EP3428593A1 - Fluidleitungsbauteil und verfahren zu dessen herstellung - Google Patents

Fluidleitungsbauteil und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP3428593A1
EP3428593A1 EP18020299.6A EP18020299A EP3428593A1 EP 3428593 A1 EP3428593 A1 EP 3428593A1 EP 18020299 A EP18020299 A EP 18020299A EP 3428593 A1 EP3428593 A1 EP 3428593A1
Authority
EP
European Patent Office
Prior art keywords
capillary
fluid line
line component
conduit wall
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18020299.6A
Other languages
English (en)
French (fr)
Inventor
Manfred Steinbauer
Ole Müller-Thorwart
Konrad Braun
Elise Estiot
Stefan Gewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3428593A1 publication Critical patent/EP3428593A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/006Rigid pipes specially profiled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures

Definitions

  • the invention relates to a fluid line component and a method for its production and is therefore in particular in the technical field of pipelines and / or pressure-bearing components in the field of process engineering.
  • Temperature measurements in such apparatus are therefore of central technical importance.
  • For temperature measurement in apparatuses in the industry often local or locally mounted temperature sensors, which selectively measure the temperature at their mounting location, and / or used over an extended length range measuring sensor cables, such as fiber optic cable.
  • temperature sensors are often applied and / or glued to the outside of the component to be monitored.
  • this has the disadvantage that the temperatures measured by the temperature sensors can be influenced by a fluid surrounding the components and therefore the temperature measurements below Circumstances can be falsified.
  • sensors attached to the components may be damaged by a fluid surrounding the component.
  • the invention is therefore based on the object to provide a fluid line component, which allows an improved arrangement of sensors.
  • the invention in a first aspect, relates to a fluid line component, which is designed to be flowed through by a fluid in a flow direction.
  • the fluid line component has a conduit wall which extends along the flow direction and at least partially forms a conduit.
  • the fluid line component has at least one capillary, which extends at least partially along the flow direction and within the conduit wall and is enclosed by the latter and / or is arranged within a capillary module arranged on an inner side of the conduit wall facing the conduit and is enclosed by the same.
  • the conduit wall is formed with the at least partially extending therein capillary and / or with the capillary module at least partially by an additive manufacturing process.
  • the invention in a further aspect, relates to a method for producing a fluid line component, comprising forming a conduit wall enclosing a conduit with at least one capillary running inside the conduit wall and enclosed by the conduit wall and / or with a capillary module arranged on an inside of the conduit wall, in which the capillary extends and which encloses the capillary, wherein the forming takes place at least partially by an additive manufacturing process.
  • the fluid line component may comprise, for example, a pipeline component and / or a nozzle or be formed as such or such.
  • the fluid may have a liquid and / or gaseous fluid.
  • the fluid in the conduit can be under a very high pressure, which in particular can be much greater than a pressure on an outer side of the fluid conduit member.
  • the flow direction is the direction along which the flow of fluid through the fluid line component is provided. If a fluid line component is designed to be flowed through in both directions, i. in a first orientation or in opposite orientation, the opposite orientation should also be considered as flow direction.
  • the conduit wall is to be understood as the wall of the fluid line component.
  • the conduit wall may be tubular, wherein a cross-sectional shape of the conduit wall or of the fluid conduit component can be designed largely arbitrarily.
  • the conduit wall may have a constant or a cross-sectional shape varying along the flow direction.
  • a wall thickness of the conduit wall can likewise be made to vary continuously or along the flow direction and / or along the circumference of the circumference. For example, a wall thickness between 1 mm and 20 cm.
  • the duct is preferably formed by the duct wall alone or by the duct wall together with other components.
  • the conduit wall encloses an inner volume or an inner space, which, however, may have openings, for example along the flow direction, wherein the conduit is preferably formed by this inner volume.
  • the capillary is preferably an elongated recess, which is preferably many times longer than the dimensions of the capillary in its cross-sectional direction.
  • the capillary is an elongated, thin recess, the length of which is preferably at least 10 times, more preferably at least 50 times, even more preferably at least 100 times, more preferably at least 500 times, most preferably at least 1000 times longer than the dimensions of the capillary in the cross-sectional direction or in the diameter.
  • the capillary runs "at least partially” along the flow direction means that the capillary does not have to run exclusively parallel to the flow direction.
  • the capillary can be arranged helically around the duct.
  • the at least one capillary extends substantially parallel to the flow direction, i. that the capillary, regardless of any deviations, which may originate, for example, the manufacturing process, parallel to the flow direction.
  • the capillary module can be a module or an element in which the capillary extends.
  • the capillary module may be formed as a reinforcement of the conduit wall in which the capillary extends.
  • the capillary module can preferably be arranged on a fluid line component and / or form a structural unit with this.
  • the additive manufacturing method may include or consist of, for example, 3D printing and / or SLM (Selective Laser Melting) and / or SLS (Selective Laser Sintering).
  • SLM Selective Laser Melting
  • SLS Selective Laser Sintering
  • the invention offers the advantage that sensor elements (temperature and / or pressure sensors) can be integrated directly into the fluid line component, in particular into the line wall, by means of the at least one capillary, and thus not attached to the outside of the fluid line component as known in the art Need to become.
  • the invention makes it possible to perform measurements directly in the fluid line component and to measure, for example, by means of a temperature sensor arranged there, a core temperature of the conduit wall of the fluid line component.
  • the invention offers possibilities for measurements which can not be realized with a conventional arrangement of sensors on an outer side of a fluid line component, since with a sensor arranged on the outside, the core temperature of the line wall can not always be determined unambiguously.
  • a core temperature of the conduit wall can be measured independently of a temperature of a fluid possibly located outside the fluid conduit component.
  • the invention offers the advantage that in the at least one capillary element, such as a sensor element, can be arranged protected, and thereby is not affected by adverse conditions prevailing outside of the fluid line component.
  • an element disposed in the at least one capillary, such as a sensor element may be protected by the conduit wall from any fluid flow that is external to the conduit member.
  • the fluid line component can be provided with capillaries in the conduit wall, which is not feasible with conventional manufacturing methods of conventional fluid line components.
  • drilling and / or milling of at least one capillary in a conduit wall such that the conduit wall encloses the at least one capillary is typically not possible.
  • the invention makes it possible to form at least one such capillary in the conduit wall, without substantially reducing a pressure resistance or pressure resistance of the fluid conduit component.
  • the invention offers the advantage that capillaries, which can be used for example as analysis channels, can be arranged at locations or positions which are not accessible with conventional production methods.
  • the invention offers the advantage that additional elements, such as sensor elements, can already be integrated into the fluid line component or into the line wall during the manufacturing process of the fluid line component and / or can be introduced into the capillary after the production of the fluid line component has been completed. If the additional elements are to be integrated into the fluid line component during the manufacturing process of the fluid line component, it may be advantageous to optionally provide the additional elements with a protective sheath, as long as the additional elements comprise sensitive elements, such as sensor elements. As a result, preferably damage to the additional elements can be avoided, which for example could occur due to high temperatures and / or mechanical forces during the manufacturing process of the fluid line component.
  • the invention makes it possible for capillaries extending in the fluid line component to be provided in one or more capillary modules.
  • capillary modules can be printed, for example, on an already manufactured fluid line component by means of an additive manufacturing process and / or printed with the fluid line component during the production of the fluid line component.
  • This also makes it possible to provide conventional fluid line components, which are sometimes not equipped with at least one capillaries, subsequently equipped with at least one capillary extending in at least one capillary module attached thereto. In this way, for example, the manufacturing costs for fluid line components can be reduced with at least one capillary.
  • the conduit wall is integrally formed with the at least partially extending capillary and / or with the capillary module.
  • the conduit wall is produced in one piece by means of an additive manufacturing process. This offers the advantage that it may be possible to dispense with expensive processing steps, which result from the possibly required assembly of several individual components, and thus the production outlay can be reduced. Furthermore, this offers the advantage that the fluid line component can be formed thereby preferably with a particularly high pressure resistance, since preferably no interfaces and / or interfaces and / or contact points are present, which could reduce the pressure resistance.
  • the fluid line component is designed such that the fluid line component at an overpressure of at least 1 bar, more preferably at least 2 bar, even more preferably at least 10 bar, more preferably at least 50 bar, much more preferably at least 100, most preferably at least 200 bar on the Inside the conduit wall withstands relative to an external pressure on an outer side of the conduit wall.
  • the fluid line component preferably has a plurality of capillaries which run at least partially along the flow direction and are arranged in the line wall and / or in one or more on the inside of the line wall Capillary module are arranged.
  • This offers the advantage that multiple capillaries can be provided for the provision of elements, such as sensor elements, and thus, if required, multiple elements can be provided in the conduit wall.
  • the plurality of capillaries may have a different length so that the elements in the respective capillaries may be positioned at different positions in the conduit wall along the flow direction.
  • the capillaries of the plurality of capillaries extend substantially parallel to one another and / or parallel to the flow direction.
  • the capillaries in the conduit wall can helically run around the conduit and / or extend in a straight line along the direction of flow. This offers the advantage that the capillaries can be designed for different purposes, in particular for different sensors and / or measuring methods.
  • the at least one capillary is connected to the duct at at least one contact point.
  • a sensor element arranged in the at least one capillary can be in fluidic contact with the duct at the contact point. It can thereby be achieved that, for example, measurements can be carried out directly on a fluid flowing through the conduit channel by means of a sensor element protruding into the fluid at the contact point, the sensor element and / or a connecting conduit being guided through the at least one capillary.
  • this can be done serve to measure a pressure of the fluid flowing through the conduit channel, since the capillary preferably allows a pressure-stable connection between the fluid and a sensor element or pressure sensor arranged, for example, at a location elsewhere in the capillary and / or at another end of the capillary. Furthermore, a change in a material composition of the fluid, as the fluid flows through the fluid line component, can preferably be measured via the contact point at least one contact point. In addition, preferably new knowledge for an optimization of such apparatuses or such fluid line components can be obtained and / or an improved controllability or controllability of processes occurring therein can be achieved.
  • the fluid line component preferably comprises at least one shielding element formed on the inside of the line wall, which is arranged such that the at least one shielding element shields the at least one contact point from the fluid flowing in the direction of flow through the line channel.
  • the shielding element may be designed in the form of a cap and / or a projection and project from the inside of the conduit wall into the conduit.
  • the at least one shielding element is arranged such that one or more contact points are arranged in the immediate vicinity on the side of the shielding element facing away from the flow.
  • at least one contact point is located in the "flow shadow" of the at least one shielding element. This offers the advantage that the contact point is at least not detected directly and / or at least not completely by the fluid flow in the conduit. For example, it can be avoided by the shielding element that condensates form and / or deposit on a sensor element formed at the contact point and have a disadvantageous effect on the function of the sensor element and / or the measurement.
  • forming the conduit wall comprises integrating at least one sensor element in the at least one capillary.
  • the at least one sensor element is already introduced or integrated into the capillary when the capillary or the conduit wall is formed with the capillary and / or the capillary module, in particular by means of an additive manufacturing process.
  • This offers the advantage that the at least one sensor element a positions or capillaries can be arranged, which are optionally or only very difficult to access after the completion of the capillary or the conduit wall or the capillary module.
  • FIGS. 3A and 3B show in schematic representations a fluid line component according to a fifth preferred embodiment.
  • FIG. 4 shows a schematic, perspective view of a fluid line component according to a sixth preferred embodiment.
  • Figure 1A shows a schematic cross-sectional view of a fluid line component 10 according to a first preferred embodiment of the invention, wherein the fluid line component 10 is formed as a pipeline.
  • the fluid line component 10 shown by way of example has a round cross section, other cross-sectional shapes and / or cross-sectional sizes are also possible.
  • the fluid line component 10 has a conduit wall 12 which has a cylindrical tube-shaped cross-section and forms a conduit 14 bounded by the inner side 12 a of the conduit wall 12.
  • the fluid line component 10 is designed such that a fluid can flow through the fluid conduit component 10 through the conduit 14 in a flow direction 100. In particular, that can Fluid thereby under pressure and exert pressure on the inner wall or inner side 12 a of the conduit wall 12.
  • the fluid line component 10 has a capillary 16, which is formed centrally in the conduit wall 12 and extends parallel to the conduit wall 12 and to the flow direction 100.
  • the capillary 16 has a round cross-sectional shape, although other cross-sectional shapes are possible.
  • the cross section of the capillary 16 is smaller than the wall thickness or thickness of the conduit wall 12 and the capillary 16 is arranged relative to the conduit wall 12 such that the conduit wall 12 surrounds the capillary 16.
  • the size of the cross section of the capillary 16 is significantly smaller than the thickness of the conduit wall 12 so that the conduit wall 12 has sufficient pressure resistance to allow the fluid to flow through the fluid conduit member 10 at the intended pressure without the fluid conduit member 10 or pipe wall 12 to damage.
  • the capillary 16 and the conduit wall 12 may be formed such that the thickness of the conduit wall 12 is at least twice as large as the cross-section of the capillary 16 in the direction of the thickness of the conduit wall 12.
  • a sensor element 18 is arranged in the capillary 16, which extends within the capillary 16 along the flow direction 100 and is thus enclosed by the conduit wall 12.
  • FIG. 1B shows in a cross-sectional view a fluid line component 10 according to a second preferred embodiment.
  • the diameter of the capillary 16 is greater relative to the thickness of the conduit wall 12.
  • the conduit wall 12 has on the inner side 12a a reinforcing portion 12b which embedded with the rest of the conduit wall 12, the capillary 16.
  • the fluid line component 10 is already formed during manufacture with the reinforcement section 12b and the capillary 16, in particular by means of an additive manufacturing method, for example using a 3D printer.
  • FIG. 1C shows a cross-sectional view of a fluid line component 10 according to a third preferred embodiment.
  • the capillary 16 does not run directly in the conduit wall 12, but runs in an additionally formed capillary module 20.
  • the capillary module 20 in this case comprises a pressure mass 22, which is preferably printed directly on the inner side 12a of the conduit wall 12 and connected thereto.
  • the capillary module 20 can subsequently be printed on the inside of the conduit wall 12, ie after the conduit wall 12 has been manufactured, and thus a fluid line component 10 initially formed without capillaries 16 can be expanded by a capillary module 20 and at least one capillary 16.
  • capillaries 16 running in the conduit wall 12 may be combined with a capillary module 20 and capillaries 16 extending therein in a fluid conduit component 10.
  • FIG. 2 shows in a longitudinal sectional view of a fluid line component 10 according to a fourth preferred embodiment, wherein the fluid line component 10 is formed as a nozzle.
  • the nozzle is designed such that along the flow direction 100, a fluid can flow through the nozzle under high pressure.
  • a capillary 16 is formed in the side wall 12, which extends along the nozzle or along the flow direction 100.
  • a sensor element 18 is formed, for example, a temperature sensor, with which the temperature in the core of the side wall 12 can be measured.
  • FIGS. 3A and 3B 2 shows a schematic representation of a fluid line component 10 according to a fifth preferred embodiment in a schematic, perspective representation (FIG. Fig. 3A ) and in a cross-sectional representation ( Fig. 3B ).
  • a plurality of capillaries 16 are formed in the conduit wall 12, which are parallel to each other and parallel to the flow direction 100.
  • the capillaries 16 point in the process each at different lengths and terminate along the flow direction 100 in different sections of the fluid line component 10 and the conduit wall 12.
  • contact points 24 are formed, at which the capillaries 16 with the inner side 12a of the conduit wall 12 and with the Conduit 14 are connected.
  • a pressure and / or temperature profile and / or a course of a material composition of the fluid flowing through the fluid line component along the flow direction 100 can be measured.
  • a direct material connection via the contact points 24 can enable a chemical and / or physical analysis of the fluid, for example by means of a gas chromatograph.
  • this may be advantageous for the use of such a fluid line component 10 in a tubular reactor in order to be able to measure, for example, a progressive chemical reaction along the fluid line component 10.
  • FIG. 3A a shielding element 26 is shown symbolically, which is arranged such that the contact point 24 of the capillary 16 shown below is at least partially shielded by a flowing in the flow direction 100 through the conduit 14 fluid, for example, to cause a arranged at the contact point 24 sensor element (not shown) is not detected directly by the fluid. Further details of the shielding element are with reference to FIG FIG. 4 explained.
  • a fluid conduit member 10 may be advantageous for reliably measuring a pressure loss profile of the fluid flowing through the fluid conduit member.
  • the fluid line component 10 is used as the reaction space and / or in a tube reactor, it is possible to measure preferably a progress or a course of a chemical reaction taking place therein, for example by means of a substance analysis.
  • a change of a material composition of the fluid While the fluid flows through the fluid line member 10, are measured.
  • new insights for optimizing such apparatuses or the fluid line components 10 can be obtained and / or an improved controllability or controllability of processes taking place therein can be achieved.
  • each of the capillaries 16 may be provided with a sensor element 18.
  • each of the capillaries 16 may include a temperature sensor and / or a pressure sensor and / or other physical or chemical sensor. The sensor elements 18 can then be read out at the same time and / or sequentially in chronological succession.
  • FIG. 4 shows a schematic, perspective view of a fluid line component 10 according to a sixth preferred embodiment.
  • the fluid line component 10 has a shielding element 26, which protrudes in the form of a projection from the inner side 12a of the conduit wall 12 in the duct 14, in order in this way a positioned on a flow direction 100 behind the contact point 24 positioned sensor element 18, and in particular the the contact point 24 arranged sensor head 28 to shield from the fluid flow.
  • the sensor head 28 positioned at the contact point 24 can be protected from direct detection by the fluid.
  • the shielding element 26 can be configured and / or arranged such that an optimized measuring method can be carried out by means of a sensor head 28 arranged at the associated contact point 24.
  • a fluid line component 10 as in FIG. 4 shown particularly advantageous for a temperature measurement in a formed in a gas line fluid line component 10 be. If, for example, the fluid line component flows through a superheated gas as the fluid, which also causes a droplet excess, the shielding element 26 can protect the sensor element 18 arranged at the contact point 24 from any droplets entrained by the fluid being deposited or attached to the sensor head 28. wet the sensor head 28.
  • the shielding element thus makes it possible to reliably measure the temperature of the gaseous fluid by means of the sensor element 18 without the temperature measurement being adversely affected by entrained liquid fluid, which would otherwise be caused, for example, by vaporization of the sensor element 18 incident droplets would be the case, in which case only the cooling limit temperature would be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft ein Fluidleitungsbauteil (10), welches dazu ausgelegt ist, von einem Fluid in einer Strömungsrichtung (100) durchströmt zu werden. Das Fluidleitungsbauteil weist eine Leitungswand (12) auf, welche sich entlang der Strömungsrichtung (100) erstreckt und zumindest teilweise einen Leitungskanal (14) bildet. Ferner weist das Fluidleitungsbauteil (10) zumindest eine Kapillare (16) auf, welche zumindest teilweise entlang der Strömungsrichtung (100) und innerhalb der Leitungswand (12) verläuft und von dieser umschlossen ist und/oder innerhalb eines an einer dem Leitungskanal (14) zugewandten Innenseite (12a) der Leitungswand (12) angeordneten Kapillarenmodul (20) angeordnet ist und von diesem umschlossen ist. Die Leitungswand (12) ist dabei mit der zumindest teilweise darin verlaufenden Kapillare (16) und/oder mit dem Kapillarenmodul (20) zumindest teilweise durch ein additives Fertigungsverfahren ausgebildet. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Fluidleitungsbauteils.

Description

  • Die Erfindung betrifft ein Fluidleitungsbauteil und ein Verfahren zu dessen Herstellung und liegt somit insbesondere auf dem technischen Gebiet von Rohrleitungen und/oder drucktragenden Bauteilen im Bereich der Verfahrenstechnik.
  • Stand der Technik
  • In Anlagen der verfahrenstechnischen Industrie ist häufig eine Kenntnis von Temperaturen und/oder Temperaturverläufen innerhalb der beteiligten Apparate von großer Bedeutung. Insbesondere kann beispielsweise eine genaue Kenntnis der Temperatur und/oder des Temperaturverlaufs und/oder des Drucks in Fluidleitungsbauteilen in Reaktoren und/oder Wärmetauschern für einen sicheren Betrieb und/oder für einen effizienten Verfahrensablauf von entscheidender Bedeutung sein. Vor allem können oftmals in derartigen Anlagen ablaufende Verfahren und/oder Prozesse umso effizienter geregelt und/oder gesteuert werden, je genauer die Temperatur und/oder der Temperaturverlauf und/oder der Druck in den beteiligten Apparaten bekannt ist. Außerdem kann die genaue Kenntnis der Temperatur und/oder des Temperaturverlaufs und/oder des Drucks in verfahrenstechnischen Anlagen vorteilhaft für die Vermeidung von thermischen Spannungen und/oder Überhitzungen und somit für die Vermeidung von Schäden sein.
  • Temperaturmessungen in derartigen Apparaten sind daher von zentraler technischer Bedeutung. Zur Temperaturmessung in Apparaten werden in der Industrie häufig lokale bzw. lokal angebrachte Temperatursensoren, welche punktuell an deren Anbringungsstelle die Temperatur messen, und/oder über einen ausgedehnten Längenbereich messende Sensorkabel, wie etwa Glasfaserkabel, verwendet.
  • Die Messung einer Materialtemperatur von manchen komplex geformten und/oder unzugänglich angeordneten Bauteilen, wie etwa von Rohren in einem Wärmetauscher, ist dabei oftmals mit großen technischen Schwierigkeiten verbunden. Dazu werden häufig an der Außenseite des zu überwachenden Bauteils Temperatursensoren angelegt und/oder angeklebt. Dies birgt jedoch den Nachteil, dass die von den Temperatursensoren gemessenen Temperaturen von einem die Bauteile umgebenden Fluid beeinflusst werden können und daher die Temperaturmessungen unter Umständen verfälscht werden können. Außerdem können an den Bauteilen angebrachte Sensoren durch ein das Bauteil umgebendes Fluid beschädigt werden.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Fluidleitungsbauteil bereitzustellen, welches eine verbesserte Anordnung von Sensoren ermöglicht.
  • Offenbarung der Erfindung
  • Diese Aufgabe wird durch ein Fluidleitungsbauteil und ein Verfahren zur Herstellung eines solchen mit den Merkmalen der jeweiligen unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche sowie der nachfolgenden Beschreibung.
  • In einem ersten Aspekt betrifft die Erfindung ein Fluidleitungsbauteil, welches dazu ausgelegt ist, von einem Fluid in einer Strömungsrichtung durchströmt zu werden. Das Fluidleitungsbauteil weist eine Leitungswand auf, welche sich entlang der Strömungsrichtung erstreckt und zumindest teilweise einen Leitungskanal bildet. Ferner weist das Fluidleitungsbauteil zumindest eine Kapillare auf, welche zumindest teilweise entlang der Strömungsrichtung und innerhalb der Leitungswand verläuft und von dieser umschlossen ist und/oder innerhalb eines an einer dem Leitungskanal zugewandten Innenseite der Leitungswand angeordneten Kapillarenmodul angeordnet ist und von diesem umschlossen ist. Die Leitungswand ist dabei mit der zumindest teilweise darin verlaufenden Kapillare und/oder mit dem Kapillarenmodul zumindest teilweise durch ein additives Fertigungsverfahren ausgebildet.
  • In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines Fluidleitungsbauteils, umfassend ein Ausbilden einer einen Leitungskanal umschließenden Leitungswand mit zumindest einer innerhalb der Leitungswand verlaufenden und von der Leitungswand umschlossenen Kapillare und/oder mit einem an einer Innenseite der Leitungswand angeordneten Kapillarenmodul, in welchem die Kapillare verläuft und welches die Kapillare umschließt, wobei das Ausbilden zumindest teilweise durch ein additives Fertigungsverfahren erfolgt.
  • Das Fluidleitungsbauteil kann beispielsweise ein Rohrleitungsbauteil und/oder eine Düse aufweisen oder als solches bzw. solche ausgebildet sein.
  • Das Fluid kann dabei ein flüssiges und/oder gasförmiges Fluid aufweisen. Insbesondere kann das Fluid in dem Leitungskanal unter einem sehr großen Druck stehen, welcher insbesondere sehr viel größer sein kann, als ein Druck an einer Außenseite des Fluidleitungselements.
  • Die Strömungsrichtung ist dabei die Richtung, entlang welcher das Strömen des Fluides durch das Fluidleitungsbauteil vorgesehen ist. Sofern ein Fluidleitungsbauteil dazu ausgelegt ist, in beidseitiger Richtung durchströmt werden zu können, d.h. in einer ersten Orientierung oder in dazu entgegengesetzter Orientierung, soll die entgegengesetzte Orientierung auch als Strömungsrichtung gelten.
  • Die Leitungswand ist dabei als Wandung des Fluidleitungsbauteils zu verstehen. Insbesondere kann die Leitungswand rohrförmig ausgebildet sein, wobei eine Querschnittsform der Leitungswand bzw. des Fluidleitungsbauteils weitgehend beliebig ausgestaltet werden kann. Beispielsweise kann die Leitungswand eine gleichbleibende oder eine entlang der Strömungsrichtung variierende Querschnittsform aufweisen. Eine Wandstärke der Leitungswand kann dabei ebenfalls gleichbleibend oder entlang der Strömungsrichtung und/oder entlang des Querschnittumfangs variierend ausgestaltet sein. Beispielsweise kann eine Wandstärke zwischen 1 mm und 20 cm betragen.
  • Der Leitungskanal wird vorzugsweise durch die Leitungswand alleine oder durch die Leitungswand zusammen mit anderweitigen Bauteilen gebildet. Vorzugsweise umschließt die Leitungswand ein Innenvolumen bzw. einen Innenraum, welches bzw. welcher jedoch beispielsweise entlang der Strömungsrichtung Öffnungen aufweisen kann, wobei der Leitungskanal vorzugweise durch dieses Innenvolumen gebildet wird.
  • Die Kapillare ist bevorzugt eine längliche Ausnehmung, welche bevorzugt um ein Vielfaches länger ist, als die Abmessungen der Kapillare in deren Querschnittsrichtung. Bevorzugt ist die Kapillare, eine langgestreckte, dünne Ausnehmung, deren Länge bevorzugt zumindest 10 mal, weiter bevorzugt zumindest 50 mal, noch weiter bevorzugt zumindest 100 mal, mehr bevorzugt zumindest 500 mal am meisten bevorzugt zumindest 1.000 mal länger ist, als die Abmessungen der Kapillare in der Querschnittsrichtung bzw. im Durchmesser.
  • Dass die Kapillare "zumindest teilweise" entlang der Strömungsrichtung verläuft, bedeutet dabei, dass die Kapillare nicht ausschließlich parallel zur Strömungsrichtung verlaufen muss. Beispielsweise kann die Kapillare helikal um den Leitungskanal herum angeordnet sein. Besonders bevorzugt verläuft die zumindest eine Kapillare jedoch im Wesentlichen parallel zur Strömungsrichtung, d.h. dass die Kapillare ungeachtet etwaiger Abweichungen, welche beispielsweise dem Fertigungsprozess entstammen können, parallel zur Strömungsrichtung verläuft.
  • Das Kapillarenmodul kann dabei ein Modul bzw. ein Element sein, in welchem die Kapillare verläuft. Beispielsweise kann das Kapillarenmodul als eine Verstärkung der Leitungswand ausgebildet sein, in welcher die Kapillare verläuft. Das Kapillarenmodul kann vorzugsweise an einem Fluidleitungsbauteil angeordnet werden und/oder mit diesem eine bauliche Einheit bilden.
  • Das additive Fertigungsverfahren kann beispielsweise 3D-Drucken und/oder SLM (engl.: Selective Laser Melting) und/oder SLS (engl.: Selective Laser Sintering) umfassen oder daraus bestehen.
  • Die Erfindung bietet den Vorteil, dass Sensorelemente (Temperatur- und/oder Drucksensoren) mittels der zumindest einen Kapillare direkt in das Fluidleitungsbauteil, insbesondere in die Leitungswand, integriert werden können und somit nicht, wie im Stand der Technik bekannt, außen an dem Fluidleitungsbauteil angebracht werden müssen. Somit ermöglicht die Erfindung, Messungen direkt in dem Fluidleitungsbauteil durchzuführen und beispielsweise mittels eines dort angeordneten Temperatursensors eine Kerntemperatur der Leitungswand des Fluidleitungsbauteils zu messen. Dadurch bietet die Erfindung Möglichkeiten für Messungen, welche mit einer herkömmlichen Anordnung von Sensoren an einer Außenseite eines Fluidleitungsbauteils nicht realisierbar sind, da mit einem an der Außenseite angeordneten Sensor die Kerntemperatur der Leitungswand nicht immer eindeutig ermittelt werden kann. Mit anderen Worten kann erfindungsgemäß beispielsweise mittels eines Temperatursensorelements, welches in der Kapillare angeordnet ist, eine Kerntemperatur der Leitungswand unabhängig von einer Temperatur eines etwaig außerhalb des Fluidleitungsbauteils befindlichen Fluides gemessen werden.
  • Ferner bietet die Erfindung den Vorteil, dass in der zumindest einen Kapillare ein Element, wie etwa ein Sensorelement, geschützt angeordnet werden kann, und dadurch nicht von unter Umständen außerhalb des Fluidleitungsbauteils vorherrschenden, widrigen Bedingungen beeinflusst wird. Beispielsweise kann ein in der zumindest einen Kapillare angeordnetes Element, wie etwa ein Sensorelement, durch die Leitungswand vor etwaigen Fluidströmungen, welche außerhalb des Leitungselements vorliegen, geschützt werden.
  • Darüber hinaus ist es ein Vorteil der Erfindung, dass das Fluidleitungsbauteil mit Kapillaren in der Leitungswand versehen werden kann, was mit herkömmlichen Fertigungsmethoden von herkömmlichen Fluidleitungsbauteilen nicht realisierbar ist. Insbesondere ist ein Bohren und/oder Fräsen von zumindest einer Kapillare in einer Leitungswand derart, dass die Leitungswand die zumindest eine Kapillare umschließt, typischerweise nicht möglich. Hingegen ermöglicht die Erfindung das Ausbilden zumindest einer solchen Kapillare in der Leitungswand, ohne im Wesentlichen eine Druckbeständigkeit bzw. Druckresistenz des Fluidleitungsbauteils zu vermindern. Insbesondere ist es erfindungsgemäß nicht erforderlich, eine Bohrung in der Leitungswand vorzunehmen und/oder einen Schlitz in die Leitungswand zu fräsen, insbesondere keine Bohrungen und/oder Schlitze, welche deutlich größer sind, als die zu erzeugenden Kapillaren. Somit bietet die Erfindung den Vorteil, dass Kapillaren, welche beispielsweise als Analysekanäle genutzt werden können, an Stellen bzw. Positionen angeordnet werden können, welche mit herkömmlichen Herstellungsverfahren nicht zugänglich sind.
  • Ferner bietet die Erfindung den Vorteil, dass zusätzliche Elemente, wie etwa Sensorelemente, bereits während des Herstellungsverfahrens des Fluidleitungsbauteils mit in das Fluidleitungsbauteil bzw. in die Leitungswand integriert werden können und/oder nach abgeschlossener Herstellung des Fluidleitungsbauteils in die Kapillare eingebracht werden können. Sofern die zusätzlichen Elemente bereits während dem Herstellungsverfahren des Fluidleitungsbauteils mit in das Fluidleitungsbauteil integriert werden sollen, kann es vorteilhaft sein, die zusätzlichen Elemente optional mit einer Schutzumhüllung zu versehen, sofern die zusätzlichen Elemente empfindliche Elemente, wie etwa Sensorelemente, umfassen. Dadurch können vorzugsweise Schäden an den zusätzlichen Elementen vermieden werden, welche beispielsweise durch hohe Temperaturen und/oder mechanische Krafteinwirkungen während des Herstellungsverfahrens des Fluidleitungsbauteils auftreten könnten.
  • Alternativ oder zusätzlich ermöglicht die Erfindung, dass in dem Fluidleitungsbauteil verlaufende Kapillaren in einem oder mehreren Kapillarenmodulen bereitgestellt werden können. Derartige Kapillarenmodule können beispielsweise auf ein bereits hergestelltes Fluidleitungsbauteil mittels eines additiven Fertigungsverfahrens aufgedruckt werden und/oder bei der Herstellung des Fluidleitungsbauteils mit dem Fluidleitungsbauteil mit gedruckt werden. Dies ermöglicht zudem, herkömmliche Fluidleitungsbauteile, welche bisweilen nicht mit zumindest einer Kapillaren ausgestattet sind, nachträglich mit zumindest einer in zumindest einem daran angebrachten Kapillarenmodul verlaufenden Kapillare auszustatten. Auf diese Weise können beispielsweise auch die Herstellungskosten für Fluidleitungsbauteile mit zumindest einer Kapillare reduziert werden.
  • Vorzugsweise ist die Leitungswand mit der zumindest teilweise darin verlaufenden Kapillare und/oder mit dem Kapillarenmodul einstückig ausgebildet. Besonders bevorzugt wird die Leitungswand mittels eines additiven Fertigungsverfahrens einstückig hergestellt. Dies bietet den Vorteil, dass unter Umständen auf aufwendige Bearbeitungsschritte, welche sich aus dem ggf. erforderlichen Zusammensetzen mehrerer einzelner Bauteile ergeben, verzichtet werden kann und somit der Herstellungsaufwand reduziert werden kann. Ferner bietet dies den Vorteil, dass das Fluidleitungsbauteil dadurch vorzugsweise mit einer besonders großen Druckbeständigkeit ausgebildet werden kann, da vorzugsweise keine Schnittstellen und/oder Nahtstellen und/oder Kontaktstellen vorhanden sind, welche die Druckbeständigkeit reduzieren könnten. Vorzugsweise ist das Fluidleitungsbauteil derart ausgebildet, dass das Fluidleitungsbauteil einem Überdruck von zumindest 1 bar, weiter bevorzugt zumindest 2 bar, noch weiter bevorzugt zumindest 10 bar, mehr bevorzugt zumindest 50 bar, viel mehr bevorzugt zumindest 100, am meisten bevorzugt zumindest 200 bar an der Innenseite der Leitungswand relativ zu einem Außendruck an einer Außenseite der Leitungswand standhält.
  • Vorzugsweise weist das Fluidleitungsbauteil eine Mehrzahl von Kapillaren auf, welche zumindest teilweise entlang der Strömungsrichtung verlaufen und in der Leitungswand und/oder in einem oder mehreren an der Innenseite der Leitungswand angeordneten Kapillarenmodul angeordnet sind. Dies bietet den Vorteil, dass mehrere Kapillaren für die Bereitstellung von Elementen, wie etwa Sensorelementen, bereitgestellt werden können und somit bei Bedarf mehrere Elemente in der Leitungswand bereitgestellt werden können. Beispielsweise können die mehreren Kapillaren eine unterschiedliche Länge aufweisen, so dass die Elemente in den jeweiligen Kapillaren bei unterschiedlichen Positionen in der Leitungswand entlang der Strömungsrichtung positioniert werden können.
  • Vorzugsweise verlaufen die Kapillaren der Mehrzahl von Kapillaren im Wesentlichen parallel zueinander und/oder parallel zur Strömungsrichtung. Beispielsweise können die Kapillaren in der Leitungswand helikal um den Leitungskanal verlaufen und/oder geradlinig entlang der Strömungsrichtung verlaufen. Dies bietet den Vorteil, dass die Kapillaren für verschiedene Zwecke, insbesondere für verschiedene Sensoren und/oder Messverfahren, ausgebildet sein können.
  • Vorzugsweise ist die zumindest eine Kapillare an zumindest einer Kontaktstelle mit dem Leitungskanal verbunden. Dies bietet den Vorteil, dass beispielsweise ein in der zumindest einen Kapillare angeordnetes Sensorelement an der Kontaktstelle mit dem Leitungskanal in fluidischem Kontakt stehen kann. Dadurch kann erreicht werden, dass beispielsweise Messungen direkt an einem durch den Leitungskanal strömenden Fluid mittels eines an der Kontaktstelle in das Fluid ragenden Sensorelements durchgeführt werden können, wobei das Sensorelement und/oder eine Verbindungsleitung durch die zumindest eine Kapillare geführt wird.Beispielsweise kann dies dazu dienen, einen Druck des durch den Leitungskanal strömenden Fluides zu messe, da die Kapillare vorzugsweise eine druckstabile Verbindung zwischen dem Fluid und einem beispielsweise an einem an anderer Stelle in der Kapillare und/oder an einem andere Ende der Kapillare angeordneten Sensorelement bzw. Drucksensor ermöglicht.. Ferner kann vorzugsweise über die zumidnest eine Kontaktstelle eine Änderung einer stofflichen Zusammensetzung des Fluides, während das Fluid das Fluidleitungsbauteil durchströmt, gemessen werden. Zudem können vorzugsweise dadurch neue Erkenntnisse für eine Optimierung derartiger Apparate bzw. derartiger Fluidleitungsbauteile gewonnen werden und/oder eine verbesserte Steuer- bzw. Regelbarkeit von darin ablaufenden Prozessen erzielt werden.
  • Vorzugsweise umfasst das Fluidleitungsbauteil zumindest ein an der Innenseite der Leitungswand ausgebildetes Abschirmelement, welches derart angeordnet ist, dass das zumindest eine Abschirmelement die zumindest eine Kontaktstelle von dem in Strömungsrichtung durch den Leitungskanal strömenden Fluid abschirmt. Beispielsweise kann das Abschirmelement in Form einer Kappe und/oder eines Vorsprungs ausgebildet sein und von der Innenseite der Leitungswand in den Leitungskanal hineinragen. Vorzugsweise ist das zumindest eine Abschirmelement derart angeordnet, dass eine oder mehrere Kontaktstellen in unmittelbarer Nähe auf der strömungsabgewandten Seite des Abschirmelements angeordnet sind. Mit anderen Worten befindet sich zumindest eine Kontaktstelle im "Strömungsschatten" des zumindest einen Abschirmelements. Dies bietet den Vorteil, dass die Kontaktstelle zumindest nicht direkt und/oder zumindest nicht vollständig von dem Fluidstrom in dem Leitungskanal erfasst wird. Beispielsweise kann durch das Abschirmelement vermieden werden, dass sich an einem an der Kontaktstelle ausgebildeten Sensorelement Kondensate ausbilden und/oder ablagern und sich nachteilhaft auf die Funktion des Sensorelements und/oder die Messung auswirken.
  • Vorzugsweise umfasst das Ausbilden der Leitungswand ein Integrieren zumindest eines Sensorelements in der zumindest einen Kapillare umfasst. Insbesondere wird das zumindest eine Sensorelement bereits dann in die Kapillare eingebracht bzw. integriert, wenn die Kapillare bzw. die Leitungswand mit der Kapillare und/oder das Kapillarenmodul ausgebildet wird, insbesondere mittels eines additven Fertigungsverfahrens. Dies bietet den Vorteil, dass das zumindest eine Sensorelement a Positionen bzw. Kapillaren angeordnet werden kann, welche gegebenenfalls nach der Fertigstellung der Kapillare bzw. der Leitungswand bzw. des Kapillarenmoduls nicht oder nur sehr schwer zugänglich sind.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Die Erfindung ist anhand von Ausführungsbeispielen in den Zeichnungen schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnungen beschrieben.
  • Figurenbeschreibung
    • Figur 1A zeigt in einer schematischen Querschnittsdarstellung ein Fluidleitungsbauteil gemäß einer ersten bevorzugten Ausführungsform.
    • Figur 1B zeigt in einer schematischen Querschnittsdarstellung ein Fluidleitungsbauteil gemäß einer zweiten bevorzugten Ausführungsform.
    • Figur 1C zeigt in einer schematischen Querschnittsdarstellung ein Fluidleitungsbauteil gemäß einer dritten bevorzugten Ausführungsform.
    • Figur 2 zeigt in einer schematischen Längsschnittdarstellung ein Fluidleitungsbauteil gemäß einer vierten bevorzugten Ausführungsform.
  • Die Figuren 3A und 3B zeigen in schematischen Darstellungen ein Fluidleitungsbauteil gemäß einer fünften bevorzugten Ausführungsform.
  • Figur 4 zeigt in einer schematischen, perspektivischen Darstellung ein Fluidleitungsbauteil gemäß einer sechsten bevorzugten Ausführungsform.
  • Detaillierte Beschreibung der Zeichnungen
  • Figur 1A zeigt in einer schematischen Querschnittsdarstellung ein Fluidleitungsbauteil 10 gemäß einer ersten bevorzugten Ausführungsform der Erfindung, wobei das Fluidleitungsbauteil 10 als eine Rohrleitung ausgebildet ist. Wenngleich das beispielhaft dargestellte Fluidleitungsbauteil 10 einen runden Querschnitt aufweist, sind auch andere Querschnittsformen und/oder Querschnittsgrößen möglich. Das Fluidleitungsbauteil 10 weist eine Leitungswand 12 auf, welche einen zylinderrohrförmigen Querschnitt aufweist und einen durch die Innenseite 12a der Leitungswand 12 begrenzten Leitungskanal 14 bildet. Das Fluidleitungsbauteil 10 ist dabei derart ausgebildet, dass durch den Leitungskanal 14 in eine Strömungsrichtung 100 ein Fluid durch das Fluidleitungsbauteil 10 strömen kann. Insbesondere kann das Fluid dabei unter Druck stehen und einen Druck auf die Innenwand bzw. Innenseite 12a der Leitungswand 12 ausüben.
  • Darüber hinaus weist das Fluidleitungsbauteil 10 eine Kapillare 16 auf, welche in der Leitungswand 12 mittig ausgebildet ist und parallel zur Leitungswand 12 und zur Strömungsrichtung 100 verläuft. Die Kapillare 16 hat dabei eine runde Querschnittsform, wenngleich auch andere Querschnittsformen möglich sind. Der Querschnitt der Kapillare 16 ist dabei kleiner als die Wandstärke bzw. Dicke der Leitungswand 12 und die Kapillare 16 ist derart relativ zur Leitungswand 12 angeordnet, dass die Leitungswand 12 die Kapillare 16 umschließt. Insbesondere ist die Größe des Querschnitts der Kapillare 16 deutlich kleiner als die Dicke der Leitungswand 12, sodass die Leitungswand 12 eine ausreichende Druckbeständigkeit aufweist, um das Fluid mit dem vorgesehenen bzw. gewünschten Druck durch das Fluidleitungsbauteil 10 strömen lassen zu können, ohne das Fluidleitungsbauteil 10 bzw. Leitungswand 12 zu beschädigen. Beispielsweise können die Kapillare 16 und die Leitungswand 12 derart ausgebildet sein, dass die Dicke der Leitungswand 12 mindestens doppelt so groß ist wie der Querschnitt der Kapillare 16 in der Richtung der Dicke der Leitungswand 12.
  • Gemäß der gezeigten Ausführungsform ist in der Kapillare 16 ein Sensorelement 18 angeordnet, welches innerhalb der Kapillare 16 entlang der Strömungsrichtung 100 verläuft und somit von der Leitungswand 12 umschlossen ist.
  • Figur 1B zeigt in einer Querschnittsdarstellung ein Fluidleitungsbauteil 10 gemäß einer zweiten bevorzugten Ausführungsform. Dieses weicht insbesondere dadurch von der in Figur 1A dargestellten Ausführungsform ab, dass der Durchmesser der Kapillare 16 relativ zur Dicke der Leitungswand 12 größer ist. Um dennoch sicherzustellen, dass die Leitungswand 12 bzw. das Fluidleitungsbauteil 10 die gewünschten Eigenschaften hinsichtlich einer Druckbeständigkeit aufweist, d.h. dass das Fluidleitungsbauteil 10 dem gewünschten bzw. vorgesehenen Druck des Fluides standhält, weist die Leitungswand 12 an der Innenseite 12a einen Verstärkungsabschnitt 12b auf, welcher zusammen mit der übrigen Leitungswand 12 die Kapillare 16 eingebettet. Dies ermöglicht somit, auch große Verhältnisse des Kapillarendurchmessers relativ zur Dicke der Leitungswand 12 zu realisieren, ohne dabei Nachteile hinsichtlich einer Druckresistenz des Fluidleitungsbauteils 10 in Kauf nehmen zu müssen. Vorzugsweise wird das Fluidleitungsbauteil 10 bereits während der Herstellung mit dem Verstärkungsabschnitt 12b und der Kapillare 16 ausgebildet, insbesondere mittels eines additiven Fertigungsverfahrens, beispielsweise unter Verwendung eines 3D-Druckers.
  • Figur 1C zeigt in einer Querschnittsdarstellung ein Fluidleitungsbauteil 10 gemäß einer dritten bevorzugten Ausführungsform. Gemäß dieser Ausführungsform verläuft die Kapillare 16 nicht direkt in der Leitungswand 12, sondern verläuft in einem zusätzlich ausgebildeten Kapillarenmodul 20. Das Kapillarenmodul 20 umfasst dabei eine Druckmasse 22, welche vorzugsweise direkt an die Innenseite 12a der Leitungswand 12 gedruckt ist und mit dieser verbunden ist. Beispielsweise ist denkbar, dass das Kapillarenmodul 20 nachträglich, d.h. nach erfolgter Herstellung der Leitungswand 12, an die Innenseite der Leitungswand 12 aufgedruckt werden kann, und somit ein zunächst ohne Kapillaren 16 ausgebildetes Fluidleitungsbauteil 10 um ein Kapillarenmodul 20 und zumindest eine Kapillare 16 erweitert werden. Gemäß anderer bevorzugter Ausführungsformen (nicht gezeigt) können beispielsweise in der Leitungswand 12 verlaufende Kapillaren 16 mit einem Kapillarenmodul 20 und darin verlaufenden Kapillaren 16 in einem Fluidleitungsbauteil 10 kombiniert werden.
  • Figur 2 zeigt in einer Längsschnittdarstellung ein Fluidleitungsbauteil 10 gemäß einer vierten bevorzugten Ausführungsform, wobei das Fluidleitungsbauteil 10 als eine Düse ausgebildet ist. Die Düse ist dabei derart ausgestaltet, dass entlang der Strömungsrichtung 100 ein Fluid unter hohem Druck durch die Düse strömen kann. Auch gemäß dieser bevorzugten Ausführungsform ist in der Seitenwand 12 eine Kapillare 16 ausgebildet, welche entlang der Düse bzw. entlang der Strömungsrichtung 100 verläuft. In der Kapillare 16 ist ein Sensorelement 18 ausgebildet, beispielsweise ein Temperatursensor, mit welchem die Temperatur im Kern der Seitenwand 12 gemessen werden kann.
  • Die Figuren 3A und 3B zeigen in einer schematischen Darstellung ein Fluidleitungsbauteil 10 gemäß einer fünften bevorzugten Ausführungsform in einer schematischen, perspektivischen Darstellung (Fig. 3A) und in einer Querschnittdarstellung (Fig. 3B). Gemäß dieser bevorzugten Ausführungsform sind in der Leitungswand 12 mehrere Kapillaren 16 ausgebildet, welche parallel zueinander und parallel zur Strömungsrichtung 100 verlaufen. Die Kapillaren 16 weisen dabei jeweils unterschiedliche Längen auf und enden entlang der Strömungsrichtung 100 in unterschiedlichen Abschnitten des Fluidleitungsbauteils 10 bzw. der Leitungswand 12. An den jeweiligen Enden der Kapillaren 16 sind Kontaktstellen 24 ausgebildet, an welchen die Kapillaren 16 mit der Innenseite 12a der Leitungswand 12 bzw. mit dem Leitungskanal 14 verbunden sind. Dies ermöglicht beispielsweise mit Sensorelementen (nicht gezeigt), welche in den jeweiligen Kapillaren 16 angeordnet sind, Messungen im Leitungskanal 14 in den jeweiligen Abschnitten des Fluidleitungsbauteils 10 vorzunehmen, in welchen die Kapillaren 16 über die Kontaktstellen 24 mit dem Leitungskanal 14 verbunden sind, um an unterschiedlichen Stellen entlang der Strömungsrichtung 100 Messungen im strömenden Fluid vorzunehmen. Beispielsweise kann auf diese Weise ein Druck- und/oder Temperaturverlauf und/oder ein Verlauf einer stofflichen Zusammensetzung des durch das Fluidleitungsbauteil strömenden Fluides entlang der Strömungsrichtung 100 gemessen werden. Beispielsweise kann eine direkte stoffliche Verbindung über die Kontaktstellen 24 eine chemische und/oder physikalische Analyse des Fluids ermöglichen, beispielsweise mittels eines Gaschromatographen. Insbesondere kann dies für die Verwendung eines derartigen Fluidleitungsbauteils 10 in einem Rohrreaktor vorteilhaft sein, um entlang des Fluidleitungsbauteils 10 beispielsweise eine fortschreitende chemische Reaktion messen zu können.
  • Ferner ist in Figur 3A ein Abschirmelement 26 symbolisch dargestellt, welches derart angeordnet ist, dass die Kontaktstelle 24 der unten dargestellten Kapillare 16 zumindest teilweise von einem in Strömungsrichtung 100 durch den Leitungskanal 14 strömenden Fluid abgeschirmt wird, beispielsweise um zu bewirken, dass ein an der Kontaktstelle 24 angeordnetes Sensorelement (nicht dargestellt) nicht direkt von dem Fluid erfasst wird. Weitere Details zu dem Abschirmelement sind mit Bezug auf Figur 4 erläutert.
  • Ein Fluidleitungsbauteil 10 gemäß dieser Ausführungsform kann beispielsweise vorteilhaft sein, um auf zuverlässige Weise ein Druckverlustprofil des durch das Fluidleitungsbauteil strömenden Fluides zu messen. Sofern das Fluidleitungsbauteil 10 als Reaktionsraum und/oder in einem Rohrreaktor verwendet wird, kann vorzugsweise ein Fortschritt bzw. ein Ablauf einer darin stattfindenden chemischen Reaktion, beispielsweise mittels einer Stoffanalyse, gemessen werden. Ferner kann vorzugsweise eine Änderung einer stofflichen Zusammensetzung des Fluides, während das Fluid das Fluidleitungsbauteil 10 durchströmt, gemessen werden. Zudem können dadurch neue Erkenntnisse für eine Optimierung derartige Apparate bzw. der Fluidleitungsbauteile 10 gewonnen werden und/oder eine verbesserte Steuer- bzw. Regelbarkeit von darin ablaufenden Prozessen erzielt werden.
  • Insbesondere kann jede der Kapillaren 16 mit einem Sensorelement 18 versehen sein. Beispielsweise kann jede der Kapillaren 16 einen Temperatursensor und/oder einen Drucksensor und/oder einen sonstigen physikalischen oder chemischen Sensor aufweisen. Die Sensorelemente 18 können sodann zeitgleich und/oder sequentiell zeitlich nacheinander ausgelesen werden.
  • Figur 4 zeigt in einer schematischen, perspektivischen Darstellung ein Fluidleitungsbauteil 10 gemäß einer sechsten bevorzugten Ausführungsform. Dabei weist das Fluidleitungsbauteil 10 ein Abschirmelement 26 auf, welches in Form eines Vorsprungs von der Innenseite 12a der Leitungswand 12 in den Leitungskanal 14 hineinragt, um auf diese Weise ein an einer in Strömungsrichtung 100 dahinter angeordneten Kontaktstelle 24 positioniertes Sensorelement 18, und insbesondere den an der Kontaktstelle 24 angeordneten Sensorkopf 28, von der Fluidströmung abzuschirmen. Dadurch kann beispielsweise der an der Kontaktstelle 24 positionierte Sensorkopf 28 vor einer direkten Erfassung durch das Fluid geschützt werden.
  • Insbesondere kann das Abschirmelement 26 derart ausgestaltet und/oder angeordnet sein, dass mittels einem an der zugehörigen Kontaktstelle 24 angeordneten Sensorkopfs 28 ein optimiertes Messverfahren durchgeführt werden kann. Beispielsweise kann ein Fluidleitungsbauteil 10 wie in Figur 4 dargestellt besonders vorteilhaft für eine Temperaturmessung in einem in einer Gasleitung ausgebildeten Fluidleitungsbauteils 10 sein. Wird beispielsweise das Fluidleitungsbauteil von einem überhitzten Gas als Fluid durchströmt, welches auch einen Tröpfchenmitriss bewirkt, kann das Abschirmelement 26 das an der Kontaktstelle 24 angeordnete Sensorelement 18 davor schützen, dass sich durch das Fluid mitgerissene Tröpfchen an dem Sensorkopf 28 ablagern bzw. ansetzen bzw. den Sensorkopf 28 benetzen. Somit ermöglicht das Abschirmelement, dass mittels des Sensorelements 18 eine zuverlässige Messung der Temperatur des gasförmigen Fluides erfolgen kann, ohne dass die Temperaturmessung durch mitgerissenes flüssiges Fluid beeinträchtigt wird, was andernfalls beispielsweise durch ein Verdampfen von auf das Sensorelement 18 auftreffender Tröpfchen der Fall wäre, in welchem Fall lediglich die Kühlgrenztemperatur gemessen werden würde.
  • Bezugszeichen
  • 10
    Fluidleitungsbauteil
    12
    Leitungswand
    12a
    Innenseite der Leitungswand
    12b
    Verstärkungsabschnitt
    14
    Leitungskanal
    16
    Kapillare
    18
    Sensorelement
    20
    Kapillarenmodul
    22
    Druckmasse
    24
    Kontaktstelle
    26
    Abschirmelement
    28
    Sensorkopf

Claims (11)

  1. Fluidleitungsbauteil (10), welches dazu ausgelegt ist, von einem Fluid in einer Strömungsrichtung (100) durchströmt zu werden, aufweisend:
    - eine Leitungswand (12), welche sich entlang der Strömungsrichtung (100) erstreckt und zumindest teilweise einen Leitungskanal (14) bildet;
    - zumindest eine Kapillare (16), welche zumindest teilweise entlang der Strömungsrichtung (100) und innerhalb der Leitungswand (12) verläuft und von dieser umschlossen ist und/oder innerhalb eines an einer dem Leitungskanal (14) zugewandten Innenseite (12a) der Leitungswand (12) angeordneten Kapillarenmodul (20) angeordnet ist und von diesem umschlossen ist;
    wobei die Leitungswand (12) mit der zumindest teilweise darin verlaufenden Kapillare (16) und/oder mit dem Kapillarenmodul (20) zumindest teilweise durch ein additives Fertigungsverfahren ausgebildet ist.
  2. Fluidleitungsbauteil (10) gemäß Anspruch 1, wobei die Leitungswand (12) mit der zumindest teilweise darin verlaufenden Kapillare (16) und/oder mit dem Kapillarenmodul (20) einstückig ausgebildet ist.
  3. Fluidleitungsbauteil (10) gemäß Anspruch 1 oder 2, aufweisend eine Mehrzahl von Kapillaren (16), welche zumindest teilweise entlang der Strömungsrichtung (100) verlaufen und in der Leitungswand (12) und/oder in einem oder mehreren an der Innenseite (12a) der Leitungswand (12) angeordneten Kapillarenmodul (20) angeordnet sind.
  4. Fluidleitungsbauteil (10) gemäß Anspruch 3, wobei die Kapillaren (16) der Mehrzahl von Kapillaren (16) im Wesentlichen parallel zueinander und/oder parallel zur Strömungsrichtung (100) verlaufen.
  5. Fluidleitungsbauteil (10) gemäß einem der vorhergehenden Ansprüche, wobei die zumindest eine Kapillare (16) an zumindest einer Kontaktstelle (24) mit dem Leitungskanal (14) verbunden ist.
  6. Fluidleitungsbauteil (10) gemäß Anspruch 5, ferner umfassend ein an der Innenseite (12a) der Leitungswand ausgebildetes Abschirmelement (26), welches derart angeordnet ist, dass das Abschirmelement (26) die zumindest eine Kontaktstelle (24) von dem in Strömungsrichtung (100) durch den Leitungskanal (14) strömenden Fluid abschirmt.
  7. Fluidleitungsbauteil (10) gemäß einem der vorhergehenden Ansprüche, wobei in der zumindest einen Kapillare (16) zumindest ein Sensorelement (18) angeordnet ist.
  8. Fluidleitungsbauteil (10) gemäß einem der vorhergehenden Ansprüche, wobei das Fluidleitungsbauteil (10) derart ausgebildet ist, dass das Fluidleitungsbauteil (10) einem Überdruck von zumindest 1 bar an der Innenseite (12a) der Leitungswand (12) relativ zu einem Außendruck an einer Außenseite der Leitungswand (12) standhält.
  9. Fluidleitungsbauteil (10) gemäß einem der vorhergehenden Ansprüche, wobei das Fluidleitungsbauteil (10) als ein Rohrleitungsbauteil und/oder als eine Düse ausgebildet ist.
  10. Verfahren zur Herstellung eines Fluidleitungsbauteils (10), umfassend ein Ausbilden einer einen Leitungskanal (14) umschließenden Leitungswand (12) mit zumindest einer innerhalb der Leitungswand (12) verlaufenden und von der Leitungswand (12) umschlossenen Kapillare (16) und/oder mit einem an einer Innenseite (12a) der Leitungswand (12) angeordneten Kapillarenmodul (20), in welchem die Kapillare (16) verläuft und welches die Kapillare (16) umschließt, wobei das Ausbilden zumindest teilweise durch ein additives Fertigungsverfahren erfolgt.
  11. Verfahren gemäß Anspruch 10, wobei das Ausbilden der Leitungswand (12) ein Integrieren zumindest eines Sensorelements (18) in der zumindest einen Kapillare (16) umfasst.
EP18020299.6A 2017-07-10 2018-07-02 Fluidleitungsbauteil und verfahren zu dessen herstellung Withdrawn EP3428593A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17020288 2017-07-10

Publications (1)

Publication Number Publication Date
EP3428593A1 true EP3428593A1 (de) 2019-01-16

Family

ID=59337408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18020299.6A Withdrawn EP3428593A1 (de) 2017-07-10 2018-07-02 Fluidleitungsbauteil und verfahren zu dessen herstellung

Country Status (3)

Country Link
US (1) US20190011063A1 (de)
EP (1) EP3428593A1 (de)
CN (1) CN109237303A (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112352134A (zh) * 2018-07-11 2021-02-09 林德有限责任公司 温度补偿元件、管和用于制造管的方法
US20200096139A1 (en) * 2018-09-26 2020-03-26 Afzal M. Chaudhry Non-Bursting Pipe and Method of Manufacturing Same
DE102019122538B3 (de) * 2019-08-21 2020-11-05 Danfoss A/S Sensoranordnung zum Messen des Drucks und der Temperatur eines Fluids
EP3842776A1 (de) * 2019-12-27 2021-06-30 Tubacex Innovación A.I.E. Anordnung zur überwachung der temperatur und der dehnung eines rohres

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870354A (en) * 1959-01-15 1961-06-14 Superheater Co Ltd Improvements in temperature measuring arrangements
US4023411A (en) * 1975-11-05 1977-05-17 Hans Escher Temperature measuring device
US4477687A (en) * 1983-06-06 1984-10-16 Finney Philip F Thermocouple and method of making the thermocouple and of mounting the thermocouple on a heat exchanger tube
US20040037350A1 (en) * 2002-08-26 2004-02-26 Parmicza Charles William Thermocouple holder for furnance tube
US20050217841A1 (en) * 2002-10-16 2005-10-06 Clyde Bergemann Gmbh Heat flux measuring device for pressure pipes, method for producing a measuring device, method for monitoring an operating state of a heat exchanger, heat exchanger and method for measuring a heat flux

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2260537A (en) * 1940-03-18 1941-10-28 Martin & Schwartz Inc Gasoline dispensing hose
USRE24154E (en) * 1948-09-18 1956-05-22 High-frequency transmission cable
US2805276A (en) * 1951-06-22 1957-09-03 Western Electric Co High-frequency transmission cables
US2804494A (en) * 1953-04-08 1957-08-27 Charles F Fenton High frequency transmission cable
JPH04106813A (ja) * 1990-08-27 1992-04-08 Fuji Kobunshi Kogyo Kk 金属細線入り樹脂コード及びその製造装置
US6004639A (en) * 1997-10-10 1999-12-21 Fiberspar Spoolable Products, Inc. Composite spoolable tube with sensor
US6305427B1 (en) * 1999-11-19 2001-10-23 Kenway Corporation Double walled apparatus and methods
DE10054561B4 (de) * 2000-10-31 2004-09-02 Festo Ag & Co. Ventilgesteuerte fluidische Aktoranordnung
US6932119B2 (en) * 2002-03-28 2005-08-23 Eric Carlson Multi-mode tubing product and method
AT500190B1 (de) * 2004-03-12 2006-11-15 Wien Kanal Abwassertech Gmbh Anordnung, verfahren und zusatzeinrichtung zur anordnung zum verlegen von kabeln in rohren, kanälen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870354A (en) * 1959-01-15 1961-06-14 Superheater Co Ltd Improvements in temperature measuring arrangements
US4023411A (en) * 1975-11-05 1977-05-17 Hans Escher Temperature measuring device
US4477687A (en) * 1983-06-06 1984-10-16 Finney Philip F Thermocouple and method of making the thermocouple and of mounting the thermocouple on a heat exchanger tube
US20040037350A1 (en) * 2002-08-26 2004-02-26 Parmicza Charles William Thermocouple holder for furnance tube
US20050217841A1 (en) * 2002-10-16 2005-10-06 Clyde Bergemann Gmbh Heat flux measuring device for pressure pipes, method for producing a measuring device, method for monitoring an operating state of a heat exchanger, heat exchanger and method for measuring a heat flux

Also Published As

Publication number Publication date
CN109237303A (zh) 2019-01-18
US20190011063A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
EP3428593A1 (de) Fluidleitungsbauteil und verfahren zu dessen herstellung
DE4431291B4 (de) Hochtemperatursonde
DE69727818T2 (de) Geheizte luftdatensonde
EP1805494A1 (de) Druckaufnehmer mit hydraulischer druckübertragung
EP2002254B9 (de) Verfahren zur herstellung eines gassensors für hochtemperaturanwendungen
EP2114588B1 (de) Positionierungsvorrichtung für eine stabförmige messeinrichtung
DE102017115491B3 (de) Kalibrierhülse für einen Blockkalibrator zur Kalibrierung eines Temperatursensors sowie Blockkalibrator mit einer solchen Kalibrierhülse
DE102007035035A1 (de) Gassensor
EP3175207B1 (de) Druckmittler und drucksensor mit druckmittler
WO2012146417A1 (de) Sensorvorrichtung zur erfassung eines parameters eines strömenden fluiden mediums
EP3784974B1 (de) Plattenwärmetauscher, verfahrenstechnische anlage und verfahren
DE102007056682A1 (de) Vorrichtung und Messanordnung zur Ermittlung der Partikelkonzentration, der Partikelgröße, der mittleren Partikelgröße und der Partikelgrößenverteilung der Partikeln einer dispersen Phase innerhalb eines dispersen Systems sowie dessen Trübung
EP2151673A2 (de) Verfahren sowie Vorrichtung zum Messen der Temperatur
EP3762687B1 (de) Thermisches durchflussmessgerät
DE102019131698A1 (de) System und Verfahren zur Analyse von Flüssigkeiten
DE4418656C2 (de) Gekühlter Drucksensor
EP3980729B1 (de) Thermisches durchflussmessgerät
DE102010030075A1 (de) Vorrichtung zur Erfassung einer Temperatur eines fluiden Mediums
DE102014001640B4 (de) Druck- und Temperatursensor-Element
DE102006039571B4 (de) Wabenkörper und Wabenkörperanordnung jeweils mit Sensor-Aufnahmekanal
DE102012019433A1 (de) Vorrichtung zur Bestimmung einer Kenngröße eines Mediums
WO2020035167A1 (de) Gewickelter wärmeübertrager, verfahren zur herstellung eines gewickelten wärmeübertragers und verfahren zur temperatur- und/oder dehnungsmessung in einem gewickelten wärmeübertrager
DE102011088736A1 (de) Einbauarmatur mit einer Dichtungsvorrichtung
DE202013103733U1 (de) Schneller Stufentemperaturfühler
AT518569A1 (de) Instrumentierung einer Seitenwand einer Stranggießkokille mit Lichtwellenleitern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20190625

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G01K 1/14 20060101AFI20190930BHEP

Ipc: G01K 1/02 20060101ALI20190930BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20191206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603