EP3414027B1 - Method and device for producing hardened steel components - Google Patents

Method and device for producing hardened steel components Download PDF

Info

Publication number
EP3414027B1
EP3414027B1 EP17703743.9A EP17703743A EP3414027B1 EP 3414027 B1 EP3414027 B1 EP 3414027B1 EP 17703743 A EP17703743 A EP 17703743A EP 3414027 B1 EP3414027 B1 EP 3414027B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
forming
inserts
hardening
drawing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17703743.9A
Other languages
German (de)
French (fr)
Other versions
EP3414027A1 (en
Inventor
Johannes HASLMAYR
Siegfried Kolnberger
Harald Schwinghammer
Andreas Sommer
Benedikt TUTEWOHL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Original Assignee
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH, Voestalpine Metal Forming GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3414027A1 publication Critical patent/EP3414027A1/en
Application granted granted Critical
Publication of EP3414027B1 publication Critical patent/EP3414027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Definitions

  • the invention relates to a method and a device for producing hardened steel components.
  • Hardened steel components have the advantage, particularly in the body shop of motor vehicles, that their outstanding mechanical properties make it possible to create a particularly stable passenger cell without having to use components that are much more massive and therefore heavier under normal strength.
  • Steel grades which can be hardened by quench hardening are used to produce hardened steel components of this type.
  • Such types of steel are, for example, boron-alloyed manganese carbon steels, the most widely used steel being the 22MnB5.
  • Other boron-alloyed manganese carbon steels are also used for this.
  • the steel material In order to produce hardened components from these types of steel, the steel material must be heated to the austenitizing temperature (> Ac 3 ) and waited until the steel material is austenitized. Depending on the desired degree of hardness, partial or full austenitization can be achieved here.
  • a sheet steel blank is cut out of a steel strip and then deep-drawn to the finished component in a conventional, for example five-step, deep-drawing process.
  • This finished component is dimensioned somewhat smaller in order to compensate for subsequent thermal expansion during austenitizing.
  • the component produced in this way is then austenitized and then placed in a form hardening tool, in which it is pressed, but not or only very slightly reshaped, and the heat flows from the component into the pressing tool due to the pressing, with the pressure exceeding the critical hardening speed Speed.
  • the further process is the so-called press hardening, in which a blank is cut out of a sheet steel strip, the blank is then austenitized and the hot blank is formed in a one-step step and at the same time is cooled at a speed above the critical hardening rate.
  • Mold hardening is also referred to as an indirect process and press hardening as a direct process.
  • the advantage of the indirect process is that more complex workpiece geometries can be realized.
  • the advantage of the direct process is that a higher degree of material utilization can be achieved with less component complexity.
  • first order microcracks and second order microcracks.
  • First order microcracks are attributed to the so-called Liquid Metal Embrittlement. It is believed that liquid zinc phases during forming, i.e. while tensile stresses are applied to the material, they interact with existing austenite phases, creating microcracks with depths down to a few 100 ⁇ m in the material.
  • the applicant has succeeded in preventing this by cooling the material between removal from the heating furnace and before insertion into the forming tool to temperatures at which there are no longer any liquid zinc phases. This means that hot forming takes place at temperatures below around 750 ° C.
  • the second order microcracks have so far not been manageable in hot forming despite pre-cooling and also occur at hot forming temperatures below 600 ° C.
  • the crack depths are some 10 pm.
  • a method and forming tool for hot press hardening workpieces made of sheet steel is known, and in particular made of galvanized workpieces made of sheet steel.
  • the die used for hot forming and press hardening should be liquid-coated in its drawing edge area defined by a positive drawing radius or be provided with an insert that has a thermal conductivity that is at least 10 W / (mx K) lower than the thermal conductivity of the section of the die which is adjacent to the drawing edge region and which comes into contact with the workpiece during hot forming and press hardening.
  • the surface of the material applied in the region of the drawing edge or of the insert part facing the workpiece should have a transverse dimension which extends over the drawing edge and is in the range from 1.6 times to 10 times the positive drawing radius of the die. This is intended to improve the flow properties of workpieces made of sheet steel during hot forming and thus significantly reduce the risk of cracks occurring during the hot forming of workpieces made of sheet steel, preferably galvanized steel blanks. With such a tool, however, second type microcracks cannot be avoided.
  • a tool for a press hardening tool is known, the shape-giving surface of the tool being microstructured in regions by two micro-depressions made in the mold surface. This measure is intended to limit the effective contact area between the mold surface with a blank for forming a blank to the area parts four located between the depressions. This is intended to reduce friction.
  • a method for producing hardened components from sheet steel wherein before, during or after the molding of the molded part, a necessary final trimming of the molded part and possibly necessary punching out or the production of a hole pattern is carried out and the molded part is then heated to a temperature at least in some areas , which enables the steel material to be austenitized, and wherein the component is subsequently transferred to a mold hardening tool and a mold hardening is carried out in the mold hardening tool, in which the component is cooled and thereby hardened by the at least partial application and pressing of the component by the mold hardening tools, the Component is supported by the form hardening tool in the area of the positive radii, in some areas at least and preferably in the area of the trimmed edges by two clamps and in areas in which the component is not clamped, the construction part is at least spaced from a mold half with a gap.
  • This measure serves to be able to clamp the component without distortion and to set different hard
  • the object of the invention is to avoid microcracks of the second type in directly hot-formed, that is to say press-hardened, components.
  • VME Vapor Metal Embrittlement
  • second order microcracks are to be avoided, the largest possible working window with regard to material and temperature being retained and the implementation being cost-effective. With at least the same throughput time, there should be no increase in cycle time or throughput reduction in component production.
  • the zinc vapor or free zinc occurring in the tensile stressed areas is quickly converted into a stable compound such as zinc oxide or ZnO2 by the entry of fluids containing oxygen.
  • a protective layer such as an oxide layer
  • Gaseous oxygen-containing fluids such as air or oxygen are particularly preferred because they cannot contaminate the tool unduly or also have an undesirable massive cooling effect such as that caused by e.g. Water can be regulated more easily by tempering the fluid.
  • inserts are used in the tool, preferably in the region of the positive radii or adjacent to the positive radii, which allow oxygen to enter when the sheet metal blank is deformed, that is to say when the blank material flows.
  • inserts can also be provided at narrow points or contact areas of the sheet metal blank with the tool, these contact areas being defined as those areas in which the sheet metal is at a maximum 0.5 mm from the tool.
  • the corresponding material must of course be supported in the area of the positive radii, because these are the edges that cause the deformation and initiate the material flow.
  • the inserts Adjacent to these edges and spaced from them so that the inserts are not damaged, the inserts have means that allow oxygen to enter.
  • These agents are sintered metal inserts or porous ceramic inserts, in which, after the workpiece has been moved apart and hardened and before a new circuit board has been inserted, so much oxygen is stored that it can be released to released zinc or released zinc phases.
  • the inserts can have exposed areas so that the material is spaced apart from the insert after flowing past the edge.
  • this exemption area is slit, so that a minimum support of the material is possible, but the access of oxygen is guaranteed.
  • fluid connection lines which open into the clearances or into the areas which are filled with sintered metal or porous ceramic, so that sufficient oxygen is supplied.
  • this can be air or, for example, water vapor.
  • Materials that inherently have a high oxygen diffusion capacity for example certain ceramics, can also be solid and are either exposed to fluids containing oxygen while the press is open or from the back and store it until it is released Zinc iron phases or released zinc can be released.
  • inserts can be formed on both the female and male.
  • Oxygen can also be loaded by flooding the mold cavity, for example with water vapor or the media already mentioned.
  • An insert 1 according to the invention is formed, for example, from a ceramic and in particular an oxide ceramic.
  • the ceramic insert runs along drawing edges 2 and is used in the tool instead of the metallic drawing edge 2, it having a rear side 3 and an underside 4 with which it is inserted in a form-fitting manner in a recess in the metallic tool.
  • the ceramic insert 1 has an upper side 6 and a mold front side 5, the mold front side 5 and the upper side 6 preferably being aligned with the corresponding surfaces of the tool.
  • This ceramic insert can be solid or dense and hard or porous hard.
  • a gas connection (not shown) can accordingly be provided from the metallic mold, insofar as the ceramic is oxygen-conducting or porous, which through the insert 1 has sufficient concentration of oxygen in the area of the surfaces 5 and the pulling edge 2 brings.
  • a cutout 7 is made in the area of the area 5 adjacent to the drawing edge 2 ( Figure 2 ).
  • the clearance 7 has, for example Depth of 5 to 10 mm, while the entire insert, for example, has a height between surfaces 4 and 6 of 35 to 50 mm and a width between surfaces 3 and 5 of 15 to 30 mm.
  • the drawing edge 2 is designed such that the thickness of the drawing edge in front of the recess 7 corresponds approximately to its radius.
  • such a groove 8 already stores so much oxygen after shaping a component and inserting a new circuit board as a gas in this dimensioning that the sufficient oxygen supply is ensured during the shaping.
  • the surface 5 is formed with slots 9 which run from a surface 4 in the direction of the drawing edge 2, but the drawing edge 2 still has a thickness which corresponds to its radius.
  • the slot width is 4 to 8 mm with a slot spacing of 7 to 11 mm, so that a web width of 2 to 5 mm is realized with a slot depth of 5 to 9 mm.
  • the web width has no negative influence on the oxygen supply.
  • the cutouts 7 or the groove 8 or the slots 9 are filled with a porous ceramic material or a porous sintered metal material
  • supply openings for fluids containing oxygen may be present on the rear side 3 of the insert and / or the sintered metal or ceramic inserts are loaded with oxygen between the shaping processes, for example by flooding the mold cavity with water vapor, or the ceramic and / or the sintered metal has such a high affinity for oxygen that during the shaping processes oxygen is absorbed, which is present during the drawing process released zinc iron or zinc phases is released.
  • the invention has the advantage that the formation of second-order microcracks can be effectively prevented by relatively simple measures, and existing forming tools can also be retrofitted to insert appropriately shaped inserts by milling out the positive radius areas or drawing edges.
  • the 20MnB8, 22MnB8 and other manganese-boron steels are also used, especially in the direct press hardening process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Erzeugen gehärteter Stahlbauteile.The invention relates to a method and a device for producing hardened steel components.

Gehärtete Stahlbauteile haben insbesondere im Karosseriebau von Kraftfahrzeugen den Vorteil, dass durch ihre herausragenden mechanischen Eigenschaften eine Möglichkeit besteht, eine besonders stabile Fahrgastzelle zu erstellen, ohne dass Bauteile verwendet werden müssen, die bei normalen Festigkeiten viel massiver und dadurch schwerer ausgebildet werden.Hardened steel components have the advantage, particularly in the body shop of motor vehicles, that their outstanding mechanical properties make it possible to create a particularly stable passenger cell without having to use components that are much more massive and therefore heavier under normal strength.

Zur Erzeugung derartiger gehärteter Stahlbauteile werden Stahlsorten, die durch eine Abschreckhärtung härtbar sind, verwendet. Derartige Stahlsorten sind zum Beispiel borlegierte Mangankohlenstoffstähle, wobei der am weitesten eingesetzte Stahl der 22MnB5 ist. Aber auch andere borlegierte Mangankohlenstoffstähle werden hierfür verwendet.Steel grades which can be hardened by quench hardening are used to produce hardened steel components of this type. Such types of steel are, for example, boron-alloyed manganese carbon steels, the most widely used steel being the 22MnB5. Other boron-alloyed manganese carbon steels are also used for this.

Um aus diesen Stahlsorten gehärtete Bauteile zu erzeugen, muss das Stahlmaterial auf die Austenitisierungstemperatur erhitzt werden (>Ac3) und abgewartet werden, bis der Stahlwerkstoff austenitisiert ist. Je nach gewünschtem Härtegrad können hier Teil- oder Vollaustenitisierungen erzielt werden.In order to produce hardened components from these types of steel, the steel material must be heated to the austenitizing temperature (> Ac 3 ) and waited until the steel material is austenitized. Depending on the desired degree of hardness, partial or full austenitization can be achieved here.

Wird ein solches Stahlmaterial nach der Austenitisierung mit einer über der kritischen Härtegeschwindigkeit liegenden Geschwindigkeit abgekühlt, wandelt die austenitische Struktur in eine martensitische, sehr harte Struktur um. Auf diese Weise sind Zugfestigkeiten Rm bis über 1500 MPa erzielbar.If such a steel material is cooled after austenitization at a speed above the critical hardening rate, the austenitic structure converts to a martensitic, very hard structure. In this way tensile strengths R m up to over 1500 MPa can be achieved.

Zur Erzeugung der Stahlbauteile sind derzeit zwei Verfahrenswege üblich.Two process methods are currently used to produce the steel components.

Beim sogenannten Formhärten wird eine Stahlblechplatine aus einem Stahlband ausgeschnitten und anschließend in einem üblichen, beispielsweise fünfstufigen Tiefziehprozess zum fertigen Bauteil tiefgezogen. Dieses fertige Bauteil wird hierbei etwas kleiner dimensioniert, um eine nachfolgende Wärmedehnung beim Austenitisieren zu kompensieren.In so-called form hardening, a sheet steel blank is cut out of a steel strip and then deep-drawn to the finished component in a conventional, for example five-step, deep-drawing process. This finished component is dimensioned somewhat smaller in order to compensate for subsequent thermal expansion during austenitizing.

Das so erzeugte Bauteil wird anschließend austenitisiert und dann in ein Formhärtewerkzeug eingelegt, in dem es gepresst, aber nicht oder nur sehr gering umgeformt wird und durch die Pressung die Wärme aus dem Bauteil in das Presswerkzeug fließt, und zwar mit der über der kritischen Härtegeschwindigkeit liegenden Geschwindigkeit.The component produced in this way is then austenitized and then placed in a form hardening tool, in which it is pressed, but not or only very slightly reshaped, and the heat flows from the component into the pressing tool due to the pressing, with the pressure exceeding the critical hardening speed Speed.

Der weitere Verfahrensweg ist das sogenannte Presshärten, bei dem eine Platine aus einem Stahlblechband ausgeschnitten wird, anschließend die Platine austenitisiert wird und die heiße Platine in einem einstufigen Schritt umgeformt und gleichzeitig mit einer über der kritischen Härtegeschwindigkeit liegenden Geschwindigkeit abgekühlt wird.The further process is the so-called press hardening, in which a blank is cut out of a sheet steel strip, the blank is then austenitized and the hot blank is formed in a one-step step and at the same time is cooled at a speed above the critical hardening rate.

In beiden Fällen können mit metallischen Korossionsschutzschichten, z.B. Zink, versehene Platinen verwendet werden. Das Formhärten wird auch als indirekter Prozess bezeichnet und das Presshärten als direkter Prozess. Der Vorteil des indirekten Prozesses ist, dass aufwändigere Werkstücksgeometrien realisierbar sind.In both cases, metallic corrosion protection layers, e.g. Zinc-coated boards can be used. Mold hardening is also referred to as an indirect process and press hardening as a direct process. The advantage of the indirect process is that more complex workpiece geometries can be realized.

Der Vorteil des direkten Prozesses ist, dass ein höherer Materialnutzungsgrad allerdings bei geringerer Bauteilkomplexität erreicht werden kann.The advantage of the direct process is that a higher degree of material utilization can be achieved with less component complexity.

Beim Presshärten ist jedoch von Nachteil, dass es insbesondere bei verzinkten Stahlblechplatinen dazu kommt, dass Mikrorisse in der Oberfläche gebildet werden.In press hardening, however, it is disadvantageous that, particularly in the case of galvanized sheet steel blanks, microcracks are formed in the surface.

Hierbei wird zwischen Mikrorissen erster Ordnung und Mikrorissen zweiter Ordnung unterschieden.A distinction is made between first order microcracks and second order microcracks.

Mikrorisse erster Ordnung werden auf das sogenannte Liquid Metal Embrittlement zurückgeführt. Man vermutet, dass flüssige Zinkphasen während des Umformens, d.h. während Zugspannungen auf das Material aufgebracht werden, mit noch bestehenden Austenitphasen in Wechselwirkung geraten, wodurch Mikrorisse mit Tiefen bis zu einigen 100 µm im Material erzeugt werden.First order microcracks are attributed to the so-called Liquid Metal Embrittlement. It is believed that liquid zinc phases during forming, i.e. while tensile stresses are applied to the material, they interact with existing austenite phases, creating microcracks with depths down to a few 100 µm in the material.

Der Anmelderin ist es gelungen, durch Kühlen des Materials zwischen der Entnahme aus dem Erhitzungsofen und vor dem Einlegen in das Umformwerkzeug auf Temperaturen, bei denen keine flüssigen Zinkphasen mehr vorhanden sind, dies zu unterbinden. Dies bedeutet, dass die Warmumformung bei Temperaturen unter etwa 750°C stattfindet.The applicant has succeeded in preventing this by cooling the material between removal from the heating furnace and before insertion into the forming tool to temperatures at which there are no longer any liquid zinc phases. This means that hot forming takes place at temperatures below around 750 ° C.

Die Mikrorisse zweiter Ordnung sind bislang bei der Warmumformung trotz Vorkühlung nicht beherrschbar und entstehen auch bei Warmumformtemperaturen unter 600°C. Die Risstiefen hierbei betragen einige 10 pm.The second order microcracks have so far not been manageable in hot forming despite pre-cooling and also occur at hot forming temperatures below 600 ° C. The crack depths are some 10 pm.

Weder Mikrorisse erster Ordnung noch Mikrorisse zweiter Ordnung werden von den Anwendern akzeptiert, da dies eine mögliche Schadensquelle darstellt.Neither first order microcracks nor second order microcracks are accepted by users as this is a potential source of damage.

Mit den bisherigen Methoden kann eine Produktion von Bauteilen ohne Mikrorisse zweiter Ordnung aber nicht gesichert dargestellt werden.With the previous methods, however, production of components without second order microcracks cannot be reliably represented.

Aus der DE 10 2011 055 643 A1 ist ein Verfahren und Umformwerkzeug zum Warmumformpresshärten von Werkstücken aus Stahlblech bekannt, und insbesondere aus verzinkten Werkstücken aus Stahlblech. Hierbei soll die zum Warmumformen und Presshärten verwendete Matrize in ihrem durch einen positiven Ziehradius definierten Ziehkantenbereich mit einem Materialstoff flüssig beschichtet sein oder mit einem Einsatzteil versehen sein, das eine Wärmeleitfähigkeit aufweist, die um mindestens 10 W/(m x K) geringer ist als die Wärmeleitfähigkeit des dem Ziehkantenbereich benachbarten Abschnitts der Matrize, der beim Warmumformen und Presshärten des Werkstücks mit demselben in Kontakt gelangt. Die dem Werkstück zugewandte Oberfläche des im Ziehkantenbereich aufgetragenen Materials oder des angeordneten Einsatzteiles soll ein sich über die Ziehkante erstreckendes Quermaß besitzen, das im Bereich des 1,6-fachen bis 10-fachen des positiven Ziehradius der Matrize liegt. Hierdurch sollen die Fließeigenschaften von Werkstücken aus Stahlblech während des Warmumformens verbessert werden und damit die Gefahr des Auftretens von Rissen bei der Warmumformung von Werkstücken aus Stahlblech, vorzugsweise verzinkten Stahlplatinen, erheblich reduziert werden. Mit einem solchen Werkzeug können jedoch Mikrorisse zweiter Art nicht vermieden werden.From the DE 10 2011 055 643 A1 A method and forming tool for hot press hardening workpieces made of sheet steel is known, and in particular made of galvanized workpieces made of sheet steel. In this case, the die used for hot forming and press hardening should be liquid-coated in its drawing edge area defined by a positive drawing radius or be provided with an insert that has a thermal conductivity that is at least 10 W / (mx K) lower than the thermal conductivity of the section of the die which is adjacent to the drawing edge region and which comes into contact with the workpiece during hot forming and press hardening. The surface of the material applied in the region of the drawing edge or of the insert part facing the workpiece should have a transverse dimension which extends over the drawing edge and is in the range from 1.6 times to 10 times the positive drawing radius of the die. This is intended to improve the flow properties of workpieces made of sheet steel during hot forming and thus significantly reduce the risk of cracks occurring during the hot forming of workpieces made of sheet steel, preferably galvanized steel blanks. With such a tool, however, second type microcracks cannot be avoided.

Aus der DE 10 2011 052 773 A1 ist ein Werkzeug für ein Presshärtewerkzeug bekannt, wobei die formgebende Oberfläche des Werkzeugs bereichsweise durch in die Formoberfläche zwei eingebrachte Mikrovertiefungen mikrostrukturiert. Durch diese Maßnahme soll die für die Umformung eines Rohlings effektive Kontaktfläche zwischen der Formoberfläche mit einem Rohling auf die zwischen den Vertiefungen befindlichen Flächenanteile vier beschränkt werden. Hierdurch soll die Reibung vermindert werden.From the DE 10 2011 052 773 A1 A tool for a press hardening tool is known, the shape-giving surface of the tool being microstructured in regions by two micro-depressions made in the mold surface. This measure is intended to limit the effective contact area between the mold surface with a blank for forming a blank to the area parts four located between the depressions. This is intended to reduce friction.

Aus der DE 10 2004 038 626 B3 ist ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech bekannt, wobei vor, beim oder nach dem Formen des Formteils ein notwendiger Endbeschnitt des Formteils und gegebenenfalls erforderliche Ausstanzungen bzw. die Erzeugung eines Lochbildes vorgenommen wird und das Formteil anschließend zumindest teilbereichsweise auf eine Temperatur erhitzt wird, welche eine Austenitisierung des Stahlwerkstoffs ermöglicht, und wobei das Bauteil anschließend in ein Formhärtewerkzeug überführt wird und im Formhärtewerkzeug eine Formhärtung durchgeführt wird, bei der durch das zumindest teilbereichsweise Anlegen und Pressen des Bauteils durch die Formhärtewerkzeuge das Bauteil gekühlt und dadurch gehärtet wird, wobei das Bauteil vom Formhärtewerkzeug im Bereich der positiven Radien gestützt wird, teilbereichsweise zumindest und im Bereich der Beschnittkanten vorzugsweise von zwei Klemmen festgehalten wird und in Bereichen, in denen das Bauteil nicht geklemmt wird, das Bauteil zumindest zu einer Formwerkzeughälfte mit einem Spalt beabstandet ist. Diese Maßnahme dient dazu, das Bauteil verzugsfrei klemmen zu können und unterschiedliche Härtegradienten durch unterschiedliche Härtegeschwindigkeiten einzustellen.From the DE 10 2004 038 626 B3 A method for producing hardened components from sheet steel is known, wherein before, during or after the molding of the molded part, a necessary final trimming of the molded part and possibly necessary punching out or the production of a hole pattern is carried out and the molded part is then heated to a temperature at least in some areas , which enables the steel material to be austenitized, and wherein the component is subsequently transferred to a mold hardening tool and a mold hardening is carried out in the mold hardening tool, in which the component is cooled and thereby hardened by the at least partial application and pressing of the component by the mold hardening tools, the Component is supported by the form hardening tool in the area of the positive radii, in some areas at least and preferably in the area of the trimmed edges by two clamps and in areas in which the component is not clamped, the construction part is at least spaced from a mold half with a gap. This measure serves to be able to clamp the component without distortion and to set different hardness gradients through different hardness speeds.

Aufgabe der Erfindung ist es, Mikrorisse zweiter Art in direkt warmumgeformten, also pressgehärteten Bauteilen zu vermeiden.The object of the invention is to avoid microcracks of the second type in directly hot-formed, that is to say press-hardened, components.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Es ist darüber hinaus eine Aufgabe, eine Vorrichtung zu schaffen, mit der Stahlblechplatinen im Presshärteverfahren warmumgeformt und gehärtet werden können und bei dem Mikrorisse vermieden werden.It is also an object to provide a device with which sheet steel blanks are hot formed using the press hardening process and can be hardened and avoid micro-cracks.

Die Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 3 gelöst. Vorteilhafte Weiterbildungen sind in hiervon abhängigen Unteransprüchen gekennzeichnet.The object is achieved with a device having the features of claim 3. Advantageous further developments are characterized in dependent claims dependent thereon.

Die Erfinder haben erkannt, dass Mikrorisse zweiter Art entstehen, wenn in zugbelasteten Bereichen der auftretende Zinkdampf in hinreichender Konzentration zum Stahl gelangt, sogenanntes Vapour Metal Embrittlement (VME). Zinkdampf entsteht durch Aufreißen der Zinkeisenschicht bei der Dehnung während des Umformvorgangs. Hinreichende Konzentration tritt insbesondere in jenen Bereichen auf in welchen direkter Kontakt des Blechs mit dem Werkzeug vorherrscht oder ein sehr geringer Abstand des Blechs zum Werkzeug vorliegt. Ein sehr geringer Abstand im Sinne der Erfindung ist weniger als 0,5 mm.The inventors have recognized that microcracks of the second type occur when the zinc vapor occurring in tensile areas reaches the steel in sufficient concentration, so-called Vapor Metal Embrittlement (VME). Zinc vapor is created by tearing open the zinc iron layer during stretching during the forming process. Adequate concentration occurs particularly in those areas in which there is direct contact of the sheet with the tool or in which there is a very small distance between the sheet and the tool. A very small distance in the sense of the invention is less than 0.5 mm.

Erfindungsgemäß sollen Mikrorisse zweiter Ordnung vermieden werden, wobei ein möglichst großes Arbeitsfenster hinsichtlich Material und Temperatur erhalten bleibt und die Umsetzung kostengünstig ist. Bei mindestens gleicher Durchlaufzeit soll keine Taktzeiterhöhung bzw. Durchsatzreduktion bei der Bauteilherstellung resultieren.According to the invention, second order microcracks are to be avoided, the largest possible working window with regard to material and temperature being retained and the implementation being cost-effective. With at least the same throughput time, there should be no increase in cycle time or throughput reduction in component production.

Erfindungsgemäß wird bei den zugbelasteten Bereichen (Dehnungsrandfaser) der auftretende Zinkdampf bzw. freies Zink durch Zutritt von Sauerstoffhaltigen Fluiden rasch in eine stabile Verbindung wie Zinkoxid oder ZnO2 umgewandelt. Des Weiteren kann der Schutz des Stahls gegen Mikrorisse zweiter Ordnung auch durch Erzeugung einer Schutzschicht wie zB Oxidschicht, mittels Zuführen eines Fluids erreicht werden. Die beschriebenen Maßnahmen haben gezeigt, dass Mikrorisse deutlich reduziert werden.According to the invention, the zinc vapor or free zinc occurring in the tensile stressed areas (stretching edge fiber) is quickly converted into a stable compound such as zinc oxide or ZnO2 by the entry of fluids containing oxygen. Furthermore, the protection of the steel against second-order microcracks can also be achieved by producing a protective layer, such as an oxide layer, by supplying a fluid. The measures described have shown that microcracks are significantly reduced.

Besonders bevorzugt sind gasförmige sauerstoffhaltige Fluide wie beispielsweise Luft oder Sauerstoff da diese das Werkzeug nicht über Gebühr verunreinigen können bzw. auch eine allfällige unerwünschte massive Kühlwirkung wie durch bsp. Wasser durch Temperierung des Fluids leichter reguliert werden kann.Gaseous oxygen-containing fluids such as air or oxygen are particularly preferred because they cannot contaminate the tool unduly or also have an undesirable massive cooling effect such as that caused by e.g. Water can be regulated more easily by tempering the fluid.

Erfindungsgemäß werden im Werkzeug vorzugsweise im Bereich der positiven Radien oder benachbart zu den positiven Radien Einsätze eingesetzt, die einen Sauerstoffzutritt dann zulassen, wenn die Blechplatine verformt wird, also wenn das Platinenmaterial fließt. Weiters können Einsätze auch an Engstellen bzw. Kontaktbereichen der Blechplatine mit dem Werkzeug vorgesehen sein, wobei diese Kontaktbereiche als jene Bereiche definiert sind, in welchem das Blech maximal 0,5 mm Abstand zum Werkzeug aufweist.According to the invention, inserts are used in the tool, preferably in the region of the positive radii or adjacent to the positive radii, which allow oxygen to enter when the sheet metal blank is deformed, that is to say when the blank material flows. Furthermore, inserts can also be provided at narrow points or contact areas of the sheet metal blank with the tool, these contact areas being defined as those areas in which the sheet metal is at a maximum 0.5 mm from the tool.

Hierzu muss das entsprechende Material selbstverständlich im Bereich der positiven Radien gestützt werden, denn dies sind die Kanten, die die Verformung bewirken und den Materialfluss einleiten.To do this, the corresponding material must of course be supported in the area of the positive radii, because these are the edges that cause the deformation and initiate the material flow.

Benachbart zu diesen Kanten und von diesen so beabstandet, dass die Einsätze nicht beschädigt werden, besitzen die Einsätze Mittel, die einen Sauerstoffzutritt ermöglichen. Diese Mittel sind Sintermetalleinsätze oder poröse Keramikeinsätze, in denen nach dem Auseinanderfahren und Aushärten des Werkstücks und vor dem Einlegen einer neuen Platine so viel Sauerstoff gespeichert wird, dass dieser an freiwerdendes Zink oder freiwerdendes Zinkphasen abgegeben werden kann.Adjacent to these edges and spaced from them so that the inserts are not damaged, the inserts have means that allow oxygen to enter. These agents are sintered metal inserts or porous ceramic inserts, in which, after the workpiece has been moved apart and hardened and before a new circuit board has been inserted, so much oxygen is stored that it can be released to released zinc or released zinc phases.

Darüber hinaus können die Einsätze über freigestellte Flächen verfügen, so dass das Material, nachdem es an der Kante vorbeigeflossen ist, zum Einsatz beabstandet ist.In addition, the inserts can have exposed areas so that the material is spaced apart from the insert after flowing past the edge.

Bei einer vorteilhaften Ausführungsform ist dieser Freistellungsbereich geschlitzt ausgebildet, so dass eine Mindeststützung des Materials möglich ist, jedoch der Sauerstoffzutritt gewährleistet wird.In an advantageous embodiment, this exemption area is slit, so that a minimum support of the material is possible, but the access of oxygen is guaranteed.

In all diesen Fällen können zudem Fluidanschlussleitungen vorhanden sein, die in die Freistellungen oder in die Bereiche münden, die mit Sintermetall oder poröser Keramik aufgefüllt sind, so dass ausreichend Sauerstoff zugeführt wird. Dies kann im einfachsten Fall Luft oder auch zum Beispiel Wasserdampf sein.In all of these cases, there may also be fluid connection lines which open into the clearances or into the areas which are filled with sintered metal or porous ceramic, so that sufficient oxygen is supplied. In the simplest case, this can be air or, for example, water vapor.

Materialien, die von sich aus ein hohes Sauerstoffdiffusionsvermögen haben, beispielsweise bestimmte Keramiken, können auch massiv ausgebildet sein und werden entweder während die Presse offen ist oder von der Rückseite her mit Fluiden, die Sauerstoff enthalten, beaufschlagt und speichern diesen solange, bis dieser an freiwerdende Zinkeisenphasen oder freiwerdendes Zink abgegeben werden kann.Materials that inherently have a high oxygen diffusion capacity, for example certain ceramics, can also be solid and are either exposed to fluids containing oxygen while the press is open or from the back and store it until it is released Zinc iron phases or released zinc can be released.

Diese Einsätze können sowohl an der Matrize als auch an der Patrize ausgebildet sein.These inserts can be formed on both the female and male.

Eine Beladung mit Sauerstoff kann auch durch Fluten des Formhohlraums, beispielsweise mit Wasserdampf oder den bereits genannten Medien, durchgeführt werden.Oxygen can also be loaded by flooding the mold cavity, for example with water vapor or the media already mentioned.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

  • Figur 1 beispielhaft einen Werkzeugeinsatz in massiver Ausgestaltung;
  • Figur 2 einen Werkzeugeinsatz mit Freistellung;
  • Figur 3 einen weiteren Werkzeugeinsatz mit Freistellung;
  • Figur 4 einen geschlitzten Werkzeugeinsatz in einer seitlichen Schnittansicht;
  • Figur 5 den geschlitzten Werkzeugeinsatz in einer formflächenseitigen Ansicht.
The invention is explained by way of example with reference to a drawing. It shows:
  • Figure 1 exemplary a tool insert in a massive design;
  • Figure 2 a tool insert with exemption;
  • Figure 3 another tool insert with exemption;
  • Figure 4 a slotted tool insert in a side sectional view;
  • Figure 5 the slotted tool insert in a mold side view.

Ein erfindungsgemäßer Einsatz 1 ist beispielsweise aus einer Keramik und insbesondere einer Oxidkeramik ausgebildet. Der keramische Einsatz verläuft entlang von Ziehkanten 2 und ist im Werkzeug anstelle der metallischen Ziehkante 2 eingesetzt, wobei er eine Rückseite 3 und eine Unterseite 4 besitzt, mit denen er in einer Aussparung in dem metallischen Werkzeug formschlüssig eingesetzt ist. Zudem besitzt der keramische Einsatz 1 eine Oberseite 6 und eine Formvorderseite 5, wobei die Formvorderseite 5 und die Oberseite 6 vorzugsweise mit den entsprechenden Flächen des Werkzeugs fluchten.An insert 1 according to the invention is formed, for example, from a ceramic and in particular an oxide ceramic. The ceramic insert runs along drawing edges 2 and is used in the tool instead of the metallic drawing edge 2, it having a rear side 3 and an underside 4 with which it is inserted in a form-fitting manner in a recess in the metallic tool. In addition, the ceramic insert 1 has an upper side 6 and a mold front side 5, the mold front side 5 and the upper side 6 preferably being aligned with the corresponding surfaces of the tool.

Dieser keramische Einsatz kann massiv oder dicht und hart oder porös hart ausgebildet sein.This ceramic insert can be solid or dense and hard or porous hard.

Im Bereich der Flächen 3 oder 4 kann aus dem metallischen Formwerkzeug dem entsprechend, insofern die Keramik sauerstoffleitend ausgebildet ist oder porös ausgebildet ist, ein Gasanschluss (nicht gezeigt) vorhanden sein, der durch den Einsatz 1 hindurch Sauerstoff in ausreichender Konzentration an den Bereich der Flächen 5 und der Ziehkante 2 bringt.In the area of the surfaces 3 or 4, a gas connection (not shown) can accordingly be provided from the metallic mold, insofar as the ceramic is oxygen-conducting or porous, which through the insert 1 has sufficient concentration of oxygen in the area of the surfaces 5 and the pulling edge 2 brings.

Im Bereich der Fläche 5 benachbart zur Ziehkante 2 ist eine Freisparung 7 vorgenommen (Figur 2). Die Freisparung 7 hat beispielsweise eine Tiefe von 5 bis 10 mm, während der gesamte Einsatz beispielsweise eine Höhe zwischen den Flächen 4 und 6 von 35 bis 50 mm und eine Breite zwischen den Flächen 3 und 5 von 15 bis 30 mm besitzt.A cutout 7 is made in the area of the area 5 adjacent to the drawing edge 2 ( Figure 2 ). The clearance 7 has, for example Depth of 5 to 10 mm, while the entire insert, for example, has a height between surfaces 4 and 6 of 35 to 50 mm and a width between surfaces 3 and 5 of 15 to 30 mm.

Die Ziehkante 2 ist dabei so ausgebildet, dass die Dicke der Ziehkante vor der Freisparung 7 in etwa ihrem Radius entspricht.The drawing edge 2 is designed such that the thickness of the drawing edge in front of the recess 7 corresponds approximately to its radius.

Bei einer weiteren vorteilhaften Ausführungsform ist anstelle einer Freisparung 7 benachbart zur Ziehkante 2 (Figur 3) lediglich eine parallel zur Fläche 6 verlaufende Nut 8 vorhanden, die beispielsweise eine Tiefe von 5 bis 8 mm besitzt, wobei die Höhe der Nut 8 zwischen der Ziehkante 2 und der Fläche 5 8 bis 12 mm beträgt.In a further advantageous embodiment, instead of a recess 7 adjacent to the drawing edge 2 ( Figure 3 ) there is only a groove 8 running parallel to the surface 6, which has a depth of 5 to 8 mm, for example, the height of the groove 8 between the drawing edge 2 and the surface 5 being 8 to 12 mm.

Erfindungsgemäß hat sich herausgestellt, dass bereits eine solche Nut 8 bei dieser Dimensionierung so viel Sauerstoff nach dem Ausformen eines Bauteils und dem Einlegen einer neuen Platine als Gas bevorratet, dass die ausreichende Sauerstoffversorgung bei der Umformung gewährleistet ist.According to the invention, it has been found that such a groove 8 already stores so much oxygen after shaping a component and inserting a new circuit board as a gas in this dimensioning that the sufficient oxygen supply is ensured during the shaping.

Bei einer weiteren vorteilhaften Ausführungsform (Figuren 4, 5) ist die Fläche 5 mit Schlitzen 9 ausgebildet, die von einer Fläche 4 in Richtung zur Ziehkante 2 verlaufen, jedoch die Ziehkante 2 nach wie vor eine Dicke besitzt, die ihrem Radius entspricht.In a further advantageous embodiment ( Figures 4 , 5 ) the surface 5 is formed with slots 9 which run from a surface 4 in the direction of the drawing edge 2, but the drawing edge 2 still has a thickness which corresponds to its radius.

Die Schlitzbreite beträgt hierbei 4 bis 8 mm bei einem Schlitzabstand von 7 bis 11 mm, so dass eine Stegbreite von 2 bis 5 mm realisiert wird, bei einer Schlitztiefe von 5 bis 9 mm. Auch hierbei hat sich gezeigt, dass die Stegbreite keinen negativen Einfluss auf die Sauerstoffversorgung besitzt.The slot width is 4 to 8 mm with a slot spacing of 7 to 11 mm, so that a web width of 2 to 5 mm is realized with a slot depth of 5 to 9 mm. Here, too, it has been shown that the web width has no negative influence on the oxygen supply.

Bei einer weiteren vorteilhaften Ausführungsform (nicht gezeigt) sind die Freisparungen 7 bzw. die Nut 8 oder die Schlitze 9 mit einem porösen keramischen Material oder einem porösen Sintermetallmaterial aufgefüllt, wobei an der Rückseite 3 des Einsatzes Zufuhröffnungen für Sauerstoff enthaltende Fluide vorhanden sein können und/oder die Sintermetall- oder Keramikeinsätze zwischen den Umformvorgängen so mit Sauerstoff beladen werden, beispielsweise durch Fluten des Formenhohlraumes mit Wasserdampf, oder die Keramik und/oder das Sintermetall eine so hohe Sauerstoffaffinität besitzt, dass während der Umformvorgänge Sauerstoff aufgenommen wird, der während des Ziehvorganges an freiwerdende Zinkeisen oder Zinkphasen abgegeben wird.In a further advantageous embodiment (not shown), the cutouts 7 or the groove 8 or the slots 9 are filled with a porous ceramic material or a porous sintered metal material, supply openings for fluids containing oxygen may be present on the rear side 3 of the insert and / or the sintered metal or ceramic inserts are loaded with oxygen between the shaping processes, for example by flooding the mold cavity with water vapor, or the ceramic and / or the sintered metal has such a high affinity for oxygen that during the shaping processes oxygen is absorbed, which is present during the drawing process released zinc iron or zinc phases is released.

Bei der Erfindung ist von Vorteil, dass durch relativ einfache Maßnahmen die Entstehung von Mikrorissen zweiter Ordnung wirkungsvoll unterbunden werden kann, wobei auch bestehende Umformwerkzeuge durch Ausfräsen der positiven Radienbereiche bzw. Ziehkanten das Einsetzen entsprechend geformter Einsätze nachgerüstet werden können.The invention has the advantage that the formation of second-order microcracks can be effectively prevented by relatively simple measures, and existing forming tools can also be retrofitted to insert appropriately shaped inserts by milling out the positive radius areas or drawing edges.

Neben dem 22MnB5 finden auch - vor allem beim direkten Presshärteprozess - der 20MnB8, 22MnB8 und andere Mangan-Bor-Stähle Anwendung.In addition to the 22MnB5, the 20MnB8, 22MnB8 and other manganese-boron steels are also used, especially in the direct press hardening process.

Für die Erfindung sind somit Stähle dieser Legierungszusammensetzung geeignet (alle Angaben in Masse-%): C Si Mn P S Al Cr Ti B N [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 0,20 0,18 2,01 0,0062 0,001 0,054 0,03 0,032 0,0030 0,0041 Steels of this alloy composition are therefore suitable for the invention (all figures in% by mass): C. Si Mn P S Al Cr Ti B N [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 0.20 0.18 2.01 0.0062 0.001 0.054 0.03 0.032 0.0030 0.0041

Rest Eisen und erschmelzungsbedingte Verunreinigungen, wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.Balance iron and melting-related impurities, in particular as a retarding agent in such steels the alloying elements boron, manganese, carbon and optionally chrome and molybdenum are used.

Für die Erfindung sind auch Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01-0,07 Silizium (Si) 0,01-0,8 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,08 Stickstoff (N) < 0,02 Bor (B) 0,002-0,02 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Steels of the general alloy composition are also suitable for the invention (all figures in% by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.8 Chrome (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) <0.02 Boron (B) 0.002-0.02 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1

Rest Eisen und erschmelzungsbedingte Verunreinigungen.Remainder iron and melting impurities.

Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,35 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,01-0,20 Chrom (Cr) 0,02-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) < 0,007 Bor (B) 0,002-0,006 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Steel arrangements have proven to be particularly suitable as follows (all figures in% by mass): Carbon (C) 0.08-0.35 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chrome (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) <0.007 Boron (B) 0.002-0.006 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1

Rest Eisen und erschmelzungsbedingte Verunreinigungen.Remainder iron and melting impurities.

Claims (5)

  1. A method for press-hardening galvanized sheet steel components, wherein a blank is cut out of a sheet steel strip made of a hardenable steel alloy and the blank is then austenitized by heating it to a temperature greater than Ac3 and then placing it in a forming tool and forming it in the forming tool and cooling it during forming at a speed above the critical hardening speed, and that, in order to avoid microcracks of the second type on the sheet metal blank to be formed during the forming and hardening process, oxygen is supplied
    - at and/or adjacent to positive radii and/or drawing edges and/or
    - at contact areas,
    the oxygen being admitted by inserts (1) of oxygen-storing materials which are provided in the forming tool adjacent to or in the region of the drawing edges and/or positive radii, which inserts are dimensioned in such a way that deep-drawing is not impaired, and the inserts (1) form a reservoir for oxygen, wherein the inserts (1) are made of sintered metals, porous ceramics or dense ceramics, wherein a recess (7) is arranged in the ceramic inserts, which is dimensioned such that the remaining thickness of the drawing edge (2) between a surface bounding the drawing edge (2) and the recess (5) approximately corresponds to its radius.
  2. A method according to any of the preceding claims, characterized in that the inserts (1) are fed with oxygen or oxygen-containing fluids from the forming tool side, or the inserts (1) or the mold cavity are/is flooded with oxygen or an oxygen-containing fluid between two forming operations.
  3. A device for carrying out the method according to any of the preceding claims for press-hardening or hot-forming and hardening steel sheet blanks with two forming tool halves, wherein the two forming tool halves cooperate with a blank in a deep-drawing manner and are designed so as to be able to be moved towards each other and away from each other, wherein, corresponding to a desired forming contour, at least one positive radius or one drawing edge region comprising a drawing edge (2) is present, the ceramic insert is set in place of a metallic drawing edge (2), wherein it is inserted in a form-fitting manner in the respective mold half, wherein a recess (7) is arranged in the ceramic insert, which recess is dimensioned such that the remaining thickness of the drawing edge (2) between a surface bounding the drawing edge (2) and the recess (5) corresponds approximately to its radius.
  4. The device according to claim 3, characterized in that the recess (5) between the drawing edge (2) and a forming tool surface (4) has a height which is about 25 to 35 mm at a depth of 5 to 9 mm or is formed as a groove (8) which has a height between the surface (4) and the drawing edge (2) which is approximately 8 to 12 mm at a depth of 5 to 9 mm, or in the region of the wall (4) adjacent to the drawing edge (2) a plurality of slots (9) extending in the drawing direction are present as recesses, the slots (9) having a slot width of 4 to 8 mm and a slot spacing of 7 to 11 mm, so that the remaining webs have a width of 1 to 5 mm.
  5. The device according to claim 3 or 4, characterized in that the recesses (7), the grooves (8) or the slots (9) can be supplied with an oxygen-containing fluid at the rear, i.e. from the side of the tool, by means of feeding systems and correspondingly drilled lines.
EP17703743.9A 2016-02-10 2017-02-07 Method and device for producing hardened steel components Active EP3414027B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016102324.8A DE102016102324B4 (en) 2016-02-10 2016-02-10 Method and device for producing hardened steel components
PCT/EP2017/052604 WO2017137378A1 (en) 2016-02-10 2017-02-07 Method and device for producing hardened steel components

Publications (2)

Publication Number Publication Date
EP3414027A1 EP3414027A1 (en) 2018-12-19
EP3414027B1 true EP3414027B1 (en) 2020-05-06

Family

ID=57984946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17703743.9A Active EP3414027B1 (en) 2016-02-10 2017-02-07 Method and device for producing hardened steel components

Country Status (8)

Country Link
US (1) US20210189513A1 (en)
EP (1) EP3414027B1 (en)
JP (1) JP6753939B2 (en)
KR (1) KR20180113559A (en)
CN (1) CN109070174B (en)
DE (1) DE102016102324B4 (en)
ES (1) ES2792080T3 (en)
WO (1) WO2017137378A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020222688A1 (en) * 2019-04-29 2020-11-05 Gestamp Hardtech Ab A hot press forming apparatus and a method for hot press forming a blank

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD34665A (en) *
DE10000138A1 (en) * 2000-01-04 2001-07-12 Binder Technologie Ag Gams Manufacturing method for formed parts, e.g. tubes etc. with slide medium esp. oil applied between component material and forming tool after pre-forming stage
AT412878B (en) * 2003-07-29 2005-08-25 Voestalpine Stahl Gmbh Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction
EP1651789B1 (en) * 2003-07-29 2010-08-25 Voestalpine Stahl GmbH Method for producing hardened parts from sheet steel
DE102004038626B3 (en) 2004-08-09 2006-02-02 Voestalpine Motion Gmbh Method for producing hardened components from sheet steel
JP2006104527A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp Method for producing high strength component and high strength component
JP2007216257A (en) * 2006-02-16 2007-08-30 Toyota Motor Corp Method for manufacturing high-strength component, hot press forming die to be used in the same method, and partially fabricated component in the same method
DE102007061489A1 (en) * 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Process for producing hardened hardenable steel components and hardenable steel strip therefor
DE102008063985B4 (en) * 2008-12-19 2015-10-29 Voestalpine Metal Forming Gmbh Method and device for producing partially hardened sheet steel components
JP5515304B2 (en) * 2009-01-30 2014-06-11 新日鐵住金株式会社 Steel plate hot press forming method and hot press forming apparatus
WO2011081043A1 (en) * 2009-12-28 2011-07-07 住友金属工業株式会社 Method for manufacturing a hot press-molded member
JP5695381B2 (en) * 2010-09-30 2015-04-01 株式会社神戸製鋼所 Manufacturing method of press-molded products
ES2851176T3 (en) * 2010-12-24 2021-09-03 Voestalpine Stahl Gmbh Method for forming and hardening coated steel sheets
DE102011052773A1 (en) 2011-08-17 2013-02-21 Kirchhoff Automotive Deutschland Gmbh Tool useful for a press hardening tool, comprises a molding surface, where a blank is present for the purpose of transformation, and is microstructured partially by micro depressions introduced in molding surface
CN102430628A (en) * 2011-09-30 2012-05-02 大连理工大学 Thermal forming method for multilayer metal composite boards
DE102011055643A1 (en) 2011-11-23 2013-05-23 Thyssenkrupp Steel Europe Ag Method and forming tool for hot forming and press hardening of workpieces made of sheet steel, in particular galvanized workpieces made of sheet steel
JP6075304B2 (en) * 2013-03-28 2017-02-08 株式会社豊田中央研究所 Hot press molding method and hot press molding apparatus
DE102013108044B3 (en) * 2013-07-26 2014-11-20 Voestalpine Metal Forming Gmbh Heat sink with spacer
DE102013015405A1 (en) * 2013-09-17 2014-05-08 Daimler Ag Apparatus, useful for press hardening metal sheet, comprises press-hardening tool having first sheet movable portion and adjoining recess portion, where support body is arranged for supporting sheet in recess during press hardening
DE102014101159B4 (en) * 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2019508252A (en) 2019-03-28
JP6753939B2 (en) 2020-09-09
US20210189513A1 (en) 2021-06-24
EP3414027A1 (en) 2018-12-19
DE102016102324A1 (en) 2017-08-10
WO2017137378A1 (en) 2017-08-17
KR20180113559A (en) 2018-10-16
DE102016102324B4 (en) 2020-09-17
CN109070174B (en) 2021-05-04
CN109070174A (en) 2018-12-21
ES2792080T3 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
EP1651789B1 (en) Method for producing hardened parts from sheet steel
DE102010034161B4 (en) Method for producing workpieces made of lightweight steel with material properties that can be adjusted via the wall thickness
EP1786936B1 (en) Method for press quenching components consisting of sheet steel
DE102005028010B3 (en) Shaping and hardening heated steel workpiece, e.g. sheet, using press with lower mold tool located in liquid bath, minimizing or eliminating holding time for hardening workpiece in closed mold
EP3303642B1 (en) Method for contactlessly cooling steel sheets and device therefor
DE102005014298A1 (en) Armor for a vehicle
EP2855041A1 (en) Method and device for producing shaped sheet metal parts at a low temperature
DE102017110864B3 (en) Method and device for producing hardened sheet steel components with different sheet thicknesses
DE102013108044B3 (en) Heat sink with spacer
DE102015113056B4 (en) Method for the contactless cooling of steel sheets and device therefor
DE102016202766A1 (en) Heat treatment process and heat treatment device
EP3414027B1 (en) Method and device for producing hardened steel components
EP3414028B1 (en) Method and device for producing hardened steel components
DE102008035388B4 (en) Method for producing a motor vehicle armor component
DE102017201674B3 (en) Method for producing a press-hardened component and press mold
EP3414072B1 (en) Method and device for producing hardened steel components
DE102014213196A1 (en) Mold for the production of hot-formed components
EP3212346A1 (en) Molding tool for producing hot-formed components
DE102020200808A1 (en) Method for producing a sheet metal component hardened at least partially from steel and an at least partially hardened sheet metal component made from steel
EP3144077A1 (en) Method for producing a component from a flat steel product
WO2018234165A1 (en) Device and method for shaping a planar sheet metal blank or a preformed three-dimensional formation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1265964

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005144

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2792080

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005144

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210207

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1265964

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017005144

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE