit and therefore a heating circuit, the fluid circulating in this circuit and in this case the compressed gas leaving the compressors 26, 28, being intended to be cooled by circulation in this circuit.
  • the expansion downstream of the circuit 24c makes it possible to recondense the gas and to reliquefy it before its reinjection into the reservoir 14.
  • the compressors 26, 28 can be two independent compressors or two compression stages of the same compressor. The compressors 26, 28 can thus be shared.
  • the output of the compressor 28 is connected to the installation 12 for its supply of combustible gas.
  • the compressor 28 is configured to compress the gas to an operating pressure suitable for its use in the installation 12.
  • the purpose of the heater 25 is to heat and completely vaporize the gas leaving the circuit 24a and for this includes a heating circuit 25a which may be an electrical circuit or a circuit of heat transfer fluid such than water vapor.
  • the two-phase gas is at a pressure between 120 and 800 mbara, preferably between 300 and 800 mbara and a temperature between -182 ° C and -151 ° C, and, at the outlet of the heater, the gas in gaseous form is at a pressure equal to the inlet to the pressure drops of the heater near and a temperature between - 120 ° C and -15 ° C.
  • FIG. 2 represents an alternative embodiment of the device 10 which differs from that of FIG. 1 in that the heater 25 ′ comprises a fluid circuit 25a of which an inlet is connected to the outlet (preferably single) of the compressor 26 and of which an output is connected to an input of the compressor 28.
  • the heater 25 ′ comprises a fluid circuit 25a of which an inlet is connected to the outlet (preferably single) of the compressor 26 and of which an output is connected to an input of the compressor 28.
  • FIG. 3 represents another alternative embodiment of the device 10 which differs from that of FIG. 1 in that the heater 25 ”comprises a fluid circuit 25a, one inlet of which is connected to the outlet (preferably single) of the compressor 28 and one outlet of which is connected to one of the channels of the three-way valve 46, which is also connected to the installation 12 and to the exchanger 42.
  • the heater 25 comprises a fluid circuit 25a, one inlet of which is connected to the outlet (preferably single) of the compressor 28 and one outlet of which is connected to one of the channels of the three-way valve 46, which is also connected to the installation 12 and to the exchanger 42.
  • the device 10 of Figure 1 and its variants of Figures 2 and 3 can operate as follows. 1. In the event that the quantity of NBOG is insufficient, for example when the ship is sailing at a speed requiring more BOG to supplement the NBOG produced in the tank or tanks 14. Additional BOG or FBOG will be provided by the device 10.
  • NBOG is taken from this tank through the outlet 45 and then supplies the compressor 28, which will produce combustible gas at a pressure admissible for the installation 12, for example of the order from 6-7bars, 15-17bars or 300-315bars.
  • the LNG from the reservoir 14 is conveyed by the pump 16a and the line 18 to the depressurization means 19 where the LNG is subjected to a depression. It is then reheated through the circuit 24a of the first exchanger 24 by exchange with the LNG circulating in the circuit 24b of the first exchanger 24 which has, in the meantime, been conveyed by the pump 16b, the line 20 and the line 30.
  • the LNG thus cooled is then conveyed to the bottom of the tank 14 via the pipe 32 and the plunger 35.
  • a mixture of two-phase gas reaches the heater 25 in which the two-phase gas will be completely transformed into the gaseous phase.
  • the FBOG produced is then compressed by the compressor 26. Then, the FBOG is again compressed by the compressor 28 to reach the pressure required for the installation 12.
  • the NBOG produced in the reservoir 14 is in sufficient quantity or more than sufficient to meet the needs of the installation 12.
  • BOG is taken from this reservoir and feeds the compressor 28 to reach the pressure required for the installation 12.
  • the excess of BOG which cannot be consumed by the installation is conveyed from the outlet of the compressor 28 to the exchanger 42 in which it undergoes cooling by exchange of calories with the NBOG cold directly taken from tank 14 by outlet 45.
  • the excess BOG is then sent to circuit 24c where it is again cooled by heat exchange with LNG taken from the tank. Then, the excess BOG is recondensed by the valve 36 and reinjected into the reservoir.
  • the re-liquefaction terminals where the ship loads its cargo, require a cold temperature in the tank 14 before loading, in order to limit the amount of LNG which would be instantly vaporized (flash).
  • This is generally achieved by spraying by means of the ramp 22, and the associated pump 16b, the LNG already contained in the tank 14 with a view to cooling the BOG of this tank. Thanks to the device 10, this operation can be carried out by supplying the ramp 22 with LNG from the second circuit 24b of the exchanger, and therefore LNG cooler than that contained in the tank 14.
  • FIG. 4 represents an alternative embodiment of the device according to the invention, in which the elements already described in the above are designated by the same references.
  • the heater 25 is here represented in the form of an exchanger of which a circuit 25b connects the output of the circuit 24a of the exchanger 24 to the input of the compressor 26, and whose other circuit 25a connects the output of this compressor 26 at the input of compressor 28, and more precisely here to two compressors 28 in parallel due to the redundancy required for this type of compressor on a ship.
  • FIG. 4 shows examples of the temperature of the fluids circulating in the device. It can be seen that the liquefied gas taken from the tank 14 is cooled in the circuit 24b and heated in the circuit 24a, the exchanger circuit also making it possible to cool and reliquefy the gas previously cooled in the circuit 42b.
  • the circuit 42a allows to heat up the BOG collected.
  • the circuit 25b ensures the heating of the two-phase mixture and the total evaporation of the remaining liquid, and the circuit 25a ensures cooling.
  • the temperature at the outlet of circuit 25b is here greater than - 50 ° C (and for example greater than or equal to -35 ° C), which makes it possible to use a compressor 26 less expensive than a cryogenic compressor (a cryogenic compressor which can operate at temperatures well below -50 ° C). Furthermore, this temperature level guarantees that all the liquefied gas is entirely vaporized and therefore in gaseous form at the outlet of the circuit 25b and therefore at the inlet of the compressor 26.
  • FIG. 5 represents another variant embodiment and FIGS. 6 and 7 illustrate modes of operation of this variant.
  • the pumps 16a and 16b are replaced by a single pump 16c which is immersed in the liquefied gas contained in the tank 14 and the outlet of which is connected on the one hand to the three-way valve 38a and on the other hand to a bifurcation member 50 making it possible to supply one of the two circuits 24a, 24b of the exchanger 24 or even both simultaneously.
  • This exchanger 52 comprises two circuits, a first 52a connecting the output of circuit 24a of exchanger 24 to the inlet of compressor 26, and a second circuit 52b connecting the output of this compressor 26 to compressor 28 or to compressors 28.
  • circuit 42b of the exchanger 42 is here integrated into the circuit 52b whose input is further connected to the output of the compressor 28, and whose output is further connected to the circuit 24c of the exchanger 24.
  • FIG. 6 shows a first mode of operation of this variant in which BOG is taken from the tank 14 by the outlet 45 and feeds the compressor 28.
  • liquefied gas is taken by the pump 16c and feeds the circuits 24a, 24b of the exchanger 24.
  • the liquefied gas cooled in the circuit 24b is reinjected at the bottom of the tank, and the liquefied gas expanded by the valve 19 passes into the circuit 24a and is found entirely in gaseous form at the outlet of the circuit 52a. This gas is compressed by the compressor 26 before being cooled in the circuit 52b and supplying the compressor 28.
  • FIG. 7 shows a second mode of operation of this variant in which BOG is taken from the tank 14 by the outlet 45 and passes into the circuit 52a to be heated before supplying the compressor 28. Part of the compressed gas leaving the compressor 28 circulates in circuit 52b then in circuit 24c before being reliquified and reinjected into tank 14.

Abstract

The invention relates to a device (10) for generating gas in gaseous form from liquefied gas, comprising: - a first heat exchanger (24) having a first cooling circuit (24a) comprising a liquefied gas inlet connected to a first pipe (18) which is intended for connection to a liquefied gas outlet of at least one liquefied gas storage tank (14), - vaporization means (19) by negative pressure, fitted to said first pipe, and - at least one compressor (26, 28), characterized in that it further comprises a heater (25) having an inlet for gas that is at least partially in liquid form, which inlet is connected to an outlet of the first circuit (24a), and an outlet for gas that is only in gaseous form, which outlet is connected to the at least one compressor (26, 28).

Description

DESCRI PTION DESCRI PTION
TITRE : DISPOSITIF DE GENERATION DE GAZ SOUS FORME TITLE: DEVICE FOR GENERATING GAS IN THE FORM
GAZEUSE A PARTIR DE GAZ LIQUEFIE CARBONATOR FROM LIQUEFIED GAS
Domaine technique de l'invention Technical field of the invention
L’invention concerne notamment un dispositif de génération de gaz sous forme gazeuse à partir de gaz liquéfié. The invention relates in particular to a device for generating gas in gaseous form from liquefied gas.
Arrière-plan technique Technical background
L’art antérieur comprend les document FR-A1 -3 066 257, WO-A1 - 2017/192136 et KR-A-2018 0093577. The prior art includes documents FR-A1 -3 066 257, WO-A1 - 2017/192136 and KR-A-2018 0093577.
Afin de transporter plus facilement du gaz, tel que du gaz naturel, sur de longues distances, le gaz est généralement liquéfié (pour devenir du gaz naturel liquéfié - GNL) en le refroidissant à des températures cryogéniques, par exemple -160°C à la pression atmosphérique. Le gaz liquéfié est ensuite chargé dans des navires spécialisés. In order to more easily transport gas, such as natural gas, over long distances, the gas is generally liquefied (to become liquefied natural gas - LNG) by cooling it to cryogenic temperatures, for example -160 ° C at atmospheric pressure. The liquefied gas is then loaded into specialized vessels.
Dans un navire de transport de gaz liquéfié, par exemple du type méthanier, une installation de production d'énergie est prévue pour pourvoir aux besoins énergétiques du fonctionnement du navire, notamment pour la propulsion du navire et/ou la production d'électricité pour les équipements de bord. In a liquefied gas transport ship, for example of the LNG tanker type, an energy production installation is provided to supply the energy needs of the operation of the ship, in particular for the propulsion of the ship and / or the production of electricity for the on-board equipment.
Une telle installation comprend couramment des machines thermiques consommant du gaz provenant d'un évaporateur que l'on alimente à partir de la cargaison de gaz liquéfié transportée dans le ou les réservoirs du navire. Such an installation commonly includes thermal machines consuming gas from an evaporator which is supplied from the cargo of liquefied gas transported in the tank or tanks of the ship.
Le document FR-A-2 837 783 prévoit d'alimenter un tel évaporateur et/ou d'autres systèmes nécessaires à la propulsion à l'aide d'une pompe immergée au fond d'un réservoir du navire. Document FR-A-2 837 783 provides for supplying such an evaporator and / or other systems necessary for propulsion by means of a submerged pump at the bottom of a tank of the ship.
Afin de limiter l'évaporation du gaz liquéfié, il est connu de le stocker sous pression dans le réservoir de manière à se déplacer sur la courbe d'équilibre liquide-vapeur du gaz liquéfié considéré, augmentant ainsi sa température de vaporisation. Le gaz liquéfié peut ainsi être stocké à des températures plus importantes ce qui a pour effet de limiter l'évaporation du gaz. In order to limit the evaporation of the liquefied gas, it is known to store it under pressure in the tank so as to move on the liquid-vapor equilibrium curve of the liquefied gas considered, thus increasing its vaporization temperature. Liquefied gas can thus be stored at higher temperatures which has the effect of limiting evaporation of the gas.
L’évaporation naturelle du gaz est toutefois inévitable, ce phénomène étant appelé NBOG qui est l’acronyme de l’anglais Natural Boil-Off Gas (par opposition à l’évaporation forcée de gaz ou FBOG, acronyme de l’anglais Forced Boil-Off Gas). Le gaz qui s’évapore naturellement dans le réservoir d’un navire est en général utilisé pour alimenter l’installation précitée. Dans le cas (premier cas) où la quantité de gaz évaporé naturellement est insuffisante pour la demande en gaz combustible de l’installation, la pompe immergée dans le réservoir est actionnée pour fournir davantage de gaz combustible après évaporation forcée. Dans le cas (second cas) où la quantité de gaz évaporé est trop importante par rapport à la demande de l’installation, l’excédent de gaz est en général brûlé dans une unité de combustion de gaz, ce qui représente une perte en gaz combustible. Natural evaporation of the gas is however inevitable, this phenomenon being called NBOG which is the acronym of the English Natural Boil-Off Gas (as opposed to the forced evaporation of gas or FBOG, acronym of the English Forced Boil- Off Gas). The gas which evaporates naturally in the tank of a ship is generally used to supply the above-mentioned installation. In the case (first case) where the quantity of naturally evaporated gas is insufficient for the fuel gas demand of the installation, the submerged pump in the tank is actuated to supply more combustible gas after forced evaporation. In the case (second case) where the quantity of evaporated gas is too large in relation to the demand of the installation, the excess gas is generally burned in a gas combustion unit, which represents a gas loss combustible.
Dans la technique actuelle, le perfectionnement des réservoirs sont tels que les taux d’évaporation naturelle (BOR - acronyme du Boil-Off Rate) des gaz liquéfiés sont de plus en plus faibles, alors que les machines d’un navire sont de plus en plus performantes. Ceci a pour conséquence, dans chacun des premier et second cas précités, que l’écart est très important entre la quantité de gaz naturellement produit par évaporation et celle demandée par l’installation d’un navire. In the current technique, the improvements in the tanks are such that the natural evaporation rates (BOR - acronym for the Boil-Off Rate) of the liquefied gases are increasingly low, while the machines of a ship are increasingly more efficient. This has the consequence, in each of the first and second cases mentioned above, that the difference is very large between the quantity of gas naturally produced by evaporation and that required by the installation of a ship.
Par conséquent, il existe un intérêt croissant pour des solutions de refroidissement du gaz liquéfié contenu dans un réservoir de stockage et gestion du BOG généré dans ce réservoir, comme par exemple des unités de re-liquéfaction ou de refroidissement, telles que celles décrites dans la demande WO-A1 -2016/075399. L’idée à la base de ce document est de proposer un dispositif de refroidissement d'un gaz liquéfié permettant de limiter l'évaporation naturelle du gaz liquéfié tout en le conservant dans un état thermodynamique permettant son stockage de manière durable. Cependant, la technologie à échangeur de chaleur décrite dans ce document est coûteuse et peu efficace, et présente d’autres inconvénients qui seront détaillés dans ce qui suit. Par ailleurs, plusieurs paramètres influent sur la génération de NBOG, comme les mouvements de liquide et les conditions ambiantes. Les besoins énergétiques dans un navire varient également beaucoup, selon l'opération effectuée ou la vitesse de navigation. Par conséquent, il peut s’avérer difficile de mettre en place une solution efficace de gestion de BOG car la quantité de NBOG en excès peut varier énormément. Consequently, there is a growing interest in solutions for cooling the liquefied gas contained in a storage tank and management of the BOG generated in this tank, such as for example re-liquefaction or cooling units, such as those described in the application WO-A1 -2016/075399. The idea behind this document is to propose a device for cooling a liquefied gas making it possible to limit the natural evaporation of the liquefied gas while keeping it in a thermodynamic state allowing its storage in a durable manner. However, the heat exchanger technology described in this document is expensive and ineffective, and has other drawbacks which will be detailed in the following. In addition, several parameters influence the generation of NBOGs, such as fluid movements and ambient conditions. The energy requirements in a ship also vary greatly, depending on the operation carried out or the speed of navigation. Therefore, it can be difficult to put in place an effective BOG management solution because the amount of excess NBOG can vary enormously.
On a déjà proposé de forcer l’évaporation de gaz et de générer du froid par l’intermédiaire d’un évaporateur sous vide. Cet évaporateur sous vide comprend un ballon de séparation de phases qui est monté entre des moyens de vaporisation de gaz liquéfié prélevé dans le réservoir, et des moyens de mise en dépression du ballon. Ceci permet d’obtenir une puissance frigorifique plus importante qui peut être utilisée pour refroidir le gaz contenu dans le réservoir principal. It has already been proposed to force the evaporation of gases and to generate cold by means of a vacuum evaporator. This vacuum evaporator comprises a phase separation flask which is mounted between means for vaporizing liquefied gas taken from the tank, and means for depressurizing the flask. This provides greater cooling power which can be used to cool the gas in the main tank.
La présente invention propose un perfectionnement à la technique actuelle, qui est simple, efficace et économique. The present invention provides an improvement to the current technique, which is simple, effective and economical.
Résumé de l'invention Summary of the invention
L’invention propose un dispositif de génération de gaz sous forme gazeuse à partir de gaz liquéfié, comportant : The invention provides a device for generating gas in gaseous form from liquefied gas, comprising:
- un premier échangeur de chaleur comportant un premier circuit de refroidissement comprenant une entrée de gaz liquéfié reliée à une première conduite qui est destinée à être reliée à une sortie de gaz liquéfié d’au moins un réservoir de stockage de gaz liquéfié, a first heat exchanger comprising a first cooling circuit comprising an inlet for liquefied gas connected to a first pipe which is intended to be connected to an outlet for liquefied gas from at least one liquefied gas storage tank,
- des moyens de vaporisation par mise en dépression équipant ladite première conduite, et means of vaporization by placing under vacuum equipping said first pipe, and
- au moins un compresseur, - at least one compressor,
caractérisé en ce qu’il comprend en outre un réchauffeur comportant une entrée de gaz au moins en partie sous forme liquide, qui est reliée à une sortie dudit premier circuit, et une sortie de gaz uniquement sous forme gazeuse qui est reliée audit au moins un compresseur. characterized in that it further comprises a heater comprising a gas inlet at least partly in liquid form, which is connected to an outlet of said first circuit, and a gas outlet only in gaseous form which is connected to said at least one compressor.
Le ballon de séparation de l’évaporateur sous vide (ESV) de la technique antérieure est ainsi remplacé par un réchauffeur. Contrairement au ballon de séparation qui est destiné à contenir un mélange diphasique, le réchauffeur est configuré pour fournir en sortie uniquement du gaz sous forme gazeuse. Ceci simplifie l’architecture du dispositif car il n’est plus nécessaire de gérer indépendamment le liquide et le gaz du ballon. The separation tank of the vacuum evaporator (ESV) of the prior art is thus replaced by a heater. Contrary to separation tank which is intended to contain a two-phase mixture, the heater is configured to supply only gas in gaseous form. This simplifies the architecture of the device because it is no longer necessary to independently manage the liquid and the gas in the balloon.
Le dispositif selon l’invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres : The device according to the invention may include one or more of the following characteristics, taken in isolation from one another or in combination with each other:
- ledit premier circuit est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -165°C jusqu’à une température supérieure ou égale à -165°C, - said first circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -165 ° C to a temperature greater than or equal to -165 ° C,
- ledit réchauffeur est un échangeur de chaleur qui comprend un troisième circuit comportant une entrée de gaz au moins en partie sous forme liquide, qui est reliée à la sortie dudit premier circuit, et une sortie de gaz uniquement sous forme gazeuse qui est reliée audit au moins un compresseur, - Said heater is a heat exchanger which comprises a third circuit comprising a gas inlet at least partly in liquid form, which is connected to the outlet of said first circuit, and a gas outlet only in gaseous form which is connected to said minus a compressor,
- ledit troisième circuit est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -165°C jusqu’à une température supérieure ou égale à -50°C, - said third circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -165 ° C to a temperature greater than or equal to -50 ° C,
- l’échangeur formant réchauffeur comprend un quatrième circuit dans lequel circule un fluide de chauffage, - the exchanger forming a heater comprises a fourth circuit in which a heating fluid circulates,
- ledit quatrième circuit est configuré pour refroidir le fluide y circulant depuis une température supérieure ou égale à 50°C jusqu’à une température inférieure ou égale à 0°C, - said fourth circuit is configured to cool the fluid flowing therein from a temperature greater than or equal to 50 ° C to a temperature less than or equal to 0 ° C,
- ledit fluide de chauffage est du gaz comprimé prélevé en sortie dudit au moins un compresseur, said heating fluid is compressed gas taken from the outlet of said at least one compressor,
- une sortie, de préférence, unique dudit au moins un compresseur est reliée à une entrée dudit quatrième circuit de l’échangeur formant réchauffeur, an outlet, preferably a single outlet, from said at least one compressor is connected to an inlet of said fourth circuit of the exchanger forming a heater,
- le dispositif comprend au moins deux compresseurs montés en série, une sortie d’un compresseur amont étant reliée à l’entrée dudit quatrième circuit de l’échangeur formant réchauffeur, dont une sortie est reliée à une entrée d’un compresseur aval, the device comprises at least two compressors connected in series, an outlet of an upstream compressor being connected to the inlet of said fourth circuit of the exchanger forming a heater, one outlet of which is connected to an inlet of a downstream compressor,
- le dispositif comprend au moins deux compresseurs montés en série, une sortie d’un compresseur amont étant reliée à une entrée d’un compresseur aval dont une sortie est reliée à l’entrée dudit quatrième circuit de l’échangeur formant réchauffeur, the device comprises at least two compressors connected in series, an output of an upstream compressor being connected to an input of a downstream compressor one output of which is connected to the input of said fourth circuit of the heat exchanger forming a heater,
ledit quatrième circuit a une sortie reliée à au moins un compresseur, said fourth circuit has an output connected to at least one compressor,
- ledit troisième circuit a son entrée qui est en outre reliée à une sortie (45) de gaz sous forme gazeuse dudit réservoir, - said third circuit has its inlet which is further connected to an outlet (45) of gas in gaseous form from said tank,
- ledit premier échangeur de chaleur comprend un second circuit comprenant une entrée de gaz liquéfié reliée à une troisième conduite qui est destinée à être reliée à une sortie de gaz liquéfié dudit réservoir ; ce second circuit peut être séquentiellement un circuit de refroidissement et un circuit de chauffage selon le mode de fonctionnement du dispositif, - Said first heat exchanger comprises a second circuit comprising an inlet for liquefied gas connected to a third pipe which is intended to be connected to an outlet for liquefied gas from said tank; this second circuit can be sequentially a cooling circuit and a heating circuit according to the operating mode of the device,
- ledit premier échangeur de chaleur comprend un cinquième circuit de chauffage comprenant une entrée de gaz sous forme gazeuse reliée à une quatrième conduite qui est destinée à être reliée à une sortie dudit compresseur, ou d’un compresseur aval dans le cas de deux compresseurs en série, - Said first heat exchanger comprises a fifth heating circuit comprising a gas inlet in gaseous form connected to a fourth pipe which is intended to be connected to an outlet of said compressor, or of a downstream compressor in the case of two compressors in series,
- ledit second circuit est configuré pour refroidir le fluide y circulant depuis une température inférieure ou égale à -160°C jusqu’à une température inférieure ou égale à -165°C, et/ou ledit cinquième circuit est configuré pour refroidir le fluide y circulant depuis une température inférieure ou égale à -100°C jusqu’à une température inférieure ou égale à -130°C, - said second circuit is configured to cool the fluid flowing there from a temperature less than or equal to -160 ° C to a temperature less than or equal to -165 ° C, and / or said fifth circuit is configured to cool the fluid y circulating from a temperature less than or equal to -100 ° C to a temperature less than or equal to -130 ° C,
- la sortie dudit quatrième circuit est en outre reliée à l’entrée dudit cinquième circuit, - the output of said fourth circuit is also connected to the input of said fifth circuit,
- le dispositif comprend une cinquième conduite équipée de moyens de détente comprenant une entrée reliée à une sortie dudit cinquième circuit, et une sortie destinée à être reliée à une entrée de gaz liquéfié dudit réservoir, the device comprises a fifth pipe fitted with expansion means comprising an inlet connected to an outlet of said fifth circuit, and an outlet intended to be connected to an inlet of liquefied gas from said tank,
- le dispositif comprend une sixième conduite dont une entrée est reliée à une sortie dudit second circuit et dont une sortie est raccordée à une entrée de gaz liquéfié dudit réservoir, the device comprises a sixth pipe, an inlet of which is connected to an outlet of said second circuit and an outlet of which is connected to an inlet of liquefied gas from said tank,
- ladite entrée de gaz dudit cinquième circuit est reliée à la sortie dudit compresseur, ou d’un compresseur aval dans le cas de deux compresseurs en série, par l’intermédiaire d’un sixième circuit d’un second échangeur de chaleur, - ledit sixième circuit est configuré pour refroidir le fluide y circulant depuis une température supérieure ou égale à 0°C jusqu’à une température inférieure ou égale à -100°C, said gas inlet of said fifth circuit is connected to the outlet of said compressor, or of a downstream compressor in the case of two compressors in series, via a sixth circuit of a second heat exchanger, said sixth circuit is configured to cool the fluid flowing therein from a temperature greater than or equal to 0 ° C to a temperature less than or equal to -100 ° C,
- ledit second échangeur de chaleur comprend un septième circuit dont une entrée est reliée à une sortie de gaz sous forme gazeuse dudit réservoir, et dont une sortie est reliée audit compresseur, ou d’un compresseur aval dans le cas de deux compresseurs en série, - said second heat exchanger comprises a seventh circuit, an input of which is connected to a gas outlet in the gaseous form of said tank, and an outlet of which is connected to said compressor, or a downstream compressor in the case of two compressors in series,
- ledit septième circuit est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -100°C jusqu’à une température supérieure ou égale à -50°C. - said seventh circuit is configured to heat the fluid flowing therein from a temperature less than or equal to -100 ° C to a temperature greater than or equal to -50 ° C.
La présente invention concerne également un navire, en particulier de transport de gaz liquéfié, comportant au moins un dispositif tel que décrit ci- dessus. The present invention also relates to a ship, in particular for transporting liquefied gas, comprising at least one device as described above.
L’invention concerne encore un procédé de génération de gaz sous forme gazeuse à partir de gaz liquéfié, au moyen d’un dispositif selon l’une des revendications précédentes, caractérisé en ce qu’il comprend une étape de prélèvement de gaz liquéfié et de vaporisation complète de ce gaz, avant l’alimentation dudit au moins un compresseur. The invention also relates to a method for generating gas in gaseous form from liquefied gas, by means of a device according to one of the preceding claims, characterized in that it comprises a step of withdrawing liquefied gas and of complete vaporization of this gas, before supplying said at least one compressor.
La vaporisation peut être obtenue par chauffage du gaz liquéfié avec un fluide de chauffage qui peut être du gaz comprimé prélevé en sortie dudit au moins un compresseur. Le gaz comprimé est de préférence prélevé entre deux compresseurs montés en série ou en sortie de deux compresseurs montés en série. The vaporization can be obtained by heating the liquefied gas with a heating fluid which can be compressed gas taken from the outlet of said at least one compressor. The compressed gas is preferably taken between two compressors connected in series or at the outlet of two compressors connected in series.
Brève description des figures Brief description of the figures
L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d’exemple non limitatif et en référence aux dessins annexés, dans lesquels : The invention will be better understood and other details, characteristics and advantages of the present invention will appear more clearly on reading the description which follows, given by way of nonlimiting example and with reference to the appended drawings, in which:
[Fig.1 ] la figure 1 est une vue schématique d’un premier mode de réalisation d’un dispositif selon l’invention, qui équipe ici un navire, [Fig.2] la figure 2 est une vue schématique d’un second mode de réalisation d’un dispositif selon l’invention, qui équipe ici un navire, [Fig.1] FIG. 1 is a schematic view of a first embodiment of a device according to the invention, which here equips a ship, [Fig.2] FIG. 2 is a schematic view of a second embodiment of a device according to the invention, which is fitted here on a ship,
[Fig.3] la figure 3 est une vue schématique d’un troisième mode de réalisation d’un dispositif selon l’invention, qui équipe ici un navire ; [Fig.3] Figure 3 is a schematic view of a third embodiment of a device according to the invention, which here equips a ship;
[Fig.4] la figure 4 est une vue schématique d’un quatrième mode de réalisation d’un dispositif selon l’invention, qui équipe ici un navire, [Fig.4] Figure 4 is a schematic view of a fourth embodiment of a device according to the invention, which equips a ship here,
[Fig.5] la figure 5 est une vue schématique d’un cinquième mode de réalisation d’un dispositif selon l’invention, qui équipe ici un navire, et [Fig.5] FIG. 5 is a schematic view of a fifth embodiment of a device according to the invention, which is fitted here to a ship, and
[Fig.6] la figure 6 est une vue schématique illustrant un mode de fonctionnement du dispositif de la figure 5. [Fig.6] Figure 6 is a schematic view illustrating an operating mode of the device of Figure 5.
[Fig.7] la figure 7 est une vue schématique illustrant un autre mode de fonctionnement du dispositif de la figure 5. [Fig.7] Figure 7 is a schematic view illustrating another mode of operation of the device of Figure 5.
Description détaillée de l'invention Detailed description of the invention
La figure 1 montre un premier mode de réalisation d’un dispositif 10 selon l’invention qui permet notamment de générer du gaz sous forme gazeuse à partir de gaz liquéfié. FIG. 1 shows a first embodiment of a device 10 according to the invention which makes it possible in particular to generate gas in gaseous form from liquefied gas.
Le dispositif 10 est particulièrement adapté mais non exclusivement à la fourniture de gaz combustible à un navire, tel qu’un navire de transport de gaz liquéfié (figures 1 à 3). The device 10 is particularly suitable, but not exclusively, for the supply of combustible gas to a ship, such as a liquefied gas transport ship (Figures 1 to 3).
Un navire comporte un réservoir ou plusieurs réservoirs 14 de stockage de gaz liquéfié. Le gaz est par exemple du méthane ou un mélange de gaz comportant du méthane. Le ou chaque réservoir 14 peut contenir du gaz sous forme liquéfié à une pression et une température prédéterminées, par exemple à une pression atmosphérique et une température de l’ordre de -160°C. Un ou plusieurs des réservoirs 14 du navire peuvent être reliés à une installation 12 de production d’énergie du navire. Le nombre de réservoirs n’est ainsi pas limitatif. Il est par exemple compris entre 1 et 6. Chaque réservoir 14 peut avoir une capacité comprise entre 1 000 à 50 000m3. A ship comprises a tank or several tanks 14 for liquefied gas storage. The gas is for example methane or a mixture of gases comprising methane. The or each reservoir 14 can contain gas in liquefied form at a predetermined pressure and temperature, for example at atmospheric pressure and a temperature of the order of -160 ° C. One or more of the tanks 14 of the ship can be connected to an installation 12 for producing energy from the ship. The number of tanks is therefore not limiting. It is for example between 1 and 6. Each reservoir 14 can have a capacity of between 1,000 and 50,000m3.
Dans ce qui suit, l’expression « le réservoir » devra être interprétée comme « le ou chaque réservoir ». Le réservoir 14 contient du gaz liquéfié 14a ainsi que du gaz 14b résultant d’une évaporation, en particulier naturelle, du gaz liquéfié 14a dans le réservoir 14. Naturellement, le gaz liquéfié 14a est stocké au fond du réservoir 14 tandis que le gaz d’évaporation 14b est situé au-dessus du niveau de gaz liquéfié dans le réservoir, schématiquement représenté par la lettre N. In what follows, the expression “the reservoir” should be interpreted as “the or each reservoir”. The tank 14 contains liquefied gas 14a as well as gas 14b resulting from evaporation, in particular natural, of the liquefied gas 14a in the tank 14. Naturally, the liquefied gas 14a is stored at the bottom of the tank 14 while the gas d evaporation 14b is located above the level of liquefied gas in the tank, schematically represented by the letter N.
Dans ce qui suit, « GNL » désigne du gaz liquéfié, c'est-à-dire du gaz sous forme liquide, « BOG » désigne du gaz d’évaporation, « NBOG » désigne du gaz d’évaporation naturelle, et « FBOG » désigne du gaz d’évaporation forcée, ces acronymes étant connus de l’homme du métier car ils correspondent aux initiales des expressions anglaises associées. In what follows, "LNG" means liquefied gas, that is to say gas in liquid form, "BOG" means evaporation gas, "NBOG" indicates natural evaporation gas, and "FBOG ”Designates forced evaporation gas, these acronyms being known to those skilled in the art because they correspond to the initials of the associated English expressions.
Dans le mode de réalisation représenté à la figure 1 , des pompes 16a, 16b sont immergées dans le GNL du réservoir 14, et sont de préférence situées au fond du réservoir afin de s’assurer qu’elles ne soient alimentées qu’en GNL. In the embodiment shown in FIG. 1, pumps 16a, 16b are immersed in the LNG of the tank 14, and are preferably located at the bottom of the tank in order to ensure that they are only supplied with LNG.
Les pompes 16a, 16b sont ici au nombre de deux. La pompe 16a est reliée à une extrémité, ici inférieure, d’une conduite 18. La pompe 16b est reliée à une extrémité, ici inférieure, d’une conduite 20. En variante, il peut y avoir davantage de pompes de chaque type, par exemple pour assurer une redondance de 16a et 16b ou utiliser des pompes existantes comme les pompes de pulvérisation déjà présentes sur un navire (auquel cas, la fonction de 16b pourrait être assurée par les quatre pompes de pulvérisation, chacune présente dans quatre réservoirs distincts). En variante, on pourrait également utiliser les pompes de gaz carburant déjà présentes sur un navire (auquel cas, la fonction de 16a pourrait être assurée par la ou les pompes de gaz carburant, chacune présente dans un ou plusieurs réservoirs distincts). There are two pumps 16a, 16b here. The pump 16a is connected to one end, here lower, of a pipe 18. The pump 16b is connected to one end, here lower, of a pipe 20. As a variant, there may be more pumps of each type, for example to ensure a redundancy of 16a and 16b or to use existing pumps such as the spraying pumps already present on a ship (in which case, the function of 16b could be ensured by the four spraying pumps, each present in four separate tanks) . Alternatively, one could also use the fuel gas pumps already present on a ship (in which case, the function of 16a could be ensured by the fuel gas pump or pumps, each present in one or more separate tanks).
La conduite 20 comprend une extrémité supérieure reliée à une rampe 22 de pulvérisation de gouttelettes de GNL située dans la partie haute du réservoir 14, au-dessus du niveau N. La rampe 22 est ainsi configurée pour pulvériser des gouttelettes de GNL dans le NBOG. Ceci permet de forcer la recondensation du NBOG dans le réservoir 14. La pompe 16b est configurée pour forcer la circulation de GNL dans la conduite 20, depuis le fond du réservoir 14 jusqu’à la rampe 22 et assurer que le GNL est pulvérisé sous forme de gouttelettes. En pratique, un ciel gazeux peut être présent dans le réservoir principal alors que le NBOG peut circuler dans les conduites. Line 20 includes an upper end connected to a ramp 22 for spraying LNG droplets located in the upper part of the tank 14, above the level N. The ramp 22 is thus configured to spray droplets of LNG in the NBOG. This makes it possible to force the recondensation of the NBOG in the tank 14. The pump 16b is configured to force the circulation of LNG in the line 20, from the bottom of the tank 14 to the ramp 22 and ensure that the LNG is sprayed under droplet shape. In practice, a gaseous sky can be present in the main tank while the NBOG can circulate in the pipes.
La pompe 16a est configurée pour forcer la circulation de GNL dans la conduite 18 depuis le fond du réservoir 14 jusqu’à un échangeur de chaleur 24. La conduite 18 comprend des moyens de dépressurisation 19 de façon à diminuer la pression du GNL circulant dans la conduite 18 avant d’atteindre l’échangeur 24. Les moyens de dépressurisation 19 comprennent par exemple une vanne à effet Joule-Thomson. The pump 16a is configured to force the circulation of LNG in the line 18 from the bottom of the tank 14 to a heat exchanger 24. The line 18 comprises depressurization means 19 so as to reduce the pressure of the LNG circulating in the line 18 before reaching the exchanger 24. The depressurization means 19 comprise for example a Joule-Thomson effect valve.
La circulation du GNL dans la conduite 18 et à travers les moyens de dépressurisation 19 entraîne donc une vaporisation partielle du GNL avant l’alimentation de l’échangeur 24. The circulation of LNG in line 18 and through the depressurization means 19 therefore results in partial vaporization of the LNG before supplying the exchanger 24.
Dans l’exemple représenté, l’échangeur de chaleur 24 comprend trois circuits d’échange de chaleur dont un premier circuit 24a a une entrée reliée à la conduite 18, pour l’alimentation du premier circuit 24a en gaz diphasique sortant des moyens de dépressurisation 19. In the example shown, the heat exchanger 24 comprises three heat exchange circuits, a first circuit 24a of which has an input connected to the pipe 18, for supplying the first circuit 24a with two-phase gas leaving the depressurization means 19.
La sortie du premier circuit 24a est reliée à une entrée d’un réchauffeur 25 dont une sortie est reliée à une entrée ici unique d’un premier compresseur 26. Le compresseur 26, appelé compresseur amont, a une sortie ici unique qui est reliée à une première entrée d’un compresseur 28, appelé compresseur aval. Le compresseur 28 a une sortie ici unique qui est reliée par une des voies d’une vanne trois voies 46 à l’installation 12. The output of the first circuit 24a is connected to an input of a heater 25, an output of which is connected to a single input here of a first compressor 26. The compressor 26, called upstream compressor, has a single output here which is connected to a first input of a compressor 28, called downstream compressor. The compressor 28 has a single output here which is connected by one of the channels of a three-way valve 46 to the installation 12.
L’échangeur de chaleur 24 comprend un second circuit 24b comportant une entrée reliée par une conduite 30 à une des voies d’une vanne trois voies 38a dont les deux autres voies sont reliées respectivement à la conduite 20 et à la rampe 22. The heat exchanger 24 comprises a second circuit 24b comprising an inlet connected by a pipe 30 to one of the tracks of a three-way valve 38a, the other two tracks of which are connected respectively to the pipe 20 and to the ramp 22.
La sortie du second circuit 24b est reliée à une conduite 32 qui est également reliée à une des voies d’une vanne trois voies 38b dont une autre voie est reliée à la rampe 22. The output of the second circuit 24b is connected to a line 32 which is also connected to one of the channels of a three-way valve 38b, another channel of which is connected to the ramp 22.
L’échangeur de chaleur 24 comprend un troisième circuit 24c comportant une sortie reliée par une conduite 34 à la dernière des voies de la vanne trois voies 38b ainsi qu’à un système 35 du type plongeur de réinjection de GNL dans le réservoir 14, de préférence en fond de cuve. La conduite 34 est équipée de moyens de détente 36 configurés pour diminuer la pression du gaz et le recondenser, avant sa réinjection dans le réservoir 24. The heat exchanger 24 comprises a third circuit 24c comprising an outlet connected by a pipe 34 to the last of the tracks of the three-way valve 38b as well as to a system 35 of the plunger type for reinjecting LNG into the tank 14, preferably at the bottom of the tank. Line 34 is equipped with expansion means 36 configured to reduce the pressure of the gas and recondense it, before its reinjection into the reservoir 24.
Les moyens de détente 36 comprennent par exemple une vanne à effet Joule-Thomson, en vue de la diminution de la température du gaz par expansion adiabatique. The expansion means 36 comprise for example a Joule-Thomson effect valve, for the purpose of reducing the temperature of the gas by adiabatic expansion.
Une détente ou dépressurisation de Joule-Thomson est une détente laminaire stationnaire et lente réalisée en faisant passer un flux de gaz au travers d'un tampon (ouate ou soie grège en général) dans une canalisation calorifugée et horizontale, la pression régnant à gauche et à droite du tampon étant différente. Pour les gaz réels, la détente de Joule-Thomson est généralement accompagnée d'une variation de température : c'est l'effet Joule- Thomson. A Joule-Thomson expansion or depressurization is a stationary and slow laminar expansion performed by passing a flow of gas through a pad (cotton wool or raw silk in general) in an insulated and horizontal pipe, the pressure prevailing on the left and to the right of the stamp being different. For real gases, the Joule-Thomson expansion is generally accompanied by a temperature variation: this is the Joule-Thomson effect.
La conduite 32 est également reliée par d’autres vannes trois voies 38a’, 38b’ à des rampes de pulvérisation 22 et à des systèmes 35 de réinjection de GNL d’autres réservoirs 14 du navire. Line 32 is also connected by other three-way valves 38a ’, 38b’ to spray booms 22 and to LNG reinjection systems 35 of other tanks 14 of the ship.
L’entrée du troisième circuit 24c est reliée à une sortie d’un circuit 42b d’un autre échangeur de chaleur 42 dont l’entrée est reliée à la voie restante de la vanne trois voies 46. Cet échangeur 42 comporte un autre circuit 42a dont une sortie est reliée à une seconde entrée du compresseur 28. The input of the third circuit 24c is connected to an output of a circuit 42b of another heat exchanger 42 whose input is connected to the remaining path of the three-way valve 46. This exchanger 42 includes another circuit 42a one output of which is connected to a second input of compressor 28.
L’entrée du circuit 42a est reliée à une sortie de BOG 45 du réservoir 14 ou de chaque réservoir 14. The input of circuit 42a is connected to an output of BOG 45 from reservoir 14 or from each reservoir 14.
Le circuit 24a est un circuit froid, le fluide circulant dans ce circuit et en l’occurrence le GNL dépressurisé, étant destiné à être chauffé par circulation dans ce circuit de manière à le vaporiser partiellement. Il est destiné à être chauffé et donc à transmettre du froid. Le circuit 24a est ainsi considéré comme un circuit de refroidissement. Circuit 24a is a cold circuit, the fluid circulating in this circuit and in this case the depressurized LNG, being intended to be heated by circulation in this circuit so as to partially vaporize it. It is intended to be heated and therefore to transmit cold. The circuit 24a is thus considered as a cooling circuit.
Le circuit 24b est un circuit chaud et donc de chauffage dans le premier cas et un circuit froid donc de refroidissement dans le deuxième cas, le fluide circulant dans ce circuit et en l’occurrence le GNL provenant du réservoir 14, étant destiné à être refroidi par circulation dans ce circuit. On comprend que la dépressurisation en amont du circuit 24a permet d’abaisser la température de vaporisation, ce qui permet de générer du FBOG à partir d’un échange de chaleur avec le GNL prélevé de la cuve et circulant dans le circuit 24b. La vaporisation en FBOG nécessite un apport de chaleur fourni par le GNL circulant dans le circuit 24b, c’est donc une source frigorifique en vue du refroidissement du GNL circulant dans le circuit 24b. The circuit 24b is a hot circuit and therefore of heating in the first case and a cold circuit therefore of cooling in the second case, the fluid circulating in this circuit and in this case the LNG coming from the tank 14, being intended to be cooled by circulation in this circuit. It is understood that the depressurization upstream of the circuit 24a makes it possible to lower the vaporization temperature, which makes it possible to generate FBOG from an exchange of heat with the LNG taken from the tank and circulating in the circuit 24b. The vaporization in FBOG requires a contribution of heat supplied by the LNG circulating in the circuit 24b, it is therefore a refrigerating source for the cooling of the LNG circulating in the circuit 24b.
Le circuit 24c est un circuit chaud et donc de chauffage, le fluide circulant dans ce circuit et en l’occurrence le gaz comprimé sortant des compresseurs 26, 28, étant destiné à être refroidi par circulation dans ce circuit. La détente en aval du circuit 24c permet de recondenser le gaz et de le reliquéfier avant sa réinjection dans le réservoir 14. The circuit 24c is a hot circuit and therefore a heating circuit, the fluid circulating in this circuit and in this case the compressed gas leaving the compressors 26, 28, being intended to be cooled by circulation in this circuit. The expansion downstream of the circuit 24c makes it possible to recondense the gas and to reliquefy it before its reinjection into the reservoir 14.
Dans le premier cas, du GNL provenant du réservoir 14 est ainsi acheminé par la pompe 16a jusqu’aux moyens de dépressurisation 19 puis circule dans le circuit 24a froid de l’échangeur 24. Dans l'intervalle, du GNL du réservoir 14 est acheminé par la pompe 16b jusqu’au circuit 24b chaud de l’échangeur 24. Par conséquent, l'échange de chaleur entre ces circuits entraîne: In the first case, LNG from the tank 14 is thus conveyed by the pump 16a to the depressurization means 19 and then circulates in the cold circuit 24a of the exchanger 24. In the meantime, LNG from the tank 14 is conveyed by the pump 16b to the hot circuit 24b of the exchanger 24. Consequently, the heat exchange between these circuits results in:
- le chauffage de GNL dépressurisé et partiellement vaporisé, en vue de poursuivre sa vaporisation qui est achevée dans le réchauffeur 25, et the heating of depressurized and partially vaporized LNG, with a view to continuing its vaporization which is completed in the heater 25, and
- le refroidissement de GNL qui est réinjecté dans le réservoir 14 par l’intermédiaire du système 35 ou de la rampe 22. - the LNG cooling which is reinjected into the tank 14 via the system 35 or the ramp 22.
Dans le deuxième cas, du gaz comprimé provenant du compresseur 28 circule en outre dans le circuit 24c avant d’être détendu et reliquéfié. Dans l'intervalle, du GNL du réservoir 14 est acheminé par la pompe 16b jusqu’au circuit 24b froid de l’échangeur 24. Par conséquent, l'échange de chaleur entre ces circuits entraîne: In the second case, compressed gas from the compressor 28 also circulates in the circuit 24c before being expanded and liquefied. In the meantime, LNG from the reservoir 14 is conveyed by the pump 16b to the cold circuit 24b of the exchanger 24. Consequently, the heat exchange between these circuits results in:
- le chauffage de GNL qui est réinjecté dans le réservoir 14 par l’intermédiaire du système 35, - the LNG heating which is reinjected into the tank 14 via the system 35,
- le refroidissement du gaz comprimé qui sera ensuite détendu et reliquéfié avant d’être injecté dans le réservoir 14 par l’intermédiaire du système 35. - the cooling of the compressed gas which will then be expanded and re-liquefied before being injected into the reservoir 14 via the system 35.
Les compresseurs 26, 28 peuvent être deux compresseurs indépendants ou deux étages de compression d’un même compresseur. Les compresseurs 26, 28 peuvent ainsi être mutualisés. La sortie du compresseur 28 est reliée à l’installation 12 en vue de son alimentation en gaz combustible. Le compresseur 28 est configuré pour comprimer le gaz à une pression de service adaptée à son utilisation dans l’installation 12. The compressors 26, 28 can be two independent compressors or two compression stages of the same compressor. The compressors 26, 28 can thus be shared. The output of the compressor 28 is connected to the installation 12 for its supply of combustible gas. The compressor 28 is configured to compress the gas to an operating pressure suitable for its use in the installation 12.
Dans le mode de réalisation de la figure 1 , le réchauffeur 25 a pour but de chauffer et de vaporiser complètement le gaz en sortie du circuit 24a et comprend pour cela un circuit chauffant 25a qui peut être un circuit électrique ou un circuit de fluide caloporteur tel que de la vapeur d’eau. In the embodiment of FIG. 1, the purpose of the heater 25 is to heat and completely vaporize the gas leaving the circuit 24a and for this includes a heating circuit 25a which may be an electrical circuit or a circuit of heat transfer fluid such than water vapor.
De préférence, en entrée du réchauffeur 25, le gaz diphasique est à une pression comprise entre 120 et 800 mbara, de préférence entre 300 et 800 mbara et une température comprise entre -182°C et -151 °C, et, en sortie du réchauffeur, le gaz sous forme gazeuse est à une pression égale à l’entrée aux pertes de charge du réchauffeur près et une température comprise entre - 120°C et -15°C. Preferably, at the inlet of the heater 25, the two-phase gas is at a pressure between 120 and 800 mbara, preferably between 300 and 800 mbara and a temperature between -182 ° C and -151 ° C, and, at the outlet of the heater, the gas in gaseous form is at a pressure equal to the inlet to the pressure drops of the heater near and a temperature between - 120 ° C and -15 ° C.
La figure 2 représente une variante de réalisation du dispositif 10 qui diffère de celui de la figure 1 en ce que le réchauffeur 25’ comprend un circuit de fluide 25a dont une entrée est reliée à la sortie (de préférence unique) du compresseur 26 et dont une sortie est reliée à une entrée du compresseur 28. FIG. 2 represents an alternative embodiment of the device 10 which differs from that of FIG. 1 in that the heater 25 ′ comprises a fluid circuit 25a of which an inlet is connected to the outlet (preferably single) of the compressor 26 and of which an output is connected to an input of the compressor 28.
La figure 3 représente une autre variante de réalisation du dispositif 10 qui diffère de celui de la figure 1 en ce que le réchauffeur 25” comprend un circuit de fluide 25a dont une entrée est reliée à la sortie (de préférence unique) du compresseur 28 et dont une sortie est reliée à l’une des voies de la vanne trois voies 46, qui est également reliée à l’installation 12 et à l’échangeur 42. Ces trois variantes des figures 1 à 3 peuvent permettre, en plus de la vaporisation totale du GNL, de le réchauffer à une température non cryogénique, c’est-à-dire supérieure à -40°C. FIG. 3 represents another alternative embodiment of the device 10 which differs from that of FIG. 1 in that the heater 25 ”comprises a fluid circuit 25a, one inlet of which is connected to the outlet (preferably single) of the compressor 28 and one outlet of which is connected to one of the channels of the three-way valve 46, which is also connected to the installation 12 and to the exchanger 42. These three variants of FIGS. 1 to 3 can allow, in addition to vaporization total LNG, to heat it to a non-cryogenic temperature, that is to say greater than -40 ° C.
Le dispositif 10 de la figure 1 et ses variantes des figures 2 et 3 peuvent fonctionner de la façon suivante. 1. Dans le cas où la quantité de NBOG est insuffisante, par exemple lorsque le navire navigue à une vitesse nécessitant davantage de BOG pour compléter le NBOG produit dans le ou les réservoirs 14. Du BOG ou FBOG additionnel sera fourni par le dispositif 10. The device 10 of Figure 1 and its variants of Figures 2 and 3 can operate as follows. 1. In the event that the quantity of NBOG is insufficient, for example when the ship is sailing at a speed requiring more BOG to supplement the NBOG produced in the tank or tanks 14. Additional BOG or FBOG will be provided by the device 10.
Afin de contrôler la pression dans le réservoir 14, du NBOG est prélevé de ce réservoir à travers la sortie 45 puis alimente le compresseur 28, qui va produire du gaz combustible à une pression admissible pour l’installation 12, par exemple de l’ordre de 6-7bars, 15-17bars ou 300-315bars. Afin de compléter la quantité de gaz et répondre aux besoins de consommation de l’installation 12, du GNL du réservoir 14 est acheminée par la pompe 16a et la conduite 18 jusqu’aux moyens de dépressurisation 19 où le GNL subit une dépression. Il est ensuite réchauffé à travers le circuit 24a du premier échangeur 24 par échange avec le GNL circulant dans le circuit 24b du premier échangeur 24 qui a été, dans l’intervalle, acheminé par la pompe 16b, la conduite 20 et la conduite 30. Le GNL ainsi refroidi est ensuite acheminé au fond du réservoir 14 par la conduite 32 et le plongeur 35. Un mélange de gaz diphasique parvient au réchauffeur 25 dans lequel le gaz diphasique va être complètement transformé en phase gazeuse. Le FBOG produit est alors comprimé par le compresseur 26. Ensuite, le FBOG est à nouveau comprimé par le compresseur 28 pour atteindre la pression requise pour l’installation 12. In order to control the pressure in the tank 14, NBOG is taken from this tank through the outlet 45 and then supplies the compressor 28, which will produce combustible gas at a pressure admissible for the installation 12, for example of the order from 6-7bars, 15-17bars or 300-315bars. In order to supplement the quantity of gas and meet the consumption needs of the installation 12, the LNG from the reservoir 14 is conveyed by the pump 16a and the line 18 to the depressurization means 19 where the LNG is subjected to a depression. It is then reheated through the circuit 24a of the first exchanger 24 by exchange with the LNG circulating in the circuit 24b of the first exchanger 24 which has, in the meantime, been conveyed by the pump 16b, the line 20 and the line 30. The LNG thus cooled is then conveyed to the bottom of the tank 14 via the pipe 32 and the plunger 35. A mixture of two-phase gas reaches the heater 25 in which the two-phase gas will be completely transformed into the gaseous phase. The FBOG produced is then compressed by the compressor 26. Then, the FBOG is again compressed by the compressor 28 to reach the pressure required for the installation 12.
2. Dans le cas où le NBOG produit est en excès, par exemple lorsque le navire navigue à une vitesse faible ou est à l’ancrage, l’excès de NBOG devant être géré de manière sûre et respectueuse de l'environnement. 2. In the event that the NBOG produced is in excess, for example when the ship is sailing at a low speed or is at anchor, the excess of NBOG must be managed in a safe and environmentally friendly manner.
Le NBOG produit dans le réservoir 14 est en quantité suffisante ou plus que suffisante pour satisfaire les besoins de l’installation 12. Afin de contrôler la pression dans le réservoir 14, du BOG est prélevé de ce réservoir et alimente le compresseur 28 pour atteindre la pression requise pour l’installation 12. L'excès de BOG qui ne peut pas être consommé par l’installation est acheminé depuis la sortie du compresseur 28 jusqu’à l’échangeur 42 dans lequel il subit un refroidissement par échange de calories avec le NBOG froid directement prélevé du réservoir 14 par la sortie 45. Le BOG en excès est ensuite envoyé au circuit 24c où il est à nouveau refroidi par échange de chaleur avec du GNL prélevé dans le réservoir. Ensuite, le BOG en excès est recondensé par la vanne 36 et reinjecté dans le réservoir. The NBOG produced in the reservoir 14 is in sufficient quantity or more than sufficient to meet the needs of the installation 12. In order to control the pressure in the reservoir 14, BOG is taken from this reservoir and feeds the compressor 28 to reach the pressure required for the installation 12. The excess of BOG which cannot be consumed by the installation is conveyed from the outlet of the compressor 28 to the exchanger 42 in which it undergoes cooling by exchange of calories with the NBOG cold directly taken from tank 14 by outlet 45. The excess BOG is then sent to circuit 24c where it is again cooled by heat exchange with LNG taken from the tank. Then, the excess BOG is recondensed by the valve 36 and reinjected into the reservoir.
3. Dans le cas où le réservoir principal 14 du navire est refroidi, par exemple avant le chargement après le voyage retour (au cours duquel la gestion du BOG n'est généralement pas nécessaire car le ou les réservoirs 14 sont quasiment vides). 3. In the case where the main tank 14 of the ship is cooled, for example before loading after the return journey (during which the management of the BOG is generally not necessary because the tank or tanks 14 are almost empty).
Typiquement, les terminaux de re-liquéfaction, où le navire charge sa cargaison, nécessitent une température froide dans le réservoir 14 avant le chargement, afin de limiter la quantité de GNL qui serait instantanément vaporisée {flash). Ceci est généralement réalisé par pulvérisation au moyen de la rampe 22, et de la pompe 16b associée, du GNL déjà contenu dans le réservoir 14 en vue du refroidissement du BOG de ce réservoir. Grâce au dispositif 10, cette opération peut être effectuée en alimentant la rampe 22 avec du GNL provenant du second circuit 24b de l’échangeur, et donc du GNL plus froid que celui contenu dans le réservoir 14. Typically, the re-liquefaction terminals, where the ship loads its cargo, require a cold temperature in the tank 14 before loading, in order to limit the amount of LNG which would be instantly vaporized (flash). This is generally achieved by spraying by means of the ramp 22, and the associated pump 16b, the LNG already contained in the tank 14 with a view to cooling the BOG of this tank. Thanks to the device 10, this operation can be carried out by supplying the ramp 22 with LNG from the second circuit 24b of the exchanger, and therefore LNG cooler than that contained in the tank 14.
La figure 4 représente une variante de réalisation du dispositif selon l’invention, dans laquelle les éléments déjà décrits dans ce qui précède sont désignés par les mêmes références. FIG. 4 represents an alternative embodiment of the device according to the invention, in which the elements already described in the above are designated by the same references.
Le réchauffeur 25 est ici représenté sous la forme d’un échangeur dont un circuit 25b relie la sortie du circuit 24a de l’échangeur 24 à l’entrée du compresseur 26, et dont l’autre circuit 25a relie la sortie de ce compresseur 26 à l’entrée du compresseur 28, et plus exactement ici à deux compresseurs 28 en parallèle du fait de la redondance exigée pour ce type de compresseur sur un navire. The heater 25 is here represented in the form of an exchanger of which a circuit 25b connects the output of the circuit 24a of the exchanger 24 to the input of the compressor 26, and whose other circuit 25a connects the output of this compressor 26 at the input of compressor 28, and more precisely here to two compressors 28 in parallel due to the redundancy required for this type of compressor on a ship.
La figure 4 montre des exemples de température des fluides circulant dans le dispositif. On constate que le gaz liquéfié prélevé dans la cuve 14 est refroidi dans le circuit 24b et réchauffé dans le circuit 24a, le circuit de l’échangeur permettant en outre de refroidir et de reliquéfier le gaz précédemment refroidi dans le circuit 42b. Le circuit 42a permet de réchauffer le BOG prélevé. Le circuit 25b assure le réchauffement du mélange diphasique et l’évaporation totale du liquide restant, et le circuit 25a assure un refroidissement. La température en sortie du circuit 25b est ici supérieure à - 50°C (et par exemple supérieure ou égale à -35°C), ce qui permet d’utiliser un compresseur 26 moins coûteux qu’un compresseur cryogénique (un compresseur cryogénique pouvant fonctionner à des températures nettement inférieures à -50°C). Par ailleurs, ce niveau de température garantit que tout le gaz liquéfié est entièrement vaporisé et donc sous forme gazeuse en sortie du circuit 25b et donc en entrée du compresseur 26. FIG. 4 shows examples of the temperature of the fluids circulating in the device. It can be seen that the liquefied gas taken from the tank 14 is cooled in the circuit 24b and heated in the circuit 24a, the exchanger circuit also making it possible to cool and reliquefy the gas previously cooled in the circuit 42b. The circuit 42a allows to heat up the BOG collected. The circuit 25b ensures the heating of the two-phase mixture and the total evaporation of the remaining liquid, and the circuit 25a ensures cooling. The temperature at the outlet of circuit 25b is here greater than - 50 ° C (and for example greater than or equal to -35 ° C), which makes it possible to use a compressor 26 less expensive than a cryogenic compressor (a cryogenic compressor which can operate at temperatures well below -50 ° C). Furthermore, this temperature level guarantees that all the liquefied gas is entirely vaporized and therefore in gaseous form at the outlet of the circuit 25b and therefore at the inlet of the compressor 26.
La figure 5 représente une autre variante de réalisation et les figures 6 et 7 illustrent des modes de fonctionnement de cette variante. FIG. 5 represents another variant embodiment and FIGS. 6 and 7 illustrate modes of operation of this variant.
Dans cette variante, les pompes 16a et 16b sont remplacées par une unique pompe 16c qui est immergée dans le gaz liquéfié contenu dans la cuve 14 et dont la sortie est reliée d’une part à la vanne trois voies 38a et d’autre part à un organe de bifurcation 50 permettant d’alimenter un des deux circuits 24a, 24b de l’échangeur 24 voire les deux simultanément. In this variant, the pumps 16a and 16b are replaced by a single pump 16c which is immersed in the liquefied gas contained in the tank 14 and the outlet of which is connected on the one hand to the three-way valve 38a and on the other hand to a bifurcation member 50 making it possible to supply one of the two circuits 24a, 24b of the exchanger 24 or even both simultaneously.
En comparant les variantes des figures 4 et 5, on constate que l’échangeur formant le réchauffeur 25, d’une part, et l’échangeur 42, d’autre part, sont fusionnés pour former un seul échangeur 52. By comparing the variants of FIGS. 4 and 5, it can be seen that the exchanger forming the heater 25, on the one hand, and the exchanger 42, on the other hand, are merged to form a single exchanger 52.
Cet échangeur 52 comprend deux circuits dont un premier 52a relie la sortie du circuit 24a de l’échangeur 24 à l’entrée du compresseur 26, et dont un second circuit 52b relie la sortie de ce compresseur 26 au compresseur 28 ou aux compresseurs 28. This exchanger 52 comprises two circuits, a first 52a connecting the output of circuit 24a of exchanger 24 to the inlet of compressor 26, and a second circuit 52b connecting the output of this compressor 26 to compressor 28 or to compressors 28.
La fonction du circuit 42b de l’échangeur 42 est ici intégrée au circuit 52b dont l’entrée est en outre reliée à la sortie du compresseur 28, et dont la sortie est reliée en outre au circuit 24c de l’échangeur 24. The function of the circuit 42b of the exchanger 42 is here integrated into the circuit 52b whose input is further connected to the output of the compressor 28, and whose output is further connected to the circuit 24c of the exchanger 24.
Par ailleurs, la sortie de BOG 45 est reliée d’une part à l’entrée du circuit 52a, qui intègre la fonction du circuit 42a, et d’autre part à l’entrée du compresseur 28. La sortie du circuit 52a est en outre reliée à l’entrée du compresseur 28. La figure 6 montre un premier mode de fonctionnement de cette variante dans lequel du BOG est prélevé de la cuve 14 par la sortie 45 et alimente le compresseur 28. En parallèle, du gaz liquéfié est prélevé par la pompe 16c et alimente les circuits 24a, 24b de l’échangeur 24. Le gaz liquéfié refroidi dans le circuit 24b est réinjecté en fond de cuve, et le gaz liquéfié détendu par la vanne 19 passe dans le circuit 24a et se retrouve entièrement sous forme gazeuse en sortie du circuit 52a. Ce gaz est comprimé par le compresseur 26 avant d’être refroidi dans le circuit 52b et d’alimenter le compresseur 28. Furthermore, the output of BOG 45 is connected on the one hand to the input of circuit 52a, which integrates the function of circuit 42a, and on the other hand to the input of compressor 28. The output of circuit 52a is in further connected to the input of compressor 28. FIG. 6 shows a first mode of operation of this variant in which BOG is taken from the tank 14 by the outlet 45 and feeds the compressor 28. In parallel, liquefied gas is taken by the pump 16c and feeds the circuits 24a, 24b of the exchanger 24. The liquefied gas cooled in the circuit 24b is reinjected at the bottom of the tank, and the liquefied gas expanded by the valve 19 passes into the circuit 24a and is found entirely in gaseous form at the outlet of the circuit 52a. This gas is compressed by the compressor 26 before being cooled in the circuit 52b and supplying the compressor 28.
La figure 7 montre un second mode de fonctionnement de cette variante dans lequel du BOG est prélevé de la cuve 14 par la sortie 45 et passe dans le circuit 52a pour être réchauffé avant d’alimenter le compresseur 28. Une partie du gaz comprimé sortant du compresseur 28 circule dans le circuit 52b puis dans le circuit 24c avant d’être reliquéfié et réinjecté dans la cuve 14. FIG. 7 shows a second mode of operation of this variant in which BOG is taken from the tank 14 by the outlet 45 and passes into the circuit 52a to be heated before supplying the compressor 28. Part of the compressed gas leaving the compressor 28 circulates in circuit 52b then in circuit 24c before being reliquified and reinjected into tank 14.

Claims

REVENDICATIONS
1. Dispositif (10) de génération de gaz sous forme gazeuse à partir de gaz liquéfié, comportant : 1. Device (10) for generating gas in gaseous form from liquefied gas, comprising:
- un premier échangeur de chaleur (24) comportant - a first heat exchanger (24) comprising
• un premier circuit de refroidissement (24a) comprenant une entrée de gaz liquéfié reliée à une première conduite (18) qui est destinée à être reliée à une sortie de gaz liquéfié d’au moins un réservoir (14) de stockage de gaz liquéfié, A first cooling circuit (24a) comprising a liquefied gas inlet connected to a first pipe (18) which is intended to be connected to an outlet for liquefied gas from at least one tank (14) for storing liquefied gas,
• un second circuit (24b) comprenant une entrée de gaz liquéfié reliée à une troisième conduite (30) qui est destinée à être reliée à une sortie de gaz liquéfié dudit réservoir (14), A second circuit (24b) comprising a liquefied gas inlet connected to a third pipe (30) which is intended to be connected to an outlet for liquefied gas from said tank (14),
- des moyens de vaporisation (19) par mise en dépression équipant ladite première conduite (18), - vaporization means (19) by placing under vacuum fitted to said first pipe (18),
- au moins un compresseur (26, 28), et - at least one compressor (26, 28), and
- un réchauffeur (25, 52) comportant une entrée de gaz au moins en partie sous forme liquide, qui est reliée à une sortie dudit premier circuit (24a), et une sortie de gaz uniquement sous forme gazeuse qui est reliée audit au moins un compresseur (26, 28), - a heater (25, 52) comprising a gas inlet at least partly in liquid form, which is connected to an outlet of said first circuit (24a), and a gas outlet only in gaseous form which is connected to said at least one compressor (26, 28),
caractérisé en ce que le premier échangeur de chaleur (24) comprend en outre un autre circuit de chauffage (24c) comprenant une entrée de gaz sous forme gazeuse reliée à une sortie dudit compresseur (28) et une sortie de gaz reliée à des moyens (35, 34, 22) destinés à injecter du gaz liquéfié dans le réservoir (14). characterized in that the first heat exchanger (24) further comprises another heating circuit (24c) comprising a gas inlet in gaseous form connected to an outlet of said compressor (28) and a gas outlet connected to means ( 35, 34, 22) intended to inject liquefied gas into the tank (14).
2. Dispositif (10) selon la revendication précédente, dans lequel ledit premier circuit (24a) est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -165°C jusqu’à une température supérieure ou égale à -165°C. 2. Device (10) according to the preceding claim, wherein said first circuit (24a) is configured to heat the fluid flowing there from a temperature less than or equal to -165 ° C to a temperature greater than or equal to -165 ° vs.
3. Dispositif (10) selon la revendication 1 ou 2, dans lequel ledit réchauffeur (25) est un échangeur de chaleur qui comprend un troisième circuit (25b) comportant une entrée de gaz au moins en partie sous forme liquide, qui est reliée à la sortie dudit premier circuit (24a), et une sortie de gaz uniquement sous forme gazeuse qui est reliée audit au moins un compresseur (26, 28). 3. Device (10) according to claim 1 or 2, wherein said heater (25) is a heat exchanger which comprises a third circuit (25b) having a gas inlet at least partly in liquid form, which is connected to the outlet of said first circuit (24a), and a gas outlet only in gaseous form which is connected to said at least one compressor (26, 28).
4. Dispositif selon la revendication précédente, dans lequel ledit troisième circuit a son entrée qui est en outre reliée à une sortie (45) de gaz sous forme gazeuse dudit réservoir (14). 4. Device according to the preceding claim, wherein said third circuit has its input which is further connected to an outlet (45) of gas in gaseous form of said tank (14).
5. Dispositif (10) selon la revendication 3 ou 4, dans lequel ledit troisième circuit (25b) est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -165°C jusqu’à une température supérieure ou égale à -50°C. 5. Device (10) according to claim 3 or 4, wherein said third circuit (25b) is configured to heat the fluid flowing there from a temperature less than or equal to -165 ° C to a temperature greater than or equal to - 50 ° C.
6. Dispositif (10) selon l’une des revendications 3 à 5, dans lequel l’échangeur formant réchauffeur (25) comprend un quatrième circuit (25a) dans lequel circule un fluide de chauffage. 6. Device (10) according to one of claims 3 to 5, wherein the heater exchanger (25) comprises a fourth circuit (25a) in which circulates a heating fluid.
7. Dispositif (10) selon la revendication précédente, dans lequel ledit quatrième circuit (25a) est configuré pour refroidir le fluide y circulant depuis une température supérieure ou égale à 50°C jusqu’à une température inférieure ou égale à 0°C. 7. Device (10) according to the preceding claim, wherein said fourth circuit (25a) is configured to cool the fluid flowing therein from a temperature greater than or equal to 50 ° C to a temperature less than or equal to 0 ° C.
8. Dispositif (10) selon la revendication 6 ou 7, dans lequel ledit fluide de chauffage est du gaz comprimé prélevé en sortie dudit au moins un compresseur (26, 28). 8. Device (10) according to claim 6 or 7, wherein said heating fluid is compressed gas taken from the outlet of said at least one compressor (26, 28).
9. Dispositif (10) selon la revendication précédente, dans lequel une sortie, de préférence, unique dudit au moins un compresseur (26) est reliée à une entrée dudit quatrième circuit (25a) de l’échangeur formant réchauffeur (25). 9. Device (10) according to the preceding claim, wherein an output, preferably unique of said at least one compressor (26) is connected to an input of said fourth circuit (25a) of the heat exchanger forming a heater (25).
10. Dispositif (10) selon la revendication précédente, dans lequel il comprend au moins deux compresseurs (26, 28) montés en série, une sortie d’un compresseur (26) amont étant reliée à l’entrée dudit quatrième circuit (25a) de l’échangeur formant réchauffeur (25), dont une sortie est reliée à une entrée d’un compresseur aval (28). 10. Device (10) according to the preceding claim, in which it comprises at least two compressors (26, 28) connected in series, an output of an upstream compressor (26) being connected to the input of said fourth circuit (25a) of the heat exchanger forming a heater (25), one outlet of which is connected to an inlet of a downstream compressor (28).
11. Dispositif (10) selon la revendication 9, dans lequel il comprend au moins deux compresseurs (26, 28) montés en série, une sortie d’un compresseur amont (26) étant reliée à une entrée d’un compresseur aval (28) dont une sortie est reliée à l’entrée dudit quatrième circuit (25a) de l’échangeur formant réchauffeur (25). 11. Device (10) according to claim 9, in which it comprises at least two compressors (26, 28) connected in series, an outlet of an upstream compressor (26) being connected to an inlet of a downstream compressor (28 ) an output of which is connected to the input of said fourth circuit (25a) of the heat exchanger forming a heater (25).
12. Dispositif selon l’une des revendications 6 à 11 , dans lequel ledit quatrième circuit (25a) a une sortie reliée à au moins un compresseur (28). 12. Device according to one of claims 6 to 11, wherein said fourth circuit (25a) has an output connected to at least one compressor (28).
13. Dispositif (10) selon l’une des revendications précédentes, dans lequel ledit second circuit (24b) est séquentiellement un circuit de refroidissement et un circuit de chauffage selon le mode de fonctionnement du dispositif. 13. Device (10) according to one of the preceding claims, in which said second circuit (24b) is sequentially a cooling circuit and a heating circuit according to the operating mode of the device.
14. Dispositif (10) selon l’une des revendications précédentes, dans lequel ledit second circuit (24b) est configuré pour refroidir le fluide y circulant depuis une température inférieure ou égale à -160°C jusqu’à une température inférieure ou égale à -165°C, et/ou ledit autre circuit (24c) est configuré pour refroidir le fluide y circulant depuis une température inférieure ou égale à - 100°C jusqu’à une température inférieure ou égale à -130°C. 14. Device (10) according to one of the preceding claims, wherein said second circuit (24b) is configured to cool the fluid flowing therein from a temperature less than or equal to -160 ° C to a temperature less than or equal to -165 ° C, and / or said other circuit (24c) is configured to cool the fluid flowing therein from a temperature less than or equal to -100 ° C to a temperature less than or equal to -130 ° C.
15. Dispositif selon l’une quelconque des revendications 6 à 13, dans lequel la sortie dudit quatrième circuit (25a) est en outre reliée à l’entrée dudit autre circuit (24c). 15. Device according to any one of claims 6 to 13, wherein the output of said fourth circuit (25a) is further connected to the input of said other circuit (24c).
16. Dispositif (10) selon la revendication précédente, dans lequel il comprend une cinquième conduite (34) équipée de moyens de détente (36) et comprenant une entrée reliée à la sortie dudit autre circuit (24c), et une sortie destinée à être reliée à une entrée de gaz liquéfié dudit réservoir (14). 16. Device (10) according to the preceding claim, in which it comprises a fifth pipe (34) equipped with expansion means (36) and comprising an input connected to the output of said other circuit (24c), and an output intended to be connected to a liquefied gas inlet of said tank (14).
17. Dispositif (10) selon la revendication précédente, dans lequel il comprend une sixième conduite (32) dont une entrée est reliée à une sortie dudit second circuit (24b) et dont une sortie est raccordée à une entrée de gaz liquéfié dudit réservoir 17. Device (10) according to the preceding claim, in which it comprises a sixth line (32), an inlet of which is connected to an outlet of said second circuit (24b) and of which an outlet is connected to an inlet of liquefied gas from said tank.
18. Dispositif (10) selon l’une quelconque des revendications précédentes, dans lequel ladite entrée de gaz dudit autre circuit (24c) est reliée à la sortie dudit compresseur (28) par l’intermédiaire d’un sixième circuit (42b) d’un second échangeur de chaleur (42). 18. Device (10) according to any one of the preceding claims, in which said gas inlet of said other circuit (24c) is connected to the outlet of said compressor (28) via a sixth circuit (42b) d 'a second heat exchanger (42).
19. Dispositif (10) selon la revendication précédente, dans lequel ledit sixième circuit (42b) est configuré pour refroidir le fluide y circulant depuis une température supérieure ou égale à 0°C jusqu’à une température inférieure ou égale à -100°C. 19. Device (10) according to the preceding claim, wherein said sixth circuit (42b) is configured to cool the fluid flowing therein from a temperature greater than or equal to 0 ° C to a temperature less than or equal to -100 ° C .
20. Dispositif (10) selon la revendication précédente, dans lequel ledit second échangeur de chaleur (42) comprend un septième circuit (42a) dont une entrée est reliée à une sortie (45) de gaz sous forme gazeuse dudit réservoir (14), et dont une sortie est reliée audit compresseur (28). 20. Device (10) according to the preceding claim, in which said second heat exchanger (42) comprises a seventh circuit (42a), one inlet of which is connected to an outlet (45) of gas in gaseous form from said tank (14), and one output of which is connected to said compressor (28).
21. Dispositif (10) selon la revendication précédente, dans lequel ledit septième circuit (42a) est configuré pour réchauffer le fluide y circulant depuis une température inférieure ou égale à -100°C jusqu’à une température supérieure ou égale à -50°C. 21. Device (10) according to the preceding claim, wherein said seventh circuit (42a) is configured to heat the fluid flowing therein from a temperature less than or equal to -100 ° C to a temperature greater than or equal to -50 °. vs.
22. Navire, en particulier de transport de gaz liquéfié, comportant au moins un dispositif selon l’une des revendications précédentes. 22. Ship, in particular for transporting liquefied gas, comprising at least one device according to one of the preceding claims.
23. Procédé de génération de gaz sous forme gazeuse à partir de gaz liquéfié, au moyen d’un dispositif (10) selon l’une des revendications 1 à 21 , caractérisé en ce qu’il comprend : une étape de prélèvement de gaz liquéfié et de vaporisation complète de ce gaz, avant l’alimentation dudit au moins un compresseur (26, 28). 23. A method of generating gas in gaseous form from liquefied gas, by means of a device (10) according to one of claims 1 to 21, characterized in that it comprises: a step of sampling liquefied gas and complete vaporization of this gas, before supplying said at least one compressor (26, 28).
24. Procédé selon la revendication précédente, dans lequel la vaporisation est obtenue par chauffage du gaz liquéfié avec un fluide de chauffage qui est du gaz comprimé prélevé en sortie dudit au moins un compresseur (26, 28). 24. Method according to the preceding claim, wherein the vaporization is obtained by heating the liquefied gas with a heating fluid which is compressed gas taken from the outlet of said at least one compressor (26, 28).
25. Procédé selon la revendication précédente, dans lequel le gaz comprimé est prélevé entre deux compresseurs (26, 28) montés en série ou en sortie de deux compresseurs montés en série. 25. Method according to the preceding claim, wherein the compressed gas is taken between two compressors (26, 28) connected in series or at the outlet of two compressors connected in series.
PCT/EP2019/083187 2018-11-30 2019-11-29 Device for generating gas in gaseous form from liquefied gas WO2020109607A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217020048A KR20210095930A (en) 2018-11-30 2019-11-29 Device for generating gaseous gas from liquefied gas
CN201980079322.0A CN113316696B (en) 2018-11-30 2019-11-29 Device for producing gaseous gases from liquefied gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872123 2018-11-30
FR1872123A FR3089274B1 (en) 2018-11-30 2018-11-30 Device for generating gas in gaseous form from liquefied gas

Publications (1)

Publication Number Publication Date
WO2020109607A1 true WO2020109607A1 (en) 2020-06-04

Family

ID=65861484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/083187 WO2020109607A1 (en) 2018-11-30 2019-11-29 Device for generating gas in gaseous form from liquefied gas

Country Status (4)

Country Link
KR (1) KR20210095930A (en)
CN (1) CN113316696B (en)
FR (1) FR3089274B1 (en)
WO (1) WO2020109607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208003A1 (en) * 2021-04-01 2022-10-06 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837783A1 (en) 2002-03-26 2003-10-03 Alstom INSTALLATION FOR THE SUPPLY OF GAS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
WO2016075399A2 (en) 2014-11-10 2016-05-19 Gaztransport Et Technigaz Device and method for cooling a liquefied gas
WO2017192136A1 (en) 2016-05-04 2017-11-09 Innovative Cryogenic Systems, Inc. Istallation for feeding a gas-consuming member with combustible gas and for liquefying said combustible gas
KR20180093577A (en) 2017-02-14 2018-08-22 대우조선해양 주식회사 Fuel Supply System and Method of Engine for Vessel
FR3066257A1 (en) 2018-01-23 2018-11-16 Gaztransport Et Technigaz CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290032B1 (en) * 2006-04-07 2013-07-30 배르질래 오일 & 가스 시스템즈 아에스 Method and apparatus for pre-heating lng boil-off gas to ambient temperature prior to compression in a reliquefaction system
FR2993643B1 (en) * 2012-07-17 2014-08-22 Saipem Sa NATURAL GAS LIQUEFACTION PROCESS WITH PHASE CHANGE
JP6600247B2 (en) * 2015-11-06 2019-10-30 川崎重工業株式会社 Ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837783A1 (en) 2002-03-26 2003-10-03 Alstom INSTALLATION FOR THE SUPPLY OF GAS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
WO2016075399A2 (en) 2014-11-10 2016-05-19 Gaztransport Et Technigaz Device and method for cooling a liquefied gas
WO2017192136A1 (en) 2016-05-04 2017-11-09 Innovative Cryogenic Systems, Inc. Istallation for feeding a gas-consuming member with combustible gas and for liquefying said combustible gas
KR20180093577A (en) 2017-02-14 2018-08-22 대우조선해양 주식회사 Fuel Supply System and Method of Engine for Vessel
FR3066257A1 (en) 2018-01-23 2018-11-16 Gaztransport Et Technigaz CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208003A1 (en) * 2021-04-01 2022-10-06 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
FR3121504A1 (en) * 2021-04-01 2022-10-07 Gaztransport Et Technigaz Method for cooling a heat exchanger of a gas supply system of a gas-consuming device of a ship

Also Published As

Publication number Publication date
CN113316696B (en) 2023-09-26
CN113316696A (en) 2021-08-27
KR20210095930A (en) 2021-08-03
FR3089274A1 (en) 2020-06-05
FR3089274B1 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
FR3066257B1 (en) CRYOGENIC HEAT PUMP AND ITS USE FOR THE TREATMENT OF LIQUEFIED GAS
FR3066250B1 (en) DEVICE AND METHOD FOR COOLING LIQUEFIED GAS AND / OR NATURAL EVAPORATION GAS FROM LIQUEFIED GAS
EP3433557B1 (en) System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas
EP3864336B1 (en) Method and facility for storing and distributing liquefied hydrogen
FR3066248A1 (en) METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
FR3077867A1 (en) METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
WO2017037400A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
WO2022064131A1 (en) Cryogenic storage assembly for liquefied fuel
WO2020109580A1 (en) Gas treatment system of a receiving terminal equipped with a regasification unit and corresponding gas treatment method
JP2019518909A (en) Equipment for feeding a flammable gas to a gas consuming member and liquefying the flammable gas
WO2020109607A1 (en) Device for generating gas in gaseous form from liquefied gas
KR102613977B1 (en) Gas treatment system and ship having the same
WO2022157446A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
WO2022208003A1 (en) Method for cooling a heat exchanger of a gas supply system of a gas consuming apparatus of a ship
EP4018119A1 (en) System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship
FR3103227A1 (en) Gas supply system for at least one gas consuming device fitted to a ship
WO2021064318A1 (en) Refrigerant fluid intended for a refrigerant fluid circuit of a natural gas treatment system
FR3108167A1 (en) System for treating natural gas from a vessel of a floating structure configured to supply natural gas as fuel to a device that consumes natural gas
FR3066249A1 (en) DEVICE AND METHOD FOR COOLING LIQUEFIED GAS AND / OR NATURAL EVAPORATION GAS FROM LIQUEFIED GAS
FR3093785A1 (en) Pressure control system in a liquefied natural gas tank.
WO2022069833A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
WO2024084154A1 (en) Method for managing a fluid in liquid form contained in a vessel
WO2021064319A1 (en) System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state
FR3124830A1 (en) Gas supply system for appliances using high and low pressure gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19809095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020048

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19809095

Country of ref document: EP

Kind code of ref document: A1