EP3418352B1 - Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle - Google Patents

Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle Download PDF

Info

Publication number
EP3418352B1
EP3418352B1 EP17176937.5A EP17176937A EP3418352B1 EP 3418352 B1 EP3418352 B1 EP 3418352B1 EP 17176937 A EP17176937 A EP 17176937A EP 3418352 B1 EP3418352 B1 EP 3418352B1
Authority
EP
European Patent Office
Prior art keywords
boiler
inert gas
liquefaction chamber
line
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17176937.5A
Other languages
English (en)
French (fr)
Other versions
EP3418352A1 (de
Inventor
Gerhard Seewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intervalve Research And Development GmbH
Original Assignee
Intervalve Research And Development GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intervalve Research And Development GmbH filed Critical Intervalve Research And Development GmbH
Priority to EP17176937.5A priority Critical patent/EP3418352B1/de
Publication of EP3418352A1 publication Critical patent/EP3418352A1/de
Application granted granted Critical
Publication of EP3418352B1 publication Critical patent/EP3418352B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the process according to the invention serves to incorporate viscosity index improvers (VIV) into suitable base oils. Furthermore, arrangements for carrying out the method are claimed.
  • VIV viscosity index improvers
  • Viscosity index improvers made of high molecular weight polymers are generally present as granules, highlypaste polymer bales (mixed with a few percent by mass of a base oil) or as a highly viscous, but flowable fluid (mixed with a higher mass percentage of a base oil).
  • VI improvers are polyisobutylenes, polymethacrylates (PMA) and olefin copolymers (OCP), in particular olefinic ethylene-propylene copolymers.
  • the aim of the incorporation of VIV into base oils is to reduce the viscosity drop in mixtures when the temperature increases. This is achieved by the macromolecules being present as balls at low temperatures, which develop more and more at higher temperatures. Intermolecular interactions in the vicinity of the elongated macromolecules maintain the viscous properties there.
  • the resulting lubricant mixtures can thus be used over wide temperature ranges (multigrade oils) and ensure the required lubricant film thickness even at higher temperatures.
  • suitable amounts of VIV and base oil eg, 10 wt% VIV and 90 wt% base oil, with the VIV possibly broken up
  • VIV and base oil eg, 10 wt% VIV and 90 wt% base oil, with the VIV possibly broken up
  • temperatures above 130 ° C may be required.
  • the value of the process temperature is left little room for maneuver, because at too low temperatures, no completely homogeneous mixture is formed, or at too high temperatures, the base oil content is damaged.
  • mechanical mixing by means of stirrers improves.
  • the temperatures during the mixing process should be chosen to avoid significant thermal decomposition or undesired chemical reactions.
  • DE 2932459 C2 presents a method and an apparatus for mixing VIV as a granulate or as a powder in base oil.
  • the wall is constantly flushed with base oil, the VIV granulate or VIV powder weighed into it and fed the forming VIV base oil mixture in a loop of a colloid mill recycled , Due to the cyclic grinding process, the VIV content in the base oil is better pre-dissolved and the time for the mixing process, which is followed by another agitator tank, is significantly reduced.
  • this method is unsuitable for high paste viscosity improvers in bale form.
  • CN 205127860 U discloses a processing of base oils with a VIV already liquefied in advance by a base oil mixture.
  • a partial flow of the base oil and the liquefied and therefore also pumpable VIV is introduced separately into a first boiler and mixed with a stirrer.
  • the thus enriched with VIV premix is then over a mixer line in a second boiler combined with another partial stream of base oil, mixed with another agitator and so diluted to the final mixture.
  • a protective gas is used for overpressure.
  • the individual components, the pre- and the final mixture have sufficiently low viscosity, so that the mixing process takes place at moderate temperatures.
  • the number of revolutions of the agitator motors are sufficiently low that no aging processes with regard to temperature or shear occur.
  • this method fails with not yet liquefied, highly pasty VIV in bale shape.
  • additives such as corrosion inhibitors, friction modifiers, antioxidants, etc.
  • additives such as corrosion inhibitors, friction modifiers, antioxidants, etc.
  • the oil additives are placed in a suitable container using a dry inert atmosphere, with stirring and at slightly elevated temperatures (at about 40 ° C - 60 ° C and preferably not higher than about 40 ° C) Base oil introduced. In this way, the oil additives dissolve more easily in the oil and the lubricant is more homogeneous.
  • VIV liquefaction of highly-viscous polymer bales and granules has reportedly commonly used a high-speed shredder or high-speed agitator for liquids to shorten the mixing process between VIV and base oil by rapidly increasing the interfacial area.
  • a protective gas atmosphere nitrogen or carbon dioxide
  • the object of the invention is to develop a process for the incorporation of viscosity index improvers, which are present as a high-paste polymer bales, in base oils. This makes it possible to carry out the mixing operations in such a way that further processing of the mixtures can follow immediately. It is also an object of the invention to develop an arrangement for carrying out the method.
  • the inventive method allows in a liquefaction chamber mixing a batch of at least 70 wt% viscosity index improver and at most 30 wt% base oil by introducing heat under inert gas at overpressure and by a fluidic circulation of the liquid components in a secondary circuit. Thereafter, the admixing of the resulting dissolved concentrate into a main stream of base oil of suitable mass corresponding to a target mixture. Liquefaction of highly viscous viscosity index improvers tends to be far more difficult as the viscosity of high viscosity VIV is several orders of magnitude higher than for VIV already liquefied with base oil.
  • the dissolved concentrate (m 1 ) consists of at least 70 wt% viscosity index improver and at most 30 wt% base oil.
  • What is essential is a combination of low-shear liquefaction by means of controlled, controllable heating of the substances and of a suitable protective gas, such as, for example, nitrogen or butane or carbon dioxide.
  • a suitable protective gas such as, for example, nitrogen or butane or carbon dioxide.
  • the temperature is chosen between 90 ° C and 100 ° C and the defined overpressure in the liquefaction chamber is chosen between 100 mbar and 50 bar to prevent outgassing during the mixing of viscosity index improver in the base oil.
  • the overpressure is preferably chosen to be less than 24 bar, more preferably the overpressure is less than 10 bar.
  • the defined overpressure prevents outgassing during the mixing of viscosity index improvers in base oil and minimizes the solubility time.
  • the pressure in the boiler is less than or equal to half the pressure in the liquefaction chamber in this embodiment.
  • the arrangement according to the invention for carrying out the method for incorporating viscosity index improvers into base oils for the production of a target mixture consists of a boiler for a base oil and a liquefaction chamber for a viscosity index improver.
  • a main circuit and a secondary circuit for a separate conditioning of mixing partners of the target mixture are arranged.
  • the main circuit is arranged for priming and conditioning with base oil and the secondary circuit for liquefaction and conditioning with a viscosity index improver and base oil concentrate.
  • the main circuit connects the boiler, at least one pump, at least one heater, and a plurality of static mixers in series via a main line.
  • the liquefaction chamber is connected via a branch line to the main circuit and via a secondary line to the secondary circuit, which leads via a pump back into the liquefaction chamber.
  • a first Suction device is connected to the liquefaction chamber and a second suction device to the boiler, wherein the suction devices are operated by a common vacuum pump.
  • a first protective gas supply is connected to the liquefaction chamber and a second protective gas supply to the boiler, wherein the protective gas feeds are connected to a common inert gas pressure vessel.
  • the first suction device of the liquefaction chamber is defined by the vacuum pump, a suction line, a three-way cock and a connection to the liquefaction chamber and the second suction device of the boiler is defined by the vacuum pump, another suction line, a three-way tap and a connection to the boiler.
  • the pumps of the arrangement are low-shear rotary lobe pumps in this embodiment; other possible pumps are not excluded.
  • the heater is in this embodiment a Einschraubsheddingelasticity, with other heaters are conceivable.
  • the main line in the boiler ends in a dive with freely rotatable tail.
  • the main pipe in the boiler ends in a mixing nozzle.
  • the stub line below the liquefaction chamber opens into the main line and into a Venturi nozzle, which is located near the point of connection to the main line in the branch line.
  • a melting grid is arranged, wherein the secondary line above it opens into the liquefaction chamber.
  • the main pipe, the secondary pipe, the sting pipe and the boiler are thermally insulated.
  • inert gases in particular nitrogen
  • solubility temperature for the mixture of viscosity index improvers with base oils is lowered.
  • the output temperatures of the mixing partners can be reduced and saved about 50% to 60% of the electrical energy for the thermal conditioning of the substances.
  • inert gas at lower pressure and lower temperature the otherwise observed outgassing of ethylene and propylene, which are components of VIV based on olefinic copolymers, are avoided, thus maintaining miscibility with base oil.
  • shielding gases including the conditioning of the base oil, avoids aging processes such as oxidation and hydrolysis in the mixing partners.
  • FIG. 1 shows a diagram in which the dependence of the solubility temperature ⁇ L of a mixture of x wt% of a viscosity index improver (OCP base) and 100 wt% on olefin based - x wt% of a base oil at varying VIV fraction under atmospheric conditions in Warming cabinet (course with circles and Strichticianlinienzug) and under N 2 atmosphere and with overpressure (with approx. 5 bar with star, with approx. 9 bar with diamond marked) is represented.
  • OCP base viscosity index improver
  • the solubility temperature ⁇ L was 145 ° C, for mixtures with a VIV fraction above 20 wt%, the solubility temperature ⁇ L was 185 ° C ( FIG. 1 , Gradient with circles and dash-dot line).
  • FIG. 2 The arrangement according to the invention ( FIG. 2 ) for incorporation of viscosity index improvers into suitable base oils prevents these side effects.
  • FIG. 3 Another embodiment is shown in FIG. 3 shown.
  • the low-shear, without participation of oxygen and moisture functioning mixing plant consists of a main circuit I and a secondary circuit II for the separate conditioning of the mixing partners.
  • the arrangement consists of a boiler 7, which can be opened under atmospheric conditions and is first filled with the base oil.
  • a pump 10 for example, a low-shear rotary lobe pump, and a heater 9, for example, a screw-in, arranged.
  • static mixers 11 which support the mixing process.
  • About the main line 14 of the main circuit I is led by the boiler 7 via the pump 10 back to the boiler 7.
  • the main line 14 terminates in the boiler 7 in a dip tube 12 with freely rotatable tail to support the distribution of the incoming fluid into the boiler 7.
  • the rotatably mounted end of the dip nozzle 12 is rotated by the inflow into the boiler 7 in rotation and realized a Spiral mixing of the mixture flowing from the main line with the liquid in the boiler 7.
  • Via a sting line 16 is an interference of a dissolved concentrate m 1 , at least 70 wt% viscosity index improver and at most 30 wt% base oil, from the secondary circuit II in the Base oil, which flows through the main line 14 of the main circuit I.
  • a liquefaction chamber 1, which serves the liquefaction of VIV bales, is connected at its lower end via the stub line 16, in which a Venturi nozzle 6 is arranged, and via a shut-off and metering valve 5 to the main line 14.
  • a secondary line 15 branches off below the liquefaction chamber 1 from the branch line 16 and leads over a further pump 4, which is also a rotary piston pump in this embodiment, back into the liquefaction chamber 1 above a melting grate 3, which is arranged in the liquefaction chamber 1.
  • the sub-line 15 forms together with the branch line 16 the secondary circuit II (bordered with a dashed line).
  • the arrows on main line 14, sub-line 15 and stub line 16, horizontal and vertical, indicate the flow direction of the fluids in main circuit I and secondary circuit II. All pipe sections and the boiler 7 are thermally insulated.
  • the liquefaction of VIV bales in the liquefaction chamber 1 takes place by heating on a melting grid 3.
  • the melting grid 3 has a grid support with a triangular cross-section and serves for inhomogeneous temperature field generation, whereby the concentrate m 1 is heated to an average temperature T m1 during the conditioning phase.
  • the melt grid 3, with the VIV bales applied is constantly flushed with the introduced base oil.
  • the pump 4 provides for a circulation of the liquid components in the liquefaction of the concentrate m 1 in the secondary circuit II.
  • the first protective gas supply 8a of the liquefaction chamber 1 takes place via an inert gas pressure container 81, a protective gas line 821 and a protective gas line 823, a metering valve 822, the three-way valve 23 and the connection to the liquefaction chamber 1.
  • the second protective gas supply 8b of the boiler 7 takes place via the protective gas pressure container 81, a Inert gas line 831 and a protective gas line 833, a metering valve 832, the three-way valve 25 and the connection to the boiler 7.
  • the arrows, horizontal and vertical, indicate the flow direction of the protective gas in the suction and filling mode.
  • the liquefaction chamber 1 is thus connected to the shielding gas pressure vessel 81 via the suction device 2a and the protective gas supply 8a and the boiler 7 via the suction device 2b and protective gas supply 8b.
  • the suction devices 2a, 2b and the protective gas supplies 8a, 8b are used in addition to the protective gas purging and protective gas filling the gas space of the liquefaction chamber 1 and the boiler 7 and the setting of a suitable, defined overpressure, the overpressure in the liquefaction chamber 1 is designated by p m1 and the overpressure in the boiler 7 with p 2 .
  • the shut-off and metering valve 5 of the secondary circuit II remains closed during filling and during the conditioning phase and is only opened during the mixing process between the concentrate m 1 and the base oil in such a way that the partial flow of the concentrate m 1 from the secondary circuit II to the main flow of the base oil from the main circuit I at most stoichiometrically, according to the target mixture m 2 , is set.
  • a veturizing nozzle 6 is arranged near the connection point to the main line 14.
  • Veturidüse 6 is for mixing the concentrate m 1 from the secondary circuit II in the base oil, which flows through the main circuit I, at the point of Meeting the stitch line 16 with the main line 14 of the partial flow of the secondary circuit II sucked into the partial flow of the main circuit I.
  • a Einschraubdistributing Moment 9 is arranged for heating the base oil to an average temperature T 2 of 60 ° C to 90 ° C during the conditioning phase.
  • a sight glass In the branch line 16, between the liquefaction chamber 1 and the branch to the sub-line 15 is a sight glass and in the liquefaction chamber 1 itself, a sight glass is also arranged. Both sight glasses are used to control the Schlieren freedom of the concentrate m 1 and the control of mass transport from the liquefaction chamber. 1
  • FIG. 3 shows the inventive device for incorporation of viscosity index improvers in suitable base oils in another embodiment.
  • the dip tube 12 is replaced by a mixing nozzle 13.
  • the flowing from the main line 14 via the mixing nozzle 13 in the boiler 7 liquid simultaneously sucks through lateral openings of the mixing nozzle 13, according to the ejector principle, liquid from the boiler 7 in the mixing nozzle 13 and mixes both liquid streams in the mixing nozzle 13th to a liquid free jet, which emerges from the mixing nozzle 13 below the liquid level in the boiler 7.
  • the liquefaction chamber 1 shut off from the main circuit I becomes at least 70 wt% viscosity index improver and at most 30 wt% base oil with a suitable mass of base oil and a suitable number of 25 kg bales of the viscosity index improver according to the composition of the desired concentrate ml (macromolecular copolymers) under atmospheric conditions and laboratory temperature equipped and sealed.
  • a rough vacuum is generated in the gas space of the liquefaction chamber 1 via the suction device 2a.
  • the gas space of the liquefaction chamber 1 is filled with inert gas via the protective gas supply 8a. This process of inert gas purging is repeated several times.
  • the overpressure p m1 in the liquefaction chamber 1 can be between 100 mbar and 50 bar.
  • the overpressure p m1 is preferably less than 24 bar, in which case it is less than 10 bar in the specific case.
  • the conditioning phase more and more liquefied constituents dissolve out of the VIV bales until the batch is present as concentrate m 1 at a temperature T m1 above the solubility temperature (for example about 100 ° C. or 337 K at 9 bar overpressure).
  • T m1 above the solubility temperature (for example about 100 ° C. or 337 K at 9 bar overpressure).
  • the built-in sight glasses made of borosilicate glass are provided.
  • a mass of base oil suitable for the target mixture m 2 at room temperature is filled into the vessel 7.
  • a coarse vacuum is also generated several times alternately by means of the suction device 2b and then filled with inert gas via the protective gas supply 8b.
  • the gas space of the boiler 7 is filled with protective gas up to an overpressure p 2 of p 2 ⁇ p m1 .
  • the base oil is pumped by the pump 10 through the main circuit I and temperature controlled by a heater 9 to the temperature T 2 (of approx. 90 ° C or 363 K).
  • the base oil from the boiler 7 passes through the static mixer 11 introduced at regular intervals in the main line 14 of the main circuit I and finally reaches the boiler 7 via the dip tube 12.
  • the protective gas While in the liquefaction chamber 1 of the secondary circuit II, the protective gas is used with an overpressure p m1 , takes place in the boiler 7 of the main circuit II, the application of the inert gas with a lower pressure p 2 .
  • the static pressure difference p m1 - p 2 is essentially distributed as a fluid-mechanical energy loss via the static mixer 11 mounted in the main circuit I at regular intervals.
  • the static mixers 11 mounted in the main line 14 ensure a shallow mixing of the fluid flow by generating swirl and transverse components in the velocity field. Shear-induced aging processes are avoided.
  • both mixing partners concentrate m 1 in the liquefaction chamber 1 of the secondary circuit II and base oil in the boiler 7 of the main circuit I
  • the shut-off and metering valve 5 of the liquefaction chamber 1 is opened, so that the partial flow of the concentrate is brought together in a suitable manner with the main flow of the base oil via the Venturi nozzle 6.
  • the pressure p m1 in the liquefaction chamber 1, the pressure p 2 ( p m1 > p 2 ) in the boiler 7 and the delivery pressure p P of the pump 10 in the main circuit I, before the confluence of the partial flows, are selected such that, on the one hand Outflow of the concentrate m 1 is ensured from the liquefaction chamber 1, and on the other hand, the pressure difference p m1 - p 2 is realized via the pressure drop of the total flow at a mixing temperature T m via the static mixer 11.
  • the volume flows V ⁇ 2 , V ⁇ m are to be measured before and after the confluence.
  • the system is carefully returned to normal pressure, but without Oxygen supply. Due to the significantly lower viscosity of the target mixture m 2 at the mixture temperature T m over the concentrate, the degassing of the additional inert gas succeeds within a very short time.
  • a rough vacuum can optionally be applied (eg p 2 ⁇ - 0.5 bar).
  • the suction device 2b can be used.
  • the mixing operations are carried out at a temperature (about 100 ° C) at which a further processing of the mixtures can follow immediately, without having to dissipate excess heat energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Das erfindungsgemäße Verfahren dient der Einmischung von Viskositätsindex-Verbesserern (VIV) in geeignete Grundöle. Es werden außerdem Anordnungen zur Durchführung des Verfahrens beansprucht.
  • Sogenannte Viskositätsindex-Verbesserer (VIV) aus hochmolekularen Polymeren liegen in der Regel als Granulat, hochpastöse Polymerballen (mit wenigen Masseprozenten eines Grundöls gemischt) oder als hochviskoses, aber fließfähiges Fluid (mit höherem Masseprozentanteil eines Grundöls gemischt) vor. Als typische VI-Verbesserer gelten beispielsweise Polyisobutylene, Polymethacrylate (PMA) und Olefincopolymere (OCP), insbesondere olefine Ethylen-Propylen-Copolymere.
  • Zielstellung der Einmischung von VIV in Grundöle ist es, den Viskositätsabfall in Mischungen bei Temperaturerhöhung zu verringern. Dies gelingt, indem die Makromoleküle bei niedrigen Temperaturen als Knäuel vorliegen, die sich bei höheren Temperaturen mehr und mehr entfalten. Zwischenmolekulare Wechselwirkungen in der Umgebung der langgestreckten Makromoleküle halten dort die viskosen Eigenschaften aufrecht. Die entstandenen Schmierstoffgemische lassen sich so über weite Temperaturbereiche einsetzen (Mehrbereichsöle) und gewährleisten auch bei höheren Temperaturen die nötige Schmierfilmdicke.
  • Im Allgemeinen werden, entsprechend der Zielmischung, geeignete Mengen von VIV und Grundöl (z.B. 10 wt% VIV und 90 wt% Grundöl, wobei der VIV ggf. zerkleinert wird) in einen hinreichend großen Behälter mit eingebautem Rührwerk zusammengegeben, hinreichend erwärmt und unter Umgebungsdruck und unter Anwesenheit von Sauerstoff hinreichend lange durchmischt. In Abhängigkeit von den jeweiligen Mischungspartnern können Temperaturen oberhalb von 130°C erforderlich werden. In der Literatur wird dem Wert der Prozesstemperatur nur wenig Spielraum gelassen, da bei zu geringen Temperaturen keine vollständig homogene Mischung entsteht, oder bei zu hohen Temperaturen der Grundölanteil geschädigt wird. Es ist hilfreich, die hochviskosen Komponenten noch vor dem Einleiten in das Mischgefäß auf eine geeignete Temperatur zu erhitzen, um ihre Fließfähigkeit zu erhöhen. Entsprechend der abgesenkten Viskosität verbessert sich eine mechanische Durchmischung mittels Rührwerke. Die Temperaturen während des Mischvorgangs sollten so gewählt werden, dass eine wesentliche thermische Zersetzung oder unerwünschte chemische Reaktionen vermieden werden.
  • DE 2932459 C2 stellt ein Verfahren und eine Vorrichtung zur Einmischung von VIV als Granulat bzw. als Pulver in Grundöl vor. Hier wird, gegenüber der herkömmlichen Weise, in einem als Eingabeschleuse ausgebildeten Dosiertrichter, dessen Wandung ständig mit Grundöl überspült wird, das VIV-Granulat bzw. VIV-Pulver abgewogen hineingegeben und die sich ausbildende VIV-Grundöl-Mischung in einem Umlauf einer Kolloidmühle wiederkehrend zugeführt. Durch den zyklischen Mahlvorgang wird der VIV-Anteil im Grundöl besser vorgelöst und die Zeit für den Mischprozess, der sich in einem weiteren Rührwerksbehälter anschließt, deutlich reduziert. Dieses Verfahren ist jedoch für hochpastöse Viskositätsindex-Verbesserer in Ballenform ungeeignet.
  • CN 205127860 U offenbart einen Verarbeitungsprozess von Grundölen mit einem, vorab durch eine Grundöleinmischung, bereits verflüssigten VIV. Zunächst wird ein Teilstrom des Grundöls und der verflüssigte und deshalb ebenfalls pumpfähige VIV in einen ersten Kessel separat eingeleitet und mit einem Rührwerk vermischt. Das so mit VIV angereicherte Vorgemisch wird danach über eine Mischerstrecke in einen zweiten Kessel mit einem weiteren Teilstrom von Grundöl zusammengeführt, mit einem weiteren Rührwerk vermischt und so auf das Endgemisch verdünnt. Bei dem hier dargestellten Blending-Prozess kommt ein Schutzgas bei Überdruck zum Einsatz. Die einzelnen Komponenten, das Vor- und das Endgemisch haben hinreichend niedrige Viskosität, sodass der Mischprozess bei moderaten Temperaturen abläuft. Die Umdrehungszahlen der Rührwerksmotoren sind hinreichend niedrig, sodass keine Alterungsprozesse hinsichtlich Temperatur oder Scherung auftreten. Dieses Verfahren versagt allerdings bei noch nicht verflüssigten, hochpastösen VIV in Ballenform.
  • Im Anschluss an die Beimischung eines bereits verflüssigten VIV in Grundöl werden in der Regel weitere Zusätze (Additive, wie etwa Korrosionsinhibitoren, Reibungsminderer, Antioxidantien, etc.) in das Gemisch hinzugegeben, um die Schmiermitteleigenschaften deutlich zu verbessern. In EP 519760 B1 werden beispielhaft solche Öl-Zusätze und Schmiermittel mit verbesserten Eigenschaften offenbart. Bei der Herstellung der Schmiermittelzusammensetzungen werden die Öl-Zusätze in einem geeigneten Behälter unter Verwendung einer trockenen inerten Atmosphäre, unter Rühren und bei leicht erhöhten Temperaturen (bei etwa 40°C - 60 °C und vorzugsweise nicht höher als etwa 40°C) in das Basisöl eingebracht. Auf diese Weise lösen sich die Öl-Zusätze leichter im Öl auf und das Schmiermittel wird homogener.
  • In US 20080085847 A1 wird über die VIV-Verflüssigung hochpastöser Polymerballen und Granulate berichtet, dass herkömmlicherweise häufig ein Schredder oder ein Rührwerk mit hoher Umdrehungszahl und damit hoher Scherwirkung für Flüssigkeiten zum Einsatz kommt, um den Mischungsprozess zwischen VIV und Grundöl durch schnelle Vergrößerung der Phasengrenzfläche zu verkürzen. Weiterhin soll bei Temperaturen oberhalb von 100°C eine Schutzgasatmosphäre (Stickstoff oder Kohlendioxid) verwendet werden.
  • Kritikpunkte an den herkömmlichen Rührwerks- und Schredderverfahren für das Einmischen von VIV als Granulate oder hochpastöse Polymerballen in Grundöle:
    1. 1) Durch Temperaturen oberhalb von 130 °C, bei hinreichend langer Prozessdauer und unter Anwesenheit von Sauerstoff und Luftfeuchtigkeit, wird das Grundöl irreparabel geschädigt. Oxydation und Hydrolyse verringern die Polymerkettenlänge und verändern somit die Viskositätseigenschaften negativ. Die ausgebildete Schmierfilmdicke bei bestimmten Temperaturen und bestimmter Scherung ist deutlich verringert oder kann im ungünstigsten Fall nicht mehr aufrechterhalten werden.
    2. 2) Zu große Scherraten, etwa durch Schreddern, bewirken eine Polymerdegradation, die ebenso die Schmierstoffeigenschaften negativ beeinträchtigen.
    3. 3) Energieverschwendung im Prozess und nachweisliche Alterungsprozesse im Grundöl bei der notwendig hohen Energiezufuhr unter atmosphärischen Bedingungen.
    Mischanlagen mit Rührwerksbehältern von 5 m3 bis 10 m3 Volumen, werden mit Wandstärken von 30 mm betrieben, um die mechanischen Belastungen beim VIV-Schreddern und Mischen abzusichern. Die benötigte Wärmeenergie, um solche herkömmlichen Anlagen bei 130 °C zu temperieren, sowie das anschließende Herausbringen der überschüssigen Wärme aus dem System (Ölgemisch und Behälter) stellen sich als doppelt ineffizient dar. Um z.B. idealerweise eine Stahlhohlkugel als inerten Behälter von 10 m3 Volumen mit 30 mm Wandstärke von 10 °C auf 130 °C zu erwärmen, sind ca. 92 kWh nötig. Um 8000 l Grundöl ebenso zu erwärmen, benötigt man ca. 500 kWh. Das Gemisch wird üblicherweise bei 90 °C weiterverarbeitet, d.h. eine Wärmenergie von ca. 197 kWh muss aus dem System Behälter und Ölgemisch abgeleitet werden. Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren zur Einmischung von Viskositätsindex-Verbesserern, die als hochpastöse Polymerballen vorliegen, in Grundöle zu entwickeln. Dies ermöglicht es, die Mischungsvorgänge so durchzuführen, dass eine weitere Verarbeitung der Gemische sich sofort anschließen kann. Es ist auch Aufgabe der Erfindung, eine Anordnung zur Durchführung des Verfahrens zu entwickeln.
  • Die Lösung dieser Aufgabe erfolgt durch die in den Ansprüchen aufgeführten Merkmale.
  • Das erfindungsgemäße Verfahren ermöglicht in einer Verflüssigungskammer das Mischen eines Ansatzes von mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl durch das Einbringen von Wärme unter Schutzgas bei Überdruck und durch einen strömungstechnischen Umlauf der flüssigen Bestandteile in einem Nebenkreislauf. Danach erfolgt die Einmischung des entstandenen gelösten Konzentrats in einen Hauptstrom von Grundöl von geeigneter Masse entsprechend einer Zielmischung. Bei einer Verflüssigung von hochpastösen Viskositätsindex-Verbesserern treten normalerweise ungleich größere Schwierigkeiten auf, da die Viskosität hochpastöser VIV um mehrere Größenordnungen höher ausfällt als bei bereits mit Grundöl verflüssigten VIV. Es geht bei der Erfindung um einen schonenden Lösungsmechanismus, bei dem nur die unbedingt notwendige Wärme in VIV und Grundöl eingebracht wird, und bei dem das Schutzgas mit Überdruck ein Ausgasen wichtiger Bestandteile, wie etwa von Ethylen und Propylen aus den olefinen Copolymeren, verhindert. Im Falle der OCP sorgen gerade gebundenes Ethylen- und Propylen für eine erhöhte Mischbarkeit mit Grundölen.
  • Das erfindungsgemäße Verfahren erfolgt nach den Schritten:
    1. a) Befüllen eines Kessels mit Grundöl (dies erfolgt unter atmosphärischen Bedingungen und Labortemperatur) danach Schutzgasspülen eines Gasraums des Kessels durch abwechselndes Erzeugen eines Grobvakuums mittels einer Absaugvorrichtung und Auffüllen des Gasraums mit Schutzgas mittels einer Schutzgaszufuhr;
    2. b) Befüllen einer von einem Hauptkreislauf abgesperrten Verflüssigungskammer mit einer definierten Masse eines Viskositätsindex-Verbesserers, beispielsweise in Form eines Polymerballens, und einer definierten Masse an Grundöl entsprechend der Zusammensetzung eines angestrebten Konzentrats unter atmosphärischen Bedingungen und Labortemperatur;
    3. c) mehrfaches Schutzgasspülen aus einem Gasraum der Verflüssigungskammer durch abwechselndes Erzeugen eines Grobvakuums mittels einer Absaugvorrichtung und Auffüllen des Gasraums mit Schutzgas mittels einer Schutzgaszufuhr;
    4. d) anschließendes Befüllen des Gasraums der Verflüssigungskammer mit Schutzgas bis zu einem definierten Überdruck;
    5. e) Verflüssigen des Viskositätsindex-Verbesserers in der Verflüssigungskammer und gleichzeitiges Überspülen mit dem in die Verflüssigungskammer eingebrachten Grundöl in einem ständigen Umlauf des Grundöls über einen Nebenkreislauf durch das Einbringen von Wärme bei einer Temperatur oberhalb einer Löslichkeitstemperatur bis das angestrebte Konzentrat erreicht ist;
    6. f) Einmischung des Konzentrats in das Grundöl aus dem Kessel über den Hauptkreislauf bis eine Zielmischung erreicht ist,
    7. g) Rückführung der Anordnung auf Normaldruck ohne Sauerstoffzufuhr und Entgasung der Zielmischung im Kessel durch Applizierung eines geeigneten Grobvakuums.
  • Das gelöste Konzentrat (m1) besteht aus mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl.
  • Wesentlich ist eine Kombination einer scherungsarmen Verflüssigung mittels kontrollierter, regelbarer Erwärmung der Stoffe und eines geeigneten Schutzgases, wie beispielsweise Stickstoff oder Butan oder Kohlendioxid. Die Temperatur wird zwischen 90 °C und 100 °C gewählt und der definierte Überdruck in der Verflüssigungskammer wird zwischen 100 mbar und 50 bar geeignet gewählt, um Ausgasungen während des Einmischens von Viskositätsindex-Verbesserer in das Grundöl zu verhindern. Für weitere Ausführungen wird der Überdruck bevorzugt kleiner 24 bar gewählt, noch mehr bevorzugt beträgt der Überdruck kleiner 10 bar. Durch den definierten Überdruck werden Ausgasungen während des Einmischens von Viskositätsindex-Verbesserer in Grundöl verhindert und die Löslichkeitszeit minimiert. Der Überdruck im Kessel ist in diesem Ausführungsbeispiel kleiner gleich dem halben Überdruck in der Verflüssigungskammer.
  • Die erfindungsgemäße Anordnung zur Durchführung des Verfahrens zur Einmischung von Viskositätsindex-Verbesserern in Grundöle zur Herstellung einer Zielmischung besteht aus einem Kessel für ein Grundöl und einer Verflüssigungskammer für einen Viskositätsindex-Verbesserer. Dazu sind ein Hauptkreislauf und ein Nebenkreislauf für eine separate Konditionierung von Mischungspartnern der Zielmischung angeordnet. Der Hauptkreislauf ist für eine Befüllung und Konditionierung mit Grundöl und der Nebenkreislauf für eine Verflüssigung und Konditionierung mit einem Konzentrat aus Viskositätsindex-Verbesserer und Grundöl angeordnet.
  • Für ein Ausführungsbeispiel verbindet der Hauptkreislauf über eine Haupt-Leitung den Kessel, mindestens eine Pumpe, mindestens eine Heizung und mehrere statische Mischer in Reihe miteinander. Die Verflüssigungskammer ist über eine Stich-Leitung mit dem Hauptkreislauf und über eine Neben-Leitung mit dem Nebenkreislauf, welcher über eine Pumpe zurück in die Verflüssigungskammer führt, verbunden. Eine erste Absaugvorrichtung ist mit der Verflüssigungskammer und eine zweite Absaugvorrichtung mit dem Kessel verbunden, wobei die Absaugvorrichtungen über eine gemeinsame Vakuumpumpe betrieben werden. Eine erste Schutzgaszufuhr ist mit der Verflüssigungskammer und eine zweite Schutzgaszufuhr mit dem Kessel verbunden, wobei die Schutzgaszuführungen mit einem gemeinsamen Schutzgasdruckbehälter verbunden sind.
  • Die erste Absaugvorrichtung der Verflüssigungskammer ist durch die Vakuumpumpe, eine Absaugleitung, einen Dreiwegehahn und eine Verbindung zur Verflüssigungskammer definiert und die zweite Absaugvorrichtung des Kessels ist durch die Vakuumpumpe, eine weitere Absaugleitung, einen Dreiwegehahn und eine Verbindung zum Kessel definiert.
  • Die erste Schutzgaszufuhr der Verflüssigungskammer erfolgt über den Schutzgasdruckbehälter, mehrere Leitungsabschnitte einer Schutzgasleitung, ein Dosierventil, einen Dreiwegehahn und einer Verbindung zur Verflüssigungskammer und die zweite Schutzgaszufuhr des Kessels erfolgt über den Schutzgasdruckbehälter, mehrere Leitungsabschnitte einer Schutzgasleitung, ein Dosierventil, einen Dreiwegehahn und eine Verbindung zum Kessel.
  • Die Pumpen der Anordnung sind in diesem Ausführungsbeispiel scherungsarme Drehkolbenpumpen; andere mögliche Pumpen sind allerdings nicht ausgeschlossen. Die Heizung ist in diesem Ausführungsbeispiel ein Einschraubheizkörper, wobei auch andere Heizungen vorstellbar sind.
  • Für ein Ausführungsbeispiel endet die Haupt-Leitung im Kessel in einem Tauchstutzen mit frei drehbarem Endstück. Für ein weiteres Ausführungsbeispiel endet die Haupt-Leitung im Kessel in einer Mischdüse.
  • Die Stich-Leitung unterhalb der Verflüssigungskammer mündet in die Haupt-Leitung und in eine Venturidüse, die nahe der Verbindungsstelle zur Haupt-Leitung in der Stich-Leitung angeordnet ist.
  • In der Verflüssigungskammer ist ein Schmelzrost angeordnet, wobei die Neben-Leitung oberhalb desselben in die Verflüssigungskammer mündet.
  • Die Haupt-Leitung, die Neben-Leitung, die Stich-Leitung und der Kessel sind wärmeisoliert.
  • Aufgrund der Verwendung von Schutzgasen bei Überdruck, insbesondere von Stickstoff, kommt es zur Herabsenkung der Löslichkeitstemperatur für die Mischung von Viskositätsindex-Verbesserern mit Grundölen. Damit können auch die Ausgangstemperaturen der Mischungspartner herabgesetzt und ca. 50 % bis 60 % der elektrischen Energie zur thermischen Konditionierung der Stoffe eingespart werden. Unter den Bedingungen von Schutzgas bei Überdruck und geringerer Temperatur werden die sonst beobachteten Ausgasungen von Ethylen und Propylen, die Bestandteile von VIV auf Basis olefiner Copolymere sind, vermieden, und so die Mischbarkeit mit Grundöl aufrechterhalten.
  • Neben den verbesserten Löslichkeitseigenschaften der VIV-Makromoleküle werden durch die Verwendung von Schutzgasen, auch bei der Konditionierung des Grundöls, Alterungsprozesse, wie Oxydation und Hydrolyse bei den Mischungspartnern vermieden.
  • Ausführung der Erfindung
  • Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert. Hierzu zeigen
  • Figur 1
    Löslichkeitstemperatur ϑL eines hochpastösen Viskositätsindex-Verbesserers auf Basis olefiner Copolymere in einem Grundöl in Abhängigkeit des Viskositätsindex-Verbesserer-Anteils der Mischung,
    Figur 2
    die erfindungsgemäße Vorrichtung zur Einmischung von Viskositätsindex-Verbesserern in geeignete Grundöle und
    Figur 3
    die erfindungsgemäße Vorrichtung zur Einmischung von Viskositätsindex-Verbesserern in geeignete Grundöle in einer weiteren Ausführungsform.
  • Figur 1 zeigt ein Diagramm, in dem die Abhängigkeit der Löslichkeitstemperatur ϑL einer Mischung aus xwt% eines Viskositätsindex-Verbesserers auf Olefincopolymere-Basis (OCP-Basis) und 100 wt%-xwt% eines Grundöls bei variierendem VIV-Anteil unter atmosphärischen Bedingungen im Wärmeschrank (Verlauf mit Kreisen und Strichpunktlinienzug) und unter N2-Atmosphäre und bei Überdruck (bei ca. 5 bar mit Stern, bei ca. 9 bar mit Diamant gekennzeichnet) dargestellt wird. Beim Überschreiten der Löslichkeitstemperatur ϑL unter beschriebenen Duck- und Schutzgasbedingungen liegt eine homogene Mischung vor.
  • Es wurden Untersuchungen im Labor zu Wärmeschrankversuchen durchgeführt, in denen Mischungen zwischen Viskositätsindex-Verbesserern (VIV) auf OCP-Basis und Grundöl mit 4 wt% VIV-Anteil bis 70 wt% VIV-Anteil unter Normaldruck hergestellt wurden. Unter atmosphärischen Bedingungen kam es beim Mischungsvorgang proportional zum VIV-Anteil zu Ausgasungen von Ethylen und Propylen, die in den olefinen Copolymeren des eingesetzten VIV aber gerade die Mischbarkeit mit dem Grundöl verbessern helfen sollen. Die gebildete Gasphase führte zur Abkühlung des Flüssigkeitsgemisches, was eine Viskositätserhöhung und Verschlechterung der Mischungsbedingungen nach sich zog. Die Löslichkeitstemperatur ϑL stieg mit anwachsendem VIV-Anteil in der Mischung stark an. Bei Mischungen mit 8 wt% VIV-Anteil lag die Löslichkeitstemperatur ϑL bei 145 °C, bei Mischungen mit einem VIV-Anteil oberhalb von 20 wt% lag die Löslichkeitstemperatur ϑL bei 185 °C (Figur 1, Verlauf mit Kreisen und Strichpunktlinienzug).
  • Die erfindungsgemäße Anordnung (Figur 2) zur Einmischung von Viskositätsindex-Verbesserern in geeignete Grundöle verhindert diese Nebenwirkungen. Eine weitere Ausführungsform wird in Figur 3 gezeigt.
  • Die scherungsarme, ohne Beteiligung von Sauerstoff und Feuchtigkeit funktionierende Mischungsanlage besteht aus einem Hauptkreislauf I und einem Nebenkreislauf II zur separaten Konditionierung der Mischungspartner.
  • Die Anordnung besteht aus einem Kessel 7, welcher unter atmosphärischen Bedingungen geöffnet werden kann und zunächst mit dem Grundöl befüllt wird. In der Haupt-Leitung 14 sind für den Umlauf des Grundöls eine Pumpe 10, beispielsweise eine scherungsarme Drehkolbenpumpe, und eine Heizung 9, beispielweise ein Einschraubheizkörper, angeordnet. In der Haupt-Leitung 14 befinden sich im regelmäßigen Abstand zueinander statische Mischer 11, die den Mischungsvorgang unterstützen. Über die Haupt-Leitung 14 wird der Hauptkreislauf I vom Kessel 7 über die Pumpe 10 wieder zum Kessel 7 geführt. Die Haupt-Leitung 14 endet im Kessel 7 in einem Tauchstutzen 12 mit frei drehbarem Endstück zur Unterstützung der Verteilung des einströmenden Fluids in den Kessel 7. Das drehbar gelagerte Endstück des Tauchstutzens 12 wird über den Einstrom in den Kessel 7 in Drehung versetzt und realisiert eine spiralförmige Vermischung des aus der Hauptleitung einströmenden Gemisches mit der Flüssigkeit im Kessel 7. Über eine Stich-Leitung 16 erfolgt eine Einmischung eines gelösten Konzentrats m1, mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl, aus dem Nebenkreislauf II in das Grundöl, welches die Haupt-Leitung 14 des Hauptkreislaufes I durchströmt. Eine Verflüssigungskammer 1, welche der Verflüssigung von VIV-Ballen dient, ist an ihrem unteren Ende über die Stich-Leitung 16, in welcher eine Venturidüse 6 angeordnet ist, und über ein Absperr- und Dosierventil 5 mit der Haupt-Leitung 14 verbunden. Eine Neben-Leitung 15 zweigt unterhalb der Verflüssigungskammer 1 von der Stich-Leitung 16 ab und führt über eine weitere Pumpe 4, welche in diesem Ausführungsbeispiel ebenso eine Drehkolbenpumpe ist, zurück in die Verflüssigungskammer 1 oberhalb eines Schmelzrostes 3, welcher in der Verflüssigungskammer 1 angeordnet ist. Die Neben-Leitung 15 bildet zusammen mit der Stich-Leitung 16 den Nebenkreislauf II (mit einer Strichlinie umrandet). Die Pfeile an Haupt-Leitung 14, Neben-Leitung 15 und Stich-Leitung 16, horizontal bzw. vertikal, geben die Flussrichtung der Fluide in Hauptkreislauf I und Nebenkreislauf II an. Sämtliche Leitungsabschnitte und der Kessel 7 sind wärmeisoliert.
  • Die Verflüssigung von VIV-Ballen in der Verflüssigungskammer 1 erfolgt durch Beheizung auf einem Schmelzrost 3. Der Schmelzrost 3 hat eine Rostauflage mit einem Dreiecksquerschnitt und dient einer inhomogenen Temperaturfelderzeugung, wodurch das Konzentrat m1 auf eine mittlere Temperatur T m1 während der Konditionierungsphase erwärmt wird. Entsprechend des zu erzeugenden Konzentrats m1 in der Konditionierungsphase wird der Schmelzrost 3, mit den aufgelegten VIV-Ballen, ständig mit dem eingebrachten Grundöl überspült. Die Pumpe 4 sorgt für einen Umlauf der flüssigen Bestandteile bei der Verflüssigung des Konzentrats m1 im Nebenkreislauf II.
  • Für eine Schutzgasspülung und Schutzgasbefüllung sind folgende Anlagenteile entsprechend angeordnet. Eine Vakuumpumpe 21 bildet zusammen mit einer Absaugleitung 22, einem Dreiwegehahn 23 und einer Verbindung zur Verflüssigungskammer 1 eine erste Absaugvorrichtung 2a der Verflüssigungskammer 1. Die zweite Absaugvorrichtung 2b des Kessels 7 wird durch die Vakuumpumpe 21, eine Absaugleitung 24, einen Dreiwegehahn 25 und durch eine Verbindung zum Kessel 7 definiert. Die erste Schutzgaszufuhr 8a der Verflüssigungskammer 1 erfolgt über einen Schutzgasdruckbehälter 81, eine Schutzgasleitung 821 und eine Schutzgasleitung 823, ein Dosierventil 822, den Dreiwegehahn 23 und die Verbindung zur Verflüssigungskammer 1. Die zweite Schutzgaszufuhr 8b des Kessels 7 erfolgt über den Schutzgasdruckbehälter 81, eine Schutzgasleitung 831 und eine Schutzgasleitung 833, ein Dosierventil 832, den Dreiwegehahn 25 und die Verbindung zum Kessel 7. Die Pfeile, horizontal bzw. vertikal, geben die Flussrichtung des Schutzgases im Absaug- und Befüllungsmodus an.
  • Die Verflüssigungskammer 1 ist somit über die Absaugvorrichtung 2a und die Schutzgaszufuhr 8a und der Kessel 7 über die Absaugvorrichtung 2b und Schutzgaszufuhr 8b mit dem Schutzgasdruckbehälter 81 verbunden. Die Absaugvorrichtungen 2a, 2b und die Schutzgaszuführungen 8a, 8b dienen neben der Schutzgasspülung und der Schutzgasbefüllung des Gasraums der Verflüssigungskammer 1 bzw. des Kessels 7 auch der Einstellung eines geeigneten, definierten Überdrucks, wobei der Überdruck in der Verflüssigungskammer 1 mit p m1 bezeichnet wird und der Überdruck im Kessel 7 mit p 2.
  • Mit den Absaugvorrichtungen 2a, 2b und den Schutzgaszuführungen 8a, 8b erfolgt die Drucksteuerung der Mischanlage, welche die Absenkung der Löslichkeitstemperatur für Konzentrat m1 und Zielmischung m2 bewirkt. Thermisch induzierte Alterungsprozesse werden ausgeschlossen und gleichzeitig 50 % bis 60 % thermische Energie gegenüber atmosphärisch betriebenen Mischanlagen eingespart.
  • Das Absperr- und Dosierventil 5 des Nebenkreislaufs II bleibt bei Befüllung und während der Konditionierungsphase geschlossen und wird erst beim Mischprozess zwischen dem Konzentrat m1 und dem Grundöl in der Weise geöffnet, dass der Teilstrom des Konzentrats m1 aus dem Nebenkreislauf II zum Hauptstrom des Grundöls aus dem Hauptkreislauf I höchstens stöchiometrisch, entsprechend der Zielmischung m2, eingestellt wird.
  • In der Stich-Leitung 16 ist nahe der Verbindungsstelle zur Haupt-Leitung 14 eine Veturidüse 6 angeordnet. Mit der Veturidüse 6 wird zur Einmischung des Konzentrats m1 aus dem Nebenkreislauf II in das Grundöl, welches den Hauptkreislauf I durchströmt, an der Stelle des Zusammentreffens der Stich-Leitung 16 mit der Haupt-Leitung 14 der Teilstrom des Nebenkreislaufs II in den Teilstrom des Hauptkreislaufs I hineingesaugt.
  • In der Haupt-Leitung 14 zwischen der Pumpe 10 und der Verbindungsstelle zur Stich-Leitung 16 ist ein Einschraubheizkörper 9 zur Erwärmung des Grundöls auf eine mittlere Temperatur T 2 von 60 °C bis 90 °C während der Konditionierungsphase angeordnet.
  • In der Stich-Leitung 16, zwischen der Verflüssigungskammer 1 und dem Abzweig zur Neben-Leitung 15 befindet sich ein Schauglas und in der Verflüssigungskammer 1 selbst ist ebenfalls ein Schauglas angeordnet. Beide Schaugläser dienen der Kontrolle der Schlierenfreiheit des Konzentrats m1 und der Kontrolle des Stofftransports aus der Verflüssigungskammer 1.
  • Figur 3 zeigt die erfindungsgemäße Vorrichtung zur Einmischung von Viskositätsindex-Verbesserern in geeignete Grundöle in einer weiteren Ausführungsform. Gegenüber Figur 2 ist der Tauchstutzen 12 durch eine Mischdüse 13 ersetzt. Die aus der Haupt-Leitung 14 über die Mischdüse 13 in den Kessel 7 einströmende Flüssigkeit saugt gleichzeitig über seitliche Öffnungen der Mischdüse 13, nach dem Ejektor-Prinzip, Flüssigkeit aus dem Kessel 7 in die Mischdüse 13 ein und vermischt beide Flüssigkeitsströme in der Mischdüse 13 zu einem Flüssigkeitsfreistrahl, der aus der Mischdüse 13 unterhalb des Flüssigkeitsspiegels im Kessel 7 austritt.
  • Konditionierung des Konzentrats m1 im Nebenkreislauf II:
  • Die vom Hauptkreislauf I abgesperrte Verflüssigungskammer 1 wird entsprechend der Zusammensetzung des angestrebten Konzentrats m1 aus mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl mit einer geeigneten Masse an Grundöl und einer geeigneten Anzahl von 25 kg-Ballen des Viskositätsindex-Verbesserers (makromolekulare Copolymere) unter atmosphärischen Bedingungen und Labortemperatur bestückt und verschlossen. Zunächst wird im Gasraum der Verflüssigungskammer 1 über die Absaugvorrichtung 2a ein Grobvakuum erzeugt. Dann wird der Gasraum der Verflüssigungskammer 1 über die Schutzgaszufuhr 8a mit Schutzgas aufgefüllt. Dieser Vorgang einer Schutzgasspülung wird mehrfach wiederholt. Im Anschluss erfolgt die Befüllung des Gasraums der Verflüssigungskammer 1 mit Schutzgas, bis zu einem definierten Überdruck p m1. Der Überdruck p m1 in der Verflüssigungskammer 1 kann zwischen 100 mbar und 50 bar betragen. Für das Ausführungsbeispiel beträgt der Überdruck p m1 bevorzugt weniger als 24 bar, wobei er im konkreten Fall kleiner als 10 bar beträgt. Die über den beheizten Schmelzrost 3 abgelegten VIV-Ballen werden durch den ständigen Umlauf des eingebrachten Grundöls über die Pumpe 4 im Nebenkreislauf II überspült. Während der Konditionierungsphase lösen sich mehr und mehr verflüssigte Bestandteile aus den VIV-Ballen, bis der Ansatz als Konzentrat m1 bei einer Temperatur T m1 oberhalb der Löslichkeitstemperatur (beispielsweise ca. 100 °C bzw. 337 K bei 9 bar Überdruck) vorliegt. Zur visuellen Kontrolle des Transports eines schlierenfreien Konzentrats m1 aus der Verflüssigungskammer 1 sind die eingebauten Schaugläser aus Borosilikatglas vorgesehen.
  • Konditionierung des Grundöls im Hauptkreislauf I:
  • Zur gleichen Zeit wird eine, entsprechend der Zielmischung m2 bei Raumtemperatur geeignete Masse Grundöl in den Kessel 7 gefüllt. Über dem darüber befindlichen Gasraum im Kessel 7 wird ebenfalls mehrfach im Wechsel mittels der Absaugvorrichtung 2b ein Grobvakuum erzeugt und danach über die Schutzgaszufuhr 8b mit Schutzgas aufgefüllt. Im Anschluss an die Schutzgasspülung wird der Gasraum des Kessels 7 mit Schutzgas bis auf einen Überdruck p 2 von p2<pm1 aufgefüllt. Schließlich wird das Grundöl durch die Pumpe 10 über den Hauptkreislauf I gefördert und mittels einer Heizung 9 temperaturgeregelt auf die Temperatur T 2 (von ca. 90 °C bzw. 363 K) erwärmt. Das Grundöl aus dem Kessel 7 passiert die in regelmäßigen Abständen in der Haupt-Leitung 14 des Hauptkreislaufs I eingebrachten statischen Mischer 11 und gelangt schließlich über den Tauchstutzen 12 zurück in den Kessel 7.
  • Während in der Verflüssigungskammer 1 des Nebenkreislaufs II das Schutzgas mit einem Überdruck p m1 verwendet wird, erfolgt im Kessel 7 des Hauptkreislaufs II die Applizierung des Schutzgases mit einem geringeren Überdruck p 2. Die statische Druckdifferenz p m1-p 2 verteilt sich im Wesentlichen als fluidmechanischer Energieverlust über die im Hauptkreislauf I in regelmäßigen Abständen angebrachten statischen Mischer 11. Die in der Haupt-Leitung 14 angebrachten statischen Mischer 11 sorgen für eine scherungsarme Durchmischung des Fluidstroms durch Erzeugung von Drall und Querkomponenten im Geschwindigkeitsfeld. Scherungsinduzierte Alterungsprozesse werden vermieden.
  • Einmischung des Konzentrats in den Hauptstrom des Grundöls:
  • Sind beide Mischungspartner (Konzentrat m1 in der Verflüssigungskammer 1 des Nebenkreislaufs II und Grundöl im Kessel 7 des Hauptkreislaufs I) konditioniert, erfolgt der Mischungsprozess. Das Absperr- und Dosierventil 5 der Verflüssigungskammer 1 wird geöffnet, sodass der Teilstrom des Konzentrats in geeigneter Weise mit dem Hauptstrom des Grundöls über die Venturidüse 6 zusammengeführt wird. Dabei sind der Druck p m1 in der Verflüssigungskammer 1, der Druck p 2 (p m1>p 2) im Kessel 7 sowie der Förderdruck p P der Pumpe 10 im Hauptkreislauf I, vor dem Zusammenfließen der Teilströme, so gewählt, dass zum einen der Ausstrom des Konzentrats m1 aus der Verflüssigungskammer 1 gewährleistet ist, und zum anderen die Druckdifferenz p m1-p 2 über den Druckabfall des Gesamtstroms bei einer Mischungstemperatur T m über die statischen Mischer 11 realisiert wird. Zur lokalen Absenkung des statischen Druckes des Teilstroms aus der Verflüssigungskammer 1 und um einen Ansaugeffekt in den Hauptstrom zu erzeugen, befindet sich aus dem Nebenkreislauf II kommend und in den Hauptkreislauf I hineinragend die Venturidüse 6 mit abgeschrägtem Düsenende in der Hauptstromrichtung.
  • Um die Masseströme 2, m1, m aus Haupt- und Nebenstrom zu quantifizieren, sind die Volumenströme 2, m vor und nach dem Zusammenfließen zu messen. Mit Hilfe der vorher bestimmten temperaturabhängigen Dichten und spezifischen Wärmekapazitäten der Mischungspartner ρ 2(T2 ), ρ m1(T m1), c p,2(T 2), c p,m1(T m1) sind neben den Masseströmen ( m1 = ρ(Tm)m m - ρ(T 2)2 2) ebenso die Enthalpieströme H ˙ 2 = ρ 2 T 2 V ˙ 2 c p ,2 T 2 T 2 , H ˙ m 1 = ρ m 1 T m 1 V ˙ m 1 c p , m 1 T m 1 T m 1
    Figure imgb0001
    bestimmbar. Hierbei werden etwaige Wärmeströme zwischen Rohrleitung und Flüssigkeiten nach der Konditionierungsphase ebenso vernachlässigt wie Verlustterme durch Abstrahlung. Anhand der Enthalpiestrombilanz vor und nach dem Mischungsvorgang lässt sich die Mischungstemperatur abschätzen: H ˙ m 1 + H ˙ 2 = H ˙ m
    Figure imgb0002

    nach Konditionierung und während des Mischungsvorgangs sei p m1p P und mithin gilt m1 + 2 = m ;
    daraus folgt für die Mischungstemperatur T m, welche oberhalb der Löslichkeitstemperatur des VIV liegen muss: T m ρ m 1 T m 1 V ˙ m 1 c p , m 1 T m 1 ρ m T m V ˙ m c p , m T m T m 1 + ρ 2 T 2 V ˙ 2 c p ,2 c 2 T 2 ρ m T m V ˙ m c p , m T m T 2
    Figure imgb0003
  • Rückführung des Systems auf Normaldruck und Entgasung der Zielmischung m2:
  • Am Ende des Mischungsvorganges liegt die Zielmischung m2 im Kessel 7 (respektive Haupt-Leitung 14) unter dem Überdruck p 2 mit p 2=p m2≈0,5p m1 und der Mischungstemperatur T m mit T m=T m2 vor. Es erfolgt die vorsichtige Rückführung des Systems auf Normaldruck, jedoch ohne Sauerstoffzuführung. Aufgrund der deutlich geringeren Viskosität der Zielmischung m2 bei der Mischungstemperatur T m gegenüber dem Konzentrat gelingt die Entgasung des zusätzlich gelösten Schutzgases innerhalb kürzester Zeit. Um etwaige überschüssige, nicht mehr an die olefinen Copolymere des eingemischten Viskositätsindex-Verbesserers gebundene Ethylen- oder Propylenmolekülbestandteile ebenfalls auszudampfen, ist optional ein Grobvakuum applizierbar (z.B. p 2 ≈-0,5 bar). Hierzu kann die Absaugvorrichtung 2b eingesetzt werden.
  • Druckreaktorversuche, in denen dieselben Mischungspartner wie bei den atmosphärischen Löslichkeitsversuchen im gleichen Mischungsverhältnis, aber unter Schutzgas bei Überdruck zusammengeführt und in Lösung gebracht wurden, ergaben dagegen auch noch bei 70 wt% VIV-Anteil eine Löslichkeitstemperatur ϑL von nur ca. 100 °C (Figur 1, Sterne und Diamant) Diese Druckreaktorversuche zeigen somit ein Energieeinsparpotential von mindestens 50 %, verglichen mit herkömmlichen Mischanlagen mit Rührwerken und Schreddern.
  • Im erfindungsgemäßen Verfahren erfolgen die Mischungsvorgänge bei einer Temperatur (ca. 100 °C), bei welcher eine weitere Verarbeitung der Gemische sich sofort anschließen kann, ohne überschüssige Wärmeenergie abführen zu müssen.
  • Bezugszeichen
  • I
    Hauptkreislauf
    II
    Nebenkreislauf
    1
    Verflüssigungskammer
    2a
    erste Absaugvorrichtung
    21 Vakuumpumpe
    22 Absaugleitung
    23 Dreiwegehahn
    2b
    zweite Absaugvorrichtung
    24 Absaugleitung
    25 Dreiwegehahn
    3
    Schmelzrost
    4
    Pumpe in der Neben-Leitung 15
    5
    Dosierventil
    6
    Venturidüse
    7
    Kessel
    8a
    erste Schutzgaszufuhr
    81 Schutzgasdruckbehälter
    821 Schutzgasleitung
    822 Dosierventil
    823 Schutzgasleitung
    8b
    zweite Schutzgaszufuhr
    831 Schutzgasleitung
    832 Dosierventil
    833 Schutzgasleitung
    9
    Heizung
    10
    Pumpe in der Haupt-Leitung 14
    11
    Mischer
    12
    Tauchstutzen
    13
    Mischdüse
    14
    Haupt-Leitung
    15
    Neben-Leitung
    16
    Stich-Leitung
    ϑL
    Löslichkeitstemperatur einer Mischung aus einem Ansatz von xwt% eines Viskositätsindex-Verbesserer-Anteils und von (100 wt%-xwt%) eines Grundöls bei variierendem VIV-Anteil unter atmosphärische Bedingungen im Wärmeschrank
    m1
    Konzentrat aus mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl
    m2
    Zielmischung
    T m1
    mittlere Temperatur des Konzentrats m1 während der Konditionierungsphase
    T m2
    Mischungstemperatur der Zielmischung m2 im Kessel 7
    T m
    Mischungstemperatur des Gesamtstroms
    T 2
    mittlere Temperatur des Grundöls
    p m1
    Überdruck in der Verflüssigungskammer 1
    p m
    Überdruck an der Messstelle der Mischungstemperatur T m des Gesamtstroms
    p 2
    Überdruck im Kessel 7
    p P
    Förderdruck der Pumpe 10
    2
    Massestrom aus dem Kessel 7, im Hauptstrom, zwischen Kessel und Abzweig zur Stich-Leitung 16
    m
    Gesamtmassestrom nach dem Zusammenfließen der Teilströme aus Kessel 7 und Verflüssigungskammer 1
    m1
    Massestrom aus der Verflüssigungskammer 1, über die Stich-Leitung 16 in den Hauptstrom, mit m1 = m - 2
    2
    Volumenstrom aus dem Kessel 7, im Hauptstrom, zwischen Kessel und Abzweig zur Stich-Leitung 16
    m
    Gesamtvolumenstrom nach dem Zusammenfließen der Teilströme aus Kessel 7 und Verflüssigungskammer 1
    m1
    Volumenstrom aus der Verflüssigungskammer 1, über die Stich-Leitung 16 in den Hauptstrom, mit m1 = m - 2
    2
    Enthalpiestrom aus dem Kessel 7, im Hauptstrom, zwischen Kessel und Abzweig zur Stich-Leitung 16
    m1
    Enthalpiestrom aus der Verflüssigungskammer 1, über die Stich-Leitung 16 in den Hauptstrom

Claims (14)

  1. Verfahren zur Einmischung von Viskositätsindex-Verbesserern (VIV) in Grundöle in einer Anordnung zur Einmischung von Viskositätsindex-Verbesserern in Grundöle mit den Schritten:
    a) Befüllen eines Kessels (7) mit Grundöl und mehrfaches Schutzgasspülen eines Gasraums des Kessels (7) durch abwechselndes Erzeugen eines Grobvakuums mittels einer Absaugvorrichtung (2b) und Auffüllen des Gasraums mit Schutzgas mittels einer Schutzgaszufuhr (8b);
    b) Befüllen einer von einem Hauptkreislauf (I) abgesperrten Verflüssigungskammer (1) mit einer definierten Masse eines Viskositätsindex-Verbesserers und einer definierten Masse an Grundöl entsprechend der Zusammensetzung eines angestrebten Konzentrats (m1) unter atmosphärischen Bedingungen und Labortemperatur;
    c) mehrfaches Schutzgasspülen aus einem Gasraum der Verflüssigungskammer (1) durch abwechselndes Erzeugen eines Grobvakuums mittels einer Absaugvorrichtung (2a) und Auffüllen des Gasraums mit Schutzgas mittels einer Schutzgaszufuhr (8a);
    d) anschließendes Befüllen des Gasraums der Verflüssigungskammer (1) mit Schutzgas bis zu einem definierten Überdruck (p m1);
    e) Verflüssigen des Viskositätsindex-Verbesserers in der Verflüssigungskammer (1) und gleichzeitiges Überspülen mit dem in die Verflüssigungskammer (1) eingebrachten Grundöl in einem ständigen Umlauf des Grundöls über einen Nebenkreislauf (II) durch das Einbringen von Wärme bei einer Temperatur (T m1) oberhalb einer Löslichkeitstemperatur bis das angestrebte Konzentrat (m1) erreicht ist;
    f) Einmischung des Konzentrats (m1) in das Grundöl aus dem Kessel (7) über den Hauptkreislauf (I) bis eine Zielmischung (m2) erreicht ist,
    g) Rückführung der Anordnung auf Normaldruck ohne Sauerstoffzufuhr und Entgasung der Zielmischung (m2) im Kessel (7) durch Applizierung eines geeigneten Grobvakuums.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass das gelöste Konzentrat (m1) aus mindestens 70 wt% Viskositätsindex-Verbesserer und höchstens 30 wt% Grundöl besteht.
  3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass als Schutzgas Stickstoff oder Butan oder Kohlendioxid verwendet wird.
  4. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Temperatur (T m1) des Konzentrats in der Verflüssigungskammer (1) unter 120°C liegt und dass der Überdruck (p m1) in der Verflüssigungskammer (1) zwischen 100 mbar und 50 bar, bevorzugt kleiner 24 bar, noch mehr bevorzugt kleiner 10 bar beträgt, dass die Temperatur (T m2) der Zielmischung im Kessel (7) weniger als 100 °C beträgt und dass der Überdruck (p 2) im Kessel (7) p 2<=p m1/2 beträgt.
  5. Anordnung zur Durchführung des Verfahrens gemäß der Ansprüche 1 bis 4 zur Einmischung von Viskositätsindex-Verbesserern in Grundöle bestehend aus einem Kessel (7) für ein Grundöl und einer Verflüssigungskammer (1) für einen Viskositätsindex-Verbesserer zur Herstellung einer Zielmischung (m2), dadurch gekennzeichnet, dass
    ein Hauptkreislauf (I) und ein Nebenkreislauf (II) für eine separate Konditionierung von Mischungspartnern der Zielmischung (m2) angeordnet ist.
  6. nach Anspruch 5 dadurch gekennzeichnet, dass der Hauptkreislauf (I) den Kessel (7) über eine Haupt-Leitung (14), in welcher mindestens eine Pumpe (10), mindestens eine Heizung (9) und mehrere statische Mischer (11) angeordnet sind, mit sich selbst verbindet, dass die Verflüssigungskammer (1) über eine Stich-Leitung (16) mit dem Hauptkreislauf (I) und über eine Neben-Leitung (15) mit dem Nebenkreislauf (II), welcher über eine Pumpe (4) zurück in die Verflüssigungskammer (1) führt, verbunden ist, und
    dass eine erste Absaugvorrichtung (2a) mit der Verflüssigungskammer (1) und eine zweite Absaugvorrichtung (2b) mit dem Kessel (7) verbunden sind, wobei die Absaugvorrichtungen (2a, 2b) über eine gemeinsame Vakuumpumpe (21) betrieben werden, und
    dass eine erste Schutzgaszufuhr (8a) mit der Verflüssigungskammer (1) und eine zweite Schutzgaszufuhr (8b) mit dem Kessel (7) verbunden sind, wobei die Schutzgaszuführungen (8a, 8b) mit einem gemeinsamen Schutzgasdruckbehälter (81) verbunden sind.
  7. Anordnung nach Anspruch 6 dadurch gekennzeichnet, dass die erste Absaugvorrichtung (2a) der Verflüssigungskammer (1) durch die Vakuumpumpe (21), eine Absaugleitung (22), einen Dreiwegehahn (23) und eine Verbindung zur Verflüssigungskammer (1) und
    die zweite Absaugvorrichtung (2b) des Kessels (7) durch die Vakuumpumpe (21), eine Absaugleitung (24), einen Dreiwegehahn (25) und eine Verbindung zum Kessel (7) definiert sind.
  8. Anordnung nach Anspruch 6 dadurch gekennzeichnet, dass die erste Schutzgaszufuhr (8a) der Verflüssigungskammer (1) über den Schutzgasdruckbehälter (81), eine Schutzgasleitung (821) und eine Schutzgasleitung (823), ein Dosierventil (822), einen Dreiwegehahn (23) und einer Verbindung zur Verflüssigungskammer (1) erfolgt und
    die zweite Schutzgaszufuhr (8b) des Kessels (7) über den Schutzgasdruckbehälter (81), eine Schutzgasleitung (831) und eine Schutzgasleitung (833), ein Dosierventil (832), einen Dreiwegehahn (25) und eine Verbindung zum Kessel (7) erfolgt.
  9. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 8 dadurch gekennzeichnet, dass
    die Pumpen (4; 10) scherungsarme Drehkolbenpumpen sind.
  10. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 8 dadurch gekennzeichnet, dass
    die Heizung (9) ein Einschraubheizkörper ist.
  11. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 8 dadurch gekennzeichnet, dass
    die Haupt-Leitung (14) im Kessel (7) in einem Tauchstutzen (12) mit frei drehbarem Endstück oder in einer Mischdüse (13) endet.
  12. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 8 dadurch gekennzeichnet, dass
    die Stich-Leitung (16) unterhalb der Verflüssigungskammer (1) in die Haupt-Leitung (14) mündet und dass nahe der Verbindungsstelle zur Haupt-Leitung (14) in der Stich-Leitung (16) eine Venturidüse (6) angeordnet ist.
  13. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 12 dadurch gekennzeichnet, dass
    in der Verflüssigungskammer (1) ein Schmelzrost (3) angeordnet ist und die Neben-Leitung (15) oberhalb desselben in die Verflüssigungskammer (1) mündet.
  14. Anordnung nach einem der vorhergehenden Ansprüche 6 bis 13 dadurch gekennzeichnet, dass
    die Haupt-Leitung (14), die Neben-Leitung (15) und die Stich-Leitung (16) und der Kessel (7) wärmeisoliert sind.
EP17176937.5A 2017-06-20 2017-06-20 Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle Active EP3418352B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17176937.5A EP3418352B1 (de) 2017-06-20 2017-06-20 Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17176937.5A EP3418352B1 (de) 2017-06-20 2017-06-20 Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle

Publications (2)

Publication Number Publication Date
EP3418352A1 EP3418352A1 (de) 2018-12-26
EP3418352B1 true EP3418352B1 (de) 2019-06-19

Family

ID=59276499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17176937.5A Active EP3418352B1 (de) 2017-06-20 2017-06-20 Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle

Country Status (1)

Country Link
EP (1) EP3418352B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220288543A1 (en) * 2019-07-10 2022-09-15 S.A. Lhoist Recherche Et Developpement Method and installation for homogenizing a shear thinning fluid contained in a cylindrical tank
CN112342074B (zh) * 2020-12-21 2022-06-28 山东恒利热载体工程技术有限公司 一种再生基础油润滑油抗光热稳定剂的生产工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2309039B2 (de) * 1973-02-23 1974-12-19 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Herstellung von homogenen Polyolefinkautschuk-Öl-Mischun-
DE2932459C2 (de) 1979-08-10 1985-10-31 Mobil Oil Ag In Deutschland, 2000 Hamburg Vorrichtung zum Lösen eines granulatförmigen Feststoffes in einer Flüssigkeit
US4464493A (en) * 1982-09-13 1984-08-07 Copolymer Rubber & Chemical Corp. Process for dissolving EPM and EPDM polymers in oil
US5328619A (en) 1991-06-21 1994-07-12 Ethyl Petroleum Additives, Inc. Oil additive concentrates and lubricants of enhanced performance capabilities
DE19507366A1 (de) * 1995-03-03 1996-09-05 Draiswerke Gmbh Anlage zum Mischen von Flüssigkeit und Feststoff
US20080085847A1 (en) 2006-10-10 2008-04-10 Kwok-Leung Tse Lubricating oil compositions
WO2015023212A1 (ru) * 2013-08-15 2015-02-19 Medianskii Sergey Sergeevich Линия "холодного" смешивания смазочных материалов
CN205127860U (zh) 2015-11-24 2016-04-06 山东万祥润滑科技有限公司 一种润滑油调和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3418352A1 (de) 2018-12-26

Similar Documents

Publication Publication Date Title
DE1920994C3 (de) Bitumenblasverfahren und Vorrichtung zur Durchführung desselben
DE102010028774A1 (de) Emulgiereinrichtung zur kontinuierlichen Herstellung von Emulsionen und/oder Dispersionen
DE2457001A1 (de) Vorrichtung zum extrem schnellen, kontinuierlich homogenen mischen, intensivem entgasen oder eindicken von aus mehreren komponenten bestehenden, mit oder ohne fuellstoffe legierten kunstharzen oder anderen kunststoffen
EP4140298B1 (de) Landwirtschaftliche spritzeinrichtung zum verspruehen von fluessigkeiten und landwirtschaftliches verfahren zum verspruehen von fluessigkeiten
EP3418352B1 (de) Verfahren und anordnung zur einmischung von viskositätsindex-verbesserern in grundöle
DE19836565A1 (de) Verfahren und Vorrichtung zum Mischen von Produkten
DE2164545C3 (de) Verfahren und Vorrichtung zur kontinuierlichen Kühlung aufeinanderfolgender Abschnitte eines thermoplastischen Stranges
DE60119231T2 (de) Verfahren und Anlage zur dynamischen Behandlung von Gas, insbesondere für medizinische Zwecke
DE2423766A1 (de) Fermentierungsverfahren sowie vorrichtung zu dessen durchfuehrung
EP3593897A1 (de) Verflüssigungskammer in einer anordnung zur einmischung von viskositätsindex-verbesserern in grundöle, sowie anordnung und verfahren zur einmischung von viskositätsindex-verbesserern in grundöle
EP0272622B1 (de) Kontinuierliches Verfahren zur Herstellung von Lösungen aus niederviskosen Lösungsmitteln und hochviskosen, pastösen Produkten
EP3405280B1 (de) Vorrichtung und verfahren zum erzeugen einer gebrauchsfertigen lösung aus einem konzentrat
WO1999024156A1 (de) Verfahren zum anreichern einer flüssigkeit mit einem gas, vorzugsweise zum anreichern von wasser mit sauerstoff, und vorrichtungen zur durchführung des verfahrens
EP3638409B1 (de) Verfahren und mischvorrichtung zur steuerung der einbringung eines pulverförmigen stoffes in eine flüssigkeit für ein batch-mischverfahren
DE102005031682A1 (de) Verfahren und Vorrichtung zum Befüllen eines Behälters
EP3678982B1 (de) Vorrichtung und verfahren zum befüllen eines behälters mit einem füllprodukt
DE102017005573B3 (de) Verfahren und Mischvorrichtung zur Steuerung der Einbringung eines pulverförmigen Stoffes in eine Flüssigkeit für ein Inline-Mischverfahren
WO2017063666A1 (de) Vorrichtung zur erzeugung einer dampfhaltigen gasatmosphäre und anlagenkomponente mit einer solchen vorrichtung
DE102010040703B4 (de) Vorrichtung und Verfahren zum Behandeln von Getränken
EP1402977B1 (de) Schutzgaseinrichtung für Druckgussmaschinen
DE102017005574B3 (de) Verfahren und Mischvorrichtung zur Steuerung der Einbringung eines pulverförmigen Stoffes in eine Flüssigkeit für ein Batch-Mischverfahren
DE10217231C1 (de) Verfahren und Vorrichtung zum Belüften von fetthaltiger Masse, insbesondere Schokolademasse
DE102011084720A1 (de) Mixer für Pulpe- und Faserhaltige Getränke
EP3409812A1 (de) Gasversorgungssystem und gasversorgungsverfahren
EP1071719A1 (de) Verfahren zur dosierung eines gemisches aus flüssigem ammoniak und einem zusatzstoff in einen feststoff und dosiervorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 177/00 20060101AFI20190110BHEP

Ipc: C10N 70/00 20060101ALN20190110BHEP

Ipc: C10N 30/02 20060101ALN20190110BHEP

Ipc: B01F 5/10 20060101ALI20190110BHEP

Ipc: B01F 3/12 20060101ALI20190110BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190220

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 70/00 20060101ALN20190211BHEP

Ipc: B01F 3/12 20060101ALI20190211BHEP

Ipc: B01F 5/10 20060101ALI20190211BHEP

Ipc: C10M 177/00 20060101AFI20190211BHEP

Ipc: C10N 30/02 20060101ALN20190211BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001565

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1145519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001565

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017001565

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017001565

Country of ref document: DE

Owner name: EDL ANLAGENHAU GESELLSCHAFT MBH, DE

Free format text: FORMER OWNER: INTERVALVE RESEARCH AND DEVELOPMENT GMBH, 16515 ORANIENBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230516

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1145519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220620