EP3423770A1 - Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile - Google Patents

Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile

Info

Publication number
EP3423770A1
EP3423770A1 EP17709159.2A EP17709159A EP3423770A1 EP 3423770 A1 EP3423770 A1 EP 3423770A1 EP 17709159 A EP17709159 A EP 17709159A EP 3423770 A1 EP3423770 A1 EP 3423770A1
Authority
EP
European Patent Office
Prior art keywords
tank
reservoir
plate
filling
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17709159.2A
Other languages
German (de)
English (en)
Other versions
EP3423770B1 (fr
Inventor
Sylvain Moreau
Lionel ROBILLON
Frédéric TISON
Patrick Hoger
Frédéric Martin
Erwann QUISTINIC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3423770A1 publication Critical patent/EP3423770A1/fr
Application granted granted Critical
Publication of EP3423770B1 publication Critical patent/EP3423770B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/04Means for preventing wrong assembling of parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • a phase change material tank provided with a filling tube of said tank, for a heat exchanger of a plant of
  • the present invention is in the field of heat exchangers fitted to motor vehicles, in particular an evaporator.
  • the heat exchanger of the present invention relates more specifically to those comprising at least one storage tank of a phase change material (PCM).
  • PCM phase change material
  • Such a reservoir is typically an intermediate heat transfer member, being interposed between two conduits for conveying a refrigerant through the heat exchanger.
  • Motor vehicles are commonly equipped with a ventilation system, heating and / or air conditioning, also known as air conditioning installation.
  • a ventilation system heating and / or air conditioning, also known as air conditioning installation.
  • Such an installation is particularly dedicated to the treatment of the air contained in the cabin of the vehicle, for its renewal and / or for its heating or conversely for its cooling according to the comfort desired by the passengers.
  • the installation typically comprises a closed air conditioning circuit in which circulates a refrigerant supplying one or more heat exchangers, such as in particular at least one evaporator.
  • the air conditioning circuit essentially comprises a compressor, a condenser or gas cooler, a pressure reducer and evaporator.
  • the fluid is thus compressed in the gas phase by the compressor, converted into a liquid phase in the condenser or simply cooled by the gas cooler, expanded at low pressure by the expander and then converted into a gas phase in the evaporator and again conveyed to the compressor.
  • a heat exchanger equipping an air conditioning installation of a motor vehicle commonly comprises a bundle of conduits.
  • the ducts are each arranged in a tube formed between two adjacent duct plates.
  • the ducts are arranged parallel to each other at a distance from one another so as to provide a circulation space for heat-treated air between them.
  • the ducts are commonly mounted in parallel between an intake pipe and a refrigerant discharge pipe, respectively inside and outside the heat exchanger.
  • the refrigerant admitted inside the heat exchanger circulates through the ducts and is then discharged from the heat exchanger to the compressor.
  • the air to be cooled yields calories as a result of its circulation through the spaces between the ducts.
  • Interlayers are interposed between the conduits to increase the heat exchange surface with the air flow.
  • the present invention is part of the difficulties of cooling the air flowing through the evaporator.
  • the compressor is commonly driven by the propulsion engine of the vehicle.
  • the circulation of the refrigerant is interrupted and the heat exchange between the evaporator and the air to be cooled deteriorates significantly.
  • motor vehicles are increasingly equipped with automatic engine shutdown systems when the vehicle progress is momentarily interrupted.
  • phase change material is commonly referred to as PCM, according to the acronym Phase Change Material.
  • PCM Phase Change Material
  • WO2013125533A1 (SANDEN Corp.).
  • the tank disclosed in this document is formed between two tank plates arranged in half-shells and respectively in contact against two ducts in which a fluid circulates.
  • the plates tank members each comprise a spout forming a filling channel of the phase change material.
  • Document FR3014183A1 discloses another evaporator adapted to the context presented above.
  • the fluid conduits are delimited by two duct plates and an intermediate plate is interposed between two ducts.
  • the PCM reservoir is then constituted by the space formed between the intermediate plate and a conduit plate.
  • the designs presented above suffer from a disadvantage relating to the filling of the storage tank of the phase change material. Indeed, the filling nozzles of WO2013125533A1 are not transposable in the evaporator shown in document FR3014183A1, because the reservoir of phase change material of the first document is delimited by two plates dedicated to the reservoir, while the second document does not include only one plate.
  • the present invention relates to a tank of a phase change material for a heat exchanger equipping an air conditioning installation of a motor vehicle.
  • the present invention also relates to such a heat exchanger comprising one or more tanks according to the present invention.
  • the present invention also relates to a method of filling a tank according to the present invention with a phase change material.
  • the main object of the present invention is to improve the filling conditions of the tank, while optimizing its capacity for a given space between the respective duct plates of two adjacent ducts. Such an improvement is in particular sought by avoiding modifying the structure of the duct plates, a common desired for all the duct plates equipping heat exchanger in the presence or absence of a reservoir interposed between them.
  • the desired improvements are also desired by enhancing the tightness of the tank in the context of temperature variations to which the reservoir is subjected in operation and may affect the stability of its structure. ⁇ must also take into account the economic constraints to which the motor vehicle equipment manufacturers are well known.
  • the production costs of the heat exchanger must not be economically unacceptable with regard to the benefits provided. This is the case more specifically with regard to the tank and the heat exchanger forming the subject of the present invention, in particular with regard to the structure of the tank and the methods of its installation on the heat exchanger, as well as to the look at the methods used to fill it.
  • the PCM tank of the present invention is organized to form a component of a heat exchanger of an air conditioning installation of a vehicle, in particular an automobile.
  • the reservoir is provided with a filling means.
  • the reservoir of the present invention is mainly recognizable in that the reservoir of phase change material is formed between two tank plates, where the filling means comprises at least one tube delimiting a filling channel arranged at the bottom of the tank. outside the tank against a first of the tank plates.
  • the filling channel is disposed laterally relative to the reservoir, that is to say beside it and in contact with an outer face of the first plate defining the reservoir.
  • the concept of "lateral" defines an arrangement of the filling channel against the first tank plate parallel to the general plane of this plate.
  • the filling channel is thus mainly oriented along a width of the first plate defining the reservoir, and can provide an emergence of the filling means out of the heat exchanger, that is to say beyond a plane defining an inlet or outlet face of the air stream of the constituent duct bundle of the heat exchanger.
  • the position outside the reservoir filling channel involves its location out of the volume of the reservoir delimited between the two tank plates, the supply channel connecting an interior volume of the filling channel with an internal volume of the reservoir.
  • the reservoir advantageously comprises any of the following characteristics, taken alone or in combination: a supply channel connecting the filling channel to an interior volume of the tank delimited by the two tank plates,
  • the filling channel extends in a main plane oriented parallel to a general plane of the tank plates, the supply channel extending along an axis oriented transversely to the general plane of the tank plates,
  • the feed channel is formed by openings communicating with each other and formed respectively through the tube and through the first tank plate.
  • the openings can be easily made by machining, or more advantageously by stamping during the formation of the first tank plate,
  • the positioning means is formed by at least one flange bordering at least a first opening and nested inside a second opening.
  • Such collar may be formed by repressing material from the second opening during the manufacture of the first tank plate by stamping, the collar is formed protruding from the first tank plate to the outside of the tank. Similarly but reversed, the collar is formed projecting from an outer face of the filling channel to enter the opening in the first plate defining the reservoir. When placing the filling channel in application against the first tank plate, the collar is inserted inside the opening that includes the tube to spare the feed channel,
  • the positioning means is configured so that a longitudinal axis of the filling channel is transverse, in particular perpendicular to a longitudinal axis of the tank plates. It can be provided a series of passages defined by the openings, for example of circular section. Alternatively, a single pass may be provided. Complementarily but optionally, such a passage may have an oblong section. In the two cases mentioned here, it ensures an angular pre-positioning of the filling means with respect to the reservoir and it is ensured that the filling means is accessible from outside the heat exchanger, after brazing thereof,
  • the tube is attached against a seat formed on the outer face of the first tank plate
  • the seat delimits a reservoir supply chamber from the feed channel to a reserve extending in extension of the feed chamber, along a longitudinal extension plane of the first tank plate,
  • the filling means comprises at least one nozzle of which extends beyond a transverse dimension of the tank plates and is configured to communicate the fill channel with an external supply circuit of the tank of phase change material.
  • a distal end of the filling channel is closed by deformation of its edges, in particular by bringing them closer together and brazing, a proximal end of the connection piece being closed indifferently by adding a plug or by deforming its edges, especially by bringing them together and brazing,
  • the distal end of the filling channel is flattened so as to form a closing edge parallel to the general plane of the first tank plate, the first tank plate is arranged in open shell on the second tank plate, the shell defining the reservoir volume and being sealed, in particular brazed, by its peripheral edge surrounding the volume of the tank to the second tank plate,
  • the reservoir is arranged in a plurality of recesses, for example formed by cells formed by reliefs that comprises the first tank plate, the filling channel is reported by sealing, in particular by soldering, for example simultaneously with the beam of ducts, against the first tank plate.
  • the filling channel constituting the tank filling means is a separate member of the tank plates leaving between them the tank.
  • the filling conditions of the PCM tank can be freely and specifically organized as a result of such structural distinction between the tube and the tank plates leaving the tank.
  • the filling channel being attached against the first tank plate, a specific arrangement of only one of the tank plates is necessary to arrange the filling means of the tank.
  • the arrangement of the second tank plate delimiting the internal volume of the tank with the first tank plate, is made freely available.
  • the second tank plate may advantageously consist of a duct plate constituting the heat exchanger identical to all the duct plates of the heat exchanger.
  • a conduit plate household with another conduit plate adjacent a conduit of the heat exchanger carrying a fluid, including refrigerant, providing a heat exchange between the fluid, the PCM and air.
  • the feed channel is formed by openings formed respectively through the tube and through the first tank plate. Said openings are communicating with each other by abutment to one another according to the orientation of their outlet transversely, and more particularly perpendicular to the general plane of the tank plates.
  • the present invention also relates to a heat exchanger, in particular used as an evaporator of an air conditioning installation of a vehicle, in particular an automobile.
  • the heat exchanger of the present invention is primarily recognizable in that it is provided with at least one storage tank of a phase change material as just described in accordance with the present invention.
  • the heat exchanger preferably comprises a plurality of PCM according to the present invention, each interposed between two conduits of the heat exchanger conveying a fluid, for example refrigerant, dedicated to the cooling of an air flow passing through the heat exchanger.
  • the second tank plate advantageously consists of a first duct plate of the heat exchanger identical to the set of duct plates that includes the heat exchanger.
  • a first duct plate classically household with a second adjacent duct plate a first conduit participating a duct bundle dedicated to the circulation of a fluid through the heat exchanger.
  • the first tank plate is preferably affixed, of course in its general plane, against a third pipe plate.
  • the third duct plate houses with a fourth duct plate adjacent a second duct conduit duct.
  • the reservoir is placed directly in contact with two duct plates leaving respective adjacent ducts of the heat exchanger.
  • the performance of the heat exchange between the duct plates and the tank is thus optimized.
  • the tank capacity is optimized according to its dimension oriented perpendicularly to the duct plates.
  • the action and reaction time of the phase change material is also improved by such a design.
  • the reservoir can be easily interposed between two duct plates to replace a spacer equipping the heat exchangers to promote heat exchange between the air to be cooled and the heat exchanger.
  • the invention also covers the case where at least one first fluid circulation duct is delimited by at least a first duct plate and a second duct plate, as well as a second duct delimited by a third duct plate and by a fourth duct plate, and wherein the second tank plate is distinct from any of the duct plates.
  • the present invention also relates to a method of filling a storage tank of phase change material according to the present invention that comprises a heat exchanger as just described.
  • the method of the present invention is proposed by distinction of the methods usually used to fill a PCM tank installed on a heat exchanger, in particular used as an evaporator, equipping the air conditioning installations for air conditioners. motor vehicles. It is thus understood that the organization of the tank of the present invention allows its filling by any other method than that advantageously proposed by the present invention. However, it is found that the processes usually used to fill the tank fill can make random optimization of its filling.
  • the reservoir of the present invention is preferably arranged in a plurality of recesses formed by cavities formed by reliefs that includes the first tank plate.
  • the reliefs are advantageously integrated into the shell during its formation by stamping.
  • Such a honeycomb arrangement of the tank provides a homogeneous distribution of the PCM inside the tank.
  • the optimized filling of each cell of the tank by the PCM is difficult to obtain.
  • the organization of the reservoir of the present invention advantageously makes it possible to operate, according to a process of the present invention, a filling of the reservoir by aspiration of the PCM from the reservoir, as a result of its prior depression.
  • the method of the present invention comprises the following operations:
  • the filling channel Connects the filling channel to a vacuum generator, including a vacuum pump.
  • the filling channel is connected to the vacuum generating apparatus via an open end of the filling channel, in particular formed by its proximal end arranged as a connection end to the supply circuit of the PCM tank.
  • the tube in communication with said source of phase change material.
  • the communication between the filling channel and the PCM source can be effected via the valve interposed between the vacuum generating apparatus and the PCM source. Such communication causes suction to fill the reservoir from the PCM source under the effect of its depression beforehand.
  • the PCM tank supply circuit comprises a depressurization circuit comprising the vacuum generating apparatus.
  • the depressurization circuit is in particular placed in parallel with a PCM delivery circuit comprising the PCM source.
  • the depressurization circuit and the PCM delivery circuit are alternately communicated with the reservoir via said valve.
  • FIG. 1 is a perspective view of a heat exchanger according to the present invention
  • FIG. 2 and FIG. 3 are perspective illustrations of components of the heat exchanger shown in FIG. 1, respectively in exploded view and assembled view,
  • FIG. 4 is composed of three diagrams (a), (b) and (c) successively illustrating methods of assembly between components of a PCM tank in accordance with FIG. the present invention, which comprises the heat exchanger shown in FIG.
  • FIG. 5 is composed of four diagrams (d), (e), (f) and (g) successively illustrating a process for filling the PCM reservoir represented in FIG. 3.
  • FIGS. describe the present invention in detail and in particular ways of its implementation. Said figures and their description can of course be used, if necessary, to better define the present invention, both in its particularities and in its generality, particularly in relation to the description of the present invention that is made herein.
  • a heat exchanger 1 equips an air conditioning installation of a motor vehicle.
  • the heat exchanger 1 illustrated is more specifically used as an evaporator dedicated to the cooling of an air flow sent into the passenger compartment of the vehicle.
  • the description below is made in connection with a heat exchanger, but it is clear that all the arrangements described herein preferably apply to an evaporator.
  • the heat exchanger 1 comprises a bundle of conduits 2, the ducts 3 of the bundle of ducts 2 being intended to convey a fluid F configured to capture calories to cool the air flow.
  • a fluid may be a heat transfer fluid, but it may also be a refrigerant fluid, for example two-phase.
  • the ducts 3 of the duct bundle 2 are each arranged in a tube being individually formed between two duct plates, such as for example illustrated in FIG. 2 and FIG.
  • FIG. 2 and FIG. 3 illustrate two adjacent conduits 3a, 3b of the duct bundle 2 equipping the heat exchanger shown in FIG. 1.
  • the ducts 3a, 3b are each formed between two duct plates 5a, 5b and 6a, 6b which extend mainly along their general plane PI, parallel to each other and perpendicular to the general plane P2 of the heat exchanger 1.
  • the ducts 3a and 3b are arranged parallel to distance from each other to provide between them a circulation space of the air to be heat treated.
  • the ducts 3 are mounted in parallel, in view of the fluid F, between an intake duct 7a and a discharge duct 7b of the fluid F.
  • the intake duct 7a and the evacuation duct 7b comprise respective fluid passages 8a, 8b formed through the conduit plates and successively abutted with each other when the conduits 3 are joined together.
  • the fluid F is admitted inside the heat exchanger 1 through the intake pipe 7a, circulates through the ducts 3 and is then evacuated out of the heat exchanger 1 through the evacuation pipe 7b .
  • the ducts 3 are arranged in two parallel fluid flow passages connected to each other at the base of the heat exchanger opposite its top comprising the intake duct 7a and the evacuation duct 7b.
  • the duct plates 5a, 5b and / or 6a, 6b are partitioned along their largest dimension to accommodate both fluid passes. This larger dimension defines a longitudinal axis in which the ducts extend.
  • the heat exchanger 1 comprises a plurality of reservoirs 9 containing a phase change material, referred to herein as PCM.
  • Such tanks 9 make it possible to cool the air circulating through the heat exchanger 1 in the absence of circulation of the fluid F in the ducts 3.
  • Each reservoir 9 is interposed in contact between two participating duct plates of the respective formation. two adjacent ducts 3.
  • the tanks 9 are arranged between two adjacent ducts 3 in replacement of tabs 4, for this purpose not present in the heat exchanger 1.
  • the tanks 9 are each provided with a means 14 for filling them in PCM when is installed on the heat exchanger 1. More particularly in Figures 2 to 4, a reservoir 9 equipping the heat exchanger 1 shown in Figure 1 is formed between two adjacent tank plates 10a, 10b, oriented parallel to one another.
  • a first tank plate 10a is arranged in shell 11, one of the faces 12 is open to a second tank plate 10b.
  • the first tank plate 10a is brazed through its peripheral edge 13 against the second tank plate 10b.
  • the second tank plate 10b may consist of a tank plate exclusively dedicated to the tank 9 and intended to be affixed against a pipe plate of the adjacent heat exchanger 1, such as in particular the conduit plate 6a. duct 3b. It will be noted, however, that according to an advantage provided by the present invention, the second tank plate 10b advantageously consists of a first duct plate 6a forming a duct 3 of the heat exchanger 1, such as the duct 3b according to the form preferred embodiment of the invention.
  • the first duct plate 6a with a second adjacent duct plate 6b, provides a first duct 3b of the heat exchanger 1.
  • the first tank plate 10a made up of the shell 11 is advantageously directly affixed against a third duct duct plate 5a forming, with a fourth duct plate 5b adjacent, a second duct 3a of the heat exchanger 1. It is therefore understood that according to this variant, the tank 9 is delimited on one side by the first tank plate 10a and the first duct plate 6a, which forms an embodiment of the second tank plate 10b.
  • a tube 15 is laterally attached and soldered against a flat seat 16 formed on the outer face of the shell 11.
  • the seat 16 projects outwardly from the first plate.
  • reservoir 10a perpendicularly to its general plane Pl.
  • the seat 16 delimits a feed chamber 17 (FIG. 4) of the tank 9 made of PCM, arranged along the general plane PI of the first tank plate 10a extending from a reserve 18. at PCM forming most of the tank 9.
  • the tube 15 described below forms an envelope of the filling channel 19, the latter constituting the means 14 for filling the storage tank 9 with PCM.
  • the filling channel 19 is then a volume surrounded by the tube 15, this volume being filled by the phase change material.
  • the tube 15 extends parallel to the general plane of the first tank plate 10a, being oriented along its longitudinal axis perpendicularly to the general plane P2 of the heat exchanger 1, as illustrated in FIG. 1. More particularly on In the diagrams of FIG. 4, the tube 15 forms, between its ends in its general extension direction D1 illustrating its longitudinal axis, the filling channel 19 through which the PCM can be admitted to the reservoir 9 for its filling. It will be noted, when the tube 15 is installed on the first tank plate 10a, and the tube 15 is oriented in its direction D1 and parallel to the smallest dimension of the first tank plate 10a, considered in its general plane Pl. In other words, the longitudinal axis of the tube 15 is parallel to the transverse direction of the reservoir 9.
  • a distal portion 15a of the tube is housed between the tank plates 10a, 10b and forms a connecting member by brazing the tube 15 against the seat 16 formed on the first tank plate 10a.
  • the distal portion 15a of the tube 15 is extended by a proximal portion 15b arranged as a connection end of the reservoir 9 to a supply circuit 20 ( Figure 5) of the tank 9 PCM.
  • the connecting end 15b of the filling means 14 is emerging out of the duct bundle 2 of the heat exchanger 1, perpendicularly to its general plane P2 as illustrated in FIG. 1.
  • the notions of distal and proximal are commonly understood to be opposite relative notions with respect to a given direction of extension of an organ. Of course with regard to the tube, said given direction is identified as targeted between the ends of the tube.
  • the distal end 21a of the tube 15 forming the filling channel 9 is closed by deformation and sealing of its edges with each other, in particular by bringing its edges closer together and brazing.
  • a proximal end 21b of the connecting end 15b household a mouth 21c for admission of the PCM inside the tube 15 during the filling of the reservoir 9.
  • the mouth 21c is kept open while waiting for the filling of the reservoir 9, and is closed after filling the reservoir 9 as illustrated in Figure (g) of Figure 5.
  • the closure of the mouth 21c can be achieved by means of an attached plug or, as illustrated, by deformation and sealing between them the edges of the proximal end 21b of the connection tip 15b.
  • the closure of this proximal end 21b of the connecting piece 15 is operated by bringing the edges together and soldering them.
  • the filling channel 19 communicates with the feed chamber 17 via a feed channel 22.
  • the feed channel 22 extends perpendicular to the general plane PI of the first tank plate 10a, being formed by openings 22a, 22b communicating with each other and respectively through the tube 15 and through the seat 16.
  • the openings 22a, 22b are each composed of two holes 23a, 23b and 24a, 24b adjacent.
  • the plurality of holes 23a, 23b and 24a, 24b respectively forming the openings 22a, 22b allows to take advantage of the openings 22a, 22b to pre-position the tube 15 on the first tank plate 10a, in particular to prevent rotation of the means 14 filling during the brazing operation of the heat exchanger.
  • the holes 23a, 23b are each bordered by a collar 25a, 25b.
  • the flanges 25a, 25b are respectively nestable inside the holes 24a, 24b formed through the tube 15.
  • the distal end 21a of the tube 15 is flattened by generating a force perpendicular to the general plane PI of the first tank plate 10a.
  • the cumulative dimensions a, b respectively of the feed chamber 17 and the tube 15 are at most equal to the dimension c of a reserve PCM 18 that includes the reservoir 9.
  • the tube 15 interposed between the first tank plate 10a and the conduit 3a does not preclude direct affixing of the first tank plate 10a against the third pipe plate 5a in order to optimize the heat exchange between them.
  • the reservoir 15 is composed in all and for all of three reservoir elements 10a, 10b, 15 assembled by soldering together as illustrated in FIG. diagram (c).
  • a first reservoir member is formed by the first reservoir plate 10a
  • a second reservoir member is formed by the second reservoir plate 10b, which may be a conduit plate
  • a third reservoir member is formed by the tube 15 delimiting the filling channel 19.
  • the tube 15 is positioned on the first tank plate 10a by placing its distal portion 15a against the seat 16.
  • the flanges 25a, 25b bordering the holes 23a, 23b formed through the seat 16 are respectively introduced inside the holes 24a, 24b formed through the tube 15.
  • a stack of duct plates and tank plates 10a for example equipped with the tube 15, can be performed.
  • the assembly consisting of the tube 15 pre-positioned against the first tank plate 10a is attached and then brazed to the second tank plate 10b via the peripheral edge 13 of the first tank plate 10a.
  • the second tank plate 10b comprises a member 26a which partitions the conduit 3b in two passes.
  • the integration of the reservoir 9 with the heat exchanger 1 is then performed from the mounting of the first duct plate 6a advantageously constituting the second tank plate 10b.
  • the reservoir 9 is placed in interposition between two ducts 3a, 3b of the heat exchanger 1 as illustrated in FIG. 1.
  • the first tank plate 10a is affixed in direct contact with the third duct plate 5a.
  • the shell 11 has reliefs 27 through which the first tank plate 10a bears against the third pipe plate 5a.
  • Such reliefs 27 provide inside the reservoir 9 PCM receiving cells distributed in the reserve 18.
  • the filling of the reservoir 9 is carried out after it is secured to the heat exchanger 1.
  • the filling of the reservoir 9 in PCM is carried out by suction from a prior depression of the reservoir 9.
  • the reservoir 9 is connected to a PCM supply circuit 20 via the connecting end 15b of the tube 15 and whose outlet is open to the outside .
  • the supply circuit 20 comprises a depressurization circuit 20a and a PCM delivery circuit 20b, connected in parallel to the supply circuit 20 via a valve 30.
  • the depressurization circuit 20a comprises a generating device 28 and the PCM delivery circuit comprises a PCM source 29.
  • the vacuum generating apparatus 28 and the PCM source 29 are connected in parallel with the supply circuit 20 individually connected to the valve 30.
  • the valve 30 is connectable to the tube 15 via its connecting end 15b to a hydraulic circuit, supply circuit 20 in particular. The valve 30 makes it possible to put the reservoir 9 selectively in communication with the vacuum generating apparatus 28 or with the PCM source 29.
  • the reservoir 9 is placed in communication with the vacuum generating apparatus 28 via the valve 30.
  • the air contained in the reservoir 9 is then sucked out of the reservoir 9 and is evacuated through the depressurization circuit 20a.
  • the reservoir 9 is depressurized, in other words evacuated.
  • Fig. (F) the reservoir 9 is then placed in communication with the PCM source 29 through the valve 30 and the PCM delivery circuit 20b.
  • the PCM is sucked through the supply circuit 20 from the PCM source 29 to the reservoir 9 for filling.
  • all the cells of the tank 9 are effectively all filled with PCM and the efficiency of the heat exchange between the tank 9 and the air flow to be cooled is improved.
  • the connection of the tube 15 with the supply circuit 20 PCM is broken and the proximal end 21b of the connecting end 15b leaving the mouth 21c is closed. This obturation is for example carried out, as illustrated, by deformation of its edges, including approximation thereof, and soldering them.
  • the phase-change material used to fill the reservoir 9 is paraffin-based or may still be based on a saturated fatty acid ester derived from animal or vegetable fats.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention a pour objet un réservoir (9) de matériau à changement de phase pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule, le réservoir (9) étant ménagé entre deux plaques de réservoir (10a, 10b) et étant pourvu d'un moyen (14) de remplissage, caractérisé en ce que le moyen (14) de remplissage comprend au moins un tube (15) délimitant un canal de remplissage (19) disposé à l'extérieur du réservoir (9) contre une première 10a des plaques de réservoir (9).

Description

Réservoir de matériau à changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de
conditionnement d'air d'un véhicule automobile La présente invention est du domaine des échangeurs de chaleur équipant les véhicules automobiles, notamment un évaporateur. L' échangeur de chaleur de la présente invention relève plus spécifiquement de ceux comportant au moins un réservoir de stockage d'un matériau à changement de phase (PCM). Un tel réservoir constitue typiquement un organe intermédiaire de transfert de chaleur, en étant interposé entre deux conduits d'acheminement d'un fluide réfrigérant à travers l'échangeur de chaleur.
Les véhicules automobiles sont couramment équipés d'une installation de ventilation, de chauffage et/ou de climatisation, dite aussi installation de conditionnement d'air. Une telle installation est notamment dédiée au traitement de l'air contenu dans l'habitacle du véhicule, pour son renouvellement et/ou pour son chauffage ou inversement pour son refroidissement en fonction du confort souhaité par les passagers.
A cet effet, l'installation comprend typiquement un circuit fermé de climatisation dans lequel circule un fluide réfrigérant alimentant un ou plusieurs échangeurs de chaleur, tel que notamment au moins un évaporateur. Successivement suivant le sens de circulation du fluide à son travers, le circuit de climatisation comprend essentiellement un compresseur, un condenseur ou refroidisseur de gaz, un détendeur et évaporateur. Le fluide est ainsi comprimé en phase gazeuse par le compresseur, transformé en phase liquide dans le condenseur ou simplement refroidi par le refroidisseur de gaz, détendu à basse pression par le détendeur puis transformé en phase gazeuse dans l'évaporateur et à nouveau acheminé vers le compresseur.
Un échangeur de chaleur équipant une installation de conditionnement d'air d'un véhicule automobile comporte couramment un faisceau de conduits. Les conduits sont chacun agencés en tube formé entre deux plaques de conduit adjacentes. Les conduits sont disposés parallèlement à distance les uns des autres pour ménager entre eux un espace de circulation de l'air à traiter thermiquement. Les conduits sont couramment montés en parallèle entre une conduite d'admission et une conduite d'évacuation du fluide réfrigérant, respectivement à l'intérieur et hors de l'échangeur de chaleur.
Ainsi en ce qui concerne un tel échangeur de chaleur à fonction d'évaporateur, le fluide réfrigérant admis à l'intérieur de l'échangeur de chaleur circule à travers les conduits puis est évacué hors de l'échangeur de chaleur vers le compresseur. L'air à refroidir cède des calories par suite de sa circulation à travers les espaces ménagés entre les conduits. Des intercalaires sont interposés entre les conduits pour augmenter la surface d'échange thermique avec le flux d'air.
Dans ce contexte, la présente invention s'inscrit dans le cadre des difficultés liées au refroidissement de l'air circulant à travers l'évaporateur. En effet, le compresseur est couramment entraîné par le moteur propulsif du véhicule. Lorsque le moteur est arrêté, la circulation du fluide réfrigérant est interrompue et l'échange thermique entre l'évaporateur et l'air à refroidir se dégrade significativement. Or, les véhicules automobiles sont de plus en plus équipés de systèmes d'arrêt automatique du moteur propulsif lorsque la progression du véhicule est momentanément interrompue.
Pour remédier à cet inconvénient, il est connu d'équiper les échangeurs de chaleur, évaporateur plus spécifiquement, d'au moins un réservoir de stockage d'un matériau à changement de phase. Un tel matériau à changement de phase est communément désigné par PCM, d'après l'acronyme anglais Phase Change Material. Ainsi, lorsque le circuit de climatisation fonctionne, le matériau à changement de phase cède des calories au fluide réfrigérant, en se solidifiant. L'arrêt de l'entraînement du compresseur par le moteur propulsif du véhicule induit l'arrêt du fonctionnement du circuit de climatisation. Le flux d'air traversant l'échangeur de chaleur est alors refroidi au contact du ou des réservoirs contenant le matériau à changement de phase, qui prélève des calories dans le flux d'air en se liquéfiant. Un évaporateur qui illustre ce contexte est divulgué par le document
WO2013125533A1 (SANDEN Corp.). Le réservoir divulgué dans ce document est ménagé entre deux plaques de réservoir agencées en demi-coques et respectivement en contact contre deux conduits dans lesquels circule un fluide. Pour remplir le réservoir, les plaques de réservoir comportent chacun un bec formant un canal de remplissage du matériau à changement de phase.
Le document FR3014183A1 (VALEO SYSTEMES THERMIQUES) divulgue un autre évaporateur adapté au contexte présenté ci-dessus. Les conduits de fluide sont délimités par deux plaques de conduit et une plaque intermédiaire est interposée entre deux conduits. Le réservoir de PCM est alors constitué par l'espace formé entre la plaque intermédiaire et une plaque de conduit. Les conceptions présentées ci-dessus souffrent d'un inconvénient relatif au remplissage du réservoir de stockage du matériau à changement de phase. En effet, les becs de remplissage du WO2013125533A1 ne sont pas transposable dans l'évaporateur montré dans le document FR3014183A1, car le réservoir de matériau à changement de phase du premier document est délimité par deux plaques dédiées au réservoir, alors le second document ne comporte qu'une seule plaques.
Dans ce contexte, la présente invention a pour objet un réservoir d'un matériau à changement de phase pour un échangeur de chaleur équipant une installation de conditionnement d'air d'un véhicule automobile. La présente invention a aussi pour objet un tel échangeur de chaleur comportant un ou plusieurs réservoirs conformes à la présente invention. La présente invention a aussi pour objet un procédé de remplissage d'un réservoir conforme à la présente invention par un matériau à changement de phase.
Le but principal visé par la présente invention est d'améliorer les conditions de remplissage du réservoir, tout en optimisant sa capacité pour un encombrement donné entre les plaques de conduit respectives de deux conduits adjacents. Une telle amélioration est notamment recherchée en évitant de modifier la structure des plaques de conduit, souhaitée commune pour l'ensemble des plaques de conduit équipant échangeur de chaleur en présence ou non d'un réservoir interposé entre elles.
Les améliorations recherchées sont aussi souhaitées en confortant l'étanchéité du réservoir dans le contexte des variations de température auxquelles le réservoir est soumis en fonctionnement et susceptibles d'affecter la stabilité de sa structure. Π doit aussi être tenu compte des contraintes économiques auxquelles sont notoirement soumis les équipementiers des véhicules automobiles. Les coûts de production de l'échangeur thermique ne doivent pas être économiquement rédhibitoires au regard des avantages procurés. Il en est ainsi en ce qui concerne plus spécifiquement le réservoir et l'échangeur thermique faisant l'objet de la présente invention, notamment au regard de la structure du réservoir et des modalités de son installation sur l'échangeur thermique, ainsi qu'au regard des modalités mises en œuvre pour son remplissage. Le réservoir à PCM de la présente invention est organisé pour constituer un composant d'un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule, notamment automobile. Le réservoir est pourvu d'un moyen de remplissage.
Dans ce contexte, le réservoir de la présente invention est principalement reconnaissable en ce que le réservoir de matériau à changement de phase est ménagé entre deux plaques de réservoir, où le moyen de remplissage comprend au moins un tube délimitant un canal de remplissage disposé à l'extérieur du réservoir contre une première des plaques de réservoir. Le canal de remplissage est disposé latéralement par rapport au réservoir, c'est-à-dire à côté de celui-ci et en contact contre une face externe de la première plaque délimitant le réservoir. La notion de « latérale » définie une disposition du canal de remplissage contre la première plaque de réservoir parallèlement au plan général de cette plaque. Le canal de remplissage est ainsi principalement orienté suivant une largeur de la première plaque délimitant le réservoir, et peut procurer une émergence du moyen de remplissage hors de l'échangeur de chaleur, c'est-à-dire au-delà d'un plan définissant une face d'entrée ou de sortie du flux d'air du faisceau de conduits constitutif de l'échangeur de chaleur. La position extérieure au réservoir canal de remplissage implique sa localisation hors du volume du réservoir délimité entre les deux plaques de réservoir, le canal d'alimentation reliant un volume intérieur du canal de remplissage avec un volume intérieur du réservoir.
Le réservoir comprend avantageusement l'une quelconque des caractéristiques suivantes, prise seule ou en combinaison : un canal d'alimentation reliant le canal de remplissage à un volume intérieur du réservoir délimité par les deux plaques de réservoir,
le canal de remplissage s'étend dans un plan principal orienté parallèlement à un plan général des plaques de réservoir, le canal d'alimentation s 'étendant selon un axe orienté transversalement au plan général des plaques de réservoir,
le canal d'alimentation est formé par des ouvertures communiquant entre elles et ménagées respectivement à travers le tube et à travers la première plaque de réservoir. Les ouvertures peuvent être aisément réalisées par usinage, ou plus avantageusement par emboutissage lors de la formation de la première plaque de réservoir,
un moyen de positionnement du tube sur la première plaque de réservoir est prévu,
le moyen de positionnement est formé par au moins un collet bordant au moins une première ouverture et emboîté à l'intérieur d'une deuxième ouverture. Un tel collet peut être formé par refoulement de matière issue de la deuxième ouverture lors de la fabrication de la première plaque de réservoir par emboutissage, le collet est ménagé en saillie de la première plaque de réservoir vers l'extérieur du réservoir. De manière similaire mais inversée, le collet est ménagé en saillie d'une face extérieure du canal de remplissage, pour pénétrer dans l'ouverture ménagée dans la première plaque délimitant le réservoir. Lors de la mise en place du canal de remplissage en application contre la première plaque de réservoir, le collet est introduit à l'intérieur de l'ouverture que comporte le tube pour ménager le canal d'alimentation,
le moyen de positionnement est configuré pour qu'un axe longitudinal du canal de remplissage soit transversal, notamment perpendiculaire, à un axe longitudinal des plaques de réservoirs. Il peut être prévu une série de passages délimités par les ouvertures, par exemple de section circulaire. Alternativement, un unique passage peut être prévu. De manière complémentaire mais optionnelle, un tel passage peut présenter une section oblongue. Dans les deux cas mentionnés ici, on assure un pré-positionnement angulaire du moyen de remplissage par rapport au réservoir et on garantit que le moyen de remplissage est accessible depuis l'extérieur de l'échangeur de chaleur, après brasage de celui-ci,
le tube est rapporté contre une assise ménagée à la face extérieure de la première plaque de réservoir,
l'assise délimite une chambre d'alimentation du réservoir depuis le canal d'alimentation vers une réserve s 'étendant en prolongement de la chambre d'alimentation, suivant un plan d'extension longitudinale de la première plaque de réservoir,
des dimensions cumulées de la chambre d'alimentation et du canal de remplissage sont au plus égales à une dimension de la réserve, mesurées suivant une direction perpendiculaire au plan général de la première plaque de réservoir, le moyen de remplissage comprend au moins un embout de raccordement qui s'étend au-delà d'une dimension transversale des plaques de réservoir et qui est configuré pour mettre en communication le canal de remplissage avec un circuit extérieur d'approvisionnement du réservoir en matériau à changement de phase. On relèvera que l'émergence d'une partie proximale de l'embout de raccordement hors du volume délimité entre les plaques de réservoir autorise son libre agencement pour se raccorder au circuit d'approvisionnement, indépendamment de l'agencement du canal de remplissage,
une extrémité distale du canal de remplissage est fermée par déformation de ses bords, notamment par rapprochement de ceux-ci et brasage, une extrémité proximale de l'embout de raccordement étant fermée indifféremment par apport d'un bouchon ou par déformation de ses bords, notamment par rapprochement de ceux-ci et brasage,
l'extrémité distale du canal de remplissage est aplatie de manière à former un bord de fermeture parallèle au plan général de la première plaque de réservoir, la première plaque de réservoir est agencée en coque ouverte sur la deuxième plaque de réservoir, la coque délimitant le volume du réservoir et étant scellée, notamment brasée, par son bord périphérique entourant le volume du réservoir à la deuxième plaque de réservoir,
le réservoir est agencé en une pluralité de niches, par exemple ménagées par des alvéoles formées par des reliefs que comporte la première plaque de réservoir, le canal de remplissage est rapporté par scellement, notamment par brasage, par exemple de manière simultanée avec le faisceau de conduits, contre la première plaque de réservoir. Ainsi, le canal de remplissage constitutif du moyen de remplissage du réservoir est un organe rapporté distinct des plaques de réservoir ménageant entre elles le réservoir. Les modalités de remplissage du réservoir en PCM peuvent être librement et spécifiquement organisées par suite d'une telle distinction structurelle entre le tube et les plaques de réservoir ménageant le réservoir. En outre, le canal de remplissage étant rapporté contre la première plaque de réservoir, un agencement spécifique d'une seule des plaques de réservoir est nécessaire pour aménager le moyen de remplissage du réservoir. Par suite, l'agencement de la deuxième plaque de réservoir, délimitant le volume interne du réservoir avec la première plaque de réservoir, est rendu librement disponible.
Ainsi, la deuxième plaque de réservoir peut être avantageusement constituée d'une plaque de conduit constitutive de l'échangeur de chaleur identique à l'ensemble des plaques de conduits de l'échangeur de chaleur. Pour rappel, une telle plaque de conduit ménage avec une autre plaque de conduit adjacente un conduit de l'échangeur de chaleur acheminant un fluide, notamment réfrigérant, procurant un échange thermique entre le fluide, le PCM et l'air.
Il en résulte finalement une liberté d'organisation des modalités de remplissage du réservoir et une optimisation de l'échange thermique entre le réservoir et les conduits de l'échangeur de chaleur entre lesquels le réservoir est interposé.
Selon une forme simple de réalisation, le canal d'alimentation est formé par des ouvertures ménagées respectivement à travers le tube et à travers la première plaque de réservoir. Lesdites ouvertures sont communiquant entre elles par aboutement l'une à l'autre suivant l'orientation de leur débouché transversalement, et plus particulièrement perpendiculairement, au plan général des plaques de réservoir.
La présente invention a aussi pour objet un échangeur de chaleur, notamment utilisé en tant qu'évaporateur d'une installation de conditionnement d'air d'un véhicule, notamment automobile. L'échangeur de chaleur de la présente invention est principalement reconnaissable en ce qu'il est muni d'au moins un réservoir de stockage d'un matériau à changement de phase tel qu'il vient d'être décrit conformément à la présente invention. Bien entendu, l'échangeur de chaleur comporte de préférence une pluralité de réservoirs à PCM conforme à la présente invention, chacun interposés entre deux conduits de l'échangeur de chaleur acheminant un fluide, par exemple réfrigérant, dédié au refroidissement d'un flux d'air traversant l'échangeur de chaleur. Plus particulièrement par suite de l'installation du réservoir à PCM dans l'échangeur de chaleur, la deuxième plaque de réservoir est avantageusement constituée d'une première plaque de conduit de l'échangeur de chaleur identique à l'ensemble des plaques de conduits que comporte l'échangeur de chaleur. Pour rappel, une telle première plaque de conduit ménage classiquement avec une deuxième plaque de conduit adjacente un premier conduit participant d'un faisceau de conduits dédiés à la circulation d'un fluide à travers l'échangeur de chaleur.
La première plaque de réservoir est de préférence apposée, bien entendu suivant son plan général, contre une troisième plaque de conduit. La troisième plaque de conduit ménage avec une quatrième plaque de conduit adjacente un deuxième conduit du faisceau de conduits. Ainsi, le réservoir est placé directement en contact avec deux plaques de conduit ménageant des conduits respectifs adjacents de l'échangeur de chaleur. La performance de l'échange thermique entre les plaques de conduit et le réservoir est ainsi optimisée. La capacité du réservoir est optimisée suivant sa dimension orientée perpendiculairement aux plaques de conduit. Le temps de d'action et de réaction du matériau à changement de phase est également amélioré par une telle conception. Le réservoir peut être aisément interposé entre deux plaques de conduit en remplacement d'un intercalaire équipant les échangeurs de chaleur pour favoriser l'échange thermique entre l'air à refroidir et l'échangeur de chaleur.
L'invention couvre également le cas où au moins un premier conduit de circulation de fluide est délimité par au moins une première plaque de conduit et par une deuxième plaque de conduit, ainsi qu'un deuxième conduit délimité par une troisième plaque de conduit et par une quatrième plaque de conduit, et dans lequel la deuxième plaque de réservoir est distincte de l'une quelconque des plaques de conduits.
La présente invention a aussi pour objet un procédé de remplissage d'un réservoir de stockage de matériau à changement de phase conforme à la présente invention que comporte un échangeur de chaleur tel qu'il vient d'être décrit.
On relèvera que le procédé de la présente invention est proposé par distinction des procédés habituellement mis en œuvre pour remplir un réservoir à PCM installé sur un échangeur de chaleur, notamment utilisé en tant qu'évaporateur, équipant les installations de conditionnement d'air pour les véhicules automobiles. Il est ainsi compris que l'organisation du réservoir de la présente invention autorise son remplissage par tout autre procédé que celui avantageusement proposé par la présente invention. Il est cependant constaté que les procédés habituellement exploités pour remplir le remplissage du réservoir peuvent rendre aléatoire l'optimisation de son remplissage.
En effet, le réservoir de la présente invention est de préférence agencé en une pluralité de niches ménagées par des alvéoles formées par des reliefs que comporte la première plaque de réservoir. Les reliefs sont avantageusement intégrés à la coque lors de sa formation par emboutissage. Un tel agencement alvéolé du réservoir procure une répartition homogène du PCM à l'intérieur du réservoir. Dans ce contexte, le remplissage optimisé de chacune des alvéoles du réservoir par le PCM est délicat à obtenir.
L'organisation du réservoir de la présente invention permet avantageusement d'opérer, selon un procédé relevant de la présente invention, un remplissage du réservoir par aspiration du PCM depuis le réservoir, par suite de sa mise en dépression préalable.
Plus particulièrement et pour exemple, le procédé de la présente invention comprend les opérations suivantes :
-) raccorder le canal de remplissage à un appareil générateur de dépression, une pompe à vide notamment. Le canal de remplissage est raccordé à l'appareil générateur de dépression par l'intermédiaire d'une extrémité ouverte du canal de remplissage, notamment formée par son extrémité proximale agencée en embout de raccordement au circuit d'approvisionnement du réservoir en PCM.
-) mettre en dépression le réservoir par aspiration de l'air qu'il contient à travers le canal d'alimentation et le canal de remplissage. Ladite aspiration est bien évidemment procurée par la mise en œuvre de l'appareil générateur de dépression préalablement raccordée au canal de remplissage par l'intermédiaire de l'embout de raccordement. -) rompre la communication fluidique entre le canal de remplissage et l'appareil générateur de dépression. Une telle rupture de communication peut par exemple être opérée au moyen d'une vanne procurant sélectivement la mise en communication du réservoir d'une part avec l'appareil générateur de dépression pour sa mise sous vide, et d'autre part avec une source de matériau à changement de phase pour son remplissage.
-) placer le tube en communication avec ladite source de matériau à changement de phase. Tel que précédemment mentionné, la mise en communication entre le canal de remplissage et la source de PCM peut être opérée par l'intermédiaire de la vanne interposée entre l'appareil générateur de dépression et la source de PCM. Une telle mise en communication provoque par aspiration le remplissage du réservoir depuis la source de PCM sous l'effet de sa mise en dépression préalable.
-) rompre la communication entre le canal de remplissage et la source de PCM, puis obturer l'extrémité ouverte du canal de remplissage, notamment formée par son extrémité proximale.
Il est compris que le circuit d'approvisionnement du réservoir en PCM comprend un circuit de dépressurisation comportant l'appareil générateur de dépression. Par rapport au réservoir, le circuit de dépressurisation est notamment placé en parallèle avec un circuit de délivrance du PCM comportant la source de PCM. Le circuit de dépressurisation et le circuit de délivrance du PCM sont alternativement mis en communication avec le réservoir par l'intermédiaire de ladite vanne.
D'autres caractéristiques, détails et avantages de la présente invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif, en relation avec les exemples de réalisation de l'invention illustrés sur les figures des planches annexées, dans lesquelles :
- la figure 1 est une vue en perspective d'un échangeur de chaleur conforme à la présente invention,
- la figure 2 et la figure 3 sont des illustrations en perspective de composants de l'échangeur de chaleur représenté sur la figure 1, respectivement en vue éclatée et en vue assemblée,
- la figure 4 est composée de trois schémas (a), (b) et (c) illustrant successivement des modalités d'assemblage entre des composants d'un réservoir à PCM conforme à la présente invention, que comporte l'échangeur de chaleur représenté sur la figure 1,
- la figure 5 est composée de quatre schémas (d), (e), (f) et (g) illustrant successivement un procédé de remplissage du réservoir à PCM représenté sur la figure 3. II faut tout d'abord noter que les figures exposent la présente invention de manière détaillée et selon des modalités particulières de sa mise en œuvre. Lesdites figures et leur description peuvent bien entendu servir le cas échéant à mieux définir la présente invention, tant dans ses particularités que dans sa généralité, notamment en relation avec la description de la présente invention qui est faite dans le présent document.
Par ailleurs, pour clarifier et rendre aisée la lecture de la description qui va être faite de la présente invention en relation avec les figures des planches annexées, les organes communs représentés sur les différentes figures sont respectivement identifiés dans les descriptions propres à ces figures avec les mêmes numéros et/ou lettres de référence, sans impliquer leur représentation individuelle sur chacune des figures et/ou un agencement identique desdits organes communs entre des formes spécifiques de réalisation.
Sur la figure 1, un échangeur de chaleur 1 conforme à la présente invention équipe une installation de conditionnement d'air d'un véhicule automobile. L'échangeur de chaleur 1 illustré est plus spécifiquement utilisé en tant qu'évaporateur dédié au refroidissement d'un flux d'air envoyé dans l'habitacle du véhicule. La description ci- dessous est faite en rapport avec un échangeur de chaleur, mais il est clair que toutes les dispositions décrites ici s'appliquent de manière préférée à un évaporateur. L'échangeur de chaleur 1 comporte un faisceau de conduits 2, les conduits 3 du faisceau de conduits 2 étant destinés à acheminer un fluide F configuré pour capter des calories en vue de refroidir le flux d'air. Un tel fluide peut être un fluide caloporteur, mais il peut également s'agir d'un fluide réfrigérant, par exemple diphasique. Les conduits 3 du faisceau de conduits 2 sont chacun agencés en tube en étant individuellement ménagés entre deux plaques de conduits, tel que par exemple illustré sur la figure 2 et la figure 3.
Des intercalaires 4, agencés en ailettes par exemple, sont placés entre la plupart des conduits 3 pour augmenter la surface d'échange thermique entre l'air à refroidir et l'échangeur de chaleur 1. Plus particulièrement, la figure 2 et la figure 3 illustrent deux conduits adjacents 3a, 3b du faisceau de conduits 2 équipant l'échangeur de chaleur représenté sur la figure 1. Les conduits 3a, 3b sont chacun formés entre deux plaques de conduit 5a, 5b et 6a, 6b qui s'étendent principalement suivant leur plan général PI, parallèlement entre elles et perpendiculairement au plan général P2 de l'échangeur de chaleur 1. Tel qu'illustré sur la figure 3, les conduits 3a et 3b sont disposés parallèlement à distance les uns des autres pour ménager entre eux un espace de circulation de l'air à traiter thermiquement.
Sur la figure 1 notamment, les conduits 3 sont montés en parallèle, vu du fluide F, entre une conduite d'admission 7a et une conduite d'évacuation 7b du fluide F. La conduite d'admission 7a et la conduite d'évacuation 7b comprennent des passages de fluide 8a, 8b respectifs ménagés à travers les plaques de conduit et aboutés successivement les uns aux autres lorsque les conduits 3 sont assemblés entre eux.
Le fluide F est admis à l'intérieur de l'échangeur de chaleur 1 à travers la conduite d'admission 7a, circule à travers les conduits 3 puis est évacué hors de l'échangeur de chaleur 1 à travers la conduite d'évacuation 7b. Les conduits 3 sont agencés en deux passes de circulation de fluide parallèles, reliées entre elles à la base de l'échangeur de chaleur opposée à son sommet comportant la conduite d'admission 7a et la conduite d'évacuation 7b. A cet effet, les plaques de conduit 5a, 5b et/ou 6a, 6b sont cloisonnées suivant leur plus grande dimension pour ménager l'une et l'autre des passes de fluide. Cette plus grande dimension définie un axe longitudinal dans lequel les conduits s'étendent. Par ailleurs, l'échangeur de chaleur 1 comporte une pluralité de réservoirs 9 contenant un matériau à changement de phase, dénommé dans le présent document PCM. De tels réservoirs 9 permettent de refroidir l'air circulant à travers l'échangeur de chaleur 1 en l'absence de circulation du fluide F dans les conduits 3. Chaque réservoir 9 est interposé en contact entre deux plaques de conduit participantes de la formation respectives de deux conduits 3 adjacents. Ainsi, les réservoirs 9 sont disposés entre deux conduits 3 adjacents en remplacement d'intercalaires 4, à cet effet absents de l'échangeur de chaleur 1. Les réservoirs 9 sont chacun munis d'un moyen 14 pour leur remplissage en PCM lorsqu'il est installé sur l'échangeur de chaleur 1. Plus particulièrement sur les figures 2 à 4, un réservoir 9 équipant l'échangeur de chaleur 1 représenté sur la figure 1 est ménagé entre deux plaques de réservoir 10a, 10b adjacentes, orientées parallèlement l'une par rapport à l'autre. Une première plaque de réservoir 10a est agencée en coque 11 dont l'une des faces 12 est ouverte vers une deuxième plaque de réservoir 10b. La première plaque de réservoir 10a est brasée par l'intermédiaire de son bord périphérique 13 contre la deuxième plaque de réservoir 10b.
La deuxième plaque de réservoir 10b est susceptible d'être constituée d'une plaque de réservoir exclusivement dédiée au réservoir 9 et prévue pour être apposée contre une plaque de conduit de l'échangeur de chaleur 1 voisine, telle que notamment la plaque de conduit 6a du conduit 3b. On relèvera cependant que selon un avantage procuré par la présente invention, la deuxième plaque de réservoir 10b est avantageusement constituée d'une première plaque de conduit 6a ménageant un conduit 3 de l'échangeur de chaleur 1, tel que le conduit 3b selon la forme préférée de réalisation de l'invention.
Plus particulièrement, la première plaque de conduit 6a ménage, avec une deuxième plaque de conduit 6b adjacente, un premier conduit 3b de l'échangeur de chaleur 1. La première plaque de réservoir 10a constituée de la coque 11 est avantageusement directement apposée contre une troisième plaque de conduit 5a ménageant, avec une quatrième plaque de conduit 5b adjacente, un deuxième conduit 3a de l'échangeur de chaleur 1. On comprend donc que selon cette variante, le réservoir 9 est délimité d'un côté par la première plaque de réservoir 10a et par la première plaque de conduit 6a, celle-ci formant un mode de réalisation de la deuxième plaque de réservoir 10b.
Pour le remplissage du réservoir 9, un tube 15 est rapporté latéralement et fixé par brasage contre une assise 16 plane ménagée à la face extérieure de la coque 11. L'assise 16 s'étend en saillie vers l'extérieur de la première plaque de réservoir 10a perpendiculairement à son plan général Pl. L'assise 16 délimite une chambre d'alimentation 17 (figure 4) du réservoir 9 en PCM, ménagée suivant le plan général PI de la première plaque de réservoir 10a en prolongement d'une réserve 18 à PCM formant la majeure partie du réservoir 9. On notera que le tube 15 décrit ci-après forme une enveloppe du canal de remplissage 19, ces derniers étant constitutifs du moyen 14 de remplissage du réservoir 9 de stockage de PCM. Le canal de remplissage 19 est alors un volume entouré par le tube 15, ce volume étant rempli par le matériau à changement de phase.
Le tube 15 s'étend parallèlement au plan général de la première plaque de réservoir 10a, en étant orienté selon son axe longitudinal perpendiculairement au plan général P2 de l'échangeur de chaleur 1, tel qu'illustré sur la figure 1. Plus particulièrement sur les schémas de la figure 4, le tube 15 forme, entre ses extrémités suivant sa direction Dl générale d'extension illustrant son axe longitudinal, le canal de remplissage 19 à travers lequel le PCM peut être admis vers le réservoir 9 pour son remplissage. On remarquera, lorsque le tube 15 est installé sur la première plaque de réservoir 10a, et que le tube 15 est orienté suivant sa direction Dl et parallèlement à la plus petite dimension de la première plaque de réservoir 10a, considérée dans son plan général Pl. En d'autres termes, l'axe longitudinal du tube 15 est parallèle à la direction transversale du réservoir 9.
Une partie distale 15a du tube est logée entre les plaques de réservoir 10a, 10b et forme un organe de jonction par brasage du tube 15 contre l'assise 16 ménagée sur la première plaque de réservoir 10a. La partie distale 15a du tube 15 est prolongée par une partie proximale 15b agencée en embout de raccordement du réservoir 9 à un circuit d'approvisionnement 20 (figure 5) du réservoir 9 en PCM. L'embout de raccordement 15b du moyen 14 de remplissage est émergeant hors du faisceau de conduits 2 de l'échangeur de chaleur 1, perpendiculairement à son plan général P2 tel qu'illustré sur la figure 1. Les notions de distal et de proximal sont communément comprises comme étant des notions relatives opposées par rapport à une direction donnée d'extension d'un organe. Bien entendu en ce qui concerne le tube, ladite direction donnée est identifiée tel que visé entre les extrémités du tube.
L'extrémité distale 21a du tube 15 formant le canal de remplissage 9 est fermée par déformation et scellement de ses bords entre eux, notamment par rapprochement de ses bords et brasage. Une extrémité proximale 21b de l'embout de raccordement 15b ménage une bouche 21c d'admission du PCM à l'intérieur du tube 15 lors du remplissage du réservoir 9. La bouche 21c est maintenue ouverte dans l'attente du remplissage du réservoir 9, et est fermée après remplissage du réservoir 9 tel qu'illustré sur le schéma (g) de la figure 5. L'obturation de la bouche 21c peut être réalisée au moyen d'un bouchon rapporté ou, tel qu'illustré, par déformation et scellement entre eux des bords de l'extrémité proximale 21b de l'embout de raccordement 15b. Ici aussi, la fermeture de cette extrémité proximale 21b de l'embout de raccordement 15 est opérée par rapprochement des bords et brasage de ceux-ci.
Le canal de remplissage 19 communique avec la chambre d'alimentation 17 par l'intermédiaire d'un canal d'alimentation 22. Le canal d'alimentation 22 s'étend perpendiculairement au plan général PI de la première plaque de réservoir 10a, en étant formé par des ouvertures 22a, 22b communiquant entre elles et respectivement ménagées à travers le tube 15 et à travers l'assise 16. Les ouvertures 22a, 22b sont chacune composées de deux trous 23a, 23b et 24a, 24b adjacents. La pluralité de trous 23a, 23b et 24a, 24b formant respectivement les ouvertures 22a, 22b permet de mettre à profit les ouvertures 22a, 22b pour pré-positionner le tube 15 sur la première plaque de réservoir 10a, notamment pour empêcher une rotation du moyen 14 de remplissage pendant l'opération de brasage de l'échangeur de chaleur.
A cet effet sur le schéma (a) de la figure 4, les trous 23a, 23b sont chacun bordés par un collet 25a, 25b. Les collets 25a, 25b sont respectivement emboîtables à l'intérieur des trous 24a, 24b ménagés à travers le tube 15. Ainsi, le tube 15 est rigoureusement positionné contre l'assise 16 et maintenu en position par suite de son brasage sur la première plaque de réservoir 10a.
L'extrémité distale 21a du tube 15 est aplatie en générant un effort perpendiculaire au plan général PI de la première plaque de réservoir 10a. Perpendiculairement au plan général PI de la première plaque de réservoir 10a, les dimensions cumulées a, b respectivement de la chambre d'alimentation 17 et du tube 15, sont au plus égales à la dimension c d'une réserve 18 de PCM que comporte le réservoir 9. Ainsi, le tube 15 interposé entre la première plaque de réservoir 10a et le conduit 3a, ne fait pas obstacle à une apposition directe de la première plaque de réservoir 10a contre la troisième plaque de conduit 5a afin d'optimiser l'échange thermique entre eux.
Sur les schémas (a), (b) et (c) de la figure 4, le réservoir 15 est composé en tout et pour tout de trois éléments de réservoir 10a, 10b, 15 assemblés par brasage entre eux tel qu'illustré sur le schéma (c). Un premier élément de réservoir est formé par la première plaque de réservoir 10a, un deuxième élément de réservoir est formé par la deuxième plaque de réservoir 10b, celle-ci pouvant être une plaque de conduit, et un troisième élément de réservoir est formé par le tube 15 délimitant le canal de remplissage 19.
Successivement sur le schéma (a) puis sur le schéma (b), le tube 15 est positionné sur la première plaque de réservoir 10a en plaçant sa partie distale 15a contre l'assise 16. Les collets 25a, 25b bordant les trous 23a, 23b ménagés à travers l'assise 16 sont respectivement introduits à l'intérieur des trous 24a, 24b ménagés à travers le tube 15.
Ainsi tel qu'illustré sur le schéma (b), un empilement de plaques de conduits et de plaques de réservoir 10a, par exemple équipé du tube 15, peut être effectué.
Successivement sur le schéma (b) puis sur le schéma (c), l'ensemble composé du tube 15 pré-positionné contre la première plaque de réservoir 10a est rapporté puis brasé sur la deuxième plaque de réservoir 10b par l'intermédiaire du bord périphérique 13 de la première plaque de réservoir 10a. On remarquera que la deuxième plaque de réservoir 10b comporte un organe 26a qui partitionne le conduit 3b en deux passes.
L'intégration du réservoir 9 à l'échangeur de chaleur 1 est alors réalisée à partir du montage de la première plaque de conduit 6a constituant avantageusement la deuxième plaque de réservoir 10b.
Le réservoir 9 est placé en interposition entre deux conduits 3a, 3b de l'échangeur de chaleur 1 tel qu'illustré sur la figure 1. La première plaque de réservoir 10a est apposée en contact direct avec la troisième plaque de conduit 5a. On remarquera que la coque 11 comporte des reliefs 27 par l'intermédiaire desquels la première plaque de réservoir 10a prend appui contre la troisième plaque de conduit 5 a. De tels reliefs 27 ménagent à l'intérieur du réservoir 9 des alvéoles de réception du PCM réparties dans la réserve 18. Sur la figure 5, le remplissage du réservoir 9 est opéré après sa solidarisation à l'échangeur de chaleur 1. Le remplissage du réservoir 9 en PCM est réalisé par aspiration à partir d'une mise en dépression préalable du réservoir 9. A cet effet, tel qu'illustré sur le schéma (d), le réservoir 9 est raccordé à un circuit d'approvisionnement 20 en PCM par l'intermédiaire de l'embout de raccordement 15b du tube 15 et dont le débouché est ouvert sur l'extérieur.
Le circuit d'approvisionnement 20 comprend un circuit de dépressurisation 20a et un circuit de délivrance en PCM 20b, montés en parallèle sur le circuit d'approvisionnement 20 par l'intermédiaire d'une vanne 30. Le circuit de dépressurisation 20a comprend un appareil générateur de dépression 28 et le circuit de délivrance en PCM comprend une source de PCM 29. L'appareil générateur de dépression 28 et la source de PCM 29 sont montés en parallèle sur le circuit d'approvisionnement 20 en étant individuellement raccordés à la vanne 30. La vanne 30 est raccordable au tube 15 par l'intermédiaire de son embout de raccordement 15b à un circuit hydraulique, circuit d'approvisionnement 20 notamment. La vanne 30 permet de mettre le réservoir 9 sélectivement en communication avec l'appareil générateur de dépression 28 ou avec la source de PCM 29.
Ainsi, sur le schéma (e), le réservoir 9 est placé en communication avec l'appareil générateur de dépression 28 par l'intermédiaire de la vanne 30. L'air contenu dans le réservoir 9 est alors aspiré hors du réservoir 9 et est évacué à travers le circuit de dépressurisation 20a. Par suite, le réservoir 9 est dépressurisé, autrement dit mis au vide.
Sur le schéma (f), le réservoir 9 est ensuite placé en communication avec la source de PCM 29 par l'intermédiaire de la vanne 30 et du circuit de délivrance en PCM 20b. Par suite de la mise en dépression préalable du réservoir 9, le PCM est aspiré à travers le circuit d'approvisionnement 20 depuis la source de PCM 29 vers le réservoir 9 pour son remplissage. Ainsi, l'ensemble des alvéoles du réservoir 9 sont efficacement toutes comblées de PCM et l'efficacité de l'échange thermique entre le réservoir 9 et le flux d'air à refroidir en est améliorée. Sur le schéma (g), le raccordement du tube 15 avec le circuit d'approvisionnement 20 en PCM est rompu et l'extrémité proximale 21b de l'embout de raccordement 15b ménageant la bouche 21c est obturée. Cette obturation est par exemple réalisée, tel qu'illustré, par déformation de ses bords, notamment rapprochement de ceux-ci, et brasage entre eux.
Le matériau à changement de phase utilisé pour remplir le réservoir 9 est à base de paraffine ou peut être encore à base d'un ester d'acide gras saturés dérivé de graisses animales ou végétales.

Claims

REVENDICATIONS
1. Réservoir (9) de matériau à changement de phase pour un échangeur de chaleur (1) d'une installation de conditionnement d'air d'un véhicule, le réservoir (9) étant ménagé entre deux plaques de réservoir (10a, 10b) et étant pourvu d'un moyen (14) de remplissage, caractérisé en ce que le moyen (14) de remplissage comprend au moins un tube (15) délimitant un canal de remplissage (19) disposé à l'extérieur du réservoir (9) contre une première (10a) des plaques de réservoir (9).
2. Réservoir (9) selon la revendication 1, comprenant un canal d'alimentation (22) reliant le canal de remplissage (19) à un volume intérieur du réservoir (9) délimité par les deux plaques de réservoir (10a, 10b).
3. Réservoir (9) selon la revendication 2, dans lequel le canal de remplissage (19) s'étend dans un plan principal orienté parallèlement à un plan général (PI) des plaques de réservoir (10a, 10b), et en ce que le canal d'alimentation (22) s'étend selon un axe orienté transversalement au plan général (PI) des plaques de réservoir (10a, 10b).
4. Réservoir (9) selon l'une quelconque des revendications 2 ou 3, dans lequel le canal d'alimentation (22) est formé par des ouvertures (22a, 22b) communiquant entre elles et ménagées respectivement à travers le tube (15) et à travers la première plaque de réservoir (10a).
5. Réservoir (9) selon la revendication 4, dans lequel est prévu un moyen de positionnement du tube (15) sur la première plaque de réservoir (10a).
6. Réservoir (9) selon la revendication 5, dans lequel le moyen de positionnement est formé par au moins un collet (23a, 23b) bordant au moins une première ouverture (22b) et emboîté à l'intérieur d'une deuxième ouverture (22a).
7. Réservoir (9) selon la revendication 6, caractérisé en ce que le collet (23a, 23b) est ménagé en saillie de la première plaque de réservoir (10a) vers l'extérieur du réservoir (9).
8. Réservoir (9) selon l'une quelconque des revendications 5 à 7, dans lequel le moyen de positionnement est configuré pour qu'un axe longitudinal du canal de remplissage (19) soit transversal à un axe longitudinal des plaques de réservoirs (10a, 10b).
9. Réservoir (9) selon l'une quelconque des revendications 2 à 8, caractérisé en ce que le tube (15) est rapporté contre une assise (16) ménagée à la face extérieure de la première plaque de réservoir (10a).
10. Réservoir (9) selon la revendication 9, caractérisé en ce que l'assise (16) délimite une chambre d'alimentation (17) du réservoir (9) depuis le canal d'alimentation (22) vers une réserve (18) s'étendant en prolongement de la chambre d'alimentation (17) suivant un plan d'extension longitudinal de la première plaque de réservoir (10a).
11. Réservoir (9) selon la revendication 10, dans lequel, suivant une direction perpendiculaire au plan général (PI) de la première plaque de réservoir (10a), des dimensions cumulées (a, b) de la chambre d'alimentation (17) et du tube (15) sont au plus égales à une dimension (c) de la réserve (18).
12. Réservoir (9) selon l'une quelconque des revendications 1 à 11, dans lequel le moyen (14) de remplissage comprend au moins un embout de raccordement (15b) qui s'étend au-delà d'une dimension transversale des plaques de réservoir (10a, 10b) et qui est configuré pour mettre en communication le canal de remplissage (19) avec un circuit extérieur d'approvisionnement (20) du réservoir (9) en matériau à changement de phase.
13. Réservoir (9) selon la revendication 12, dans lequel une extrémité distale (21a) du canal de remplissage (19) est fermée par déformation de ses bords et en ce qu'une extrémité proximale (21b) de l'embout de raccordement (15b) est fermée indifféremment par apport d'un bouchon ou par déformation de ses bords.
14. Réservoir (9) selon l'une quelconque des revendications précédentes, caractérisé en ce que la première plaque de réservoir (10a) est agencée en coque (11) ouverte sur la deuxième plaque de réservoir (10b), la coque (11) délimitant le volume du réservoir (9) et étant scellée par son bord périphérique (13) entourant le volume du réservoir (9) à la deuxième plaque de réservoir (10b).
15. Echangeur de chaleur (1) d'une installation de conditionnement d'air d'un véhicule, muni d'au moins un réservoir (9) conforme à l'une quelconque des revendications précédentes.
16. Echangeur de chaleur (1) selon la revendication 15, comprenant au moins un conduit (3b) de circulation de fluide délimité par au moins une première plaque de conduit (6a) et par une deuxième plaque de conduit (6b), dans lequel la deuxième plaque de réservoir (10b) est l'une des plaques de conduit (6a, 6b).
17. Echangeur de chaleur (1) selon l'une quelconque des revendications 15 ou 16, caractérisé en ce que la première plaque de réservoir (10a) est reliée thermiquement à un deuxième conduit (3a) délimité par une troisième plaque de conduit (5a) et par une quatrième plaque de conduit (5b) adjacente.
18. Echangeur de chaleur selon la revendication 15, comprenant au moins un premier conduit (3b) de circulation de fluide délimité par au moins une première plaque de conduit (6a) et par une deuxième plaque de conduit (6b), ainsi qu'un deuxième conduit (3a) délimité par une troisième plaque de conduit (5a) et par une quatrième plaque de conduit
(5b), et dans lequel la deuxième plaque de réservoir (10b) est distincte de l'une quelconque des plaques de conduits (5a, 5b, 6a, 6b).
19. Procédé de remplissage d'un réservoir (9) conforme à l'une quelconque des revendications 1 à 14 ou intégré à un échangeur de chaleur (1) conforme à l'une quelconque des revendications 15 à 18, caractérisé en ce que le remplissage du réservoir (9) est opéré par aspiration du matériau à changement de phase depuis le réservoir (9), par suite d'une mise en dépression du réservoir (9).
20. Procédé de remplissage d'un réservoir (9) selon la revendication 19, caractérisé en ce qu'il comprend les opérations suivantes :
-) raccorder le moyen (14) de remplissage à un appareil générateur de dépression (28),
-) mettre en dépression le réservoir (9) par aspiration de l'air qu'il contient à travers le canal d'alimentation (22) et le canal de remplissage (19),
-) placer le tube (15) en communication avec une source de matériau à changement de phase (29), en provoquant par aspiration le remplissage du réservoir (9) depuis la source de matériau à changement de phase (29), sous l'effet de sa mise en dépression,
-) obturer une extrémité proximale (21b) d'un embout de raccordement (15b).
EP17709159.2A 2016-03-01 2017-02-17 Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile Active EP3423770B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1600339A FR3048495B1 (fr) 2016-03-01 2016-03-01 Reservoir de materiau a changement de phase muni d'un tube de remplissage dudit reservoir, pour un echangeur de chaleur d'une installation de conditionnement d'air d'un vehicule automobile
PCT/FR2017/050358 WO2017149218A1 (fr) 2016-03-01 2017-02-17 Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile

Publications (2)

Publication Number Publication Date
EP3423770A1 true EP3423770A1 (fr) 2019-01-09
EP3423770B1 EP3423770B1 (fr) 2021-05-12

Family

ID=56137395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17709159.2A Active EP3423770B1 (fr) 2016-03-01 2017-02-17 Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile

Country Status (6)

Country Link
US (1) US10859296B2 (fr)
EP (1) EP3423770B1 (fr)
JP (1) JP6816160B2 (fr)
CN (1) CN108885064B (fr)
FR (1) FR3048495B1 (fr)
WO (1) WO2017149218A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068121B1 (fr) * 2017-06-22 2019-09-13 Valeo Systemes Thermiques Echangeur de chaleur a reservoir de materiau a changement de phase comprenant une languette de maintien et d'obturation d'un tube de remplissage
FR3079290B1 (fr) * 2018-03-21 2020-05-22 Valeo Systemes Thermiques Echangeur thermique a reservoir(s) de materiau a changement de phase comprenant un ou plusieurs organes de remplissage
FR3086044B1 (fr) * 2018-09-13 2020-08-21 Valeo Systemes Thermiques Echangeur de chaleur a reservoir de materiau a changement de phase
FR3086043B1 (fr) * 2018-09-13 2020-12-04 Valeo Systemes Thermiques Echangeur de chaleur a reservoir de materiau a changement de phase et procede de fabrication
FR3086045B1 (fr) * 2018-09-13 2020-08-07 Valeo Systemes Thermiques Echangeur de chaleur a reservoir de materiau a changement de phase et procede de fabrication associe
EP3628954B1 (fr) * 2019-09-11 2022-01-12 Valeo Systemes Thermiques-THS Échangeur de chaleur à réservoir de matériau à changement de phase et procédé de fabrication associé
CN113653567B (zh) * 2021-09-15 2022-05-24 沈阳飞机设计研究所扬州协同创新研究院有限公司 一种基于相变材料的冲压发动机舱室热调控方法及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674602A (ja) * 1992-08-31 1994-03-18 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP3021205B2 (ja) * 1992-08-31 2000-03-15 三菱重工業株式会社 熱交換器用ヘッダ
JP5525726B2 (ja) * 2008-12-26 2014-06-18 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
US9581369B2 (en) * 2009-06-10 2017-02-28 Mahle International Gmbh Evaporator with phase change material
JP2011242098A (ja) * 2010-05-21 2011-12-01 Showa Denko Kk 蓄冷機能付きエバポレータ
JP6073561B2 (ja) 2012-02-23 2017-02-01 サンデンホールディングス株式会社 蓄冷熱交換器
JP5891102B2 (ja) * 2012-04-27 2016-03-22 株式会社ケーヒン・サーマル・テクノロジー 蓄熱機能付き熱交換器およびその製造方法
JP2014124971A (ja) * 2012-12-25 2014-07-07 Keihin Thermal Technology Corp 蓄冷機能付きエバポレータ
US9746245B2 (en) * 2013-01-25 2017-08-29 Hanon Systems Heat exchanger equipped with cold reserving part and manufacturing method thereof
FR3007514B1 (fr) * 2013-06-20 2017-12-15 Valeo Systemes Thermiques Tube a reservoir de materiau a changement de phases pour faisceau d'echange de chaleur, notamment pour un evaporateur d'un circuit de climatisation d'un vehicule
JP6115896B2 (ja) * 2013-06-26 2017-04-19 サンデンホールディングス株式会社 蓄冷材容器
FR3014183B1 (fr) 2013-11-29 2019-05-17 Valeo Systemes Thermiques Echangeur thermique notamment pour vehicule automobile, procede de fabrication correspondant, et utilisation d'un materiau a changement de phase associee

Also Published As

Publication number Publication date
CN108885064A (zh) 2018-11-23
CN108885064B (zh) 2020-08-11
FR3048495B1 (fr) 2019-10-25
US10859296B2 (en) 2020-12-08
EP3423770B1 (fr) 2021-05-12
FR3048495A1 (fr) 2017-09-08
WO2017149218A1 (fr) 2017-09-08
US20190072304A1 (en) 2019-03-07
JP2019507053A (ja) 2019-03-14
JP6816160B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
EP3423770B1 (fr) Reservoir de matériau a changement de phase muni d'un tube de remplissage dudit réservoir, pour un échangeur de chaleur d'une installation de conditionnement d'air d'un véhicule automobile
WO2014202523A1 (fr) Tube a reservoir de materiau a changement de phases pour faisceau d'echange de chaleur, notamment pour un evaporateur d'un circuit de climatisation d'un vehicule
FR2973106A1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
WO2016083479A1 (fr) Echangeur de chaleur avec étanchéité renforcée
EP3099994B1 (fr) Echangeur de chaleur pour véhicule automobile
FR3068773B1 (fr) Dispositif de regulation thermique de modules de batterie
WO2012062712A1 (fr) Echangeur de chaleur pour dispositif de stockage d'energie electrique
FR3061951B1 (fr) Dispositif de distribution d'un fluide refrigerant a l'interieur d'une boite collectrice d'un echangeur thermique.
WO2014095580A1 (fr) Echangeur de chaleur entre un liquide caloporteur et un fluide refrigerant, notamment pour vehicule automobile
EP1676088A2 (fr) Element de circuit pour changeur de chaleur , et changeur de chaleur ainsi obtenu
EP2649283A1 (fr) Dispositif de canalisation d'un flux de gaz d'alimentation d'un moteur à combustion interne
WO2018100304A1 (fr) Dispositif de distribution d'un fluide réfrigérant à l'intérieur d'une boîte collectrice d'un échangeur thermique
EP3707772B1 (fr) Élément de refroidissement d'un dispositif de stockage électrique pour véhicule automobile
EP3628954B1 (fr) Échangeur de chaleur à réservoir de matériau à changement de phase et procédé de fabrication associé
EP3663695B1 (fr) Collecteur constitutif d'un echangeur de chaleur
WO2024028091A1 (fr) Dispositif de regulation thermique, notamment de refroidissement pour vehicule automobile
WO2020160885A1 (fr) Agencement d'un compartiment moteur d'un véhicule automobile
WO2023274722A1 (fr) Echangeur thermique pour véhicule automobile
EP2072936B1 (fr) Echangeur de chaleur unitaire pour un circuit de climatisation
FR3099567A1 (fr) Echangeur de chaleur et système d’échange thermique associé pour véhicule
FR3104893A1 (fr) « Dispositif de régulation thermique d’au moins un composant électrique »
FR3079290A1 (fr) Echangeur thermique a reservoir(s) de materiau a changement de phase comprenant un ou plusieurs organes de remplissage
FR3086045A1 (fr) Echangeur de chaleur a reservoir de materiau a changement de phase et procede de fabrication associe
FR2972524A1 (fr) Echangeur de chaleur et procede de fabrication d'un tel echangeur.
FR2923901A1 (fr) Dispositif d'echange de chaleur a stockage de frigories

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200507

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017038487

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1392453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210512

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017038487

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230227

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 8