EP3433055A1 - Elektrowerkzeug und steuerungsverfahren dafür - Google Patents
Elektrowerkzeug und steuerungsverfahren dafürInfo
- Publication number
- EP3433055A1 EP3433055A1 EP17769407.2A EP17769407A EP3433055A1 EP 3433055 A1 EP3433055 A1 EP 3433055A1 EP 17769407 A EP17769407 A EP 17769407A EP 3433055 A1 EP3433055 A1 EP 3433055A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electric tool
- controller
- motor
- user
- input device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000003252 repetitive effect Effects 0.000 claims description 30
- 230000002045 lasting effect Effects 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 2
- 230000009191 jumping Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 13
- 230000006399 behavior Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
- B25B23/147—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
Definitions
- This invention relates to electric tools, and in particular motor-driven power tools.
- Hand-held electric tools are widely used in industrial and domestic applications. These electric tools are often designed for operating in corded or cordless mode, where the users use the electric tools to perform certain operations on a workpiece such as drilling, striking, grinding, and cutting.
- the mechanical force outputted by the electric tool comes from the electric motor installed in the electric tool, and the user actuates the electric tool via one or more user actuating means on the electric tool such as a switch, a trigger, or a lever.
- the present invention in one aspect, is an electric tool containing a motor for driving a working element, a controller connected to the motor, a first user input device connected to the controller, and a memory connected to the controller.
- the controller is configured to operate in a learning mode and an execution mode.
- the controller In the learning mode, the controller is adapted to record a varying pattern of operation of the electric tool and store the varying pattern in the memory.
- the controller In the execution mode, the controller is adapted to control the electric tool to operate without user intervention by replaying the varying pattern stored in the memory.
- the varying pattern contains variation of one or more parameters occurred during a period of time.
- the one or more parameters are selected from the group consisted of: current applied to the motor, voltage applied to the motor, number of steps that the motor has travelled in case the motor is a stepping motor; rotating speed of the motor, running time of the motor; degree of a user actuating the first user input device, and lasting time of the user actuating the first user input device.
- the first user input device is a trigger.
- the controller is configured to record a number of repetitive profiles of operation of the electric tool in the learning mode; analyze the number of repetitive profiles; and produce an optimized profile as the varying pattern of operation of the electric tool.
- the controller is further configured to discard a profile from the number of repetitive profiles which has a maximum deviation.
- the controller is further configured to average two or more profiles among the number of repetitive profiles to obtain the optimized profile.
- the number of repetitive profiles is the last ones among all repetitive profiles detected by the controller of the electric tool.
- the controller is switched between the learning mode and the execution mode by a user operating a second user input device of the electric tool.
- the second user input device is a press button or a switching clutch.
- a method of controlling an electric tool includes the steps of placing the power tool in a learning mode, recording a varying pattern of operation of the electric tool by a controller of the electric tool, storing the varying pattern in a memory of the electric tool, placing the power tool in an execution mode; and replaying the operation of the electric tool by the controller according to the stored varying pattern without user intervention.
- the varying pattern comprises variation of one or more parameters occurred during a period of time.
- the one or more parameters are selected from the group consisted of: current applied to a motor of the electric tool, voltage applied to the motor, number of steps that the motor has travelled in case the motor is a stepping motor; rotating speed of the motor, running time of the motor; degree of the user actuating a first user input device, and lasting time of the user actuating the first user input device.
- the first user input device is a trigger.
- the recording step further includes recording a number of repetitive profiles of operation of the electric tool by the controller of the electric tool; analyzing the number of repetitive profiles; and producing an optimized profile as the varying pattern of operation of the electric tool by the controller of the electric tool.
- the analyzing step comprises discarding a profile from the number of repetitive profiles which has a maximum deviation.
- the producing step comprises averaging two or more profiles among the number of repetitive profiles to obtain the optimized profile.
- the number of repetitive profiles is the last ones among all repetitive profiles detected by the controller of the electric tool.
- the method further contains, at the beginning, the steps of detecting whether a first user input device is actuated; determining whether the controller is placed under the learning mode or the execution mode, if the first user input device is actuated; and placing the electric tool to either the learning mode or the execution mode according to the determination result.
- the controller is switched between the learning mode and the execution mode by the user operating a second user input device of the electric tool.
- the second user input device is a press button or a switching clutch.
- the user is now freed from having to precisely control the manual operation on the electric tool each time when performing repetitive works. Instead, the user only has to place the electric tool in the learning mode and performs manually the desired operation once.
- the behavior of the user’s operation and/or that of the electric tool is then recorded by the controller of the electric tool as a varying pattern, and stored in the on-board memory.
- the user For subsequent tasks which are repeating the first one, the user only needs to switch the electric tool into an execution mode, and the electric tool will precisely repeats the operation according to the varying pattern, without the need for user’s intervention. Therefore, a lot of effort by the user when using the electric tool can be saved and the user’s labor intensity is also reduced.
- Another advantage of the present invention is that the recorded operation of the electric tool operation is not limited to a single and/or fixed parameter which may not be sufficient to replay the user’s operation precisely. Rather, the entire operation process of the user, and in particular any variation of the electric tool operation parameters, are recorded on a dynamic basis. Therefore, even for complicated operation processes during which the user’s operation and/or the motor operation status may be changing, the controlling method according to the present invention still allows a precise playback in the execution mode.
- an Artificial Intelligent (AI) mechanism provided for the electric tool so that only the useful profiles among various profiles of operations are used to produce the varying pattern of operation to be recorded and executed (playback) .
- AI Artificial Intelligent
- one or more profiles which are apparently deviated from the rest of profiles can be automatically discarded, with the rest of the profiles be averaged to find out the optimal profile.
- Such a self-learning capability provided by the AI mechanism could avoid any inferior operation pattern due to misoperation of the user or when the user is still inexperienced in operating the electric tool, so that the recorded operation behavior is a readily useful one which could achieve a desired operation result.
- Fig. 1 is an illustration of an electric tool internal structure according to a first embodiment of the present invention.
- Fig. 2 shows the schematic circuit diagram of the electric tool in Fig. 1.
- Fig. 3 shows a flow chart of the controller in the electric tool operating in a learning mode, according to an embodiment of the present invention.
- Fig. 4 shows the flow chart of the controller in the electric tool in Fig. 3, when operating in an execution mode.
- Fig. 5 shows a flow chart of the controller in the electric tool operating in two modes, according to a further embodiment of the present invention.
- Fig. 6 is a chart showing five recorded profiles of the motor current versus time when main switch of the electric tool is pressed down, according to a further embodiment of the present invention.
- Fig. 7 shows a flow chart of the controller in which multiple repetitive profiles are analyzed and processed to produce an optimized profile, according to a further embodiment of the present invention.
- Couple or “connect” refers to electrical coupling or connection either directly or indirectly via one or more electrical means unless otherwise stated.
- a portable power tool 10 which may be corded or cordless (battery-powered) portable device, such as a screwdriver or drill.
- the power tool 10 includes a housing 11, which accommodates most of the essential components for normal operation of the power tool 10 including the motor 12, a transmission gear assembly 13, an output shaft 15, a control circuit board 31, and a power supply module 17.
- the transmission gear assembly 13 is coupled between the motor 12 and the output shaft 15 to provide an altered output driving force for example with different speed and torque.
- the power supply module 17 can be a battery pack in the case of a cordless power tool, or it can be an AC-DC convertor in the case of a corded power tool where the power tool is connected to mains supply via a power cord (not shown) .
- a trigger 16 is configured on the housing 11 as a first user input device for the user to manually operate the power tool 10.
- a press button 18 is configured on the housing 18 as a second user input device to toggle the controller 2 between a learning mode and an execution mode.
- the control circuit board 31 carries electronic components such as a controller and a memory (which will be described below) .
- the power tool contains a controller 2 which is connected to the motor 12 for controlling the operation of the latter.
- a memory 6 is also connected to the controller 2 for storing various operation information and parameters that are recorded by the controller 2.
- the trigger 16 and press button 18 are electrically connected to the controller 2 so that they can be used to accept inputs made by the user, and provide corresponding signals to the controller 2.
- the power supply module 17 is connected to the motor 12 and the controller 2 for powering these components in order for normal operation of the power tool.
- the controller 2 is further connected to the motor 12 in a way that various motor status and operation parameters, in particular their variations, may be detected, measured, or otherwise obtained by the controller 2.
- a various pattern of these status and parameters may be recorded which contains not only a single value but also a dynamic variation of these status and parameters as time passes by.
- Such operation parameters include but not limited to working current of the motor 12, voltage applied to the motor 12, the rotation speed of the motor 12which is for example represented by revolution per minute (RPM) , output torque of the motor 12, etc.
- the output torque of the motor 12 may be either directly measured by using optical devices or mechanical torque measuring devices, or it may be measured indirectly based on the current of the motor 12.
- the motor 12 is a stepping motor, then the steps or angular positions that the motor that has traveled may also be detected by the controller 2.
- Temperature, such as that of the motor 12 or the power supply module 17, may also be detected as operation parameters.
- the controller 2 is also adapted to monitor the user actuating behavior to the trigger 16.
- the user actuating behavior includes the lasting time that the user presses down the trigger 16, and the degree of such pressing action.
- the trigger of power tools are often designed to generate different control signals, for example on a linear basis, depending on to what extent the user presses down the trigger. If the user only presses the trigger slightly, that would leads to the trigger generating a signal with a smaller value. In the user presses the trigger heavily using a large force, then the trigger generates a signal with a larger value.
- the varying pattern of the above detected or measured status and parameters can then be recorded by the controller 2 and saved in the memory 6.
- the saved varying pattern may be loaded from the memory 6 by the controller 2 to reproduce the recorded operation of the electric tool.
- Figs. 3 and 4 show how the electric tools according to the present invention may be placed in a learning mode in which the varying pattern mentioned above is recorded, and in an execution mode in which the electric tool is automatically operated to replay the recorded operation.
- the user firstly switches the screwdriver into the learning mode by pressing for example the press button on the power tool described above.
- the controller is then initiated and made ready to record the power tool operation
- the user in Step 42 then begins the operation by pressing down the trigger.
- the motor of the power tool is now activated and starts the operation on the workpiece.
- the controller in Step 44 records variation pattern of the power tool operation. For example, the degree of the user pressing on the trigger is monitored and recorded as time passes by. Such pressing degree may be varying as time passes.
- the power tool initially drives the screw into the workpiece
- the user only slightly presses the trigger since less torque is required.
- the screw is consequently driven deep into the workpiece, the user presses down the trigger more as a larger torque is now required.
- Such variation of trigger operation process is monitored and recorded.
- other parameters may also be recorded such as the working current of the motor, the voltage applied to the motor, the rotation speed of the motor, the output torque of the motor 12, and the temperature of the motor /power supply module as mentioned above. These parameters may also exhibit a varying nature as time passes. Note that one or more of these parameters may be recorded at the same time in order to obtain a stored operation process of the power tool as precise as possible.
- Step 46 the user finishes the operation of the power tool in Step 46 after the screw has been completed fastened into the workpiece at a desired depth.
- the user then releases the trigger so as to stop the motor operation.
- the controller 2 acknowledges such releasing action as a stop signal for the recording process of the varying pattern.
- Step 48 the entire varying pattern is then written into the memory of the power tool, which preferably does not lose even after the power tool is powered off.
- the user When the user wishes to repeat the operation of fastening a second, third or even more identical screws, he/she can switch the power tool to the execution mode, in which the power tool is able to repeat or say replay the previously recorded operation process of the power tool without the need for the user to intervene.
- the user firstly switches the power tool to the execution mode in Step 50 for example by pressing the press button on the power tool again. Then, the user simply places the power tool into a read-to-work position, for example urges the screwdriver bit against the screw on the workpiece, and then presses the trigger once to initiate the automatic “playback” in Step 52.
- Step 54 starts to playback the recorded operation according to the varying pattern, for example by supplying a time-dependent control voltage and/or working current to the motor so that the output speed and torque of the motor is precisely controlled to resemble those when the user was manually controlling the power tool during the learning process.
- the power tool automatically notifies the user about the completion of the automatic process in Step 56, for example by reducing tool speed, flashing a work light on the power tool housing, and/or stopping the motor.
- Step 58 the automatic operation is completed. The user may then start another repetitive operation by returning to Step 52 again, or placing the power tool in the learning mode for a different task.
- a further operation method of the electric tool is provided which is slightly different from those in Figs. 3 and 4.
- the method starts at Step 60 which could be the time when the electric tool is ready to be used.
- Step 62 a controller of the electric tool determines whether a main switch (e.g. a trigger) as a first user input device is pressed. If the main switch is not pressed, then the method goes directly to Step 70 where the method ends. However, if in Step 62 it is detected that the main switch is pressed and is kept in the pressed state (i.e.
- Step 64 the controller determines whether the electric tool is placed in the learning mode or playback (i.e. execution) mode. Depending on the result of such determination, the method proceeds either to Step 66 in which the electric tool records a vary pattern of operation parameters similar to that in Fig. 3, or the method proceeds to Step 68 in which the electric tool playbacks the recorded varying pattern to automatically complete desired operation similar to that in Fig. 4. In Step 68, optionally the electric tool will remind the user when the work is about to be completed by, for example, reducing the motor output speed. After executing either Step 66 or 68, the method then goes to an end in Step 70.
- Figs. 6 and 7 in a modification of the embodiments shown in Fig. 4 or 5, the electric tool will record, update and fine tune the record varying pattern automatically as long as the electric tool is placed in the learning mode.
- This is referred as an Artificial Intelligent (AI) mechanism available at the electric tool.
- Fig. 6 shows five recorded profiles 80, 82, 84, 86, 88 of the user’s operation on the main switch of the electric tool, with each profile representing a varying pattern every time the user has actuated the main switch.
- the user has pulled the main switch for five times, and in each profile the variation of the motor current versus time elapsed is marked.
- Fig. 6 shows five recorded profiles 80, 82, 84, 86, 88 of the user’s operation on the main switch of the electric tool, with each profile representing a varying pattern every time the user has actuated the main switch.
- the user has pulled the main switch for five times, and in each profile the variation of the motor current versus time elapsed is
- Step 92 the controller will discard profile 82 because it takes less time than other profiles, which may indicates that the screw is not driven properly.
- the controller will also discard profile 84 because in this profile the motor current drops too much after startup, which is also different from other profiles.
- the profiles 82 and 84 are considered to have the maximum deviation from the rest of the profiles since one or more of the parameters (e.g. the instantaneous current drop, or persisting operation time) in the profiles 82 and 84b is most significantly different from that in the rest of the profiles.
- Step 94 takes an average of the three profiles 80, 86, 88, the result of which becomes an optimized profile in Step 96 that contains the varying pattern of operation of the electric tool for future playback /execution.
- the user may operate the main switch multiple times (e.g. more than five times) . If the controller is only to use five recorded profiles for analyzing and producing the optimized profile as mentioned, it means that some of the operations will not be used for analyzing. In one example, if the end-user operates the main switch in the learning mode, the controller will keep evaluating the latest several profiles (e.g. latest five profiles) on a dynamic basis, and continues to update the optimized profile as time goes by.In this way it can be expected that the single optimized profile will be improved gradually as the user continues to operate the electric tool, since it is likely that as the user uses the electric tool for longer and longer time, he /she will eventually find best way of operating the electric tool which is valuable for repeating by the electric tool automatically.
- the controller will keep evaluating the latest several profiles (e.g. latest five profiles) on a dynamic basis, and continues to update the optimized profile as time goes by. In this way it can be expected that the single optimized profile will be improved gradually as the user continues to operate the electric tool, since it is likely
- the user input device for toggling the electric tool between a learning mode and an execution mode is a press button.
- other types of devices may also be used such as a switch clutch to change the electric tool between the two modes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HK16103323 | 2016-03-22 | ||
PCT/CN2017/077447 WO2017162130A1 (en) | 2016-03-22 | 2017-03-21 | Electric tool and controlling method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3433055A1 true EP3433055A1 (de) | 2019-01-30 |
EP3433055A4 EP3433055A4 (de) | 2020-01-15 |
EP3433055B1 EP3433055B1 (de) | 2022-11-30 |
Family
ID=59899130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17769407.2A Active EP3433055B1 (de) | 2016-03-22 | 2017-03-21 | Elektrowerkzeug und steuerungsverfahren dafür |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3433055B1 (de) |
CN (1) | CN108883522B (de) |
AU (1) | AU2017239292A1 (de) |
WO (1) | WO2017162130A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146213A (zh) * | 2018-06-01 | 2019-08-20 | 华晨宝马汽车有限公司 | 用于检测拧紧工具的拧紧质量的方法和装置及存储介质 |
EP4223454A1 (de) * | 2022-02-07 | 2023-08-09 | Hilti Aktiengesellschaft | Maschine und verfahren zum betreiben einer maschine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04336980A (ja) * | 1991-05-15 | 1992-11-25 | Matsushita Electric Works Ltd | 電動工具 |
JP2936506B2 (ja) * | 1995-07-11 | 1999-08-23 | クワンタイシステムス株式会社 | 最適時間ボルト締付方法 |
US6536536B1 (en) * | 1999-04-29 | 2003-03-25 | Stephen F. Gass | Power tools |
JP4720765B2 (ja) * | 2007-03-02 | 2011-07-13 | パナソニック電工株式会社 | 電動工具制御システム |
CN101231507A (zh) * | 2008-01-15 | 2008-07-30 | 中国端子电业股份有限公司 | 可自我学习的电动工具 |
JP2012200807A (ja) * | 2011-03-24 | 2012-10-22 | Denso Wave Inc | 螺子締めロボットのパラメータ自動調整装置 |
JP2013022681A (ja) * | 2011-07-21 | 2013-02-04 | Hitachi Koki Co Ltd | 電動工具 |
CN104175267B (zh) * | 2013-05-20 | 2016-08-03 | 南京德朔实业有限公司 | 电动工具及其控制方法 |
FR3010927B1 (fr) * | 2013-09-26 | 2016-03-11 | Renault Georges Ets | Systeme de commande d'un outil industriel en definissant son volume d'utilisation par apprentissage |
WO2015061370A1 (en) * | 2013-10-21 | 2015-04-30 | Milwaukee Electric Tool Corporation | Adapter for power tool devices |
CN204505131U (zh) * | 2015-01-30 | 2015-07-29 | 申箭峰 | 一种可监控螺丝锁付的电动起子 |
-
2017
- 2017-03-21 WO PCT/CN2017/077447 patent/WO2017162130A1/en active Application Filing
- 2017-03-21 CN CN201780019380.5A patent/CN108883522B/zh active Active
- 2017-03-21 EP EP17769407.2A patent/EP3433055B1/de active Active
- 2017-03-21 AU AU2017239292A patent/AU2017239292A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP3433055A4 (de) | 2020-01-15 |
EP3433055B1 (de) | 2022-11-30 |
AU2017239292A1 (en) | 2018-10-11 |
CN108883522B (zh) | 2021-05-28 |
WO2017162130A1 (en) | 2017-09-28 |
CN108883522A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10903765B2 (en) | Programmable power tool with brushless DC motor | |
US20230321734A1 (en) | Remote programming of a power tool | |
US9707671B2 (en) | Electric tool and controlling method thereof | |
US11247323B2 (en) | Electric working machine and method of controlling rotational state of motor of electric working machine | |
JP5550218B2 (ja) | 電動工具 | |
US20140284070A1 (en) | Operating mode indicator for a power tool | |
JP2013255987A (ja) | 複数の動作モードを有する動力工具 | |
US12036654B2 (en) | Method for operating a hand-held power tool | |
CN201483037U (zh) | 电动工具 | |
JP2013066991A (ja) | 電動工具 | |
CN114269517B (zh) | 电动工具的模式选择 | |
EP3433055B1 (de) | Elektrowerkzeug und steuerungsverfahren dafür | |
JP2023138716A (ja) | 作業機 | |
US11065754B2 (en) | Electric power tool configured to operate in a normal mode with a specific stage, and in a measurement mode with a common stage | |
CN117997178A (zh) | 用于显示手持式工具机的目标实现的方法和手持式工具机 | |
JP2003340619A (ja) | 電動ドリル | |
JP2020032504A (ja) | 電動工具 | |
WO2022178774A1 (en) | Power tool having variable output | |
JP2023546146A (ja) | 手動工作機械を作動させる方法、および、手動工作機械 | |
JP2007136595A (ja) | 打込機 | |
CN217904291U (zh) | 一种电动工具 | |
CN118414229A (zh) | 机器和用于运行机器的方法 | |
WO2019207861A1 (ja) | 電力消費体の制御装置、制御システム、および電力消費体の制御方法 | |
EP4208314A1 (de) | Maschine und verfahren zum betreiben einer maschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180921 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20191217 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B25B 21/00 20060101AFI20191211BHEP Ipc: G05B 19/42 20060101ALI20191211BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TTI (MACAO COMMERCIAL OFFSHORE) LIMITED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201207 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TECHTRONIC CORDLESS GP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220711 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1534324 Country of ref document: AT Kind code of ref document: T Effective date: 20221215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017064139 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230331 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1534324 Country of ref document: AT Kind code of ref document: T Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230330 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017064139 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20230831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230321 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230321 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240327 Year of fee payment: 8 Ref country code: GB Payment date: 20240327 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240325 Year of fee payment: 8 |