EP3414418B1 - Richtbohrgerät und verfahren zum kalibrieren desselben - Google Patents

Richtbohrgerät und verfahren zum kalibrieren desselben Download PDF

Info

Publication number
EP3414418B1
EP3414418B1 EP17713881.5A EP17713881A EP3414418B1 EP 3414418 B1 EP3414418 B1 EP 3414418B1 EP 17713881 A EP17713881 A EP 17713881A EP 3414418 B1 EP3414418 B1 EP 3414418B1
Authority
EP
European Patent Office
Prior art keywords
directional drilling
magnetic field
directional
housing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17713881.5A
Other languages
English (en)
French (fr)
Other versions
EP3414418A1 (de
Inventor
Werner Vorhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Drilling GmbH
Original Assignee
Smart Drilling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Drilling GmbH filed Critical Smart Drilling GmbH
Publication of EP3414418A1 publication Critical patent/EP3414418A1/de
Application granted granted Critical
Publication of EP3414418B1 publication Critical patent/EP3414418B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/005Below-ground automatic control systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry

Definitions

  • the invention relates to a cost-effective method for calibrating magnetic field sensors in a highly precise directional drilling device for the early, reliable and real-time determination of the borehole, specifying a selectable directional course of the borehole for deep drilling, and a directional drilling device which has a housing, a chisel drive shaft rotating in the housing , end preferably protruding from the housing, carries a rotary drill bit, a control device arranged in the housing and magnetic field sensors connected to the same, several directional control devices arranged in the housing for generating directional forces with radially alignable force components for aligning the directional drilling device during drilling operation.
  • Directional drilling is also used to describe drilling processes that enable the direction of a hole to be influenced.
  • the borehole course is changed and determined in every direction.
  • values for inclination and magnetic north are measured, among other things.
  • the sensors for the detection of magnetic north are arranged in non-magnetizable steels at a sufficient distance from all parts that cause a magnetic influence. Only in this way can magnetic north be detected without being influenced and steered in the correct, ie predetermined, direction.
  • Conventional directional drilling rigs include a tubular housing.
  • the housing accommodates the drill pipe string, also called the drill string, at least with its foot section facing away from the rotary drill bit.
  • the rotary drill bit is disposed in the head portion of the housing; at least a portion of the bit drive shaft to which the rotary drill bit is coupled is also rotatably disposed in the head portion of the housing.
  • the foot section merges into the body section of the housing, which merges into the head section.
  • the magnetic field sensors are - as far away as possible from the head section and the body section of the housing - arranged in the foot section of the housing of conventional directional drilling devices in order to try to eliminate the magnetic deflections that occur even when the rotary drill bit is in operation, as a result of the head section and body section of the housing built-in devices, components, etc. generated magnetic deflections and their influences on the magnetic field sensors by the spatial distance or spacing of the magnetic field sensors from the head portion of the housing of the conventional directional drilling device at least to reduce.
  • US 2014/0138157 A1 discloses a drilling apparatus comprising a bearing housing defining a longitudinal axis and upper and lower portions.
  • the upper portion of the bearing housing is configured for connection to a drill string and at least one annular bearing pack is disposed within the bearing housing.
  • a drill is coupled to the bearing housing and rotatable about the longitudinal axis.
  • the drill bit includes a leading body that supports a plurality of cutters for engaging a subterranean rock formation bring a shaft portion that protrudes from the leading body, and a dome portion that engages the shaft portion and defines an inseparable connection therewith.
  • the mandrel section extends in the longitudinal direction into the bearing housing and through the at least one annular bearing assembly.
  • EP 1 008 717 A1 discloses an actively controlled rotatably steerable drilling system for directional drilling of boreholes, the system including a rotatable drive component rotatable within a tubular slide tool collar containing resilient anti-rotation elements to maintain a coupled relationship with the borehole wall during drilling.
  • Hydraulic cylinder and piston assemblies actuated by solenoid valves responsive to the tool position signal, control the angular position of an offset mandrel with respect to a tool collar.
  • the hydraulic pistons are servo-controlled and respond to signal inputs from tool position sensing systems such as magnetometers and accelerometers, which provide real-time position signals to the hydraulic control system.
  • US 2004/0149004 A1 discloses an apparatus for improving the accuracy of directional measurements using magnetometers and accelerometers.
  • the method corrects errors in bias, scaling factor, misalignment of cross-axial magnetometers, and bias or scaling factor of axial magnetometers.
  • the method also corrects accelerometers in a similar manner.
  • the calibration parameters obtained at one survey point are applied to measurements at other survey points to improve the accuracy of the surveys and the efficiency of the drilling operations.
  • a further relevant disadvantage occurs when using conventional directional drilling devices due to the spacing of the magnetic field sensors from the head section of the housing; Due to the large spacing of the magnetic field sensors from the head section, there are slight deviations of the conventional directional drilling devices with their head sections not determined early in three spatial directions, for example, so that these early deviations in direction can only be determined at a later point in time by means of the magnetic field sensors arranged in the foot section. Due to the directional deviations determined only after a certain period of time, subsequent corrections of the directional courses of the depths are necessary, which, the later the directional deviations of the rotary drill bit are determined, the more time-consuming and costly the corrections of the directional drilling turn out to be.
  • Another object of the invention relates to a reliably working, high-precision directional drilling device for continuous operation with automatic, finely controlled monitoring of targeted drilling at great depths, specifying a selectable directional course of the borehole with a housing, one, preferably rotating in the housing, on its out of the housing protruding end a rotary drill bit carrying bit drive shaft, a control device, preferably several direction control devices arranged in the housing for generating directional forces with radially alignable force components for aligning the directional drilling device during drilling operation and magnetic field sensors connected to the control device, which is characterized in that the magnetic field sensors in a front , the area facing the rotary drill bit, the area close to the drill bit, of the housing and calibrated by means of a homogeneous magnetic field generated by Helmholtz coils.
  • Deviations from boreholes occur especially in the deep rock of the rock formations, also due to the occurrence of different hardnesses of solid rock or loose rock. Deviations also occur when drilling due to the excess length of the drill pipe string, also called drill pipe, and the variable force that is exerted on the drill pipe.
  • drill pipe string also called drill pipe
  • a conventional device with a rotary bit e.g. directional drilling device, for drilling vertical or curvature-related bores, which includes a drilling tool, has control ribs, also skids, clamping pieces, sliding ribs, etc., which can be pivoted circumferentially outward on the outside of the device , arranged, which are applied against the wall of the borehole with force.
  • the application of force against the wall of the borehole hereinafter referred to as the borehole wall for short, causes the rotary drill bit of the conventional device to be deflected in the opposite direction. It turns out, however, that the conventional device can only be controlled from the outside from a control station above ground.
  • the deviation of the borehole from the predetermined direction may also be due to the torque and forward drilling force exerted on the formation by the rotary drill bit. Therefore, the size and direction of the borehole deviation is according to DE 602 07 559 unpredictable and always requires the control of the rotary drill bit via the drilling tool or directional drilling device.
  • the control ribs attached to the device are controlled in accordance with the deflections of the measured value variables of the same. It turns out, however, that the orientation of the course and the checking of the borehole are inadequate, since the measured values of the inclinometers and magnetic field sensors used as measuring devices are not processed in real time, but only offset in time via an above-ground control station, compared with setpoint specifications and control signals the control ribs that are electrically connected to cables are passed on.
  • the method known in the prior art in which a borehole measuring device is inserted into a borehole and the conventional borehole measuring device is adapted by means of an inclination coil built into the conventional borehole measuring device to generate a predetermined magnetic field for displaying inclination values, does not help either further, since the measurement of the borehole and its course only takes place after it has been sunk and the conventional borehole measuring device has been inserted into the borehole that has already been sunk, even if the conventional borehole measuring device is able to determine directional values of a location in the borehole in to determine three spatial directions.
  • the conventional method also does not solve the disadvantage of directional drilling devices with the arrangement of the magnetic field sensors remote from the rotary drill bit in conventional directional drilling devices.
  • the object of the invention should also be to provide a directional drilling device which, among other things, eliminates or equalizes the deviations or misalignments generated by the use of different materials in the directional drilling device - already and immediately during deep drilling and despite the magnetic interference fields occurring during deep drilling Deep directional drilling maintains the predetermined depth in relation to the three spatial directions and the inclination without, in contrast to the prior art, the need for above-ground intervention even during ongoing drilling operations, especially since above-ground intervention is only possible as a result of the introduction of the conventional borehole measuring device into the borehole is.
  • Such a directional drilling device is also to be provided, which makes both the introduction of the conventional borehole measuring device into the borehole and the subsequent above-ground intervention superfluous.
  • the directional drilling device should be equipped with magnetic field sensors in its front area facing the rotary drill bit, i.e. in the area adjacent to the rotary drill bit, in order to avoid even the slightest deviations of the directional drilling device in inclination and azimuth that are measurable in the vicinity of the rotary drill bit, e.g. due to the occurrence of different rock hardnesses.
  • a conventional borehole sensor which is able to determine the spatial directions of a location in a borehole and to determine deviations of the same from setpoint values, but the conventional borehole sensor does not allow the sinking on the one hand and the constant control of the Monitoring of the directional variables on the other hand during the drilling process on site, ie the directional variables belonging to the conventional rotary drilling rig and to be assigned to it during drilling.
  • the task of the directional drilling device to be provided to provide both a directional drilling device which, for example, during the sinking, measures the deviations of the deep drilling directly by means of magnetic field sensors next to the rotary drill bit of the directional drilling device, which compares the deviations with setpoints, and which generates corresponding actuating signals to control the directional drilling device and regardless of the Control from the outside, i.e. outside of the directional drilling device, without time and expense, at an early stage -without time delay- forwards to the actuators, such as clamping pieces, of the directional drilling device.
  • magnetic field sensors can be used in a borehole measuring method, which are arranged rotating around the longitudinal axis of the device and deliver signals to the control station above ground due to the existing geomagnetism, but the magnetic field sensors remain at a large distance from the rotary drill bit, see above that one can neither detect minor changes in the course of the borehole nor intervene early in the operation of the deep directional drilling for the purpose of correction.
  • the directional drilling device to be provided should be able to easily detect slight deviations from the desired course of the borehole when drilling at great depths.
  • the directional drilling device to be provided should have magnetic field sensors in an arrangement close to the drill bit.
  • the directional drilling device should not only recognize minor deviations from the desired course of the borehole, but also take corrective measures at an early stage to maintain the desired course of the borehole.
  • the directional drilling device to be provided should correct the deep directional drilling in the event of changes in the course of the borehole without the risk of magnetic interference fields influencing the position determination.
  • control of the directional drilling device via an above-ground control station should be superfluous as this is due to the implementation of corrective measures unwanted borehole deviations are relieved and is only responsible for controlling the deep borehole as such.
  • the directional drilling device to be provided should control itself in real time in order to avoid the costly extension of the drilling distance as a result of deviations that are introduced later.
  • the method to be provided should be able to carry out the calibration of the directional drilling device in a cost-effective manner, so that the problem of arranging magnetic field sensors close to the drill bit in directional drilling devices, which was also recognized by Schlumberger Technology BV but unsolved by Schlumberger Technology BV, and the complicated and fault-prone method proposed by Schlumberger Technology BV is eliminated is avoided.
  • Smart Drilling GmbH arranges the sensors, such as magnetic field sensors, for inclination and direction in the directional drilling device according to the invention and carries out a correction to maintain the required accuracy.
  • the invention solves the problem by using a Helmholtz coil. In the center of the Helmholtz coil, the existing magnetic field including the earth's magnetic field is neutralized, ie there is no magnetic field.
  • the directional drilling device according to the invention is then positioned with the direction sensors, such as magnetic field sensors, in the neutral magnetic field of the coil. Since the directional drilling device according to the invention contains various components which generate a magnetic influence, the direction sensors in the Helmholtz coil now display the magnetic declination in the x, y and z axes.
  • the invention relates to a method according to claim 7.
  • the invention is also directed to a directional drilling device according to claim 1.
  • the directional drilling device can comprise a housing whose foot section facing away from the head section is provided for receiving a drill pipe string and / or a coupling to a drill pipe string, a housing arranged in the head section, preferably rotating in the same or at least partially in the housing, on its, e.g.
  • a control device arranged in the housing, preferably in its body and / or foot section, preferably several direction control devices arranged in the housing, preferably in its body and / or foot section, for generating directional forces with radial alignable force components for aligning the directional drilling device during drilling operation and a plurality of magnetic field sensors, the magnetic field sensors being arranged in the head section of the housing, namely in the region of the housing near the drill bit, and using the method according to the invention in egg n the frame having the Helmholtz coil are introduced and calibrated by the homogeneous magnetic field generated by the Helmholtz coil.
  • the invention also relates to a method for calibrating magnetic field sensors in a highly precise directional drilling device for the early, reliable, real-time determination of the borehole and the orientation of the rotary bit relative to the earth's magnetic field vector, specifying a selectable, as predetermined, directional course of the borehole for the Deep drilling, the calibration being carried out in a magnetic field generated by means of a Helmholtz coil.
  • the method according to the invention which includes the directional drilling device with a housing, a chisel drive shaft rotating in the housing, the end of which protruding from the housing carries a rotary drill bit, a control device arranged in the housing and magnetic field sensors connected to it, a plurality of directional control devices arranged in the housing for generating directional forces radially alignable force components used for aligning the directional drilling rig during drilling operations, comprises the following steps: the magnetic field sensors are arranged in a front area of the housing facing the rotary drill bit, that is to say in the area close to the drill bit, and are calibrated by means of a homogeneous magnetic field generated by the Helmholtz coil.
  • the arrangement in the head section of the housing is also understood to mean the arrangement in the area close to the drill bit, also called the area close to the drill bit is next to the rotary drill bit in the directional drilling device according to the invention or directly adjoins the rotary drill bit in the directional drilling device according to the invention or is arranged in the immediate vicinity of the rotary drill bit without the rotary drill bit and the magnetic field sensors interfering with each other when the directional drilling device according to the invention is in operation, in contrast to the prior art.
  • Another object of the invention relates to a reliably working, high-precision directional drilling device for continuous operation with automatic, finely controlled monitoring of targeted drilling at great depths, specifying a selectable directional course of the borehole with a housing, one, preferably rotating in the housing, on its out of the housing protruding end a rotary drill bit carrying bit drive shaft, a control device, preferably several direction control devices arranged in the housing for generating directional forces with radially alignable force components for aligning the directional drilling device during drilling operation and magnetic field sensors connected to the control device, which is characterized in that the magnetic field sensors in a front , the area facing the rotary drill bit, the area close to the drill bit, of the housing and are calibrated by means of a homogeneous magnetic field generated by the Helmholtz coil.
  • the invention is also based on compensating, also called balancing in the sense of the invention, of the influence of the magnetic deflections caused by magnetic interference fields or their magnetic flux densities from the magnetic flux densities without interference fields in the magnetic field generated by the Helmholtz coil, so that their influence is eliminated and the subsequent compensation of the operating functions, such as various orientations or arrangements of the directional drilling device in the magnetic field generated by the Helmholtz coil, which differ from a predetermined position of the directional drilling device, also referred to as the reference normal, in order to reset the directional drilling device to the predetermined position can; these steps are also called calibration in the context of the invention.
  • the magnetic field sensors of the directional drilling device according to the invention which are advantageously in the front, the Area of the housing facing the rotary drill bit, that is to say next to the rotary drill bit or directly adjacent to it, are calibrated by means of a magnetic field generated by the Helmholtz coil.
  • Helmholtz coil or Helmholtz coils is also understood to mean the arrangement of two coils for generating a homogeneous magnetic field, at least one largely homogeneous magnetic field sufficient for calibrating the directional drilling device according to the invention;
  • the superposition of the magnetic fields of both coils of the Helmholtz coils advantageously results in the homogeneous magnetic field near the axis.
  • the conditions underground which can correspond to the operational functions, for example, can also be simulated by means of a magnetic field.
  • the method according to the invention also relates to the calibration of magnetic field sensors in a homogeneous magnetic field generated by the Helmholtz coil, since these are arranged in the directional drilling device according to the invention in the region of the housing of the directional drilling device according to the invention near the drill bit.
  • the magnetic interference fields such as hard or soft iron effects, are usually mentioned, which are generated, for example, by the rotary drill bit, possibly the mud motor, the extension drilling tool and can superimpose or at least influence the earth's magnetic field, by means of the method according to the invention in the directional drilling device according to the invention compensated.
  • the extent of the compensation can be measured qualitatively and quantitatively and stored in the control device.
  • the directional drilling device which comprises a housing, a chisel drive shaft being arranged in a rotating manner in the housing.
  • the bit drive shaft can be coupled to a drill pipe string at its upper end protruding from the housing.
  • the control device which is connected to the magnetic field sensors arranged directly on the rotary drill bit, is arranged in the housing.
  • the conventional control device can.
  • a measured value device and / or a programmable measured value receiving device and / or a programmable measured value processing device, etc. which can be connected to one another for the purpose of forwarding, exchange and / or processing of data, signals, declination values, signals, correction values, position values, signals, correction factors are generated by the control device for moving the directional drilling device back into the predetermined position and the correction factors are stored in the electronic memory of the control device of the directional drilling device.
  • the magnetic field sensors are part of the control device as a measured value device.
  • a connection is also understood to mean a conventional electrical control connection, e.g. between the magnetic field sensors and the control connection, the direction control devices and the control device for the purpose of exchanging or at least forwarding data, measured values or signals.
  • control device is also understood to be a conventional one with a programmable measured value receiving device, a programmable measured value processing device, etc. which are well known to those skilled in the art.
  • the connection can be wireless, by means of wire, ultrasound, infrared, data communication by means of Bluetooth, etc. in analog and / or digital form and / or coded.
  • magnetic field sensors are also understood to be conventional, e.g. measured value receiving devices, which are just as well known to the person skilled in the art.
  • a plurality of directional control devices arranged in or on the housing for generating directional forces with radially alignable force components for aligning the directional drilling device according to the invention during drilling operation are located in the housing.
  • the housing is advantageously arranged so that it can rotate around the drill pipe support edge and / or the chisel drive shaft.
  • the directional drilling device according to the invention with its magnetic field sensors can be introduced into the homogeneous magnetic field generated by the Helmholtz coil and arranged in a predetermined position as a reference standard centrally in the homogeneous magnetic field.
  • the directional drilling device according to the invention is retracted into the Helmholtz coil or into a, preferably cage-like, frame with at least retracted a Helmholtz coil, which has the two coils.
  • a homogeneous magnetic field is conventionally generated by means of the Helmholtz coil, the coils, such as toroidal coils, of the Helmholtz coil being advantageously arranged on the same axis, in particular having an identical radius and / or the axial spacing of the coils from one another corresponds to the coil radius.
  • the coils are each connected to a generator via a feed device, and the coils can be connected electrically in series for current flow in the same direction.
  • the generation of homogeneous magnetic fields by means of Helmholtz coils which a directional drilling device centered and calibrate, are known to those skilled in the art, so that information about the number of turns N, the radius of the two coils, the frequency, magnetic flux density, the current strength 1 for the operation of the same be unnecessary; the two coils of the Helmholtz coil can also, as is customary at times, be referred to as Helmholtz coils.
  • step b the determination of magnetic flux densities takes place in the following step, as in step b.
  • the determination of the same is known to the person skilled in the art; so in step b. for example, the minimum and maximum magnetic flux density in the direction of each axis, such as in the direction of the X, Y and Z axes, are determined by the magnetic field sensors.
  • the deviations of the magnetic flux densities measured by magnetic field sensors as measured values or quantities from those measured values of magnetic flux densities without magnetic interference fields as normal reference or reference normal are determined and documented, e.g. stored in the control device, as a result of magnetic interference fields.
  • the extent of the measured values as deviations in the magnetic flux densities in the presence of magnetic interference fields compared with those measured values of magnetic flux density in the absence of magnetic interference fields can also be calculated or compared and stored in the control device, as in its electronic memory.
  • the magnetic field sensors generate the declination values or declination signals corresponding to the measured values and transmit them to the input via their outputs the control device further.
  • the control device generates correction values which correspond to the declining values or signals. These correspond to the extent of the changes or deviations of the measured variables of the magnetic flux densities generated by the interference fields from the measured variables for magnetic flux density with reference standard without interference fields.
  • the correction values are stored in the control device, preferably in its electronic memory, of the directional drilling device according to the invention.
  • the directional drilling device according to the invention is arranged centrally in the magnetic field generated by the Helmholtz coil in different orientations which differ from the predetermined position, here referred to as the normal position.
  • the magnetic deflections influenced by these alignments as measured variables of magnetic flux densities can be determined in the direction of each axis, such as in the direction of the X, Y, Z axes, by the magnetic field sensors of the directional drilling device according to the invention.
  • the regulation of the direction control devices of the directional drilling device according to the invention a control circuit for multivariable regulation is provided in the control device of the same.
  • the various orientations can correspond to the operational functions of the directional drilling device according to the invention on site, which can therefore occur on site in deep drilling in the rock.
  • the corresponding measured values of magnetic flux densities resulting from the most varied of orientations are forwarded as position values, also called position signals, via the outputs of the magnetic field sensors to the input of the control device.
  • the correction factors corresponding to the position values are generated by the control device, which can serve to bring the directional drilling device according to the invention from its various orientations back into its predetermined position.
  • the position values can also usually be compared as controlled variables with setpoint specifications; in the event of deviations, changed output variables can be passed on as actuating signals to the direction control devices for the purpose of changing, for example, inclinations, azimuths.
  • the position values can be used as actual values deviate from the position of the directional drilling device according to the invention predetermined by the setpoint value as a normal reference or reference normal, so that the correction values correspond to manipulated variables or the output variables determined after adjustment of the position values by correction values in the event of a deviation can correspond to adjustment factors as adjustment factors which are passed on to the direction control devices of the directional drilling device according to the invention can be.
  • the measured variables to be assigned to the normal position or reference normal can also be regarded as the setpoint specification for the position values entered in the control device, as in the event of deviations from these the correction factors are passed on as manipulated variables to the directional control devices of the directional drilling device according to the invention to generate directional forces with radially alignable force components against the borehole wall .
  • the measured values determined by the magnetic field sensors in step 0 can be compared, as it were, adjusted by the control device by the correction values.
  • the correction factors are stored in an electrical or electronic memory of the control device of the directional drilling device according to the invention, so that, if necessary, the position values are compared with setpoint specifications in real time - without recourse to a control station above ground - and the correction factors corresponding to the position values are displayed as control signals corresponding to the position values the direction control devices of the directional drilling device according to the invention are forwarded.
  • step c. the correction factors are adjusted by the correction values for generating adjustment factors, so that the adjustment factors correspond to the actual values of the alignments differing from the predetermined position.
  • the adjustment factors can be compared with target value specifications, e.g. which correspond to the target value specifications of the predetermined position in the magnetic field, and output variables changed as a result of the deviations from the target value specifications can be generated as actuating signals or control signals that are used to control the direction control device.
  • further measured value devices in particular temperature sensors, inclination sensors, acceleration sensors, gamma radiation sensors, gyroscope sensors and / or other WOB sensors for the precise determination of the position of the directional drilling device according to the invention can also be added to the housing of the directional drilling device according to the invention be connected to the control device at a certain point in time.
  • the method according to the invention ensures that the directional drilling device according to the invention is calibrated in a simple and inexpensive manner.
  • Magnetic interference fields which are caused by the ferromagnetic materials present in the directional drilling device according to the invention, which influence the magnetic flux density, are taken into account and compensated for at an early stage.
  • the measured variables for determining the direction of the borehole can also be forwarded via cables, telemetrically and / or in the form of pressure signals and / or pulses such as sound waves from an above-ground control station to the control device and back.
  • the transmission of control signals or other data, such as measured value variables, to the control device or from the same to the control station can also be transmitted, as will be explained below.
  • Steps can also be carried out in the presence of predetermined temperatures or temperature ranges, since the transmission properties in the magnetic field sensors, within the directional drilling device according to the invention, etc. can be temperature-dependent.
  • the advantage of the directional drilling device according to the invention is also based on the fact that the magnetic field sensors located in the head section not only determine early on deviations in the borehole, but also minor deviations in the rotary drill bit located in the head section, via the control device of the directional drilling device according to the invention, the corrective measures in real time - without External intervention based on the setpoint specifications programmed into the control device, for example in relation to the inclination and direction of the borehole, and / or correction values, correction factors, adjustment factors, can take place.
  • control device which has a control loop for multi-variable control to regulate the directional control devices, to which the controlled variables are fed as actual values of the measured value devices, and in which these controlled variables are compared with setpoint specifications so that, in the event of deviations, the manipulated variables are fed to the direction control devices as so-called control signals, as in FIG DE 199 50 040 disclosed.
  • the skilful cooperation of the measured value devices with one another via the control device avoids any distortions or misalignments that may occur between the individual measured value devices and their measured variables, and they are coupled to one another via the control loop for multivariable control in such a way that proper control and modification of the programmed setpoint values in the directional drilling device is guaranteed.
  • the direction control devices of the directional drilling device are designed as bracing devices with adjusting devices to which radially outwardly and inwardly movable, shield-like clamping pieces, which can be inserted into grooves of the housing and are distributed over the circumference in the housing at least on a bracing plane, are coupled, the mobility of which by means of the at least one through heat expandable pressure medium having actuating devices is temperature-controlled, the pressure medium is a liquid, the liquid has a volume expansion coefficient ⁇ at 18 ° C of 5.0 to 20.0 x 10 -4 K -1 , for example, the clamping pieces articulated to the actuating devices are, the actuating device is designed as a piston-cylinder device, the cylinder chamber has a heating device for heating the pressure medium, the piston is coupled with its outer end to the clamping piece, the cylinder chamber is filled with the liquid or gas as the pressure medium is.
  • the clamping pieces can be articulated to the actuating devices, the actuating device being designed as a piston-cylinder device, the cylinder space of which is continuously connected to a chamber of a chamber housing, the cylinder space and the chamber with the liquid or the gas as the pressure medium are filled, a heating device is arranged on at least part of the inner and / or outer walls of the chamber housing for heating the same and the pressure medium, the piston is coupled with its outer end to the clamping piece, the cylinder space of the piston-cylinder device has a heating device for heating the pressure medium, the piston is coupled with its outer end to the clamping piece, the cylinder space is filled with the liquid or the gas as the pressure medium and / or the piston is subjected to force as a result of the heating of the pressure medium radially to the center longitudinal axis of the housing Position the clamping piece against a wall of the borehole tion is shifted at the transition from the starting position to the end position and as a result of the cooling of the pressure medium radially to the center longitudinal axis
  • the printing medium can have a volume expansion coefficient ⁇ at 18 ° C. of 7.2 to 16.3 ⁇ 10 -4 K -1 , even more preferably 12 to 15 ⁇ 10 -4 K -1 .
  • the piston-cylinder device can be designed as double-acting, the opposite piston surfaces of which can be acted upon by temperature-controlled pressure media.
  • the pressure pulses can be transmitted in flowing media for the transmission of information from the control device, in particular when drilling bores, in underground mining and tunneling, through the flushing channel of the drill pipe string that can be coupled to the chisel drive shaft, with a
  • the impeller is arranged, which is designed to be switchable in generator and motor mode and can be operated alternately accordingly.
  • the impeller with the coils assigned to the drill pipe string can have magnets attached in a manner corresponding to it.
  • the coils can be connected to energy storage devices, the winding wheel advantageously being arranged axially.
  • the impeller can be mounted via guides that support itself against the inner wall of the mud channel of the drill pipe string, as in FIG DE 41 34 609 disclosed.
  • information can be transmitted from the control device via the drill pipe string within the same by means of pressure pulses in a flowing liquid, preferably called drilling mud or drilling fluid
  • the directional drilling device according to the invention having a device connected to the control device for transmitting the information, in particular when producing bores, by means of pressure signals in flowing liquid, preferably drilling fluid, includes;
  • the device has an information generation device, a transmission device connected to the information generation device for generating the pressure pulses in the liquid and a receiving device for receiving and evaluating the information transmitted by the pressure pulses in the control station, the transmission device having an elastic flow resistance body in the liquid flow and an adjusting device for changing the Has flow cross-section of the flow resistance in the cycle of the pressure pulses to be generated, as in DE 196 07 402 disclosed.
  • the transmission device can have an elastic flow resistance body in the liquid flow and an adjusting device for controlling the flow cross-section of the flow resistance body in time with the pressure pulses to be generated.
  • the advantage of this transmission is the compact and cost-saving design as well as the low-wear and low-energy work of the pressure pulse transmission and, despite the easy replacement of the moving parts, a flawless transmission of the information is guaranteed.
  • This measure ensures that a flow resistance body with a variable flow cross section is located in the flow of liquid or in the flow of drilling fluid.
  • pressure fluctuations or pressure pulses can be traced back to the fact that with a reduced flow cross-section and the same liquid flow, the flow velocity around the flow resistance body increases and consequently the liquid pressure partially decreases. A reduction in the flow cross-section consequently leads to a partial pressure increase in the liquid flow.
  • pressure fluctuations or pressure pulses can be generated in the liquid flow in a targeted manner. This is achieved in a reproducible manner due to the elasticity of the flow resistance body, and the aforementioned process can be repeated as often as desired and with almost no wear.
  • the reaction times of the elastic flow resistance body are advantageously so short that perfect rising and falling edges of the pressure pulses can be generated. In this way, an undisturbed transmission of information is still possible, since the pressure pulses generated have a sufficient edge steepness to be able to control subsequent, for example, digital evaluation devices.
  • the control device of the same is provided with a device for transmitting information connected within the drill pipe string by means of pulses such as sound waves;
  • a transmission device for generating the pulses can be connected to an information generating device downstream of the rotary drill bit, e.g. as part of the control device, a receiving device for receiving and evaluating the information transmitted via pulses also comprising the device, the pulses generated by the transmission device being designed as sound waves and forwarded to the receiving device, as in FIG DE 10 2012 004 392 disclosed.
  • the sound waves can be triggered by means of mechanically, hydraulically, electrically and / or pneumatically actuated pulses.
  • Deviations of the directional drilling device according to the invention from a predetermined position are not only detected early, but in real time - without the involvement of an above-ground control station and the delay caused by the activation of the same - immediately corrective measures for the purpose of correcting the position of the invention
  • a predetermined position here called a normal or predetermined position
  • the directional drilling device according to the invention Due to the arrangement of the magnetic field sensors in the area of the directional drilling device according to the invention near the drill bit, the directional drilling device according to the invention, in contrast to the methods and devices advertised by Schlumberger Technology BV, is able to detect even the slightest deviations from the borehole course and in a corresponding manner with the help of the control device to correct controlled direction control devices of the directional drilling device according to the invention as well as their control ribs by extending them while the drilling operation is in progress.
  • the magnetic field sensors are arranged so far away from the rotary drill bit in the directional drilling device that they only detect changes in the curvature of the borehole when the changes in the azimuthal angle are far advanced, so that not only the drilling distance is significantly lengthened but, disadvantageously, additional considerable, albeit unnecessary, operating costs occur.
  • the directional drilling device according to the invention and the method according to the invention for calibrating the same are also distinguished by the advantages as follows the measurement of the borehole and its course only immediately during the sinking of the same - without delay -, no introduction of a borehole measuring device into the borehole that has already been sunk, Determination of actual values as directional and inclination values not by means of drill bits as far as possible - as in the prior art - but by magnetic field sensors arranged in the head section of the housing of the directional drilling device according to the invention, i.e.
  • the method according to the invention for calibrating magnetic field sensors in a highly precise directional drilling device for the early, reliable, real-time determination of the borehole in layers of earth, specifying a selectable directional course of the borehole for deep drilling and the reliably operating directional drilling device according to the invention for continuous operation is shown in a schematic manner automatic, finely controlled monitoring of targeted drilling at great depths, specifying a selectable directional course of the borehole.
  • the directional drilling device comprises a housing, the magnetic field sensors arranged in the housing, arranged in the immediate vicinity of the rotary drill bit, i.e. in the head section of the housing, thus arranged near the drill bit, the control device arranged in the trunk or foot section, the input of which is electrically controlled with the outputs of the magnetic field sensors and is connected or connected to the inputs of the direction control devices arranged on or in the trunk or foot section of the housing, the bit drive shaft, which is at least partially rotatably mounted in the head section of the housing, with the rotary drill bit.
  • the area facing the rotary drill bit, adjacent to the rotary drill bit or near drill bit can also be understood in the context of the invention that no spacing - as required and unavoidable in the prior art - and thus distance of the magnetic field sensors from the rotary drill bit is required, but, as far as technically possible, the magnetic field sensors adjoin the rotary drill bit so that On the one hand, the movements, such as rotary movements, of the rotary drill bit are unable to damage the magnetic field sensors through, for example, milled rock, on the other hand, the magnetic field sensors are not able to restrict the rotary drill bit during its movements due to its spatial proximity and thus its freedom of rotation.
  • the directional drilling device is placed in a frame with the Helmholtz coil in order to arrange this in accordance with the method in the homogeneous magnetic field generated by the Helmholtz coil in a predetermined position as a reference normal centrally in the magnetic field in step a.
  • the magnetic deflections which are also influenced by the magnetic interference fields, are determined as magnetic flux densities in the direction of the X, Y, and Z axes by the magnetic field sensors as measured values or variables, in order to transfer the measured values as deflection values or signals forward their outputs to the input of the control device.
  • Correction values corresponding to the declination values are generated by the control device, which reflect the deviations as declination values from the measured values of magnetic flux densities without interference fields or the extent of the measured variables of the deviations of the magnetic flux densities generated by the interference fields from the measured variables of magnetic flux densities without, in particular magnetic, interference fields as a reference standard after matching.
  • the correction values are stored in an electronic memory of the control device of the directional drilling machine.
  • the directional drilling device according to the invention is arranged in the magnetic field generated by the Helmholtz coil and in orientations or operating functions that differ from the predetermined position as the reference normal and that of These alignments influenced magnetic deflections as magnetic flux densities in the direction of the X, Y, Z axes determined by the magnetic field sensors of the directional drilling device according to the invention as measured variables; the corresponding measured values or quantities resulting from these different orientations as position values or position signals are forwarded to the input of the control device via the outputs of the magnetic field sensors.
  • the correction factors corresponding to the position values are generated by the control device, with the aid of which the directional drilling device according to the invention can be brought from its various orientations back into a predetermined position as the reference normal.
  • the correction factors can be stored in the electronic memory of the control device.
  • the correction factors can correspond to a specific control signal or manipulated variable for the direction control devices for moving the directional drilling device according to the invention into a predetermined position.
  • the control device can return the directional drilling device according to the invention with its directional control devices to a predetermined position by means of the control signals corresponding to the correction factors.
  • the correction factors can correspond to the actual values of the orientations differing from the predetermined position, so that after comparing the correction factors with the setpoint values corresponding to the predetermined position, the control device brings the direction control devices into a predetermined position by means of the control signals communicated to them.
  • the correction factors are adjusted by the correction values for generating adjustment factors to such an extent that with their help the directional drilling device according to the invention can also be brought from the different orientations back into the predetermined position as the reference standard.
  • the adjustment factors can correspond to the actual values of the orientations differing from the predetermined position, so that after comparing the adjustment factors or correction factors with the setpoint values corresponding to the predetermined position of the directional drilling device according to the invention the control device, the directional drilling device according to the invention with its directional control devices is brought back to a predetermined position by means of the control signals communicated to them by means of generated output or manipulated variables.
  • control signals corresponding to the correction factors and / or adjustment factors for activating the direction control devices are generated by the control device, for example as manipulated variables, for automatically aligning the directional drilling device according to the invention in a predetermined position.
  • the method according to the invention and the directional drilling device according to the invention make it possible calibration in a simple way, the early detection of deviations in the deep drilling process, the first realization of the previously technically recognized unsolved task, which has long been known, namely the arrangement of magnetic field sensors in an arrangement close to the drill bit in the directional drilling device according to the invention, the early intervention of corrective measures, the detection of even minor deviations from the desired course of the borehole when drilling at great depths, the monitoring of very narrow curvatures of the borehole when drilling at great depths, the implementation of corrective measures in the event of minor deviations from the desired course of the borehole at great depths, Correction for changes in the course of the bore without the risk of magnetic interference fields influencing the determination of the position, the elimination of the control of the directional drilling rig via an above-ground control station, the automatic control of the directional drilling rig in real time without costly extension of the drilling distance, the provision of magnetic field sensors close to the drill bit in the directional drilling rigs, the elimination of complicated and fault-prone processes
  • the directional course of the borehole for deep drilling can be selected at any time.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Paper (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

  • Die Erfindung betrifft ein kostengünstiges Verfahren zum Kalibrieren von Magnetfeldsensoren in einem hoch präzise arbeitenden Richtbohrgerät zur frühzeitigen, zuverlässigen und zeitnahen Bestimmung des Bohrlochs unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs für das Tiefbohren und ein Richtbohrgerät, welches ein Gehäuse, eine im Gehäuse rotierende Meißelantriebswelle, deren, vorzugsweise aus dem Gehäuse vorstehendes, Ende einen Drehbohrmeißel trägt, eine in dem Gehäuse angeordnete Steuervorrichtung und mit derselben verbundene Magnetfeldsensoren, mehrere in dem Gehäuse angeordnete Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgerätes bei Bohrbetrieb.
  • Mit Richtbohren bezeichnet man auch Bohrverfahren, die es ermöglichen, die Richtung einer Bohrung zu beeinflussen. Mit komplexen Systemen wird der Bohrlochverlauf in jede Richtung verändert und bestimmt. Dafür werden unter Anderem Werte für Neigung und magnetisch Nord gemessen. Die Sensoren zur Erfassung von magnetisch Nord werden in nicht magnetisierbaren Stählen angeordnet in genügendem Abstand zu allen Teilen, die einen magnetischen Einfluss bewirken. Nur in dieser Weise kann unbeeinflusst magnetisch Nord erfasst und in die richtige, d.h. vorbestimmte, Richtung gesteuert werden. Vorteilhaft ist bei der Verwendung von Richtbohrgeräten die Messung von Neigung und Richtung möglichst nah hinter dem Meißel angeordnet zu haben, um einen kontrollierten und geplanten Sollverlauf der Bohrung zu gewährleisten. Moderne Rotary Steerable Systeme haben nur die Neigungsmessung im ihrem System direkt eingebaut und die Richtungssensoren in einem deutlich mehrere Meter dahinter liegenden Sektor, der nicht magnetisch ist, um mit der geforderten Genauigkeit magnetisch Nord zu ermitteln. Der Einbau der Richtungssensoren und die Erfassung von magnetisch Nord im Richtbohrgerät zusammen mit den Neigungssensoren würde ohne entsprechende Korrekturen zu magnetischen Missweisungen führen und große Ungenauigkeiten in der Richtungsermittlung zulassen.
  • Herkömmliche Richtbohrgeräte umfassen ein rohrförmiges Gehäuse. Das Gehäuse nimmt zumindest mit seinem Fußabschnitt, der dem Drehbohrmeißel abgewandt ist, den Bohrrohrstrang, auch Bohrstrang genannt, auf. in dem Kopfabschnitt des Gehäuses ist der Drehbohrmeißel angeordnet; zumindest ein Teil der Meißelantriebswelle, an welcher der Drehbohrmeißel gekoppelt ist, ist ebenso in dem Kopfabschnitt des Gehäuses drehbar angeordnet. Der Fußabschnitt geht in den Rumpfabschnitt des Gehäuses über, welcher in den Kopfabschnitt übergeht. Die Magnetfeldsensoren sind -so weit wie möglich von dem Kopfabschnitt und dem Rumpfabschnitt des Gehäuse entfernt-, in dem Fußabschnitt des Gehäuses herkömmlicher Richtbohrgeräte angeordnet, um zu versuchen, die auch bei Betrieb des Drehbohrmeißels auftretenden magnetischen Missweisungen, die infolge der in dem Kopfabschnitt und Rumpfabschnitt des Gehäuses verbauten Einrichtungen, Bauteile, usw. erzeugten magnetischen Missweisungen und deren Einflüsse auf die Magnetfeldsensoren durch die Raumferne oder Beabstandung der Magnetfeldsensoren von dem Kopfabschnitt des Gehäuses des herkömmlichen Richtbohrgerätes zumindest zu verringern. Trotz der räumlichen Ferne der Magnetfeldsensoren von dem Kopfabschnitt und Rumpfabschnitt zeigt sich gleichwohl die Beeinflussung der Ermitt6lung der von Magnetfeldsensoren ermittelten Lagedaten der herkömmlichen Richtbohrgeräte, so dass das gerichtete Tiefbohren mit den herkömmlichen Richtbohrgeräten nicht mit dem erwünschten Verlauf des abgeteuften Bohrlochs übereinstimmt.
  • US 2014/0138157 A1 offenbart eine Bohrvorrichtung umfassend ein Lagergehäuse, das eine Längsachse und einen oberen und unteren Abschnitt definiert. Der obere Teil des Lagergehäuses ist für den Anschluss an einen Bohrstrang konfiguriert, und mindestens ein ringförmiges Lagerpaket ist innerhalb des Lagergehäuses angeordnet. Ein Bohrer ist mit dem Lagergehäuse gekoppelt und um die Längsachse drehbar. Der Bohrer umfasst einen führenden Körper, der mehrere Fräser trägt, um eine unterirdische Gesteinsformation in Eingriff zu bringen, einen Schaftabschnitt, der aus dem führenden Körper herausragt, und einen Domabschnitt, der in den Schaftabschnitt eingreift und eine untrennbare Verbindung damit definiert. Der Dornabschnitt erstreckt sich in Längsrichtung in das Lagergehäuse und durch das mindestens eine ringförmige Lagerpaket.
  • EP 1 008 717 A1 offenbart ein aktiv gesteuertes drehbar lenkbares Bohrsystem zum Richtungsbohren von Bohrlöchern, wobei das System eine drehbare Antriebskomponente aufweist, die innerhalb eines rohrförmigen Gleitwerkzeugkragens drehbar ist, der elastische Verdrehsicherungselemente enthält, um während des Bohrens eine gekoppelte Beziehung zur Bohrlochwand aufrechtzuerhalten. Hydraulische Zylinder- und Kolbenbaugruppen, die durch auf das Werkzeugpositionssignal ansprechende Magnetventile betätigt werden, steuern die Winkelposition eines Versatzdorns in Bezug auf einen Werkzeugkragen. Die Hydraulikkolben sind servogesteuert und reagieren auf Signaleingaben von Werkzeugpositionserfassungssystemen wie Magnetometern und Beschleunigungsmessern, die dem Hydrauliksteuersystem Echtzeit-Positionssignale liefern.
  • US 2004/0149004 A1 offenbart eine Vorrichtung zur Verbesserung der Genauigkeit von Richtungsmessungen unter Verwendung von Magnetometern und Beschleunigungsmessern. Das Verfahren korrigiert Fehler in der Vorspannung, im Skalierungsfaktor, in der Fehlausrichtung von Kreuz-Axial-Magnetometern und in der Vorspannung oder im Skalierungsfaktor von Axial-Magnetometern, Das Verfahren korrigiert in ähnlicher Weise auch Beschleunigungsmesser. Die an einem Vermessungspunkt erhaltenen Kalibrierungsparameter werden auf Messungen an anderen Vermessungspunkten angewendet, um die Genauigkeit der Vermessungen und die Effizienz der Bohrvorgänge zu verbessern.
  • Darüber hinaus tritt ein weiterer relevanter Nachteil bei dem Einsatz der herkömmlichen Richtbohrgeräte durch die Raumferne der Magnetfeldsensoren von dem Kopfabschnitt des Gehäuses auf; durch die weite Beabstandung der Magnetfeldsensoren von dem Kopfabschnitt werden geringfügige Abweichungen der herkömmlichen Richtbohrgeräte mit ihren Kopfabschnitten in z.B. drei Raumrichtungen nicht frühzeitig festgestellt, so dass diese frühzeitigen auftretenden Richtungsabweichungen mittels der in dem Fußabschnitt angeordneten Magnetfeldsensoren erst zu einem späteren Zeitpunkt festgestellt werden können. Durch die erst nach einer gewissen Zeitdauer ermittelten Richtungsabweichungen sind nachträgliche Berichtigungen der Richtungsverläufe der Abteufungen erforderlich, die, je später die Richungsabweichungen des Drehbohrmeißels ermittelt werden, desto zeitaufwendiger und kostenträchtiger erweisen sich die Berichtigungen des Richtbohrens. Bemühungen im Stand der Technik, die Richtungsabweichungen der Kopfabschnitte der Richtbohrgeräte durch zumindest kopfabschnittnahen Einbau der Magnetfeldsensoren in den herkömmlichen Richtbohrgeräte, wie nachfolgend aufgeführt wird, scheiterten aufgrund der deutlichen Zunahme des Auftretens der Missweisungen mit der geringer werdenden Raumfeme der Magnetfeldsensoren von dem Kopfabschnitt.
  • Ein weiterer Gegenstand der Erfindung betrifft ein zuverlässig arbeitendes hoch präzises Richtbohrgerät für den Dauerbetrieb mit automatischer, fein kontrollierter Überwachung des zielgerichteten Bohrens in großen Tiefen unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs mit einem Gehäuse, einer, vorzugsweise im Gehäuse rotierenden, auf ihrem aus dem Gehäuse vorstehenden Ende einen Drehbohrmeißel tragenden Meißelantriebswelle, einer Steuervorrichtung, vorzugsweise mehreren in dem Gehäuse angeordneten Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgeräts bei Bohrbetrieb und mit der Steuervorrichtung verbundene Magnetfeldsensoren, welches dadurch gekennzeichnet ist, dass die Magnetfeldsensoren in einem vorderen, dem Drehbohrmeißel zugewandten Bereich, bohrmeißelnahen Bereich, des Gehäuses angeordnet und mittels eines von Helmholtz-Spulen erzeugten homogenen Magnetfeldes kalibriert sind.
  • Im Stand der Technik sind Vorrichtungen zum Niederbringen von vertikalen Bohrungen oder Bohrungen mit Krümmungsverlauf, vornehmlich Großlochbohrung, bekannt, die den Anforderungen der Praxis, namentlich in Bezug auf die Wirtschaftlichkeit und die Sicherheit, insbesondere aber auch in Bezug auf die Genauigkeit der Orientierung des Bohrlochs, in ungenügender Weise Rechnung tragen. Wesentlich ist, dass Bohrungen zum Richtbohren in großen Tiefen kontrollierbar und steuerbar sind. Die Kontrollierbarkeit ist wesentlich, um die Lage des Bohrlochs und den Verlauf der Bohrung zu überprüfen und ggf. unerwünschte Abweichungen zu korrigieren. Die Steuerbarkeit ist ebenso wesentlich, um z.B., sowohl die Vertikalität der Tiefbohrung wie auch deren Krümmungsverlauf einzuhalten und möglichst bei Betrieb in den Bohrverlauf einzugreifen. Abweichungen von Bohrlöchern stellen sich gerade im Tiefengestein der Gesteinsformationen ein, auch bedingt durch das Auftreten unterschiedlicher Härten von Festgestein bzw. Lockergestein. Auch stellen sich bei der Bohrung Abweichungen ein aufgrund der Überlänge des Bohrrohrstrangs, auch Bohrgestänge genannt, und der veränderlichen Kraft, die auf das Bohrgestänge ausgeübt wird.
  • Um die Bohrlochabweichungen zu vermeiden, sind bei einer herkömmlichen Vorrichtung mit einem Drehbormeißel, z.B. Richtbohrgerät, zum Niederbringen von vertikalen oder krümmungsbedingten Bohrungen, die ein Bohrwerkzeug umfasst, an dessen Außenseite umlaufend nach außen schwenkbare Steuerrippen, auch Gleitkufen, Spannstücke, Gleitrippen, usw. genannt, angeordnet, die gegen die Wandung des Bohrlochs kraftbeaufschlagt angesetzt werden. Durch die Kraftbeaufschlagung gegen die Wandung des Bohrlochs, im Folgenden kurz Bohrlochwandung genannt, wird eine Ablenkung des Drehbohrmeißels der herkömmlichen Vorrichtung in Gegenrichtung hervorgerufen. Es zeigt sich jedoch, dass die herkömmliche Vorrichtung lediglich von außen von einem Steuerstand obertägig anzusteuern ist. Die Ansteuerung der Richtungssteuereinrichtungen des herkömmlichen Richtbohrgeräts über den obertägigen Steuerstand führt jedoch zu der zeitversetzten Reaktion des Schwenkens der Steuerrippen, so dass unter Anderem wertvolle Zeit kostenträchtig verloren geht, um den Orientierungsverlauf des Bohrlochs unter Tage zu beeinflussen.
  • Das Abweichen des Bohrlochs von der vorgegebenen Richtung kann zudem auf dem Drehmoment und die Vorwärtsbohrkraft beruhen, die von dem Drehbohrmeißel auf die Formation ausgeübt wird. Daher ist die Größe und die Richtung der Bohrlochabweichung nach DE 602 07 559 nicht vorhersagbar und bedarf stets der Ansteuerung des Drehbohrmeißels über das Bohrwerkzeug oder Richtbohrgerät.
  • Bei einer herkömmlichen Vorrichtung zur Herstellung zielgerichteter Bohrungen mit einer Messwerteinrichtung mit einem Messgrößenaufnehmer werden die an der Vorrichtung angeschlagenen Steuerrippen nach Maßgabe der Ausschläge der Messwertgrößen desselben angesteuert werden. Es zeigt sich jedoch, dass die Orientierung des Verlaufs und die Überprüfung des Bohrlochs unzureichend sind, da die Messwertgrößen der als Messwerteinrichtun-gen verwendeten Neigungsmesser und Magnetfeldsensoren nicht in Echtzeit, sondern lediglich zeitlich versetzt über einen obertägigen Steuerstand verarbeitet, mit Sollwertvorgaben verglichen und Steuersignale an die an Kabel elektrisch steuerungstechnisch angeschlossenen Steuerrippen weitergeleitet werden.
  • Die von Schlumberger Technology B.V. offenbarten herkömmlichen Verfahren und Vorrichtungen erkannten zwar das Problem der zeitversetzten Reaktion des Eingreifens korrektiver Maßnahmen und das seit langem bekannte, aber bisher ungelöste Problem des Auftretens magnetischer Missabweichungen, so dass lediglich die bereits oben erwähnte nachteilige bohrkronenentfernte Anordnung der Magnetfeldsensoren verwirklicht wurde. Daher war auch Schlumberger Technology B.V nicht in der Lage, beide Probleme in zufriedenstellender Weise gleichzeitig zu lösen, denn die während der Bohrung erfolgende Bestimmung von Bohrlochneigung und Bohrlochazimut anhand diskreter Anzahl von longitudinalen Punkten entlang der Achse des Bohrlochs durch die Abschätzung von mindestens zwei lokalen Magnetfeldkomponenten mittels queraxialer Magnetfeldsensoren und queraxialer Beschleunigungsmessern verkompliziert die Bauweise der Vorrichtung und macht das herkömmliche Verfahren störanfällig und verwirklicht nicht die nahe an dem Drehbohrmeißel zu erfolgende Magnetfeldmessung, geschweige denn die nächst dem Drehbohrmeißel oder unmittelbar an den Drehbohrmeißel angrenzende, zu erfolgende Magnetfeldmessung.
  • Daher verblieben die Messwerteinrichtungen weiterhin weit beabstandet von dem Drehbohrmeißel, so dass Schlumberger Technology B.V. bedauerte, die Technik der Magnetfeldmessungen für bohrkronennahe Abweichungen sei ungeeignet.
  • Die bohrkronennahe Anordnung der Magnetfeldsensoren in der herkömmlichen Vorrichtung, wie Richtbohrwerkzeugen und -geräten, war technisch undurchführbar, jedoch dringend erfordert, zumal hierdurch gänzlich neue Anwendungen und große Möglichkeiten indem Tiefrichtbohren sich eröffnen würden; die axiale Magnetfeldmessungen, so erkannte Schlumberger Technology B.V, blieben gegenüber magnetischen Interferenzen oder Missweisungen, die vom nahe gelegenen Bohrrohrstrangkomponenten ausgehen, zum Beispiel von Bohrkrone, Schlammmotor, Erweiterungsbohrwerkzeug, und dergleichen, besonders empfindlich, so dass nur zu der bohrkronenfernen Anwendung der Magnetfeldmessungen, d.h. zu der von den Drehbohrmeißeln entfernten Anordnung der Magnetfeldmessungen in dem herkömmlichen Richtbohrgerät nach herkömmlicher Lehre geraten wurde. Unter bohrkronennahe wird auch bohrmeißelnahe verstanden.
  • Daher nimmt dieser Stand der Technik in Kauf, da die Magnetfeldmessungen erst sehr spät Richtungsänderungen des Drehbohrmeißels feststellen aufgrund deren weiten Beabstandung von dem Drehbohrmeißel, dass das Tiefrichtbohren sich aufgrund der späten Reaktion des Eingreifens korrektiver Maßnahmen als kostenträchtig erweist und das Tiefbohren mit herkömmlichen Richtbohrgeräten oder -werkzeugen wegen der infolge später Reaktion sich einstellender Verlängerung der Tiefbohrstrecke betriebswirtschaftlich in heutigen Zeiten der Beachtung der stetig wachsenden Relevanz der Kosten-Nutzen-Analyse von Tiefbohrungen mit den von Schlumberger Technology B.V, empfohlenen herkömmlichen Vorrichtungen nicht ratsam ist.
  • Insbesondere im Fall des Erschließens neuer Gas- oder Erdölfelder mittels Einsatzes herkömmlicher Richtbohrgeräten oder -werkzeugen, zu welchen Schlumberger Technology B.V, gleichwohl rät, ist das Betreiben von Tiefbohrungen angesichts der Aufbereitung bereits erschlossener Felder mittels Fracking-Verfahren zeitaufwändig und kostenträchtig.
  • Auch das im Stand der Technik bekannte Verfahren, bei welchem ein Bohrloch-Messgerät in ein Bohrloch eingeführt wird und das herkömmliche Bohrloch-Messgerät mittels einer in dem herkömmliche Bohrloch-Messgerät eingebauten Inklinationsspule zur Erzeugung eines vorbestimmten Magnetfeldes zur Darstellung von Inklinationswerten angepasst wird, hilft nicht weiter, da die Vermessung des Bohrlochs und dessen Verlaufs erst nach dem Ab-teufen desselben und Einführens des herkömmlichen Bohrloch-Messgerätes in das bereits abgeteufte Bohrloch stattfindet, auch wenn das herkömmliche Bohrloch-Messgerät in der Lage ist, Richtungswerte eines Standortes in dem Bohrloch in drei Raumrichtungen zu ermitteln.
  • Auch wird mit dem herkömmlichen Verfahren der Nachteil der Richtbohrgeräte mit der Anordnung der drehbohrmeißelentfernten Magnetfeldsensoren in den herkömmlichen Richtbohrgeräten nicht gelöst.
  • Die Aufgabe der Erfindung soll es auch sein, ein Richtbohrgerät bereitzustellen, welches unter Anderem die durch Verwendung unterschiedlicher Materialien in dem Richtbohrgerät erzeugten Abweichungen bzw. Missweisungen frühzeitig -bereits und unmittelbar beim Tiefbohren ausschaltet oder -gleicht und trotz der bei dem Tiefbohren auftretenden magnetischen Störfelder beim Tiefrichtbohren die vorbestimmte Abteufung in Bezug auf die drei Raumrichtungen und die Neigung beibehält, ohne dass es im Gegensatz zum Stand der Technik sogar bei laufendem Bohrbetrieb des obertätigen Eingreifens bedarf, zumal das obertägige Eingreifen erst infolge des Einführens des herkömmlichen Bohrloch-Messgerätes in das Bohrloch möglich ist.
  • Auch soll ein solches Richtbohrgerät bereitgestellt werden, welches sowohl das Einführen des herkömmlichen Bohrloch-Messgerätes in das Bohrloch und das anschließende obertägige Eingreifen überflüssig macht.
  • Zudem soll das Richtbohrgerät mit Magnetfeldsensoren in seinem vorderen, dem Drehbohrmeißel zugewandten Bereich, also in dem dem Drehbohrmeißel angrenzenden Bereich, ausgestattet sein, um sonach auch bereits geringste in Drehbohrmeißelnähe messbare z.B. infolge Auftretens unterschiedlicher Gesteinshärten bedingte Abweichungen des Richtbohrgeräts in Neigung und Azimut zu vermeiden.
  • In einer Vielzahl an Druckschriften wird zwar die Kalibrierung herkömmlicher Magnetfeldsensoren offenbart, eine Erkenntnis, die für den Fachmann nichts Neues bringt. So wird in einem weiteren Stand der Technik ein herkömmlicher Bohrlochsensor bereitgestellt, der in der Lage ist, die Raumrichtungen eines Standortes in einem Bohrloch festzustellen und Abweichungen desselben von Sollwerten zu ermitteln, aber der herkömmliche Bohrlochsensor ermöglicht nicht zeitgleich das Abteufen einerseits und die ständige Kontrolle der Überwachung der Richtungsgrößen andererseits während des Abteufens vor Ort, d.h. der dem herkömmlichen Drehbohrgerät zu eigenen, diesem beim Abteufen zuzuordnenden Richtungsgrößen.
  • Auch dieser Stand der Technik bestätigt die Erkenntnis der Schlumberger Technology B.V. der im Stand der Technik als unmöglich erachteten Beseitigung der Nachteile der nur zeitversetzten Reaktion des obertägigen Eingreifens durch korrigierende Maßnahmen in das durch das herkömmliche Richtbohrgerät erfolgende Abteufen, so dass die ständige Überwachung in Bezug auf Azimut und Neigung aufgrund des Auftretens z.B. magnetischer Messabweichungen kostenträchtig weiterhin zu bestehen hat.
  • Daher ist es Aufgabe des bereitzustellenden Richtbohrgerätes, so-wohl ein Richtbohrgerät bereitzustellen, welches beispielsweise während des Abteufens so-wohl die Abweichungen des Tiefbohrens unmittelbar mittels Magnetfeldsensoren nächst dem Drehbormeißel des Richtbohrgeräts misst, die Abweichungen mit Sollwerten vergleicht, entsprechende Stellsignale zur Steuerung des Richtbohrgerätes erzeugt und unabhängig von der Ansteuerung von außen, also außerhalb des Richtbohrgerätes, ohne Zeit- und Kostenaufwand frühzeitig -ohne Zeitverzug- an die Stellglieder, wie Spannstücke, des Richtbohrgerätes weiterleitet.
  • Zur Erhöhung der Genauigkeit der Bestimmung magnetischer Flussdichten können in einem Bohrlochmessverfahren Magnetfeldsensoren verwendet werden, die um die GeräteLängsachse rotierend angeordnet sind und dabei durch den vorhandenen Erdmagnetismus induzierte Signale an den Steuerstand obertägig liefern, gleichwohl verbleiben die Magnetfeldsensoren in einem weiten Abstand von dem Drehbohrmeißel, so dass man geringfügige Änderungen des Verlaufs des Bohrlochs weder erkennt, noch frühzeitig in den Betrieb des Tiefrichtbohrens zwecks Korrektur einzugreifen vermag.
  • Zudem soll das bereitzustellende Richtbohrgerät geringfügige Abweichungen von dem erwünschten Verlauf des Bohrlochs bei Bohren in großen Tiefen ohne Weiteres erkennen können.
  • Des Weiteren soll das bereitzustellende Richtbohrgerät Magnetfeldsensoren in bohrkronennaher Anordnung aufweisen.
  • Ebenso soll das Richtbohrgerät nicht nur bereits geringfügige Abweichungen von dem erwünschten Verlauf des Bohrlochs erkennen, sondern auch frühzeitig korrektive Maßnahmen zur Aufrechterhaltung des erwünschten Bohrungsverlaufs ergreifen.
  • Zusätzlich soll das bereitzustellende Richtbohrgerät im Fall von Änderungen des Bohrungsverlaufs ohne Gefahr des Einflusses magnetischer Störfelder auf die Lagebestimmung das Tiefrichtbohren korrigieren.
  • Hinzukommend soll das Ansteuern des Richtbohrgerätes über einen obertägigen Steuerstand insoweit überflüssig sein, als dieser von der Durchführung korrektiver Maßnahmen infolge unerwünschter Bohrlochabweichungen entlastet und nur noch zur Steuerung der Tiefbohrung als solche zuständig ist.
  • Hinzutretend soll das bereitzustellende Richtbohrgerät in Echtzeit sich selbst steuern, um die kostenträchtige Verlängerung der Bohrstrecke infolge später einsetzender Abweichungsabhilfen zu vermeiden.
  • Überdies soll das bereitzustellende Verfahren kostengünstig die Kalibrierung des Richtbohrgerätes durchzuführen sein, so dass das auch von Schlumberger Technology B.V erkannte, aber von Schlumberger Technology B.V ungelöste Problem der Anordnung von Magnetfeldsensoren bohrkronennah in Richtbohrgeräten beseitigt wird und das von Schlumberger Technology B.V vorgeschlagene komplizierte und störanfällige Verfahren vermieden wird.
  • Smart Drilling GmbH ordnet die Sensoren, wie Magnetfeldsensoren, für Neigung und Richtung in dem erfindungsgemäßen Richtbohrgerät an und führt zur Erhaltung der geforderten Genauigkeiten eine Korrektur durch. Die Erfindung löst das Problem durch den Einsatz einer Helmholtz Spule. Im Zentrum der Helmholtz-Spule wird das vorhandene Magnetfeld inklusive des Erdmagnetfeldes neutralisiert, d.h. es besteht kein Magnetfeld. Anschließend wird das erfindungsgemäße Richtbohrgerät mit den Richtungssensoren, wie Magnetfeldsensoren, in das neutrale Magnetfeld der Spule positioniert. Da sich in dem erfindungsgemäßen Richtbohrgerät verschiedene Komponenten befinden, die eine magnetische Beeinflussung erzeugen, zeigen die Richtungssensoren nun in der Helmholtz-Spule die magnetische Missweisung in x-, y-und z- Achsen an. Diese Beeinflussung wird dann vorteilhafterweise kompensiert, bis wieder ein neutrales Magnetfeld vorliegt und als Korrekturwerte im elektronischen Speicher des erfindungsgemäßen Richtbohrgerätes hinterlegt. Anschließend können alle Betriebsfunktionen des erfindungsgemäßen Richtbohrgerätes in der Helmholtz-Spule durchgefahren werden, die magnetischen Missweisungen gemessen, kompensiert und die Korrekturfaktoren im Richtbohrgerät abgespeichert werden. So kann das erfindungsgemäße Richtbohrgerät im Betrieb sich selbst kompensieren und die hohen geforderten Richtungsgenauigkeiten erfüllen.
  • Die Aufgaben werden gelöst durch den Hauptanspruch und den Nebenanspruch, die Unteransprüche betreffen bevorzugte Ausgestaltung und Weiterentwicklung der Erfindung.
  • Die Erfindung betrifft ein Verfahren gemäß Anspruch 7.
  • Die Erfindung ist auch gerichtet auf ein Richtbohrgerät gemäß Anspruch 1.
  • Das erfindungsgemäße Richtbohrgerät kann umfassen ein Gehäuse, dessen dem Kopfabschnitt abgewandter Fußabschnitt zu einer Aufnahme eines Bohrrohrstrangs und/oder einer Kopplung an einen Bohrrohrstrang vorgesehen ist, eine im Kopfabschnitt angeordnete, vorzugsweise im derselben oder zumindest teilweise im Gehäuse rotierende, auf ihrem, z.B. aus dem Gehäuse vorstehenden, Ende einen Drehbohrmeißel tragende Meißelantriebswelle, eine in dem Gehäuse, vorzugsweise in dessen Rumpf- und/oder Fußabschnitt, angeordnete Steuervorrichtung, vorzugsweise mehrere in dem Gehäuse, vorzugsweise in dessen Rumpf und/oder Fußabschnitt, angeordnete Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgeräts bei Bohrbetrieb und mehreren Magnetfeldsensoren, wobei die Magnetfeldsensoren in dem Kopfabschnitt des Gehäuses, nämlich in dem bohrmeißelnahen Bereich des Gehäuses, angeordnet und mittels des erfindungsgemäßen Verfahrens in ein die Helmholtz-Spule aufweisendes Gestell eingebracht und durch das von der Helmholtz-Spule erzeugte homogene Magnetfeld kalibriert sind. Die Erfindung bezieht sich auch auf ein Verfahren zum Kalibrieren von Magnetfeldsensoren in einem hoch präzise arbeitenden Richtbohrgerät zur frühzeitigen, zuverlässigen, zeitnahen Bestimmung des Bohrlochs und der Ausrichtung des Drehbormeißels relativ zum Erdmagnetfeld-Vektor unter Vorgabe eines wählbaren, wie vorbestimmten, Richtungsverlaufs des Bohrlochs für das Tiefbohren, wobei das Kalibrieren in einem mittels Helmholtz-Spule erzeugten Magnetfeld durchgeführt wird.
  • Das erfindungsgemäße Verfahren, welches das Richtbohrgerät mit einem Gehäuse, einer im Gehäuse rotierende Meißelantriebswelle, deren aus dem Gehäuse vorstehendes Ende einen Drehbohrmeißel trägt, einer in dem Gehäuse angeordnete Steuervorrichtung und mit derselben verbundenen Magnetfeldsensoren, mehreren in dem Gehäuse angeordneten Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgerätes bei Bohrbetrieb, verwendet, umfasst die Schritte:
    die Magnetfeldsensoren in einem vorderen, dem Drehbohrmeißel zugewandten Bereich, also in dem bohrmeißelnahen Bereich, des Gehäuses angeordnet und mittels von Helmholtz-Spule erzeugtem homogenem Magnetfeldes kalibriert werden.
  • Unter Anordnung in dem Kopfabschnitt des Gehäuses wird im Sinne der Erfindung auch verstanden, die Anordnung im bohrmeißelnahen, auch drehbohrmeißelnahen genannt, Bereich, der
    nächst dem Drehbohrmeißel in dem erfindungsgemäßen Richtbohrgerät ist oder
    unmittelbar an den Drehbohrmeißel in dem erfindungsgemäßen Richtbohrgerät angrenzt oder
    in unmittelbarer Nähe zu dem Drehbohrmeißel angeordnet ist, ohne dass der Drehbohrmeißel und die Magnetfeldsensoren sich bei Betrieb des erfindungsgemäßen Richtbohrgeräts gegenseitig behindern im Gegensatz zum Stand der Technik. Das bedeutet auch im Sinne der Erfindung, dass der Drehbohrmeißel und die Magnetfeldsensoren -im Gegensatz zum Stand der Technik- nicht voneinander beabstandet sind, eine Anordnung, die im Gegensatz zu der im Stand der Technik bisher geforderten Raumferne der Magnetfeldsensoren von dem Kopfabschnitt steht, und die der Vorschrift der herkömmlichen Lehre, Magnetfeldsensoren in dem dem Drehbohrmeißel abgewandten Bereich herkömmlicher Richtbohrgeräte zwecks Vermeidung der gegenseitigen Beeinflussung bzw. Vermeidung der Behinderung der Magnetfeldsensoren z.B. durch die im Bereich des Drehbohrmeißels auftretbaren Missweisungen beim Abteufen anzuordnen, nicht folgt.
  • Ein weiterer Gegenstand der Erfindung betrifft ein zuverlässig arbeitendes hoch präzises Richtbohrgerät für den Dauerbetrieb mit automatischer, fein kontrollierter Überwachung des zielgerichteten Bohrens in großen Tiefen unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs mit einem Gehäuse, einer, vorzugsweise im Gehäuse rotierenden, auf ihrem aus dem Gehäuse vorstehenden Ende einen Drehbohrmeißel tragenden Meißelantriebswelle, einer Steuervorrichtung, vorzugsweise mehreren in dem Gehäuse angeordneten Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgeräts bei Bohrbetrieb und mit der Steuervorrichtung verbundene Magnetfeldsensoren, welches dadurch gekennzeichnet ist, dass die Magnetfeldsensoren in einem vorderen, dem Drehbohrmeißel zugewandten Bereich, bohrmeißelnahen Bereich, des Gehäuses angeordnet und mittels eines von Helmholtz-Spule erzeugten homogenen Magnetfeldes kalibriert sind.
  • Der Erfindung liegt auch zugrunde das Kompensieren, auch im Sinne der Erfindung Abgleichen genannt, des Einflusses der durch magnetische Störfelder bedingten magnetischen Missweisungen bzw. deren magnetischen Flussdichten von den magnetischen Flussdichten ohne Störfelder in dem von Helmholtz-Spule erzeugten Magnetfeld, so dass deren Einfluss eliminiert ist, und das nachfolgende Kompensieren der Betriebsfunktionen, wie verschiedenste Ausrichtungen oder Anordnungen des Richtbohrgeräts in dem von Helmholtz-Spule erzeugten Magnetfeld, die sich von einer vorbestimmten Lage des Richtbohrgeräts, auch als Bezugsnormal bezeichnet, unterscheiden, um das Richtbohrgerät in die vorbestimmte Lage zurücksetzen zu können; diese Schritte werden im Sinne der Erfindung auch Kalibrieren genannt.
  • Mit dem erfindungsgemäßen Verfahren werden die Magnetfeld-sensoren des erfindungsgemäßen Richtbohrgeräts, die vorteilhafterweise in dem vorderen, dem Drehbohrmeißel zugewandten Bereich des Gehäuses, also nächst dem Drehbohrmeißel oder unmittelbar an diesen angrenzend, angeordnet sind, mittels eines von Helmholtz-Spule erzeugten Magnetfeldes kalibriert. Unter Helmholtz-Spule oder Helmholtz-Spulen wird im Sinne der Erfindung auch verstanden die Anordnung von zwei Spulen zur Erzeugung eines homogenen Magnetfeldes, zumindest eines weitgehend homogenen für die Kalibrierung des erfindungsgemäßen Richtbohrgeräts hinreichenden Magnetfeldes; durch die Überlagerung der Magnetfelder beider Spulen der Helmholtz-Spulen ergibt sich vorteilhafterweise in Achsennähe das homogene Magnetfeld. Einfach gesagt, die Bedingungen unter Tage, die z.B. den Betriebsfunktionen entsprechen können, können mittels Magnetfeld auch nachgeahmt wer-den.
  • Das erfindungsgemäße Verfahren betrifft auch das Kalibrieren von Magnetfeldsensoren in einem von Helmholtz-Spule erzeugten homogenen Magnetfeld, da diese in dem erfindungsgemäßen Richtbohrgerät in dem bohrmeißelnahen Bereich des Gehäuses des erfindungsgemäßen Richtbohrgeräts angeordnet sind. Üblicherweise werden die magnetischen Störfelder, wie Hart- oder Soft-Iron-Effekte genannt, die z.B. durch die Drehbohrmeißel, ggf. den Schlammmotor, das Erweiterungsbohrwerkzeug, erzeugt werden und das Erdmagnetfeld überlagern oder zumindest beeinflussen können, mittels des erfindungsgemäßen Verfahrens in dem erfindungsgemäßen Richtbohrgerät kompensiert. Das Ausmaß der Kompensation kann qualitativ und quantitativ gemessen und in der Steuervorrichtung abgespeichert werden.
  • Für das erfindungsgemäße Verfahren wird das erfindungsgemäße Richtbohrgerät verwendet, welches ein Gehäuse umfasst, wobei in dem Gehäuse eine Meißelantriebswelle rotierend angeordnet ist. Die Meißelantriebswelle ist an ihrem aus dem Gehäuse vorstehenden, oberen Ende mit einem Bohrrohrstrang koppelbar. In dem Gehäuse ist die Steuervorrichtung angeordnet, die mit den unmittelbar an den Drehbohrmeißel angeordneten Magnetfeldsensoren verbunden ist. Die herkömmliche Steuervorrichtung kann. wie dem Fachmann wohl vertraut ist, eine Messwerteinrichtung und/oder eine programmierbare Messwertempfangseinrichtung und/oder eine programmierbare Messwertverarbeitungseinrichtung, usw. umfassen, die miteinander verbunden sein können, zwecks Weiterleitung, Austauschs und/oder Verarbeitung von Daten, Signalen, Missweisungswerten, -signalen, Korrekturwerten, Positions-werten, - signalen, Korrekturfaktoren durch die Steuervorrichtung zum Verbringen des Richtbohrgeräts zurück in die vorbestimmte Lage erzeugt sowie die Korrekturfaktoren in dem elektronischen Speicher der Steuervorrichtung des Richtbohrgerätes hinterlegt werden. Die Magnetfeldsensoren sind als Messwerteinrichtung ein Bestandteil der Steuervorrichtung.
  • Die Schritte des erfindungsgemäßen Verfahrens umfassen.
    1. a. das Richtbohrgerät mit Magnetfeldsensoren in das durch Helmholtz-Spule erzeugte Magnetfeld eingeführt und in einer vorbestimmten Lage als Bezugsnormal zentral in demselben angeordnet wird,
    2. b. zur Kompensation magnetischer Störfelder die von magnetischen Störfeldern beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z-Achsen von den Magnetfeldsensoren bestimmt und mit diesen korrespondierende Mess-werte als Missweisungswerte/-signale an die Steuervorrichtung weitergeleitet werden,
      mit den Missweisungswerten oder -signalen korrespondierende Korrekturwerte von der Steuervorrichtung erzeugt werden, die dem Ausmaß der Messwerte von durch die Störfelder erzeugten Abweichungen der magnetischen Flussdichten von den Messwerten der magnetischen Flussdichte bei Bezugsnormal entsprechen, und die Korrekturwerte in einem elektronischen Speicher der Steuervorrichtung des Richtbohrgerätes hinterlegt werden, und/oder
    3. c. danach in dem durch die Helmholtz-Spule erzeugten Magnetfeld das Richtbohrgerät in von der vorbestimmten Lage sich unterscheidenden Ausrichtungen/Betriebsfunktionen angeordnet wird,
    die von diesen Ausrichtungen beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z- Achsen von Magnetfeldsensoren bestimmt und die mit diesen magnetischen Missweisungen wegen verschiedener Ausrichtungen/Betriebsfunktionen bedingten korrespondierenden Messwerte als Positionswerte oder - Signale an die Steuervorrichtung weitergeleitet werden,
    mit den Positionswerten oder -signalen korrespondierende Korrekturfaktoren durch die Steuervorrichtung zum Verbringen des Richtbohrgeräts zurück in die vorbestimmte Lage erzeugt sowie die Korrekturfaktoren in dem elektronischen Speicher der Steuervorrichtung des Richtbohrgerätes hinterlegt werden.
  • Unter Verbindung wird im Sinne der Erfindung auch verstanden ein herkömmlicher elektrisch steuerungstechnischer Anschluss, z.B. zwischen den Magnetfeldsensoren und der Steuerverbindung, der Richtungssteuereinrichtungen und der Steuervorrichtung zwecks Austausch oder zumindest Weiterleitung von Daten, Messwerten oder Signalen. Im Sinne der Erfindung wird unter Steuervorrichtung auch verstanden, eine herkömmliche mit einer programmierbaren Messwertempfangseinrichtung, einer programmierbaren Messwertverarbeitungseinrichtung, usw. die dem Fachmann wohl vertraut sind. Die Verbindung kann sein drahtlos, mittels Draht, Ultraschall, Infrarot, Datenkommunikation mittels Bluetooth, usw. in analoger und / oder digitaler Form und / oder codiert.
  • Im Sinne der Erfindung werden unter Magnetfeldsensoren herkömmliche, z.B. Messwertempfangseinrichtung, auch verstanden, die dem Fachmann ebenso wohl vertraut sind. Weiterhin befinden sich in dem Gehäuse mehrere in oder an dem Gehäuse angeordnete Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des erfindungsgemäßen Richtbohrgeräts bei Bohrbetrieb. In dem erfindungsgemäßen Richtbohrgerät ist das Gehäuse vorteilhafterweise um den Bohrrohrstzrand und/oder Meißelantriebswelle rotierbar angeordnet.
  • So kann in einem ersten Schritt, hier a., das erfindungsgemäße Richtbohrgerät mit seinen Magnetfeldsensoren in das von Helmholtz-Spule erzeugte homogene Magnetfeld eingeführt und in einer vorbestimmten Lage als Bezugsnormal zentral in dem homogenen Magnetfeld angeordnet werden.
  • In einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens und des erfindungsgemäßen Richtbohrgerätes wird das erfindungsgemäße Richtbohrgerät in die Helmholtz-Spule eingefahren bzw. in ein, vorzugsweise käfigartiges, Gestell mit mindestens einer Helmholtz-Spule eingefahren, welches die beiden Spulen aufweist. In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird mittels der Helmholtz-Spule herkömmlicherweise ein homogenes Magnetfeld erzeugt, wobei die Spulen, wie Ringspulen, der Helmholtz-Spule auf gleicher Achse vorteilhafterweise angeordnet sind, insbesondere einen identischen Radius aufweisen und/oder der axiale Abstand der Spulen voneinander dem Spulenradius entspricht. So werden die Spulen jeweils über eine Zuführeinrichtung mit einem Generator verbunden, die Spulen elektrisch in Serie geschaltet zum gleichsinnigen Stromdurchfluss sein können. Die Erzeugung von homogenen Magnetfeldern mittels Helmholtz-Spule, die ein Richtbohrgerät zentriert aufnehmen und kalibrieren, sind dem Fachmann bekannt, so dass sich Angaben über Windungszahl N, der Radius der beiden Spulen, die Frequenz, magnetischen Flussdichte, die Stromstärke 1 für den Betrieb derselben sich erübrigen; die beiden Spulen der Helmholtz-Spule können auch, wie üblicherweise zuweilen ist, als Helmholtz-Spulen bezeichnet.
  • Um die magnetischen Störfelder zu kompensieren, erfolgt die Bestimmung von magnetischen Flussdichten im folgenden Schritt, wie im Schritt b. Die Bestimmung derselben ist dem Fachmann bekannt; so können im Schritt b. beispielhaft das Minimum und das Maximum an magnetischer Flussdichte in Richtung jeder Achse, wie in Richtung der X-, Y- und Z-Achsen, von den Magnetfeldsensoren bestimmt werden. In dem Schritt werden die infolge magnetischer Störfelder auftretenden Abweichungen der von Magnetfeldsensoren gemessenen magnetischen Flussdichten als Messwerte oder -größen von denjenigen Messwerten magnetischer Flussdichten ohne magnetische Störfelder als Normalbezug oder Bezugsnormal festgestellt und dokumentiert, z.B. in der Steuervorrichtung abgespeichert. Falls erforderlich kann auch das Ausmaß der Messwerte als Abweichungen der magnetischen Fluss-dichten in Gegenwart magnetischer Störfelder verglichen mit denjenigen Messwerten magnetischer Flussdichte in Abwesenheit magnetischer Störfeldern auch berechnet bzw. abgeglichen und in der Steuervorrichtung, wie in seinem elektronischen Speicher, abgespeichert werden.
  • Die Magnetfeldsensoren erzeugen die mit den Messwerten korrespondierenden Missweisungswerte oder Missweisungssignale und leiten diese über ihre Ausgänge an den Eingang der Steuervorrichtung weiter. Von der Steuervorrichtung werden Korrekturwerte erzeugt, die mit den Missweisungswerten oder -signalen korrespondieren. Diese entsprechen dem Ausmaß der durch die Störfelder erzeugten Änderungen oder Abweichungen der Messgrößen der magnetischen Flussdichten von den Messgrößen bei magnetischer Flussdichte bei Bezugsnormal ohne Störfelder. Die Korrekturwerte werden in der Steuervorrichtung, vorzugsweise in dessen elektronischen Speicher, des erfindungsgemäßen Richtbohrgerätes hinterlegt.
  • In einem weiteren Schritt, wie c., wird das erfindungsgemäße Richtbohrgerät in dem durch die Helmholtz-Spule erzeugten Magnetfeld in verschiedenen Ausrichtungen zentral angeordnet, die sich von der vorbestimmten Lage, hier bezeichnet als Normallage, unterscheiden.
  • Die von diesen Ausrichtungen beeinflussten magnetischen Missweisungen als Messgrößen magnetischer Flussdichten können in Richtung jeder Achse, -wie in Richtung der X-, Y-, Z-Achsen-, von den Magnetfeldsensoren des erfindungsgemäßen Richtbohrgerätes bestimmt werden. Für die Verarbeitung von Messwerten, die Regelung der Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgeräts ist in der Steuervorrichtung desselben ein Regelkreis für Mehrgrößenregelung vorgesehen. Die verschiedenen Ausrichtungen können den Betriebsfunktionen des erfindungsgemäßen Richtbohrgerätes vor Ort entsprechen, die also vor Ort im Tiefbohren im Gestein auftreten können. Die mit den verschiedensten Ausrichtungen bedingten korrespondierenden Messwerte magnetischer Flussdichten werden als Positionswerte, auch Positionssignale genannt, über die Ausgänge der Magnetfeldsensoren an den Eingang der Steuervorrichtung weitergeleitet. Die mit den Positionswerten korrespondierenden Korrekturfaktoren werden von der Steuervorrichtung erzeugt, die dazu dienen können, das erfindungsgemäße Richtbohrgerät aus seinen verschiedensten Ausrichtungen wieder zurück in seine vorbestimmte Lage zu verbringen. Auch können üblicherweise die Positionswerte als Regelgrößen mit Sollwertvorgaben verglichen, im Fall von Abweichungen können geänderte Ausgangsgrößen als Stellsignale an die Richtungssteuereinrichtungen weitergeleitet werden zwecks Änderung von z.B. Neigungen, Azimut. Die Positionswerte als Istwerte können von der von dem Sollwert vorbestimmten Lage des erfindungsgemäßen Richtbohrgeräts als Normalbezug oder Bezugsnormal abweichen, so dass die Korrekturwerte Stellgrößen entsprechen oder die nach Abgleich der Positionswerte um Korrekturwerte im Fall von Abweichung ermittelten Ausgangsgrößen als Abgleichfaktoren Stellgrößen entsprechen können, die an die Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgeräts weitergeleitet werden können.
  • Die der Normallage oder Bezugsnormal zuzuordnenden Messgrößen können auch soweit als in der Steuervorrichtung eingegebene Sollwertvorgabe für die Positionswerte erachtet werden, als bei Abweichungen von diesen die Korrekturfaktoren als Stellgrößen an die Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgeräts weitergeleitet werden zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten gegen die Bohrlochwandung. Die in Schritt 0. von den Magnetfeldsensoren bestimmten Messwerte können um die Korrekturwerte von der Steuervorrichtung abgeglichen, quasi bereinigt werden. Die Korrekturfaktoren werden in einem elektrischen bzw. elektronischen Speicher der Steuervorrichtung des erfindungsgemäßen Richtbohrgerätes hinterlegt, so dass bei Bedarf die Positionswerte ggf. mit Sollwertvorgaben in Echtzeit -ohne Rückgriff auf einen Steuerstand über Tage - verglichen und die den Positionswerten entsprechenden Korrekturfaktoren als Stellgrößen entsprechende Steuersignale an die Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgeräts weitergeleitet werden.
  • Durch die Kalibrierung der Magnetfeldsensoren des erfindungsgemäßen Richtbohrgeräts in dem homogenen Magnetfeld werden wirkungsvoll alle magnetischen Störfelder, bedingt durch externe Einflüsse, wie hart- und weichmagnetische Materialien, in der Nähe der Magnetfeldsensoren, qualitativ erfasst und in deren Maß quantitativ bestimmt, so dass die umständliche Kalibrierung desselben beispielsweise in herkömmlichen Feldstationen ohne Einfluss störender sonstiger magnetischer Missweisungen sich erübrigt.
  • Weiterhin können in Schritt c. die Korrekturfaktoren um die Korrekturwerte zur Erzeugung von Abgleichfaktoren abgeglichen werden, so dass die Abgleichfaktoren den Istwerten der von der vorbestimmten Lage sich unterscheidenden Ausrichtungen entsprechen. Die Abgleichfaktoren können mit Sollwertvorgaben, z.B. die den Sollwertvorgaben der vorbestimmten Lage im Magnetfeld entsprechen, verglichen und infolge der Abweichungen von Sollwertvorgaben geänderte Ausgangsgrößen als Stellsignale oder Steuersignale erzeugt werden, die an die Richtungssteuereinrichtung zur Ansteuerung derselben dienen.
  • In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens und des erfindungsgemäßen Richtbohrgeräts können in dem Gehäuse des erfindungsgemäßen Richtbohrgerätes auch weitere Messwerteinrichtungen, insbesondere Temperatursensoren, Neigungssensoren, Beschleunigungssensoren, Gammastrahlungssensoren, Gyroskop-Sensoren und/oder sonstige WOB-Sensoren zum genauen Bestimmen der Lage des erfindungsgemäßen Richtbohrgeräts zu einem bestimmten Zeitpunkt mit der Steuervorrichtung verbunden sein.
  • Durch das erfindungsgemäße Verfahren wird gewährleistet, dass auf einfache und kostengünstige Weise das erfindungsgemäße Richtbohrgerät kalibriert wird.
  • Magnetische Störfelder, die bedingt sind durch die in dem erfindungsgemäßen Richtbohrgerät vorhandenen ferromagnetischen Materialien, die die magnetische Flussdichte beeinflussen, werden frühzeitig berücksichtigt und kompensiert.
  • In weiteren Ausgestaltungen des erfindungsgemäßen Richtbohrgerätes können die Messgrößen zur Bestimmung des Richtungsverlaufs des Bohrlochs ebenso über Kabel, telemetrisch und/oder in Form von Drucksignal und/ oder Impulsen, wie Schallwellen, von einem obertägigen Steuerstand zu der Steuervorrichtung und zurück weitergeleitet werden. Die Übermittlung von Steuersignalen oder sonstigen Daten, wie Messwertgrößen, an die Steuervorrichtung oder von derselben an den Steuerstand können gleichfalls übermittelt werden, wie weiter unter ausgeführt wird.
  • In weiteren Ausgestaltungen des erfindungsgemäßen Verfahrens können die o. g. Schritte auch in Gegenwart vorgegebener Temperaturen oder Temperaturbereiche durchgeführt werden, da die Übertragungseigenschaften in den Magnetfeldsensoren, innerhalb des erfindungsgemäßen Richtbohrgerätes, usw. temperaturabhängig sein können.
  • Der Vorteil des erfindungsgemäßen Richtbohrgerätes liegt auch in dem Umstand begründet, dass die im Kopfabschnitt befindlichen Magnetfeldsensoren nicht nur frühzeitig über Abweichungen des Bohrlochs, sondern auch geringfügige Abweichungen des im Kopfabschnitt befindlichen Drehbohrmeißels bestimmen, über die Steuervorrichtung des erfindungsgemäßen Richtbohrgeräts die korrektiven Maßnahmen in Echtzeit -ohne Eingriff von außen- aufgrund der in der Steuervorrichtung einprogrammierten Sollwertvorgaben, z.B. in Bezug auf Neigung und Richtung des Bohrlochs, und/oder Korrekturwerte, Korrekturfaktoren, Abgleichfaktoren, erfolgen können.
  • Aufgrund der Anordnung auch weiterer Messwerteinrichtungen können diese weitere Messwerte oder -größen ermitteln und an die Steuervorrichtung weiterleiten, die zur Regelung der Richtungssteuereinrichtungen über einen Regelkreis für Mehrgrößenregelung verfügt, welchem die Regelgrößen als Istwerte der Messwerteinrichtungen zugeführt werden, und in welchem diese Regelgrößen mit Sollwertvorgaben verglichen werden, so dass bei Abweichungen die Stellgrößen den Richtungssteuereinrichtungen als sogenannte Steuersignale zugeführt werden, wie in DE 199 50 040 offenbart.
  • Durch das geschickte Zusammenarbeiten der Messwerteinrichtungen miteinander über die Steuervorrichtung werden ggf. auftretende Verzerrungen oder Missweisungen zwischen den einzelnen Messwerteinrichtungen und deren Messgrößen vermieden und derart über den Regelkreis für Mehrgrößenregelung miteinander gekoppelt, dass eine einwandfreie Kontrolle und Veränderung der einprogrammierten Sollwertvorgaben in dem Richtbohrgerät gewährleistet ist.
  • Die Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgerätes sind als Verspannvorrichtungen mit Stelleinrichtungen ausgebildet, an die radial auswärts und einwärts bewegbare, schildartige in Nuten des Gehäuses einlassbare, über den Umfang verteilt im Gehäuse zumindest auf einer Verspannebene angeordnete Spannstücke gekoppelt sind, deren Bewegbarkeit mittels der mindestens ein durch Hitze ausdehnbares Druckmedium aufweisenden Stelleinrichtungen temperaturgesteuert ist, das Druckmedium eine Flüssigkeit ist, die Flüssigkeit einen Volumen-Ausdehnungskoeffizienten γ bei 18°C von 5,0 bis 20,0 x 10-4K-1aufweisen, wobei z.B. an den Stelleinrichtungen die Spannstücke gelenkig gekoppelt sind, die Stelleinrichtung als eine Kolben-Zylinder- Einrichtung ausgebildet ist, deren Zylinderraum eine Heizeinrichtung zum Aufheizen des Druckmediums aufweist, der Kolben mit seinem Außenende an dem Spannstück gekoppelt ist, der Zylinderraum mit der Flüssigkeit oder dem Gas als Druckmedium befüllt ist. So können an den Stelleinrichtungen die Spannstücke gelenkig gekoppelt sein, wobei die Stelleinrichtung als eine Kolben-Zylinder-Einrichtung ausgebildet ist, deren Zylinderraum druckme-diumdurchgängig mit einer Kammer eines Kammergehäuses verbunden ist, der Zylinderraum und die Kammer mit der Flüssigkeit oder dem Gas als Druckmedium befüllt sind, eine Heiz-einrichtung an zumindest einem Teil der Innen- und / oder Außenwänden des Kammergehäu-ses zum Aufheizen desselben und des Druckmediums angeordnet ist, der Kolben mit seinem Außenende an dem Spannstück gekoppelt ist, der Zylinderraum der Kolben-Zylinder-Einrichtung eine Heizeinrichtung zum Aufheizen des Druckmediums aufweist, der Kolben mit seinem Außenende an dem Spannstück gekoppelt ist, der Zylinderraum mit der Flüssigkeit oder dem Gas als Druckmedium befüllt ist und/oder der Kolben infolge Erhitzung des Druckmediums radial zu der Mitte-Längsachse des Gehäuses zum kraftbeaufschlagten Anset-zen des Spannstücks gegen eine Bohrlochwandung bei Übergang von der Ausgangsstellung in die Endstellung sowie infolge Erkaltung des Druckmediums radial zu der Mitte-Längsachse des Gehäuses zum Ansetzen des Spannstücks an dasselbe bei Übergang von der Endstellung in die Ausgangsstellung verschoben ist. Es kann das Druckmedium einen Volumen- Ausdehnungskoeffizienten γ bei 18 °C von 7,2 bis 16,3 x 10-4 K-1, noch mehr bevorzugt 12 bis 15 x 10-4K-1 aufweisen. Die Kolben-Zylinder-Einrichtung kann als doppeltwirkende ausgebildet sein, deren gegenüberliegende Kolbenflächen mit temperaturgesteuerten Druckmedien beaufschlagbar sind.
  • In einer weiteren Ausgestaltung des erfindungsgemäßen Richtbohrgeräts können die Druckimpulse in strömenden Medien zur Übertragung von Informationen der Steuervorrichtung , insbesondere beim Herstellen von Bohrungen, im untertägigen Berg- und Tunnelbau durch den Spülkanal des an die Meißelantriebswelle koppelbaren Bohrrohrstrangs übertragen werden, wobei im Spülungskanal des Bohrrohrstrangs ein Laufrad angeordnet ist, das in Generator- und Motorbetrieb umschaltbar ausgebildet und entsprechend abwechselnd betreibbar ist. Hierbei kann das Laufrad mit den dem Bohrrohrstrang zugeordneten Spulen korrespondierend angebrachte Magnete aufweisen. Die Spulen können mit Energiespeichem verbunden sein, wobei das Spulrad vorteilhafterweise axial angeordnet ist. Zudem kann das Laufrad über sich gegen die Innenwand des Spülungskanals des Bohrrohrstrangs abstützende Führungen gelagert sein wie in DE 41 34 609 offenbart.
  • In einer anderen Ausgestaltung des erfindungsgemäßen Richtbohrgeräts können Informationen von der Steuervorrichtung über den Bohrrohrstrang innerhalb desselben mittels Druckimpulsen in einer strömenden Flüssigkeit, vorzugsweise Bohrspülflüssigkeit oder -fluid genannt, übertragen werden, wobei das erfindungsgemäße Richtbohrgerät eine mit der Steuervorrichtung verbundene Vorrichtung zur Übertragung der Informationen, insbesondere beim Herstellen von Bohrungen, mittels Drucksignalen in strömender Flüssigkeit, vorzugsweise Bohrspülflüssigkeit, umfasst; die Vorrichtung weist eine Informationserzeugungseinrichtung, eine an die Informationserzeugungseinrichtung angeschlossene Übertragungseinrichtung zur Erzeugung der Druckimpulse in der Flüssigkeit und eine Empfangseinrichtung zum Empfangen und Auswerten der durch die Druckimpulse übertragenen Informationen im Steuerstand auf, wobei die Übertragungseinrichtung einen elastischen Strömungswiderstandskörper im Flüssigkeitsstrom und eine Stelleinrichtung zur Veränderung des Strömungsquerschnittes des Strömungswiderstandes im Takt der zu erzeugenden Druckimpulse aufweist, wie in DE 196 07 402 offenbart.
  • Zur Erzeugung der Druckimpulse kann die Übertragungseinrichtung einen elastischen Strömungswiderstandskörper im Flüssigkeitsstrom und eine Stelleinrichtung zur Steuerung des Strömungsquerschnittes des Strömungswiderstandskörpers im Takt der zu erzeugenden Druckimpulse aufweisen. Der Vorteil dieser Übertragung ist die kompakte und kostensparende Bauweise als auch die verschleiß- und energiearme Arbeit der Druckimpulsübertragung und trotz leichten Austausches der beweglichen Teile wird eine einwandfreie Übertragung der Information gewährleistet. Durch diese Maßnahme wird erreicht, dass im Flüssigkeitsstrom oder in dem Bohrspülflüssigkeitsstrom ein Strömungswiderstandskörper mit veränderlichem Strömungsquerschnitt sich befindet. Durch Veränderung des Strömungsquerschnittes des Strömungswiderstandskörpers können in Fließrichtung im Bereich des Strömungswiderstandskörpers und dahinter Druckimpulse erzeugt werden, welche sie in Fließrichtung des Flüssigkeitsstromes bzw. Bohrspülflüssigkeitsstromes fortpflanzen können. Diese Druckschwankungen oder Druckimpulse lassen sich zurückfuhren, dass bei verringertem Strömungsquerschnitt und gleichem Flüssigkeitsstrom die Strömungsgeschwindigkeit um den Strömungswiderstandskörper herum sich erhöht und folglich der Flüssigkeitsdruck teilweise sinkt. Eine Verkleinerung des Strömungsquerschnittes führt demzufolge zu einer teilweisen Druckerhöhung im Flüssigkeitsstrom. Hierdurch lassen sich gezielt Druckschwankungen oder Druckimpulse im Flüssigkeitsstrom erzeugen. Dies gelingt aufgrund der Elastizität des Strömungswiderstandskörpers in reproduzierbarer Weise, wobei der vorgenannte Vorgang beliebig oft und nahezu verschleißfrei wiederholt werden kann. Außerdem sind die Reaktionszeiten des elastischen Strömungswiderstandskörpers vorteilhafterweise so gering, dass einwandfreie Anstiegs- und Abfallflanken der Druckimpulse erzeugt werden können. Auf diese Weise ist eine ungestörte Informationsübermittlung nach wie vor möglich, da die erzeugten Druckimpulse eine ausreichende Flankensteilheit aufweisen, um anschließende beispielsweise digitale Auswertevorrichtungen ansteuern zu können.
  • Schließlich ist in einer anderen Ausführungsform des erfindungsgemäßen Richtbohrgeräts die Steuervorrichtung desselben mit einer Vorrichtung zur Übertragung von Informationen innerhalb des Bohrrohrstrangs mittels Impulsen, wie Schallwellen, verbunden; an eine dem Drehbohrmeißel nachgeschaltete Informationserzeugungseinrichtung, z.B. als Teil der Steuervorrichtung, kann eine Übertragungseinrichtung zur Erzeugung der Impulse geschaltet sein, wobei eine Empfangseinrichtung zum Empfangen und Auswerten der der über Impulse übertragenen Informationen gleichfalls die Vorrichtung umfasst, wobei die mittels Übertragungseinrichtung erzeugten Impulse als Schallwellen ausgebildet und an die Empfangseinrichtung weitergeleitet sind, wie in DE 10 2012 004 392 offenbart. Die Schallwellen können mittels mechanisch, hydraulisch, elektrisch und / oder pneumatisch beaufschlagbarer Impulse ausgelöst sein.
  • Abweichungen des erfindungsgemäßen Richtbohrgerätes von einer vorgegebenen Lage, hier einer normalen oder vorbestimmten Lage genannt, werden nicht nur frühzeitig festgestellt, sondern in Echtzeit -ohne Einschaltung eines obertägigen Steuerstandes und der durch die Einschaltung desselben bedingten Verzögerung- sofort korrektive Maßnahmen zwecks Berichtigung der Lage des erfindungsgemäßen Richtbohrgeräts mit Drehbohrmeißel durchgeführt.
  • Der Eingriff korrektiver Maßnahmen erfolgt bei Betrieb des Tiefbohrens ohne Unterbrechung.
  • Durch die Anordnung der Magnetfeldsensoren gerade in dem bohrmeißelnahen Bereich des erfindungsgemäßen Richtbohrgeräts ist das erfindungsgemäße Richtbohrgerät im Gegensatz zu der von Schlumberger Technology B.V. beworbenen Verfahren und Vorrichtungen in der Lage, bereits geringste Abweichungen von dem Bohrlochverlauf festzustellen und in entsprechender Weise mit Hilfe der von der Steuervorrichtung angesteuerten Richtungssteuereinrichtungen des erfindungsgemäßen Richtbohrgeräts sowie deren Steuerrippen durch Ausfahren bei laufendem Bohrbetrieb zu berichtigen.
  • Weiterhin ist festzustellen, dass im Stand der Technik bei den herkömmlichen Richtbohrgeräten die Magnetfeldsensoren soweit von dem Drehbohrmeißel entfernt in dem Richtbohrgerät angeordnet sind, dass diese erst Änderungen des Krümmungsverlaufs des Bohr-lochs feststellen, wenn die Änderungen des Azimutalwinkels weit fortgeschritten sind, so dass nicht nur der Bohrstrecke sich deutlich verlängert sondern nachteiligenswert zusätzliche beträchtliche, wenn auch unnötigerweise, Betriebskosten auftreten.
  • Das erfindungsgemäße Richtbohrgerät und das erfindungsgemäße Verfahren zum Kalibrieren desselben zeichnen sich darüber hinaus durch die Vorteile, wie folgt, aus durch
    die Vermessung des Bohrlochs und dessen Verlaufs erst unmittelbar während des Abteufens desselben -ohne Zeitverzug-,
    kein Einführen eines Bohrloch-Messgerätes in das bereits abgeteufte Bohrloch,
    Ermittlung von Istwerten als Richtungs- und Neigungswerte nicht durch möglichst bohrmeißelentfernte -wie im Stand der Technik,- sondern durch im Kopfabschnitt des Gehäuses des erfindungsgemäßen Richtbohrgeräts, also nächst dem Drehbohrmeißel des erfindungsgemäßen Richtbohrgeräts angeordnete Magnetfeldsensoren,
    Feststellen von Abweichungen bzw. Missweisungen frühzeitig -bereits und unmittelbar beim Tiefbohren,
    Einhalten der vorbestimmten Bohrlochneigung und -richtung trotz üblicherweise beim Tiefbohren auftretenden, z.B. durch Gestein bedingte, magnetischen Störfelder,
    kein obertägiges Eingreifen einer Steuerzentrale, welches Eingreifen im Stand der Technik zu Zeitverlust und Kosten führt,
    frühzeitiges, also sehr feinfühliges, Reagieren auf geringste im Kopfabschnitt, also in Drehbohrmeißelnähe messbare z.B. infolge Auftreten unterschiedlicher Gesteinshärten bedingter Abweichungen des erfindungsgemäßen Richtbohrgeräts in Neigung und Azimut,
    zeitgleiche Kombination von Abteufen einerseits und ständiger Kontrolle der Überwachung der Richtungsgrößen andererseits während des Abteufens vor Ort,
    Vermeiden der zeitversetzten Reaktion des obertägigen Eingreifens durch infolge Messungen der Richtungsabweichungen des Kopfabschnitts in Neigungen und Azimut sofort antwortende, korrigierende Maßnahmen und hierdurch
    bedingter Unterbindung der im Stand der Technik bewusst in Kauf genommenen wegen später einsetzender korrigierender Maßnahmen einhergehenden Erhöhung von Bohrlochlänge und Tiefbohrdauer,
    frühzeitiges und dadurch kostensparendes Ausfahren von Spannstücken des Richtbohrgeräts gegen Bohrlochwandung unabhängig von der obertägigen Ansteuerung.
  • Ausführungsbeispiel
  • In dem Ausführungsbeispiel wird in schematischer Weise das erfindungsgemäße Verfahren zum Kalibrieren von Magnetfeldsensoren in einem hoch präzise arbeitenden Richtbohrgerät zur frühzeitigen zuverlässigen, zeitnahen Bestimmung des Bohrlochs in Erdschichten unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs für das Tiefbohren und das erfindungsgemäße zuverlässig arbeitende Richtbohrgerät für den Dauerbetrieb mit automatischer fein kontrollierter Überwachung des zielgerichteten Bohrens in großen Tiefen unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs beschrieben.
  • Das erfindungsgemäße Richtbohrgerät umfasst ein Gehäuse, die in dem Gehäuse angeordneten, in unmittelbarer Nähe zu dem Drehbohrmeißel angeordneten, also in dem Kopfabschnitt des Gehäuses, sonach bohrmeißelnahen, angeordneten Magnetfeldsensoren, die im Rumpf- oder Fußabschnitt angeordneten Steuervorrichtung, deren Eingang elektrisch steuerungstechnisch mit den Ausgängen der Magnetfeldsensoren und mit den Eingängen der an oder in dem Rumpf- oder Fußabschnitt des Gehäuses angeordneten Richtungssteuereinrichtungen angeschlossen oder verbunden ist, die zumindest teilweise im Kopfabschnitt des Gehäuses drehbar gelagerte Meißelantriebswelle mit dem Drehbohrmeißel.
  • Unter Anordnung im Kopfabschnitt des Gehäuses wird auch in unmittelbarer Nähe zu dem Drehbohrmeißel oder nächst dem Drehbohrmeißel oder an diesen angrenzend im vorderen, dem Drehbohrmeißel zugewandten, an den Drehbohrmeißel angrenzenden Bereich oder unter Bohrmeißelnähe kann im Sinne der Erfindung auch verstanden werden, dass keine Beabstandung -wie die im Stand der Technik geforderte und unvermeidbare Beabstandung-und damit Raumferne der Magnetfeldsensoren von dem Drehbohrmeißel erforderlich ist, sondern, - wie soweit technisch möglich ist, die Magnetfeldsensoren an den Drehbohrmeißel also angrenzen, so dass
    einerseits die Bewegungen, wie Drehbewegungen, des Drehbohrmeißels nicht die Magnetfeldsensoren durch z.B. abgefrästes Gestein zu beschädigen vermögen,
    andererseits die Magnetfeldsensoren den Drehbohrmeißel während seiner Bewegungen infolge deren räumlichen Nähe und damit dessen Drehbewegungsfreiheit nicht einzuschränken vermögen.
  • Das erfindungsgemäße Richtbohrgerät wird ein Gestell mit der Helmholtz-Spule eingebracht, um dieses verfahrensgemäß in dem von der Helmholtz-Spule erzeugten homogenen Magnetfeld in einer vorbestimmten Lage als Bezugsnormal zentral in dem Magnetfeld anzuordnen im Schritt a. Im weiteren Schritt, wie b., werden die auch von den magnetischen Störfeldern beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung X-, Y-, Z-Achsen von den Magnetfeldsensoren als Messwerte oder -größen bestimmt, um die Messwerte als Missweisungswerte oder Missweisungssignale über deren Ausgänge an den Eingang der Steuervorrichtung weiterzuleiten. Mit den Missweisungswerten korrespondierende Korrekturwerte werden von der Steuervorrichtung erzeugt, die den Abweichungen als Missweisungswerte von den Messwerten magnetischer Flussdichten ohne Störfelder oder dem Ausmaß der Messgrößen der durch die Störfelder erzeugten Abweichungen der magnetischen Flussdichten von den Messgrößen magnetischer Flussdichten ohne, insbesondre magnetischer, Störfelder als Bezugsnormal nach Abgleichen entsprechen können. Die Korrekturwerte werden in einem elektronischen Speicher der Steuervorrichtung des Richtbohrgerätes hinterlegt.
  • Im weiteren Schritt, wie c., wird das erfindungsgemäße Richtbohrgerät in dem von den der Helmholtz-Spule erzeugten Magnetfeld und in von der vorbestimmten Lage als Bezugsnormal sich unterscheidende Ausrichtungen oder Betriebsfunktionen angeordnet und die von diesen Ausrichtungen beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z-Achsen von den Magnetfeldsensoren des erfindungsgemäßen Richtbohrgerätes als Messgrößen bestimmt; die mit diesen verschiedenen Ausrichtungen bedingten korrespondierenden Messwerte oder -größen als Positionswerte oder Positionssignale werden über die Ausgänge der Magnetfeldsensoren an den Eingang der Steuervorrichtung weitergeleitet. Die mit den Positionswerten korrespondierenden Korrekturfaktoren werden durch die Steuervorrichtung erzeugt, mit deren Hilfe das erfindungsgemäße Richtbohrgerät aus seinen verschiedenen Ausrichtungen wieder in eine vorbestimmte Lage als Bezugs-normal verbracht werden kann.
  • Die Korrekturfaktoren können im elektronischen Speicher der Steuervorrichtung hinterlegt werden. Die Korrekturfaktoren können einem bestimmten Steuersignal oder Stellgröße für die Richtungssteuereinrichtungen entsprechen zur Verbringung des erfindungsgemäßen Richtbohrgeräts in eine vorbestimmte Lage. Mit Hilfe der abgespeicherten Korrekturfaktoren kann die Steuervorrichtung das erfindungsgemäße Richtbohrgerät mit seinen Richtungsteuereinrichtungen mittels der mit den Korrekturfaktoren korrespondierenden Steuersignale in eine vorbestimmte Lage wieder verbringen. Die Korrekturfaktoren können den Istwerten der von der vorbestimmten Lage sich unterscheidenden Ausrichtungen entsprechen, so dass nach Vergleichen der Korrekturfaktoren mit den mit der vorbestimmten Lage entsprechenden Sollwertvorgaben die Steuervorrichtung die Richtungssteuereinrichtungen mittels der an diese mitgeteilten Steuersignale in eine vorbestimmte Lage verbracht werden.
  • In einem weiteren Ausführungsbeispiel werden die Korrekturfaktoren um die Korrekturwerte zur Erzeugung von Abgleichfaktoren soweit abgeglichen, dass mit deren Hilfe auch das erfindungsgemäße Richtbohrgerät aus den verschiedenen Ausrichtungen wieder in die vorbestimmte Lage als Bezugsnormal verbracht werden kann. Die Abgleichfaktoren können den Istwerten der von der vorbestimmten Lage sich unterscheidenden Ausrichtungen entsprechen, so dass nach Vergleichen der Abgleichfaktoren oder Korrekturfaktoren mit den mit der vorbestimmten Lage des erfindungsgemäßen Richtbohrgeräts entsprechenden Sollwertvorgaben die Steuervorrichtung das erfindungsgemäße Richtbohrgerät mit seinen Richtungssteuereinrichtungen mittels der an diese mitgeteilten Steuersignalen in eine vorbestimmte Lage mittels erzeugter Ausgangs- oder Stellgrößen wieder verbracht wird. Auch ist es möglich, dass mit den Korrekturfaktoren und / oder Abgleichfaktoren korrespondierende Steuersignale zur Ansteuerung der Richtungssteuereinrichtungen von der Steuervorrichtung, z.B. als Stellgrößen, zum selbsttätigen Ausrichten des erfindungsgemäßen Richtbohrgeräts in eine vorbestimmte Lage erzeugt werden.
  • Das erfindungsgemäße Verfahren und das erfindungsgemäße Richtbohrgerät ermöglichen
    das Kalibrieren auf einfache Weise,
    das frühzeitige Erfassen von Abweichungen des Tiefbohrverlaufs,
    die erstmalige Verwirklichung der bisher technisch anerkannterweise ungelösten Aufgabe,
    die seit langem bekannt ist, nämlich
    die Anordnung von Magnetfeldsensoren in bohrmeißelnaher Anordnung im erfindungsgemäßen Richtbohrgerät,
    das frühzeitige Eingreifen korrektiver Maßnahmen,
    das Erfassen auch geringfügiger Abweichungen von dem erwünschten Verlauf des Bohrlochs bei Bohren in großen Tiefen,
    die Überwachung von sehr engen Krümmungsverläufen des Bohrlochs bei Bohren in großen Tiefen,
    die Durchführung korrektiver Maßnahmen im Fall geringfügiger Abweichungen von dem erwünschten Verlauf des Bohrlochs in großen Tiefen,
    die Korrektur zur Änderungen des Bohrungsverlaufs ohne Gefahr des Einflusses magnetischer Störfelder auf die Lagebestimmung,
    das Wegfallen der Ansteuerung des Richtbohrgerätes über einen obertägigen Steuerstand,
    die automatische Steuerung des Richtbohrgeräts in Echtzeit ohne kostenträchtige Verlängerung der Bohrstrecke,
    die Bereitstellung bohrmeißelnaher Magnetfeldsensoren in dem Richtbohrgeräte,
    den Entfall komplizierter und störanfälliger Verfahren im Gegensatz zu von Schlumberger Technology B.V. in US 13 / 323 116 und 13 / 429 173 offenbarten Verfahren und Vorrichtungen
    sowie
    die einfache und robuste Bauweise des erfindungsgemäßen Richtbohrgeräts
    und
    damit kostengünstige Herstellungsweise.
  • Auch ist durch die störungsfreie kabellose Übertragung von Signalen von dem obertägigen Steuerstand an das erfindungsgemäße Richtbohrgerät der Richtungsverlauf des Bohrlochs für das Tiefbohren jederzeit wählbar.

Claims (13)

  1. Richtbohrgerät für den Dauerbetrieb mit automatischer fein kontrollierter Überwachung des zielgerichteten Bohrens in großen Tiefen unter Vorgabe eines wählbaren Richtungsverlaufs des Bohrlochs mit einem Gehäuse, umfassend einen Kopfabschnitt, einen Rumpfabschnitt und einen Fußabschnitt,
    einer zumindest teilweise in dem Kopfschnitt des Gehäuses rotierenden Meißelantriebswelle, deren unteres dem Gehäuse vorstehendes Ende in dem Kopfabschnitt einen Drehbohrmeißel trägt,
    und mehreren in dem Rumpfabschnitt oder dem Fußabschnitt des Gehäuses angeordneten Richtungssteuereinrichtungen zur Erzeugung von Richtkräften mit radial ausrichtbaren Kraftkomponenten für das Ausrichten des Richtbohrgerätes bei einem Bohrbetrieb, wobei eine Steuervorrichtung in dem Rumpfabschnitt des Gehäuses angeordnet ist, welche mehrere mit derselben verbundene Magnetfeldsensoren hat, die Magnetfeldsensoren in dem Kopfabschnitt des Gehäuses angeordnet und so konfiguriert sind, dass von magnetischen Störfeldern beeinflusste magnetische Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z- Achsen von den Magnetfeldsensoren bestimmt werden, und
    wobei die Magnetfeldsensoren ferner so konfiguriert sind, dass die mit diesen magnetischen Missweisungen korrespondierenden Messwerte als Missweisungswerte oder -signale an die Steuervorrichtung weitergeleitet werden,
    wobei die Steuereinheit so konfiguriert ist, dass mit den Missweisungswerten oder -signalen korrespondierende Korrekturwerte von der Steuervorrichtung erzeugt werden und die Korrekturwerte in einem elektronischen Speicher der Steuervorrichtung des Richtbohrgerätes hinterlegt werden,
    wobei die Steuereinheit so konfiguriert ist, dass mit den Positionswerten oder -signalen korrespondierende Korrekturfaktoren zum Verbringen des Richtbohrgeräts zurück in die vorbestimmte Lage erzeugt sowie die Korrekturfaktoren in dem elektronischen Speicher der Steuervorrichtung hinterlegt werder, die Richtungssteuereinrichtungen als Verspannvorrichtungen mit Stelleinrichtungen ausgebildet sind,
    an die radial auswärts und einwärts bewegbare, schildartige in Nuten des Gehäuses einlassbare, über den Umfang verteilt im Gehäuse zumindest auf einer Verspannebene angeordnete Spannstücke gekoppelt sind,
    deren Bewegbarkeit mittels der mindestens ein durch Hitze ausdehnbares Druckmedium aufweisenden Stelleinrichtungen temperaturgesteuert ist, das Druckmedium eine Flüssigkeit ist,
    die Flüssigkeit einen Volumen-Ausdehnungskoeffizienten γ bei 18°C von 5,0 bis 20,0 x 10-4K-1 aufweist,
    die Stelleinrichtungen als Kolben-Zylinder-Einrichtungen ausgebildet sind, deren Zylinderraum eine Heizeinrichtung zum Aufheizen des Druckmediums aufweist,
    der Kolben mit seinem Außenende an dem Spannstück gekoppelt ist, der Zylinderraum mit der Flüssigkeit als Druckmedium befüllt ist.
  2. Richtbohrgerät nach Anspruch 1, dadurch gekennzeichnet, dass von Magnetfeldsensoren als Messwerteinrichtungen der Steuervorrichtung ermittelten Daten, insbesondere Lagedaten, zu dem über Tage angeordneten Steuerstand in Form von Drucksignalen weiterleitbar sind, wobei das Richtbohrgerät eine Vorrichtung zur Erzeugung von Drucksignalen zur Übertragung der Informationen in einem Spülkanal des Bohrrohrstrangs mittels eines durch die Spülung beaufschlagten, einen Generator mit angeschlossenem Speicher antreibenden Flügelrad umfasst, der Generator einschließlich Speicher, die Kupplung und das Lager der Flügelradwelle in einem axial verlaufenden, mit Öl befüllten und gegenüber dem Bohrrohrstrang einen zylindrischen Ringspalt bildenden Gehäuse angeordnet ist und in dem Ringspalt die Spülung zum Antrieb des Flügelrades verläuft, und dass oberhalb eines Ölspeichers im Gehäuse ein über die Spülung beaufschlagter Druckausgleichskolben vorgesehen ist und die am unteren Ende zwischen dem Gehäuse und der Flügelradwelle vorgesehene Dichtung als leichtlaufende Dichtung, z.B. als Lippen- oder Keramikdichtung, ausgebildet ist.
  3. Richtbohrgerät nach Anspruch 1, dadurch gekennzeichnet, dass die von den Messwerteinrichtungen ermittelten Daten, insbesondere Lagedaten, zu einem über Tage angeordneten Steuerstand in Form von Drucksignalen weiterleitbar sind, das Richtbohrgerät eine Vorrichtung zur Erzeugung von Drucksignalen in strömenden Medien zur Übertragung der Informationen, insbesondere beim Herstellen von Bohrungen in einem untertägigen Berg- und Tunnelbau, durch einen Spülkanal des Bohrrohres umfasst, wobei in dem Spülungskanal des Bohrrohrstrangs ein Laufrad angeordnet ist, das in Generator- und Motorbetrieb umschaltbar ausgebildet und entsprechend abwechselnd betreibbar ist.
  4. Richtbohrgerät nach Anspruch 1, dadurch gekennzeichnet, dass das Richtbohrgerät eine Vorrichtung zur Übertragung der Informationen, insbesondere beim Herstellen von Bohrungen, mittels Druckimpulsen in einer strömenden Flüssigkeit, vorzugsweise Bohrspülflüssigkeit, umfasst mit einer Informationserzeugungseinrichtung, einer an die Informationserzeugungseinrichtung angeschlossenen Übertragungseinrichtung zur Erzeugung der Druckimpulse in der Flüssigkeit und einer Empfangseinrichtung zum Empfangen und Auswerten der durch die Druckimpulse übertragenen Informationen im Steuerstand, wobei die Übertragungseinrichtung einen elastischen Strömungswiderstandskörper im Flüssigkeitsstrom und eine Stelleinrichtung zur Veränderung des Strömungsquerschnittes des Strömungswiderstandes im Takt der zu erzeugenden Druckimpulse aufweist.
  5. Richtbohrgerät nach Anspruch 4, dadurch gekennzeichnet, dass die von den Messwerteinrichtungen ermittelten Daten, wie Lagedaten, zu einem über Tage angeordneten Steuerstand in Form von Drucksignalen weiterleitbar sind, wobei die Steuervorrichtung mit einer Vorrichtung zur Übertragung von Informationen innerhalb des Bohrrohrstrangs mittels Impulsen, wie Schallwellen, verbunden ist; wobei die Steuervorrichtung an eine Übertragungseinrichtung zur Erzeugung der Impulse geschaltet ist, die Vorrichtung eine Empfangseinrichtung zum Empfangen und Auswerten der über Impulse übertragenen Informationen umfasst, die mittels Übertragungseinrichtung erzeugten Impulse als Schallwellen ausgebildet sind und an die Empfangseinrichtung weitergeleitet sind.
  6. Verfahren zum Kalibrieren des Richtbohrgerätes nach einem der Ansprüche 1 bis 5 durch ein Einfahren des Richtbohrgeräts in ein Gestell mit mindestens einer Helmholtz-Spule und durch ein Kalibrieren durch ein von der Helmholtz-Spule erzeugtes homogenes Magnetfeld
  7. Verfahren unter Verwendung des Richtbohrgeräts gemäß einem der Ansprüche 1 bis 5 zum Kalibrieren desselben, welches umfasst:
    a. Kalibrieren der Magnetfeldsensoren mittels eines von einer Helmholtz-Spule erzeugten homogenen Magnetfeldes, wobei
    b. das Richtbohrgerät in das durch die Helmholtz-Spule erzeugte Magnetfeld eingeführt und in einer vorbestimmten Lage als Bezugsnormal zentral in demselben angeordnet wird,
    c. zur Kompensation magnetischer Störfelder die von magnetischen Störfeldern beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z- Achsen von den Magnetfeldsensoren bestimmt und mit diesen korrespondierende Messwerte als die Missweisungswerte oder -signale an die Steuervorrichtung weitergeleitet werden,
    wobei die Korrekturwerte dem Ausmaß der Messwerte von durch die Störfelder erzeugten Abweichungen der magnetischen Flussdichten von den Messwerten der magnetischen Flussdichte bei Bezugsnormal entsprechen,
    d. danach in dem durch die Helmholtz-Spule erzeugten Magnetfeld das Richtbohrgerät in von der vorbestimmten Lage sich unterscheidende Ausrichtungen angeordnet wird,
    die von diesen Ausrichtungen beeinflussten magnetischen Missweisungen als magnetische Flussdichten in Richtung der X-, Y-, Z- Achsen von Magnetfeldsensoren bestimmt und die mit diesen magnetischen Missweisungen wegen verschiedener Ausrichtungen bedingten korrespondierenden Messwerte als Positionswerte oder - signale an die Steuervorrichtung weitergeleitet werden,
    und so dass mit den Positionswerten oder -signalen korrespondierende Korrekturfaktoren durch die Steuervorrichtung zum Verbringen des Richtbohrgeräts zurück in die vorbestimmte Lage erzeugt werden,
    e. und so dass magnetische Störfelder, die bedingt durch die in dem Richtbohrgerät vorhandenen ferromagnetischen Materialien, die die magnetische Flussdichte beeinflussen, frühzeitig berücksichtigt und kompensiert werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in Schritt c. die von den Magnetfeldsensoren bestimmten Messwerte um die Korrekturwerte von der Steuervorrichtung zur Darstellung von Bezugsnormal abgeglichen werden.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass in Schritt d. die Korrekturfaktoren um die Korrekturwerte zur Erzeugung von Abgleichfaktoren abgeglichen werden, vorzugsweise die Abgleichfaktoren den Ist-Werten den von der vorbestimmten Lage sich unterscheidenden Ausrichtungen, wie Betriebsfunktionen, entsprechen.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die vorbestimmte Lage dem wählbaren Richtungsverlauf des Bohrlochs für das Tiefbohren entspricht.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass mindestens einer der Schritte a. bis c. bei vorbestimmten Temperaturen durchgeführt wird.
  12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass in dem Gehäuse Temperatursensoren, Neigungssensoren, Beschleunigungssensoren, Gammastrahlungssensoren, Gyroskop-Sensoren und/oder sonstige WOB-Sensoren als Messwerteinrichtung an die Steuervorrichtung angeschlossen sind und wahlweise zuschaltbar sind.
  13. Verfahren nach mindestens einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass Messgrößen wie die zur Bestimmung des Richtungsverlaufs, und/oder der vorbestimmten Lage über ein in einem Bohrrohrstrang angeordnetes Kabel und / oder mittels Telemetrie und/oder in Form von Drucksignalen und/ oder Impulsen, wie Schallwellen, von einem obertägigen Steuerstand zu der Steuervorrichtung weitergeleitet werden.
EP17713881.5A 2016-02-08 2017-02-08 Richtbohrgerät und verfahren zum kalibrieren desselben Active EP3414418B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016001780.5A DE102016001780A1 (de) 2016-02-08 2016-02-08 Kostengünstiges Verfahren zum Kalibrieren von Magnetfeldsensoren in einem hoch präzise arbeitenden Richtbohrgerät zur frühzeitigen, zuverlässigen und zeitnahen Bestimmung des Bohrlochs und ein hoch präzise arbeitendes Richtbohrgerät zum kostengünstigen Tiefrichtbohren
PCT/DE2017/000035 WO2017137025A1 (de) 2016-02-08 2017-02-08 Richtbohrgerät und verfahren zum kalibrieren desselben

Publications (2)

Publication Number Publication Date
EP3414418A1 EP3414418A1 (de) 2018-12-19
EP3414418B1 true EP3414418B1 (de) 2021-05-12

Family

ID=58428018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17713881.5A Active EP3414418B1 (de) 2016-02-08 2017-02-08 Richtbohrgerät und verfahren zum kalibrieren desselben

Country Status (11)

Country Link
US (2) US10760400B2 (de)
EP (1) EP3414418B1 (de)
CN (1) CN109790740A (de)
AU (1) AU2017217559B2 (de)
BR (1) BR112018016124A2 (de)
CA (1) CA3013949A1 (de)
DE (2) DE102016001780A1 (de)
MX (1) MX2018009672A (de)
RU (1) RU2018129165A (de)
SA (1) SA518392173B1 (de)
WO (1) WO2017137025A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016001779A1 (de) * 2016-02-08 2017-08-10 Stefan von den Driesch Wartungsarmes betriebssicheres Bohrwerkzeug für den störungsfreien Dauerbetrieb zum Abteufen von automatisch richtungsüberwachten Bohrungen in unterirdischen Gesteinsformationen
CA3046061C (en) * 2017-01-27 2021-10-19 Halliburton Energy Services, Inc. Hybrid axial and radial receiver configurations for electromagnetic ranging systems
CN107401375B (zh) * 2017-08-21 2023-04-07 福建亿钻机械有限公司 一种可检测钻杆安装情况的定向钻机及钻洞方法
CN107401376B (zh) * 2017-08-21 2023-04-07 福建亿钻机械有限公司 一种可远程监控的水平定向钻机及水平钻洞方法
US11675938B2 (en) * 2019-01-25 2023-06-13 Nvicta LLC. Optimal path planning for directional drilling
US11713665B2 (en) * 2019-05-08 2023-08-01 General Downhole Tools, Ltd. Systems, methods, and devices for directionally drilling an oil well while rotating including remotely controlling drilling equipment
CN111474595B (zh) * 2020-05-06 2023-01-06 中国石油天然气集团有限公司 钻具磁干扰对测量井眼方位角产生影响的判断方法及设备
CN112082572B (zh) * 2020-08-24 2023-04-25 中国石油天然气集团有限公司 一种标定钻具磁干扰的装置及方法
CN112922578A (zh) * 2021-02-06 2021-06-08 中国地质科学院勘探技术研究所 一种多井汇聚连通隔水取热的地热开采施工方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587175A (en) * 1968-04-30 1971-06-28 Texaco Inc Method and apparatus for borehole directional logging
US3828243A (en) * 1968-05-01 1974-08-06 Varian Associates Apparatus and method for electromagnetic geophysical exploration
US3691363A (en) * 1970-07-17 1972-09-12 Texaco Inc Method and apparatus for bore hole directional logging
US4021774A (en) * 1975-05-12 1977-05-03 Teleco Inc. Borehole sensor
US4109199A (en) * 1977-10-17 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Three axis magnetometer calibration checking method and apparatus
DE4134609C2 (de) 1991-10-19 1993-10-07 Bergwerksverband Gmbh Druckimpulserzeuger
EP0718641B1 (de) * 1994-12-12 2003-08-13 Baker Hughes Incorporated Bohrungsanordnung mit Bohrlochgerät zur Übersetzung von Mehrfach-Bohrlochmessungen in interessierenden Parametern und zur Steuerung der Bohrrichtung.
DE19607402C1 (de) 1996-02-28 1997-07-10 Welldone Engineering Gmbh Vorrichtung zum Übertragen von Informationen innerhalb eines Bohrrohrstranges einer Bohrvorrichtung mittels Druckimpulsen in einer strömenden Flüssigkeit, insbesondere Bohrspülflüssigkeit
US6158529A (en) * 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
DE19950040A1 (de) 1999-10-16 2001-05-10 Dmt Welldone Drilling Services Vorrichtung zum Niederbringen verlaufkontrollierter Bohrungen
US6808027B2 (en) 2001-06-11 2004-10-26 Rst (Bvi), Inc. Wellbore directional steering tool
US6585061B2 (en) 2001-10-15 2003-07-01 Precision Drilling Technology Services Group, Inc. Calculating directional drilling tool face offsets
US6966211B2 (en) * 2003-02-04 2005-11-22 Precision Drilling Technology Services Group Inc. Downhole calibration system for directional sensors
US6918186B2 (en) * 2003-08-01 2005-07-19 The Charles Stark Draper Laboratory, Inc. Compact navigation system and method
FR2859750B1 (fr) * 2003-09-15 2006-10-20 Cie Du Sol Installation de forage a tete rotative
US8635043B1 (en) * 2003-10-04 2014-01-21 SeeScan, Inc. Locator and transmitter calibration system
US7719261B2 (en) * 2005-11-28 2010-05-18 Hillcrest Laboratories, Inc. Methods and systems for calibrating a sensor using a vector field
US8087479B2 (en) * 2009-08-04 2012-01-03 Baker Hughes Incorporated Drill bit with an adjustable steering device
US8689904B2 (en) * 2011-05-26 2014-04-08 Schlumberger Technology Corporation Detection of gas influx into a wellbore
CN103089242A (zh) * 2011-10-31 2013-05-08 中国石油化工股份有限公司 Mwd定向探管有源磁场标定方法
US9273547B2 (en) 2011-12-12 2016-03-01 Schlumberger Technology Corporation Dynamic borehole azimuth measurements
US9982525B2 (en) 2011-12-12 2018-05-29 Schlumberger Technology Corporation Utilization of dynamic downhole surveying measurements
WO2013109278A1 (en) * 2012-01-19 2013-07-25 Halliburton Energy Services, Inc. Magnetic sensing apparatus, systems, and methods
DE102012004392A1 (de) 2012-03-03 2013-09-05 Inoson GmbH Vorrichtung zum Übertragen von Informationen aus einem Bohrloch
US9523244B2 (en) * 2012-11-21 2016-12-20 Scientific Drilling International, Inc. Drill bit for a drilling apparatus
US10481296B2 (en) * 2014-10-22 2019-11-19 Hallibunon Energy Services, Inc. Magnetic sensor correction for field generated from nearby current

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2018129165A (ru) 2020-03-10
BR112018016124A2 (pt) 2019-01-02
US11306576B2 (en) 2022-04-19
CA3013949A1 (en) 2017-08-17
CN109790740A (zh) 2019-05-21
MX2018009672A (es) 2019-05-06
EP3414418A1 (de) 2018-12-19
US20190048702A1 (en) 2019-02-14
AU2017217559A1 (en) 2018-08-30
DE102016001780A1 (de) 2017-08-24
WO2017137025A1 (de) 2017-08-17
US10760400B2 (en) 2020-09-01
SA518392173B1 (ar) 2023-02-23
AU2017217559B2 (en) 2022-07-28
US20200370410A1 (en) 2020-11-26
RU2018129165A3 (de) 2020-04-02
DE112017000692A5 (de) 2018-12-20

Similar Documents

Publication Publication Date Title
EP3414418B1 (de) Richtbohrgerät und verfahren zum kalibrieren desselben
DE60307007T3 (de) Automatisches bohrsystem mit elektronik ausserhalb einer nicht-rotierenden hülse
DE3325962C2 (de)
EP3414419B1 (de) Bohrwerkzeug zum abteufen von automatisch richtungsüberwachten bohrungen
CN106640033A (zh) 旋转导向工具状态监测方法
DE102015105908A1 (de) Bohrgerät zum Erstellen einer verrohrten Bohrung und Verfahren zum Betreiben eines Bohrgerätes
DE102005057049A1 (de) System, Vorrichtung und Verfahren zum Ausführen von Vermessungen eines Bohrlochs
DE112014007293T5 (de) Visualisierung von Vorausschausensordaten für Bohrlochbohrwerkzeuge
WO2001029371A1 (de) Vorrichtung zum niederbringen verlaufkontrollierter bohrungen
DE3000239A1 (de) Einrichtung zur herstellung zielgerichteter bohrungen
EP2806070B1 (de) Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers
DE102009041627A1 (de) Verfahren und Vorrichtung zur Sondierung von Kampfmitteln
EP3569769A1 (de) Gründungspfahl
CH653406A5 (de) Einrichtung zur herstellung zielgerichteter bohrungen.
DE102013205319A1 (de) Bohr- und Düsenstrahlgestänge
DE69930043T2 (de) Vorrichtung und Verfahren zum Steuern eines Richtbohrwerkzeugs
EP2539531A2 (de) Verfahren und vorrichtung zur richtungsgesteuerten bohrung
DE10116103B4 (de) Vorrichtung zum Auffahren einer unterirdischen Bohrung
DE112021007770T5 (de) Bohrsystem mit richtungsvermessungsübertragung system und verfahren zur übertragung
EP3214260B1 (de) Verfahren zum einbringen einer bohrung in das erdreich und erdbohrvorrichtung sowie verwendung
DE19807060A1 (de) Verfahren und Vorrichtung zur Einbringung eines fließfähigen Mittels in den Erdboden
DE3943151C2 (de)
DE102021122140A1 (de) Verfahren zur Lagebestimmung von Kampfmitteln, sowie Vorrichtung und Bohrgerät zur Durchführung des Verfahrens
EP3891359A1 (de) Anordnung und verfahren zur datenübertragung aus einem oder in ein loch im boden
DE102013103711A1 (de) Vorrichtung und Verfahren zum Bohren, insbesondere zum Horizontalbohren, mit einem Positionssensor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190819

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010347

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210512

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010347

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1392279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017010347

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI SCHATZ, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240208

Year of fee payment: 8