EP3413588B1 - Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device - Google Patents

Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device Download PDF

Info

Publication number
EP3413588B1
EP3413588B1 EP18171328.0A EP18171328A EP3413588B1 EP 3413588 B1 EP3413588 B1 EP 3413588B1 EP 18171328 A EP18171328 A EP 18171328A EP 3413588 B1 EP3413588 B1 EP 3413588B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
receiver
response behavior
hearing aid
hearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18171328.0A
Other languages
German (de)
French (fr)
Other versions
EP3413588A1 (en
Inventor
Bernd Meister
Tom Männel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3413588A1 publication Critical patent/EP3413588A1/en
Application granted granted Critical
Publication of EP3413588B1 publication Critical patent/EP3413588B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/025In the ear hearing aids [ITE] hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/31Aspects of the use of accumulators in hearing aids, e.g. rechargeable batteries or fuel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/41Detection or adaptation of hearing aid parameters or programs to listening situation, e.g. pub, forest
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/03Aspects of the reduction of energy consumption in hearing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting

Definitions

  • the invention relates to a method for characterizing a listener in a hearing aid, the listener being embedded in an environment and having a response behavior which is influenced by the environment.
  • the invention also relates to a hearing aid and a test device for a hearing aid.
  • a hearing aid is used to supply a user who is usually hearing impaired.
  • the hearing aid has a microphone for recording sound signals in the environment and for converting these sound signals into electrical audio signals.
  • These electrical audio signals are processed, usually amplified, by means of a control unit and passed on to a receiver, which converts the processed electrical audio signals back into sound signals and outputs them to the user.
  • the listener uses a magnetic field to convert electricity into motion.
  • the listener is therefore also referred to as an electro-acoustic converter.
  • the receiver sits in or on the user's ear.
  • the receiver sits in a housing of the hearing aid and the sound signals are conducted from the receiver into the ear via a sound tube.
  • the receiver is inserted into the ear, for example by means of an otoplastic, whereas the rest of the hearing device is mainly worn outside the ear.
  • An ITE device is fully inserted into the ear. Examples of ITE devices are ITC and CIC devices, which are worn in the ear canal or completely in the ear canal.
  • JP 2016-100793 describes a test device by means of which it is checked whether a hearing device is switched on.
  • a magnetic hearing aid system with which no acoustic signal is generated.
  • a magneto-acoustic converter is described which represents a magnetic field of the hearing aid system as an acoustic signal.
  • the hearing aid is intended to achieve a specific output characteristic, or simply output, which is matched to the hearing ability of the user.
  • the output characteristic specifies in particular how precisely an incoming sound signal is modified in order to obtain an outgoing sound signal with a certain output power, or power characteristic for short, which is then output to the user. For example, only certain frequency ranges should be amplified, but not other frequency ranges.
  • an audiogram is usually created, with the knowledge of which the hearing aid is then suitably adjusted in a fitting session in order to achieve the desired output and to ensure optimal care.
  • the control unit must therefore be configured in such a way that it modifies the electrical audio signals precisely in such a way that the desired output is achieved.
  • the listener As an additional link between the control unit and the user's ear, brings about a further change which must be taken into account accordingly.
  • the listener represents an additional transfer function.
  • This transfer function defines the response behavior of the listener, i.e. how the listener converts a given audio signal into a sound signal. Further changes and transfer functions along the signal path result in particular from the individual dimensioning of the sound tube, the degree of soiling of an earpiece, e.g. an otoplastic, or the specific design of the earpiece, or a combination thereof.
  • the response behavior is initially logically dependent on the audio signal. Usually, for example, an increase in the amplitude of the audio signal also leads to a louder sound signal. This dependency on the audio signal is primarily used in hearing aids in order to achieve a specific output by shaping the audio signal by means of the control unit.
  • the response behavior of the listener is typically also dependent on the specific installation and / or usage situation of the listener, so that an individual Characterization of the response behavior is desirable. Accordingly, the invention is based on the object of specifying a method for characterizing a listener in a hearing aid as individually as possible. The method should be as simple as possible and as accurate as possible. Furthermore, it is an object to specify a hearing aid and a test device which are suitable for carrying out the method.
  • the method is used to characterize a listener in a hearing aid.
  • the method is used to characterize a listener that is built into a hearing aid.
  • the listener is thus a component of the hearing aid.
  • the characterization also takes place in particular when the handset is installed.
  • the listener is therefore preferably not removed for characterization.
  • the receiver is used to convert electrical audio signals into sound signals and to output these sound signals to a user of the hearing aid.
  • the electrical audio signals are also referred to as audio signals for short.
  • the hearing aid is preferably a hearing aid which is used to supply a user who is particularly hearing-impaired with amplified sound signals.
  • a hearing aid is also referred to as a hearing aid.
  • the hearing aid has a microphone for receiving a sound signal from the environment and for converting this sound signal into an electrical audio signal.
  • the hearing aid has a data connection via which an electrical audio signal is transmitted from an external source to the hearing aid.
  • the external source is, for example, a telephone, a television, a music system or the like.
  • the data connection is e.g. a Bluetooth receiver, to receive signals from a Bluetooth transmitter of the external source.
  • the electrical audio signal is processed by means of a control unit, usually amplified, but at least modified, and passed on to the listener, who converts the processed audio signal back into a sound signal and outputs this to the user.
  • the invention is not restricted to such hearing aid devices. Rather, one variant of the method advantageously serves to characterize a listener in a hearing aid which is generally designed to output sound signals, that is, does not necessarily have a microphone and also does not necessarily serve to supply a hearing impaired user.
  • the listener is also referred to as a loudspeaker.
  • the hearing aid is then generally a hearing system which at least serves to output sound and in which the response behavior of the listener is potentially at risk of being influenced by its environment.
  • the hearing device is a headphone or a smartphone or generally a communication device, in particular a mobile communication device or a so-called "hearable".
  • hearing aids for example, there is also the risk that the receiver will become blocked and the response behavior will change as a result.
  • Such a hearing aid also expediently has a control unit as described above and below.
  • the listener shows a certain response behavior.
  • the response behavior is defined in particular by the ratio of the audio signal, that is to say an input signal from the listener, to the sound signal, that is to say an output signal from the listener. More precisely, the response behavior is defined by the ratio of the powers of the input signal and the output signal.
  • the response behavior indicates the output power of the listener for a given input power.
  • the response behavior is particularly frequency-dependent, ie audio signals of the same strength but different frequencies are converted into sound signals of different strengths under certain circumstances.
  • the listener converts an electrical audio signal, simply referred to as an audio signal or an electrical signal, into a sound signal, i.e. an acoustic signal.
  • a magnetic field is generated in the process. This results in particular from the general mode of operation of the receiver, according to which the electrical signal is used as a drive for a movable component, which then generates pressure fluctuations.
  • the listener is therefore a listener who uses a magnetic field to convert electricity into motion. Since the electrical signal represents an alternating electrical field, i.e. a current that varies over time, a magnetic field is also generated here. The strength of this magnetic field depends on the strength of the change in the current, which in turn depends on the load on the listener.
  • the generated magnetic field is measured by means of a magnetic field sensor.
  • the magnetic field sensor then outputs a measurement signal.
  • the measurement signal is, for example, a voltage that is proportional to the magnetic field, more precisely to the strength of the magnetic field.
  • the measurement signal is a digital measurement signal.
  • the measurement signal is not proportional to the magnetic field and, in particular, is a preprocessed measurement signal.
  • any sensor that is designed to measure a magnetic field and output a corresponding measurement signal is suitable as a magnetic field sensor, for example a Hall sensor or a simple conductor loop.
  • the listener is now characterized in that the response behavior of the listener is determined on the basis of the measured magnetic field.
  • the response behavior of the listener is determined on the basis of the magnetic field, more precisely on the basis of the measurement signal of the magnetic field sensor.
  • the listener is thus characterized by measuring a magnetic field that is generated when the receiver is in operation.
  • the characterization of the listener is not an isolated characterization of the listener as a single component, but rather a comprehensive characterization of the listener in its specific installation and / or usage situation.
  • the response behavior of the listener is influenced by his, in particular, immediate surroundings.
  • the receiver is embedded in an environment in which a number of elements are arranged, which in particular are mechanically connected or coupled to the receiver and thereby influence the operation of the receiver. This also influences the listener's response behavior accordingly.
  • the listener's environment is also referred to as the listener's environment.
  • the elements of the environment are regularly other components of the hearing aid, such as, for example, a sound tube, an otoplastic, a dome or also a housing of the hearing aid.
  • the receiver is in particular part of a component complex in which the receiver is connected to a number of further components of the hearing aid.
  • the elements of the environment do not necessarily have to be parts of the hearing aid, but are alternatively or additionally, for example, the ear canal of the user or cerumen that has accumulated in the vicinity of the listener.
  • Such elements also influence the listener's response behavior. What all elements have in common is that they are coupled to the listener in such a way that those elements influence the listener's response behavior.
  • a listener influenced in this way, who is embedded in a corresponding environment, is also referred to as a listener with coupling. The coupling largely determines the change in response behavior.
  • the characterization of the listener is therefore in particular a characterization of the listener and its coupling, ie the listener who is embedded in a specific environment that influences the listener's response behavior.
  • the method serves to characterize the response behavior of a listener who is embedded in an environment which contains a number of elements which influence the response behavior of the listener. As already mentioned, this does not necessarily result in an isolated characterization of the listener alone, but rather a characterization of the listener in particular as part of the hearing aid, ie in a specific installation situation, or in a specific usage situation, or both.
  • the method serves i.e. for the individual characterization of the listener and for the individual determination of the response behavior of a listener in a specific installation and / or usage situation.
  • the response behavior may not be directly derived from the measurement signal itself.
  • the response behavior is therefore expediently determined by inferring the response behavior from the measurement signal using a suitable model of, in particular, an acoustic coupling of the surroundings to the listener.
  • the model is in particular an electro-magneto-mechano-acoustic model.
  • the model expediently takes into account a principally known environment, i.e. what type of hearing aid it is and how generally the hearing aid and especially the listener are worn.
  • a control unit selects suitable algorithms in order to infer the response behavior based on the measurement signal.
  • the invention is initially based in particular on the observation that, in addition to being dependent on the input signal, the response behavior of a listener is generally also dependent on the specific environment in which the listener is located.
  • the response behavior is initially usually dependent on the installation situation, ie how and where the receiver is mounted in the hearing aid and with which other components the receiver is connected.
  • the type and length of the often individually adapted sound tube determine the response behavior.
  • the response behavior is typically also dependent on the specific use of the hearing aid by a user, in particular on the individual wearing style and the likewise individual degree of coupling between the listener and the user's ear, ie on the specific usage situation.
  • the response behavior is also time-dependent insofar as the environment and the installation and / or usage situation can change over time, for example due to a progressive clogging of the earpiece with cerumen or due to an exchange of the sound tube.
  • the response behavior is therefore dependent of a large number of, in particular, individual factors which may be unknown in the manufacture of the receiver and / or in the design and manufacture of the entire hearing aid or which change over time, or even both.
  • An essential advantage of the invention is that, by measuring the magnetic field, corresponding changes in the response behavior can be recognized particularly precisely in a simple manner.
  • such individual or time-dependent changes are advantageously recognized which are not or cannot be taken into account during the manufacture of the hearing aid or in the context of a fitting session.
  • Such a change is, for example, a progressive clogging with cerumen or an exchange or modification of a sound tube or an otoplastic or a dome of the hearing aid.
  • An essential aspect here is in particular that the listener's response behavior is not, or at least not exclusively, isolated and determined in an ideal state. Rather, the response behavior is advantageously determined in a specific installation or use situation or both.
  • changes that arise due to this installation and / or usage situation compared to a reference situation, e.g. an ideal state are also recorded and preferably also monitored, in particular monitored on a recurring basis.
  • the method is based in particular on the knowledge that the magnetic field generated by the listener also reflects the listener's response behavior, since the response behavior is largely defined by the output power and this power and the magnetic field are each directly dependent on the current that is supplied to the listener.
  • the magnetic field can thus be used profitably to determine precisely that response behavior and is also used accordingly within the scope of the present invention.
  • the response behavior can be determined and the listener can be characterized in that, for example, a test signal with a known strength is used as the audio signal and the strength of the signal generated therefrom Sound signal is measured.
  • a test signal with a known strength is used as the audio signal and the strength of the signal generated therefrom Sound signal is measured.
  • This is done, for example, by means of an impedance measurement, which ultimately measures the current through the earpiece and is therefore a measure of the output power, that is to say of the strength of the sound signal.
  • the relationship is given here by a specific model, the knowledge of which enables a conclusion on the basis of the impedance measurement.
  • the frequency-dependent response behavior is then carried out accordingly with several test signals of different frequencies. Other measurement methods and test procedures are also possible.
  • a so-called vibration measurement is also possible.
  • a magnetic field measurement now has the particular advantage that it is significantly more accurate compared to an impedance or vibration measurement.
  • the magnetic field itself is disturbed to a particularly small extent by the environment, whereas an impedance or vibration measurement due to additional electrical or mechanical connections to other parts or components may be very flawed.
  • a measurement signal with a particularly large amplitude is also generated, which means that even the smallest changes are reliably detected and the response behavior can accordingly be determined with a particularly high degree of accuracy.
  • the environment is determined by an installation situation of the earphone and the environment has an element which is a component of the hearing aid.
  • the component is connected to the receiver and, in particular, mechanically coupled to the receiver and influences its response behavior. By determining the response behavior, the influence of the installation situation on the response behavior is then automatically taken into account.
  • the element more precisely the component, is preferably selected from a set of elements, including but not limited to: a sound tube, an otoplastic, a dome, a housing of the hearing aid.
  • the environment is preferably determined by a usage situation of the listener.
  • the usage situation is selected from a set of situations, including but not limited to: a way of wearing the hearing aid, a degree of coupling between the receiver and an ear of the user, a degree of clogging, in particular of the receiver, by cerumen.
  • the surroundings also contain a number of elements in the usage situation, which in particular are mechanically coupled to the receiver and thereby influence the response behavior.
  • these elements are precisely no components of the hearing aid, but rather external elements, in particular the user's auditory canal, his ear or cerumen.
  • the knowledge of the response behavior advantageously enables a reaction to a change in the same.
  • the response behavior is expediently determined and compared as an actual response behavior with a target response behavior.
  • a difference is then determined between the actual response behavior and the target response behavior and the hearing aid is adjusted as a function of the difference.
  • “Set” is understood in particular to mean that the hearing aid is controlled in such a way that the response behavior of the listener is changed in order to reduce the difference and preferably to eliminate it completely.
  • the response behavior is preferably adapted to the target response behavior, particularly preferably in such a way that the response behavior corresponds to the target response behavior.
  • the hearing aid is adjusted by modifying the audio signal by means of the control unit in such a way that the difference is at least partially, preferably completely, compensated. In this way, in particular, an adjustment of the response behavior to the target response behavior is achieved.
  • the knowledge of the response behavior is used to output a warning signal.
  • the response behavior is also expediently determined and compared as an actual response behavior with a target response behavior. Between the actual response behavior and the target response behavior a difference is determined and a warning signal is output as a function of the difference. In other words: if there is a difference or if there is a difference which is greater than a predefined threshold value, a warning signal is output.
  • the warning signal is output, for example, acoustically via the receiver, optically, by means of an LED or transmitted to a remote control or base station for the hearing aid, in particular for output or storage there.
  • the embodiment with the warning signal is particularly expedient in order to indicate the same blockage in the case of a certain degree of blockage of the earpiece with cerumen and thereby advantageously to induce the user to clean it.
  • the configuration with warning notice is used alternatively or additionally to recognize whether a certain sound tube has been mounted on the hearing aid and, if another sound tube has been mounted, to indicate that the wrong sound tube has been mounted or that an adjustment of the response behavior is necessary.
  • a defect is, in particular, a distortion in the output of a sound signal due to a mechanical defect such as an impact or a fall. Such distortion is also known as total harmonic distortion, or THD for short.
  • the defect is a failure or breakage of an electrical line.
  • the defect is a wedging of several, in particular internal, components, i.e. components of the receiver.
  • the target response behavior is expediently determined by means of a calibration measurement.
  • the calibration measurement is preferably carried out in a state in which there is an ideal response behavior, for example as part of a first initialization during production, in particular since the acoustic coupling of the listener is known at this point in time and a number of model parameters of the listener are extracted and preferably also stored .
  • the model parameters indicate the coupling in particular.
  • the calibration measurement is carried out as part of a fitting session or directly after or after cleaning the hearing aid or immediately after a new sound tube or a new earmold has been fitted.
  • the calibration measurement takes place at or at the end of the production of the hearing aid and before it is delivered to the user. This is based in particular on the consideration of using a delivery state of the hearing aid as a basis for comparison for later changes in the response behavior. This is advantageous, for example, in order to detect damage or a malfunction of the handset.
  • target response behaviors are determined, for example for different environments in which the hearing aid is worn, for different users of the hearing aid, for different operating modes of the hearing aid, for different sound tubes or for different otoplastics or for a combination thereof.
  • a suitable target response behavior is then selected, with which the measured response behavior is compared.
  • the nominal response behavior is determined in the calibration measurement in the same way as the response behavior in general, i.e. in the present case by measuring the magnetic field. An initial magnetic field measurement is therefore carried out.
  • the response behavior i.e. the transfer function of the listener
  • the response behavior is parameterized by means of an adaptive filter by measuring the magnetic field and, depending on this, generating a measurement signal which is fed to the filter as a filter input signal.
  • the measurement signal is generated by the magnetic field sensor and is, for example, a voltage.
  • the filter is a Wiener filter.
  • the filter has a filter function which is parameterized by a number of filter parameters. The measurement signal is now fed to the filter as a filter input signal, whereupon the filter automatically adapts the filter function to the filter input signal in order to map it.
  • the filter parameters are changed accordingly.
  • the filter works independently and does not require a separate external setting, so it automatically adjusts and changes the filter parameters.
  • the filter parameters therefore change with a change in the magnetic field, i.e. also with a change in the response behavior, so that the response behavior is advantageously parameterized by means of the filter parameters and is thereby also determined.
  • the filter parameters are used to determine the response behavior.
  • the use of an adaptive filter has the particular advantage that such a filter adapts particularly quickly to changes and therefore changes in the response behavior are recognized and determined particularly quickly. Adapting the response behavior is not necessarily a task of the filter, i.e. the filter does not necessarily set the response behavior, but rather the filter primarily and in particular exclusively serves to parameterize the response behavior by the filter following it.
  • the magnetic field falls as the distance from the hearing aid increases. Therefore, the magnetic field is expediently measured as close as possible to or in the hearing aid, i.e. the magnetic field sensor is arranged as close as possible to or in the hearing aid.
  • the magnetic field can be measured particularly well around the hearing aid within a distance which is in the order of magnitude of one dimension of the hearing aid.
  • Conventional hearing aids have dimensions of approximately 0.5 to 5 cm, and accordingly the magnetic field can be measured particularly effectively at a distance of up to a few centimeters and is therefore preferably also measured in this area.
  • the magnetic field sensor is arranged directly on the receiver, i.e. in particular at a distance of at most 3 cm, preferably at most 5 mm from the receiver, particularly preferably directly on or even in the receiver.
  • the magnetic field is therefore measured directly on the listener and therefore where the magnetic field is particularly strong, so that the measurement is correspondingly accurate.
  • the hearing aid has a power supply, in particular a battery, which is connected to the by means of a power supply line Handset is connected to supply power to the handset, and the magnetic field sensor is arranged directly on the power supply line, ie in particular at a distance of at most 3cm, preferably at most 5mm from the power supply line, particularly preferably directly on or even in the power supply line.
  • the aforementioned values are particularly suitable for a hearing aid which is designed as a hearing aid for a hearing-impaired user. In the case of other hearing aids, larger values are also suitable, in particular when the energy supply is stronger, ie provides more power, than in a hearing aid. The magnetic field is thus measured directly on the power supply line.
  • This refinement is based in particular on the knowledge that the listener generates a changing load during operation and thus draws a current that varies over time from the power supply, which in turn generates a magnetic field.
  • the handset therefore generates a magnetic field not only in its immediate vicinity, but also along the power supply line, which extends from the power supply to the handset, and at the same power supply.
  • the magnetic field is therefore advantageously measured on the power supply line or on the power supply itself.
  • a magnetic field measurement in the vicinity of the power supply line or the power supply is advantageous in that these are usually arranged outside the user's ear.
  • the installation space around the receiver is naturally severely restricted, so that an additional magnetic field sensor on the receiver may not be possible under certain circumstances.
  • the magnetic field is then measured at another point and outside the ear, preferably, as described, in the vicinity of the power supply line or the power supply. Due to further components of the hearing aid which are connected to the power supply, a measurement on the power supply itself may be too imprecise, which is why a magnetic field measurement on the power supply line is preferred.
  • the energy supply line is used in particular to supply the earpiece alone, that is to say no further components or consumers are connected to the energy supply by means of the energy supply line. This ensures that the measured Magnetic field is mainly and in particular caused solely by the operation of the handset.
  • the magnetic field sensor is integrated into the hearing aid, that is to say a component of the hearing aid.
  • the hearing aid then has a receiver for converting an electrical audio signal into a sound signal while generating a magnetic field, and a magnetic field sensor, and additionally a control unit which is designed such that the magnetic field is measured by means of the magnetic field sensor, the receiver is characterized, by determining the listener's response behavior on the basis of the measured magnetic field.
  • the hearing aid in particular automatically determines the response behavior of the listener, preferably continuously, alternatively, for example, only in a test mode.
  • the hearing aid also expediently adjusts itself automatically as a function of the response behavior, in particular in order to set a specific target response behavior, as already described above.
  • the user is advantageously informed about the measurement or about how the hearing aid is adjusting, or both.
  • the user is informed, for example, by means of a warning signal as already described above.
  • the method is preferably carried out in a normal operating mode of the hearing aid, ie in particular not during a fitting session or during the manufacture of the hearing aid. Rather, the characterization takes place in normal operation while the hearing aid is being worn or used by the user.
  • a normal operating mode an electrical audio signal is modified by means of a control unit and then output as a sound signal by means of the earpiece.
  • the electrical audio signal itself is generated in particular by means of a microphone which converts a sound signal from the environment into the audio signal.
  • the audio signal is supplied from an external source.
  • An external source is, for example, a streaming signal from, for example, a wireless system, ie a wireless system.
  • the hearing aid has a telephone coil and this is the magnetic field sensor, ie the telephone coil is used as a magnetic field sensor.
  • the hearing aid has a telephone coil which is placed or arranged in such a way that it can and is also used as a magnetic field sensor.
  • precise positioning of the telephone coil is important in order to measure the magnetic field as effectively as possible.
  • the telecoil is also known as a telecoil or T-coil. This is based on the consideration that the telephone coil is naturally already designed for measuring magnetic fields and can therefore also be used profitably for the measurement of the magnetic field, which is generated by the listener, as described here. This significantly reduces the design effort, because a telephone coil is already installed as standard in many hearing aids.
  • a magnetic field sensor as an additional component is advantageously dispensed with, rather the existing hardware is used, namely the telephone coil.
  • the telephone coil is a coil, for example a conductor loop, which receives signals by induction.
  • a transmitter for example a telephone with an electrodynamically operating transducer or an inductive hearing system, sends out an alternating magnetic field which is received by the telephone coil and which is then converted, in particular, into an audio signal.
  • this is also advantageously interference-free, since interfering noises are usually not transmitted. “Free of disturbances” is understood in particular to mean “largely free of disturbances”.
  • Interference-free is also understood to mean that the telephone coil is interference-free in those frequency ranges that are relevant for the magnetic field measurement, whereas, for example, the mains voltage at 50 Hz and its harmonics may be detected by the telephone coil.
  • the telephone coil is also, in particular, already arranged in suitable proximity to the listener.
  • the concept of magnetic field measurement is advantageously not limited to a hearing aid with an integrated magnetic field sensor.
  • the magnetic field sensor is part of a test arrangement for a hearing aid.
  • the test arrangement has a control unit and a test device which has a magnetic field sensor.
  • the test arrangement is designed for testing a hearing aid, more precisely for characterizing a listener of the hearing aid.
  • the hearing aid accordingly has a receiver for converting an electrical audio signal into a sound signal while generating a magnetic field.
  • the control unit is designed in such a way that the magnetic field is measured by means of the magnetic field sensor, the listener is characterized in that the response behavior of the listener is determined on the basis of the measured magnetic field.
  • the magnetic field sensor is thus arranged outside the hearing aid, namely in or on the test device which, together with the control unit, forms the test arrangement.
  • the magnetic field sensor and the control unit are each part of a test device, i.e. the test device is identical to the test arrangement.
  • the magnetic field sensor and the control unit are arranged separately from one another. The magnetic field sensor is then part of a test device, but the control unit is not.
  • the control unit is, for example, a control unit of the hearing aid or a control unit of an additional external device.
  • the measurement itself does not fundamentally differ from the measurement with a magnetic field sensor in the hearing aid.
  • the hearing aid is brought into the vicinity of the test arrangement, more precisely the test device, and a magnetic field measurement is then started.
  • Such a test arrangement is particularly suitable for use by an audiologist, e.g. as part of a fitting session.
  • test device which is identical to the test arrangement are a charging station or a base station for the hearing aid or a remote control. It is particularly advantageous to use a smartphone as a test device, which is expediently equipped with appropriate software in order to carry out the magnetic field measurement and the determination of the response behavior.
  • test device is an audio shoe, which is connected to the hearing aid in particular as an additional sensor.
  • the audio shoe can be placed on the hearing aid, more precisely on its housing, and is worn by the user together with the hearing aid.
  • the test device is designed as an adapter.
  • the test device is designed as an independent module and has a wireless system, i.e. a wireless system, in order to communicate with the hearing aid.
  • test device is a telephone coil shoe, which can be placed on the hearing aid as an adapter, and in which the magnetic field sensor is a telephone coil - in particular as described above - which is arranged in the telephone coil shoe.
  • control unit is preferably arranged outside the telephone coil shoe, that is to say not a part of it.
  • the control unit is preferably a control unit of the hearing aid.
  • the telephone coil shoe is designed in particular, similar to the audio shoe described above, as an adapter which retrofits the hearing aid with a telephone coil.
  • the telephone coil shoe is worn by the user in particular during normal operation of the hearing aid.
  • a hearing aid 2 is shown, which is used to supply a hearing-impaired user.
  • the hearing aid 2 has a number of here two microphones 4, by means of which sound signals from the environment are picked up and converted into electrical audio signals A.
  • the audio signals A are forwarded to a control unit 6, where they are modified, usually amplified, in accordance with the needs of the user.
  • the modified audio signals A are passed on by the control unit 6 to a receiver 8, which converts the audio signals A back into sound signals S and outputs them.
  • the hearing aid 2 is a BTE hearing aid, with a housing 10, which is worn by the user behind the ear, and with a sound tube 12, via which the sound signals S are conducted from the listener 8 to the ear.
  • the hearing aid 2 is a RIC hearing aid in which the housing 10 is also worn behind the ear, but the receiver 8 is inserted into the ear and the sound tube 12 is then replaced by a cable.
  • the hearing aid 2 is an ITE hearing aid which is inserted completely into the ear. Further alternative configurations for the hearing aid 2 are also suitable.
  • a magnetic field M is generated, which in Fig. 1 is only sketchily drawn in for the purpose of visualization.
  • the magnetic field M results from the general mode of operation of the earpiece 8, during the operation of which a time-varying electrical alternating field results, which corresponds to a time-varying current, which in turn generates the magnetic field M.
  • the generated magnetic field M is measured by means of a magnetic field sensor 14. This then outputs a measurement signal U, U ′, for example a voltage that is proportional to the magnetic field M.
  • the measurement signal U, U ′ is evaluated by the control unit 6, for example.
  • the magnetic field M is measured in the vicinity of the earpiece 8. However, this is not mandatory. Since each alternating electrical field naturally also generates a magnetic field M, a corresponding magnetic field M is also generated along an energy supply line 16 and in the vicinity of an energy supply 18. For an explicit representation of this effect in Fig. 1 was omitted for the sake of clarity.
  • the power supply 18 is in Fig. 1 a battery. This is connected to the receiver 8 via the power supply line 16 in order to supply the receiver 8 with energy.
  • the magnetic field sensor 14 is then arranged in an alternative not shown in the vicinity of the power supply line 16.
  • the magnetic field sensor 14 is in Fig. 1 for example a Hall sensor or a simple conductor loop.
  • a telephone coil which is integrated in the hearing aid 2 is used as the magnetic field sensor 14.
  • Fig. 1 the magnetic field sensor 14 is integrated into the hearing aid 2.
  • Fig. 2 a variant in which the magnetic field sensor 14 is arranged outside the hearing aid 2, namely in a test device 20, which here is a charging station or a base station for the hearing aid 2 and at the same time forms a test arrangement for the hearing aid 2.
  • the test device 20 has a control unit 6 to which the magnetic field sensor 14 is connected.
  • the measurement itself does not fundamentally differ from the measurement with a magnetic field sensor 14 in the hearing aid 2.
  • the hearing aid 2 is brought into the vicinity of the test device 20, for example as in FIG Fig. 2 is inserted, a sound signal S is output via the receiver 8 and a magnetic field measurement is then started.
  • the characterization of the listener 8 is based on the knowledge that the magnetic field M generated by the listener 8 also reflects the response behavior V, V 'of the listener 8.
  • the response behavior V, V ' is largely defined by the output power and this power and the magnetic field M are each directly dependent on the current which is supplied to the earpiece 8.
  • the response behavior V, V ' is also dependent on the specific environment in which the earphone 8 is located, especially the installation situation, ie how and where the earphone 8 is mounted in the hearing aid 2 and with what other components the handset 8 is connected.
  • the type and length of the sound tube 12 determine the response behavior V, V '.
  • the response behavior V, V ' is also dependent on the specific use of the hearing device 2 by a user, in particular on the individual wearing method and the likewise individual degree of coupling between the earpiece 2 and the user's ear.
  • the response behavior V, V ' is also time-dependent insofar as the environment and the installation situation can change over time, for example due to a progressive clogging of the earpiece 8 or the sound tube 12 with cerumen or an exchange of the sound tube 12 or by others Effects.
  • the respective response behavior V, V ' is defined by the ratio of the powers of the audio signal A and the resulting sound signal S.
  • the response behavior V, V' accordingly indicates the output power of the listener 8 for a given input power.
  • the response behavior V, V ' is frequency-dependent, ie audio signals A of the same strength but different frequencies are converted into sound signals S of different strengths under certain circumstances.
  • the respective response behavior V, V ' was determined by converting audio signals A with the same power but different frequencies by means of the receiver 8 and plotting the power of the resulting sound signal S on the Y-axis against the frequency on the X-axis.
  • the two graphs have been generated for sound tubes 12 of different lengths.
  • the length of the sound tube 12 has the response behavior V, V ' changes.
  • this can be seen particularly on the basis of the local maxima.
  • the response behavior V ' is changed compared to the response behavior V, and some of the local maxima are clearly shifted towards higher frequencies. If, for example, the response V leads to a specific and desired output characteristic of the hearing aid 2 as a whole, it becomes clear that the changed response V ′ must lead to a correspondingly modified output characteristic given the same control of the earpiece 8 by the control unit 6.
  • the desired response behavior V is therefore set as the target response behavior at the beginning, for example in a fitting session, and then compared with the then present and possibly deviating response behavior V 'during normal operation of the hearing aid or in a further fitting session. With knowledge of the two response behaviors V, V ', their difference is then determined and the control of the receiver 8 is changed in such a way that the resulting response behavior V corresponds to the target response behavior. A change is brought about, for example, by additionally modifying the audio signals A by means of the control unit 6.
  • Fig. 4 is a simulation of the measurement signal U, U 'for the respective magnetic field M of the two responses V, V' from Fig. 3 .
  • the hearing aid 2 has a telephone coil which is used as a magnetic field sensor 14, and Fig. 4 shows the measurement signals U, U ′ which are generated by the magnetic field sensor 14.
  • the differences between the two measurement signals U, U 'and their correlation to the response behavior V, V' can be clearly seen.
  • the measurement signals U, U 'each represent the first derivative of the respective response behavior V, V'.
  • Fig. 5 a simulation of impedance measurements I, I 'for the two responses V, V' Fig. 3 shown. It can be clearly seen that the signal strength, which is plotted on the Y-axis in each case, in Fig. 4 is significantly larger. The dynamics of the measurement signals U, U 'is accordingly significantly greater than the dynamics of the impedance measurements I, I'. The magnetic field measurement therefore leads to a significantly more precise result, even the smallest changes can still be measured reliably.
  • the response behavior V, V ′ is parameterized by means of an adaptive filter, which is a component of the control unit 6, for example.
  • the magnetic field M is measured and, as a function of this, a measurement signal U, U 'is generated, which is fed to the filter as a filter input signal.
  • the filter has a filter function which is parameterized by a number of filter parameters.
  • the measurement signal U, U ' is now fed to the filter as a filter input signal, whereupon the filter automatically adapts the filter function to the filter input signal in order to map it.
  • the filter parameters are changed accordingly.
  • the filter automatically adjusts and changes the filter parameters.
  • the filter parameters therefore change with a change in the magnetic field M, ie also with a change in the response behavior V, V ', so that the response behavior V, V' is advantageously parameterized by means of the filter parameters and is thereby also determined.
  • the filter parameters are used to determine the response behavior V, V'.

Description

Die Erfindung betrifft ein Verfahren zur Charakterisierung eines Hörers in einem Hörgerät, wobei der Hörer in eine Umgebung eingebettet ist und ein Antwortverhalten aufweist, welches durch die Umgebung beeinflusst wird. Weiterhin betrifft die Erfindung ein Hörgerät sowie eine Testvorrichtung für ein Hörgerät.The invention relates to a method for characterizing a listener in a hearing aid, the listener being embedded in an environment and having a response behavior which is influenced by the environment. The invention also relates to a hearing aid and a test device for a hearing aid.

Ein Hörgerät dient der Versorgung eines üblicherweise hörgeschädigten Anwenders. Das Hörgerät weist hierzu ein Mikrofon auf, zur Aufnahme von Schallsignalen in der Umgebung und zur Umwandlung dieser Schallsignale in elektrische Audiosignale. Diese elektrischen Audiosignale werden mittels einer Steuereinheit aufbereitet, üblicherweise verstärkt, und an einen Hörer weitergeleitet, welcher die aufbereiteten elektrischen Audiosignale in Schallsignale zurückwandelt und diese an den Anwender ausgibt. Der Hörer nutzt demnach ein Magnetfeld zur Wandlung von Strom in Bewegung. Der Hörer wird daher auch als elektro-akustischer Wandler bezeichnet. Je nach Bautyp des Hörgeräts sitzt der Hörer im oder am Ohr des Anwenders. Bei einem BTE-Gerät, welches hinter dem Ohr getragen wird, sitzt der Hörer in einem Gehäuse des Hörgeräts und die Schallsignale werden über einen Schallschlauch vom Hörer in das Ohr geleitet. Bei einem RIC-Gerät dagegen wird der Hörer in das Ohr eingesetzt, beispielsweise mittels einer Otoplastik, wohingegen das restliche Hörgerät überwiegend außerhalb des Ohrs getragen wird. Ein ITE-Gerät wird vollständig in das Ohr eingesetzt. Beispiele für ITE-Geräte sind ITC- und CIC-Geräte, welche im Gehörgang bzw. vollständig im Gehörgang getragen werden.A hearing aid is used to supply a user who is usually hearing impaired. For this purpose, the hearing aid has a microphone for recording sound signals in the environment and for converting these sound signals into electrical audio signals. These electrical audio signals are processed, usually amplified, by means of a control unit and passed on to a receiver, which converts the processed electrical audio signals back into sound signals and outputs them to the user. The listener uses a magnetic field to convert electricity into motion. The listener is therefore also referred to as an electro-acoustic converter. Depending on the type of hearing aid, the receiver sits in or on the user's ear. In the case of a BTE device that is worn behind the ear, the receiver sits in a housing of the hearing aid and the sound signals are conducted from the receiver into the ear via a sound tube. In the case of a RIC device, on the other hand, the receiver is inserted into the ear, for example by means of an otoplastic, whereas the rest of the hearing device is mainly worn outside the ear. An ITE device is fully inserted into the ear. Examples of ITE devices are ITC and CIC devices, which are worn in the ear canal or completely in the ear canal.

In der US 2003/0163021 A1 ist ein implantiertes Hörgerät beschrieben, mit einem elektro-mechanischen Aktuator, welcher an die Gehörknochen angekoppelt ist. Mittels eines externen Testgeräts wird ein Magnetfeld des Aktuators gemessen und anhand des Magnetfeld dann die Ankopplung des Aktuators an die Gehörknochen überprüftIn the US 2003/0163021 A1 describes an implanted hearing aid with an electro-mechanical actuator which is coupled to the auditory bones. A magnetic field of the actuator is measured by means of an external test device and the coupling of the actuator to the auditory bones is then checked on the basis of the magnetic field

In der JP 2016-100793 ist ein Testgerät beschrieben, mittels welchem geprüft wird, ob ein Hörgerät eingeschaltet ist.In the JP 2016-100793 describes a test device by means of which it is checked whether a hearing device is switched on.

In der WO 97/19573 ist ein magnetisches Hörhilfesystem genannt, bei welchem kein akustisches Signal erzeugt wird. Um solche Hörhilfesysteme mit herkömmlichen Testsystemen zu verwenden, wird ein magneto-akustischer Konverter beschrieben, welcher ein Magnetfeld des Hörhilfesystems als ein akustisches Signal repräsentiert.In the WO 97/19573 is called a magnetic hearing aid system with which no acoustic signal is generated. In order to use such hearing aid systems with conventional test systems, a magneto-acoustic converter is described which represents a magnetic field of the hearing aid system as an acoustic signal.

Im Rahmen der Aufbereitung der elektrischen Audiosignale soll mit dem Hörgerät eine bestimmte Ausgabecharakteristik, kurz einfach Ausgabe, erzielt werden, welche auf das Hörvermögen des Anwenders abgestimmt ist. Die Ausgabecharakteristik gibt dabei insbesondere an, wie genau ein eingehendes Schallsignal modifiziert wird, um ein ausgehendes Schallsignal mit einer bestimmten Ausgangsleistung, kurz Leistung, oder Leistungscharakteristik zu erhalten, welches dann an den Anwender ausgegeben wird. Beispielsweise sollen lediglich bestimmte Frequenzbereiche verstärkt werden, andere Frequenzbereiche dagegen nicht. Hierzu wird üblicherweise ein Audiogramm erstellt, in Kenntnis dessen das Hörgerät in einer Fitting Session dann geeignet eingestellt wird, um die gewünschte Ausgabe zu erzielen und eine optimale Versorgung zu gewährleisten. Die Steuereinheit muss also derart konfiguriert werden, dass diese die elektrischen Audiosignale genau so modifiziert, dass die gewollte Ausgabe erzielt wird. Problematisch ist dabei, dass der Hörer als ein zusätzliches Glied zwischen der Steuereinheit und dem Ohr des Anwenders eine weitere Veränderung bewirkt, welche entsprechend berücksichtig werden muss. Entlang des Signalpfads von der Umgebung, zum Mikrofon, zur Steuereinheit, zum Hörer und schließlich zum Ohr des Anwenders, stellt der Hörer eine zusätzliche Übertragungsfunktion dar. Diese Übertragungsfunktion definiert das Antwortverhalten des Hörers, d.h. wie der Hörer ein gegebenes Audiosignal in ein Schallsignal umwandelt. Weitere Änderungen und Übertragungsfunktionen entlang des Signalpfads ergeben sich insbesondere aus der individuellen Dimensionierung des Schallschlauchs, einem Verschmutzungsgrad eines Ohrstücks, z.B. einer Otoplastik oder der konkreten Ausgestaltung des Ohrstücks oder einer Kombination hieraus.As part of the processing of the electrical audio signals, the hearing aid is intended to achieve a specific output characteristic, or simply output, which is matched to the hearing ability of the user. The output characteristic specifies in particular how precisely an incoming sound signal is modified in order to obtain an outgoing sound signal with a certain output power, or power characteristic for short, which is then output to the user. For example, only certain frequency ranges should be amplified, but not other frequency ranges. For this purpose, an audiogram is usually created, with the knowledge of which the hearing aid is then suitably adjusted in a fitting session in order to achieve the desired output and to ensure optimal care. The control unit must therefore be configured in such a way that it modifies the electrical audio signals precisely in such a way that the desired output is achieved. The problem here is that the listener, as an additional link between the control unit and the user's ear, brings about a further change which must be taken into account accordingly. Along the signal path from the environment, to the microphone, to the control unit, to the listener and finally to the user's ear, the listener represents an additional transfer function. This transfer function defines the response behavior of the listener, i.e. how the listener converts a given audio signal into a sound signal. Further changes and transfer functions along the signal path result in particular from the individual dimensioning of the sound tube, the degree of soiling of an earpiece, e.g. an otoplastic, or the specific design of the earpiece, or a combination thereof.

Das Antwortverhalten ist zunächst logischerweise vom Audiosignal abhängig. Üblicherweise führt z.B. eine Erhöhung der Amplitude des Audiosignals auch zu einem lauteren Schallsignal. Diese Abhängigkeit vom Audiosignal wird in Hörgeräten primär genutzt, um durch Formung des Audiosignals mittels der Steuereinheit eine bestimmte Ausgabe zu erzielen.The response behavior is initially logically dependent on the audio signal. Usually, for example, an increase in the amplitude of the audio signal also leads to a louder sound signal. This dependency on the audio signal is primarily used in hearing aids in order to achieve a specific output by shaping the audio signal by means of the control unit.

Das Antwortverhalten des Hörers ist aber typischerweise auch abhängig von der konkreten Einbau- und/oder Nutzungssituation des Hörers, sodass eine individuelle Charakterisierung des Antwortverhaltens wünschenswert ist. Daher liegt der Erfindung entsprechend die Aufgabe zugrunde, ein Verfahren zur möglichst individuellen Charakterisierung eines Hörers in einem Hörgerät anzugeben. Das Verfahren soll möglichst einfach und möglichst genau sein. Weiterhin ist es eine Aufgabe, ein Hörgerät und eine Testvorrichtung anzugeben, welche zur Durchführung des Verfahrens geeignet sind.The response behavior of the listener is typically also dependent on the specific installation and / or usage situation of the listener, so that an individual Characterization of the response behavior is desirable. Accordingly, the invention is based on the object of specifying a method for characterizing a listener in a hearing aid as individually as possible. The method should be as simple as possible and as accurate as possible. Furthermore, it is an object to specify a hearing aid and a test device which are suitable for carrying out the method.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen gemäß Anspruch 1, durch ein Hörgerät mit den Merkmalen gemäß Anspruch 11 sowie durch eine Testvorrichtung mit den Merkmalen gemäß Anspruch 12. Vorteilhafte Ausgestaltungen, Weiterbildungen und Varianten sind Gegenstand der Unteransprüche. Dabei gelten die Ausführungen im Zusammenhang mit dem Verfahren sinngemäß auch für das Hörgerät sowie die Testvorrichtung und umgekehrt.The object is achieved according to the invention by a method with the features according to claim 1, by a hearing aid with the features according to claim 11 and by a test device with the features according to claim 12. Advantageous configurations, developments and variants are the subject of the dependent claims. The statements in connection with the method also apply accordingly to the hearing aid and the test device and vice versa.

Das Verfahren dient zur Charakterisierung eines Hörers in einem Hörgerät. Mit anderen Worten: das Verfahren dient zur Charakterisierung eines Hörers, welcher in einem Hörgerät verbaut ist. Der Hörer ist somit ein Bestanteil des Hörgeräts. Die Charakterisierung erfolgt insbesondere auch in eingebautem Zustand des Hörers. Der Hörer wird also zur Charakterisierung vorzugsweise nicht entnommen. Der Hörer dient zur Umwandlung von elektrischen Audiosignalen in Schallsignale und zur Ausgabe dieser Schallsignale an einen Anwender des Hörgeräts. Die elektrischen Audiosignale werden kurz auch als Audiosignale bezeichnet.The method is used to characterize a listener in a hearing aid. In other words: the method is used to characterize a listener that is built into a hearing aid. The listener is thus a component of the hearing aid. The characterization also takes place in particular when the handset is installed. The listener is therefore preferably not removed for characterization. The receiver is used to convert electrical audio signals into sound signals and to output these sound signals to a user of the hearing aid. The electrical audio signals are also referred to as audio signals for short.

Das Hörgerät ist vorzugsweise ein Hörgerät, welches zur Versorgung eines insbesondere hörgeschädigten Anwenders mit verstärkten Schallsignalen dient. Ein solches Hörgerät wird auch als Hörhilfegerät bezeichnet. Hierzu weist das Hörgerät ein Mikrofon auf, zur Aufnahme eines Schallsignals aus der Umgebung und zur Umwandlung dieses Schallsignals in ein elektrisches Audiosignal. Alternativ, vorzugsweise zusätzlich weist das Hörgerät eine Datenverbindung auf, über welche ein elektrisches Audiosignal von einer externen Quelle an das Hörgerät übermittelt wird. Die externe Quelle ist z.B. ein Telefon, ein Fernseher, eine Musikanlage oder dergleichen. Die Datenverbindung ist z.B. ein Bluetooth-Empfänger, zum Empfang von Signalen eines Bluetooth-Senders der externen Quelle. Das elektrische Audiosignal wird mittels einer Steuereinheit aufbereitet, üblicherweise verstärkt, jedoch zumindest modifiziert, und an den Hörer weitergeleitet, welcher das aufbereitete Audiosignal in ein Schallsignal zurückwandelt und dieses an den Anwender ausgibt.The hearing aid is preferably a hearing aid which is used to supply a user who is particularly hearing-impaired with amplified sound signals. Such a hearing aid is also referred to as a hearing aid. For this purpose, the hearing aid has a microphone for receiving a sound signal from the environment and for converting this sound signal into an electrical audio signal. Alternatively, preferably in addition, the hearing aid has a data connection via which an electrical audio signal is transmitted from an external source to the hearing aid. The external source is, for example, a telephone, a television, a music system or the like. The data connection is e.g. a Bluetooth receiver, to receive signals from a Bluetooth transmitter of the external source. The electrical audio signal is processed by means of a control unit, usually amplified, but at least modified, and passed on to the listener, who converts the processed audio signal back into a sound signal and outputs this to the user.

Die Erfindung ist jedoch grundsätzlich nicht auf solche Hörhilfegeräte beschränkt. Vielmehr dient das Verfahren in einer Variante vorteilhafterweise zur Charakterisierung eines Hörers in einem Hörgerät, welches allgemein zur Ausgabe von Schallsignalen ausgebildet ist, also nicht notwendig ein Mikrofon aufweist und auch nicht notwendig zur Versorgung eines hörgeschädigten Anwenders dient. In diesem Zusammenhang wird der Hörer auch als Lautsprecher bezeichnet. Das Hörgerät ist dann allgemein ein Hörsystem, welches zumindest der Schallausgabe dient und bei welchem das Antwortverhalten des Hörers potentiell gefährdet ist, durch seine Umgebung beeinflusst zu werden. Beispielsweise ist das Hörgerät ein Kopfhörer oder ein Smartphone oder allgemein ein Kommunikationsgerät, insbesondere ein mobiles Kommunikationsgerät oder ein sogenanntes "hearable". Auch bei solchen Hörgeräten besteht beispielsweise die Gefahr, dass der Hörer verstopft und sich dadurch das Antwortverhalten ändert. Auch ein solches Hörgerät weist zweckmäßigerweise eine Steuereinheit wie oben und nachfolgend beschrieben auf.In principle, however, the invention is not restricted to such hearing aid devices. Rather, one variant of the method advantageously serves to characterize a listener in a hearing aid which is generally designed to output sound signals, that is, does not necessarily have a microphone and also does not necessarily serve to supply a hearing impaired user. In this context, the listener is also referred to as a loudspeaker. The hearing aid is then generally a hearing system which at least serves to output sound and in which the response behavior of the listener is potentially at risk of being influenced by its environment. For example, the hearing device is a headphone or a smartphone or generally a communication device, in particular a mobile communication device or a so-called "hearable". With such hearing aids, for example, there is also the risk that the receiver will become blocked and the response behavior will change as a result. Such a hearing aid also expediently has a control unit as described above and below.

Der Hörer weist ein bestimmtes Antwortverhalten auf. Das Antwortverhalten ist insbesondere definiert durch das Verhältnis des Audiosignals, also eines Eingangssignals des Hörers, zu dem Schallsignal, also einem Ausgangssignal des Hörers. Genauer gesagt ist das Antwortverhalten definiert durch das Verhältnis der Leistungen des Eingangssignals und des Ausgangssignals. Das Antwortverhalten gibt demnach an, welche Ausgangsleistung der Hörer für eine gegebene Eingangsleistung aufweist. Das Antwortverhalten ist insbesondere frequenzabhängig, d.h. Audiosignale gleicher Stärke aber unterschiedlicher Frequenz werden unter Umständen in unterschiedlich starke Schallsignale umgewandelt.The listener shows a certain response behavior. The response behavior is defined in particular by the ratio of the audio signal, that is to say an input signal from the listener, to the sound signal, that is to say an output signal from the listener. More precisely, the response behavior is defined by the ratio of the powers of the input signal and the output signal. The response behavior indicates the output power of the listener for a given input power. The response behavior is particularly frequency-dependent, ie audio signals of the same strength but different frequencies are converted into sound signals of different strengths under certain circumstances.

Im Rahmen des Verfahrens wandelt der Hörer ein elektrisches Audiosignal, kurz lediglich als Audiosignal oder als elektrisches Signal bezeichnet, in ein Schallsignal, d.h. ein akustisches Signal, um. Dabei wird ein Magnetfeld erzeugt. Dies ergibt sich insbesondere aus der allgemeinen Funktionsweise des Hörers, wonach das elektrische Signal als Antrieb für eine bewegliche Komponente verwendet wird, welche dann Druckschwankungen erzeugt. Der Hörer ist demnach ein Hörer, welcher ein Magnetfeld zur Wandlung von Strom in Bewegung nutzt. Da das elektrische Signal ein elektrisches Wechselfeld darstellt, also ein zeitlich variierender Strom ist, wird hierbei auch ein Magnetfeld erzeugt. Die Stärke dieses Magnetfelds ist abhängig von der Stärke der Änderung des Stroms und diese wiederum von der Last des Hörers.As part of the process, the listener converts an electrical audio signal, simply referred to as an audio signal or an electrical signal, into a sound signal, i.e. an acoustic signal. A magnetic field is generated in the process. This results in particular from the general mode of operation of the receiver, according to which the electrical signal is used as a drive for a movable component, which then generates pressure fluctuations. The listener is therefore a listener who uses a magnetic field to convert electricity into motion. Since the electrical signal represents an alternating electrical field, i.e. a current that varies over time, a magnetic field is also generated here. The strength of this magnetic field depends on the strength of the change in the current, which in turn depends on the load on the listener.

Das erzeugte Magnetfeld wird mittels eines Magnetfeldsensors gemessen. Der Magnetfeldsensor gibt dann ein Messsignal aus. Das Messsignal ist beispielsweise eine Spannung, welche proportional zum Magnetfeld, genauer gesagt zur Stärke des Magnetfelds, ist. Alternativ ist das Messsignal ein digitales Messsignal. In einer Variante ist das Messsignal nicht proportional zum Magnetfeld und insbesondere ein vorverarbeitetes Messsignal. Als Magnetfeldsensor ist grundsätzlich jeder Sensor geeignet, welcher zur Messung eines Magnetfelds und zur Ausgabe eines entsprechenden Messsignals ausgebildet ist, beispielsweise ein Hall-Sensor oder eine einfache Leiterschleife.The generated magnetic field is measured by means of a magnetic field sensor. The magnetic field sensor then outputs a measurement signal. The measurement signal is, for example, a voltage that is proportional to the magnetic field, more precisely to the strength of the magnetic field. Alternatively, the measurement signal is a digital measurement signal. In one variant, the measurement signal is not proportional to the magnetic field and, in particular, is a preprocessed measurement signal. In principle, any sensor that is designed to measure a magnetic field and output a corresponding measurement signal is suitable as a magnetic field sensor, for example a Hall sensor or a simple conductor loop.

Der Hörer wird nunmehr charakterisiert, indem auf Grundlage des gemessenen Magnetfelds das Antwortverhalten des Hörers bestimmt wird. Mit anderen Worten: anhand des Magnetfelds, genauer gesagt anhand des Messsignals des Magnetfeldsensors, wird das Antwortverhalten des Hörers bestimmt. Es erfolgt also insgesamt eine Charakterisierung des Hörers durch Messung eines Magnetfelds, welches im Betrieb des Hörers erzeugt wird.The listener is now characterized in that the response behavior of the listener is determined on the basis of the measured magnetic field. In other words: the response behavior of the listener is determined on the basis of the magnetic field, more precisely on the basis of the measurement signal of the magnetic field sensor. Overall, the listener is thus characterized by measuring a magnetic field that is generated when the receiver is in operation.

Da das Antwortverhalten des Hörers von dessen konkreter Einbau- und/oder Nutzungssituation abhängt, ist die Charakterisierung des Hörers keine isolierte Charakterisierung des Hörers als einzelnes Bauteil, sondern vielmehr eine umfassende Charakterisierung des Hörers in dessen konkreter Einbau- und/oder Nutzungssituation. In dieser konkreter Einbau- und/oder Nutzungssituation ist das Antwortverhalten des Hörers von dessen insbesondere unmittelbarer Umgebung beeinflusst. Mit anderen Worten: der Hörer ist in eine Umgebung eingebettet, in welcher eine Anzahl von Elementen angeordnet ist, welche insbesondere mechanisch mit dem Hörer verbunden oder angekoppelt sind und dadurch den Betrieb des Hörers beeinflussen. Dadurch wird entsprechend auch das Antwortverhalten des Hörers beeinflusst. Die Umgebung des Hörers wird auch als Hörerumgebung bezeichnet.Since the listener's response behavior depends on its specific installation and / or usage situation, the characterization of the listener is not an isolated characterization of the listener as a single component, but rather a comprehensive characterization of the listener in its specific installation and / or usage situation. In this specific installation and / or use situation, the response behavior of the listener is influenced by his, in particular, immediate surroundings. In other words: the receiver is embedded in an environment in which a number of elements are arranged, which in particular are mechanically connected or coupled to the receiver and thereby influence the operation of the receiver. This also influences the listener's response behavior accordingly. The listener's environment is also referred to as the listener's environment.

Die Elemente der Umgebung sind regelmäßig andere Bauteile des Hörgeräts, wie beispielsweise ein Schallschlauch, eine Otoplastik, ein Dome oder auch ein Gehäuse des Hörgeräts. Der Hörer ist insbesondere ein Bestandteil eines Bauteilekomplexes, bei welchem der Hörer mit einer Anzahl an weiteren Bauteilen des Hörgeräts verbunden ist. Die Elemente der Umgebung müssen jedoch nicht zwingend Teile des Hörgeräts sein, sondern sind alternativ oder zusätzlich beispielsweise der Gehörgang des Anwenders oder Cerumen, welches sich in der Umgebung des Hörers angesammelt hat. Auch solche Elemente beeinflussen das Antwortverhalten des Hörers. Allen Elementen ist somit gemein, dass diese derart an den Hörer angekoppelt sind, dass ebenjene Elemente das Antwortverhalten des Hörers beeinflussen. Ein auf diese Weise beeinflusster Hörer, welcher in eine entsprechende Umgebung eingebettet ist, wird auch als ein Hörer mit Ankopplung bezeichnet. Die Ankopplung bestimmt dabei maßgeblich die Änderung der Antwortverhaltens.The elements of the environment are regularly other components of the hearing aid, such as, for example, a sound tube, an otoplastic, a dome or also a housing of the hearing aid. The receiver is in particular part of a component complex in which the receiver is connected to a number of further components of the hearing aid. However, the elements of the environment do not necessarily have to be parts of the hearing aid, but are alternatively or additionally, for example, the ear canal of the user or cerumen that has accumulated in the vicinity of the listener. Such elements also influence the listener's response behavior. What all elements have in common is that they are coupled to the listener in such a way that those elements influence the listener's response behavior. A listener influenced in this way, who is embedded in a corresponding environment, is also referred to as a listener with coupling. The coupling largely determines the change in response behavior.

Die Charakterisierung des Hörers ist also insbesondere eine Charakterisierung des Hörers und dessen Ankopplung, d.h. des Hörers, der in eine bestimmte Umgebung eingebettet ist, welche das Antwortverhalten des Hörers beeinflusst. Demnach dient das Verfahren genauer gesagt zur Charakterisierung des Antwortverhaltens eines Hörers, welcher in eine Umgebung eingebettet ist, welche eine Anzahl von Elementen enthält, welche das Antwortverhalten des Hörers beeinflussen. Wie bereits erwähnt, erfolgt damit nicht zwangsläufig eine isolierte Charakterisierung des Hörers allein, sondern vielmehr eine Charakterisierung des Hörers insbesondere als Teil des Hörgeräts, d.h. in einer konkreten Einbausituation, oder in einer konkreten Nutzungssituation oder beides. Im Ergebnis dient das Verfahren also zur individuellen Charakterisierung des Hörers und zur individuellen Bestimmung des Antwortverhaltens eines Hörers in einer konkreten Einbau- und/oder Nutzungssituation.The characterization of the listener is therefore in particular a characterization of the listener and its coupling, ie the listener who is embedded in a specific environment that influences the listener's response behavior. Accordingly, more precisely, the method serves to characterize the response behavior of a listener who is embedded in an environment which contains a number of elements which influence the response behavior of the listener. As already mentioned, this does not necessarily result in an isolated characterization of the listener alone, but rather a characterization of the listener in particular as part of the hearing aid, ie in a specific installation situation, or in a specific usage situation, or both. As a result, the method serves i.e. for the individual characterization of the listener and for the individual determination of the response behavior of a listener in a specific installation and / or usage situation.

Aus dem oben Gesagten wird deutlich, dass sich das Antwortverhalten aus dem Messsignal an sich möglicherweise nicht direkt ableiten lässt. Daher wird das Antwortverhalten zweckmäßigerweise dadurch bestimmt, dass unter Verwendung eines geeigneten Models einer insbesondere akustischen Ankopplung der Umgebung an den Hörer aus dem Messsignal auf das Antwortverhalten geschlossen wird. Das Model ist insbesondere ein elektro-magneto-mechano-akustisches Model. Das Modell berücksichtigt zweckmäßigerweise eine prinzipiell vorbekannte Umgebung, d.h. um welche Art von Hörgerät es sich handelt und wie allgemein das Hörgerät und speziell der Hörer getragen werden. Anhand des Models wählt eine Steuereinheit dann entsprechend geeignete Algorithmen aus, um ausgehend vom Messsignal auf das Antwortverhalten zu schließen.From what has been said above, it is clear that the response behavior may not be directly derived from the measurement signal itself. The response behavior is therefore expediently determined by inferring the response behavior from the measurement signal using a suitable model of, in particular, an acoustic coupling of the surroundings to the listener. The model is in particular an electro-magneto-mechano-acoustic model. The model expediently takes into account a principally known environment, i.e. what type of hearing aid it is and how generally the hearing aid and especially the listener are worn. Using the model, a control unit then selects suitable algorithms in order to infer the response behavior based on the measurement signal.

Die Erfindung geht zunächst insbesondere von der Beobachtung aus, dass das Antwortverhalten eines Hörers zusätzlich zur Abhängigkeit vom Eingangssignal allgemein auch abhängig ist von der konkreten Umgebung, in welcher sich der Hörer befindet. Speziell bei einem Hörgerät ist das Antwortverhalten zunächst üblicherweise abhängig von der Einbausituation, d.h. wie und wo der Hörer im Hörgerät montiert ist und mit welchen anderen Bauteilen der Hörer verbunden ist. Insbesondere im Falle eines Schallschlauchs, welcher mit dem Hörer zur Schallweiterleitung ins Ohr verbunden ist, bestimmen die Art und Länge des häufig individuell angepassten Schallschlauchs das Antwortverhalten. Weiterhin ist das Antwortverhalten typischerweise auch abhängig von der konkreten Verwendung des Hörgeräts durch einen Anwender, insbesondere von der individuellen Trageweise und dem ebenfalls individuellen Kopplungsgrad zwischen Hörer und Ohr des Anwenders, d.h. von der konkreten Nutzungssituation. Zudem ist das Antwortverhalten auch insofern zeitabhängig, als dass sich die Umgebung und die Einbau- und/oder Nutzungssituation über die Zeit verändern können, beispielsweise durch eine fortschreitende Verstopfung des Hörers mit Cerumen oder durch einen Austausch des Schallschlauchs. Insgesamt ist das Antwortverhalten demnach abhängig von einer Vielzahl an insbesondere individuellen Faktoren, welche bei der Fertigung des Hörers und/oder beim Design und der Fertigung des gesamten Hörgeräts unter Umständen unbekannt sind oder welche sich im Laufe der Zeit ändern oder sogar beides.The invention is initially based in particular on the observation that, in addition to being dependent on the input signal, the response behavior of a listener is generally also dependent on the specific environment in which the listener is located. In the case of a hearing aid in particular, the response behavior is initially usually dependent on the installation situation, ie how and where the receiver is mounted in the hearing aid and with which other components the receiver is connected. In particular in the case of a sound tube which is connected to the receiver for sound transmission into the ear, the type and length of the often individually adapted sound tube determine the response behavior. Furthermore, the response behavior is typically also dependent on the specific use of the hearing aid by a user, in particular on the individual wearing style and the likewise individual degree of coupling between the listener and the user's ear, ie on the specific usage situation. In addition, the response behavior is also time-dependent insofar as the environment and the installation and / or usage situation can change over time, for example due to a progressive clogging of the earpiece with cerumen or due to an exchange of the sound tube. Overall, the response behavior is therefore dependent of a large number of, in particular, individual factors which may be unknown in the manufacture of the receiver and / or in the design and manufacture of the entire hearing aid or which change over time, or even both.

Ein wesentlicher Vorteil der Erfindung besteht nun insbesondere darin, dass durch die Messung des Magnetfelds auf einfache Weise entsprechende Änderungen des Antwortverhaltens besonders genau erkannt werden. Insbesondere werden vorteilhaft solche individuellen oder zeitabhängigen Änderungen erkannt, welche bei der Herstellung des Hörgeräts oder im Rahmen einer Fitting Session, nicht berücksichtigt werden oder nicht berücksichtigt werden können. Eine solche Änderung ist beispielsweise eine fortschreitende Verstopfung mit Cerumen oder ein Austausch oder eine Modifikation eines Schallschlauchs oder einer Otoplastik oder eines Domes des Hörgeräts. Ein wesentlicher Aspekt ist dabei insbesondere, dass das Antwortverhalten des Hörers gerade nicht oder zumindest nicht ausschließlich isoliert und in einem Idealzustand bestimmt wird,. Vielmehr wird das Antwortverhalten vorteilhaft in einer bestimmten Einbau- oder Nutzungssituation oder beides bestimmt. Dadurch werden solche Änderungen, welche sich aufgrund dieser Einbau- und/oder Nutzungssituation gegenüber einer Referenzsituation, z.B. einem Idealzustand, ergeben mit erfasst und vorzugsweise auch überwacht, insbesondere wiederkehrend überwacht.An essential advantage of the invention is that, by measuring the magnetic field, corresponding changes in the response behavior can be recognized particularly precisely in a simple manner. In particular, such individual or time-dependent changes are advantageously recognized which are not or cannot be taken into account during the manufacture of the hearing aid or in the context of a fitting session. Such a change is, for example, a progressive clogging with cerumen or an exchange or modification of a sound tube or an otoplastic or a dome of the hearing aid. An essential aspect here is in particular that the listener's response behavior is not, or at least not exclusively, isolated and determined in an ideal state. Rather, the response behavior is advantageously determined in a specific installation or use situation or both. As a result, changes that arise due to this installation and / or usage situation compared to a reference situation, e.g. an ideal state, are also recorded and preferably also monitored, in particular monitored on a recurring basis.

Dem Verfahren liegt insbesondere die Erkenntnis zugrunde, dass das vom Hörer erzeugte Magnetfeld auch das Antwortverhalten des Hörers wiederspiegelt, da das Antwortverhalten maßgeblich durch die ausgegebene Leistung definiert ist und diese Leistung sowie das Magnetfeld jeweils direkt vom Strom abhängig sind, welcher dem Hörer zugeführt wird. Das Magnetfeld kann somit gewinnbringend zur Bestimmung ebenjenes Antwortverhaltens herangezogen werden und wird im Rahmen der vorliegenden Erfindung auch entsprechend herangezogen.The method is based in particular on the knowledge that the magnetic field generated by the listener also reflects the listener's response behavior, since the response behavior is largely defined by the output power and this power and the magnetic field are each directly dependent on the current that is supplied to the listener. The magnetic field can thus be used profitably to determine precisely that response behavior and is also used accordingly within the scope of the present invention.

Grundsätzlich können das Antwortverhalten dadurch bestimmt und der Hörer dadurch charakterisiert werden, dass beispielsweise ein Testsignal mit bekannter Stärke als Audiosignal verwendet wird und die Stärke des daraus erzeugten Schallsignals gemessen wird. Dies erfolgt beispielsweise über eine Impedanzmessung, welche letztendlich den Strom durch den Hörer misst und damit ein Maß für die ausgegebene Leistung ist, d.h. für die Stärke des Schallsignals. Der Zusammenhang ist hier durch ein bestimmtes Model vorgegeben, dessen Kenntnis eine Schlussfolgerung auf Grundlage der Impedanzmessung ermöglicht. Das frequenzabhängige Antwortverhalten wird dann entsprechend mit mehreren Testsignalen unterschiedlicher Frequenz durchgeführt. Andere Messmethoden und Testverfahren sind ebenfalls möglich. Alternativ zu einer solchen Impedanzmessung ist auch eine sogenannte Vibrationsmessung möglich. Eine Magnetfeldmessung weist nun insbesondere den Vorteil auf, dass eine solche im Vergleich zu einer Impedanz- oder Vibrationsmessung deutlich genauer ist. Das Magnetfeld selbst wird in besonders geringem Maße von der Umgebung gestört, wohingegen eine Impedanz- oder einer Vibrationsmessung durch zusätzliche elektrische oder mechanische Verbindungen mit anderen Bauteilen oder Komponenten unter Umständen stark fehlerbehaftet ist. Bei einer Magnetfeldmessung wird zudem ein Messsignal mit einer besonders großen Amplitude erzeugt, wodurch auch kleinste Änderungen noch zuverlässig erkannt werden und wodurch sich das Antwortverhalten entsprechend mit besonders hoher Genauigkeit bestimmen lässt.In principle, the response behavior can be determined and the listener can be characterized in that, for example, a test signal with a known strength is used as the audio signal and the strength of the signal generated therefrom Sound signal is measured. This is done, for example, by means of an impedance measurement, which ultimately measures the current through the earpiece and is therefore a measure of the output power, that is to say of the strength of the sound signal. The relationship is given here by a specific model, the knowledge of which enables a conclusion on the basis of the impedance measurement. The frequency-dependent response behavior is then carried out accordingly with several test signals of different frequencies. Other measurement methods and test procedures are also possible. As an alternative to such an impedance measurement, a so-called vibration measurement is also possible. A magnetic field measurement now has the particular advantage that it is significantly more accurate compared to an impedance or vibration measurement. The magnetic field itself is disturbed to a particularly small extent by the environment, whereas an impedance or vibration measurement due to additional electrical or mechanical connections to other parts or components may be very flawed. In the case of a magnetic field measurement, a measurement signal with a particularly large amplitude is also generated, which means that even the smallest changes are reliably detected and the response behavior can accordingly be determined with a particularly high degree of accuracy.

In einer bevorzugten Ausgestaltung ist die Umgebung durch eine Einbausituation des Hörers bestimmt und die Umgebung weist ein Element auf, welches ein Bauteil des Hörgeräts ist. Das Bauteil ist mit dem Hörer verbunden und insbesondere mechanisch an den Hörer angekoppelt und beeinflusst dessen Antwortverhalten. Indem das Antwortverhalten bestimmt wird, wird dann vorteilhaft der Einfluss der Einbausituation auf das Antwortverhalten automatisch mit berücksichtigt. Hierbei ist das Element, genauer gesagt das Bauteil, vorzugsweise ausgewählt aus einer Menge von Elementen, umfassend aber nicht beschränkt auf: ein Schallschlauch, eine Otoplastik, ein Dome, ein Gehäuse des Hörgeräts.In a preferred embodiment, the environment is determined by an installation situation of the earphone and the environment has an element which is a component of the hearing aid. The component is connected to the receiver and, in particular, mechanically coupled to the receiver and influences its response behavior. By determining the response behavior, the influence of the installation situation on the response behavior is then automatically taken into account. Here, the element, more precisely the component, is preferably selected from a set of elements, including but not limited to: a sound tube, an otoplastic, a dome, a housing of the hearing aid.

Alternativ oder zusätzlich ist die Umgebung bevorzugterweise durch eine Nutzungssituation des Hörers bestimmt. Indem das Antwortverhalten bestimmt wird, wird dann vorteilhaft der Einfluss der Nutzungssituation auf das Antwortverhalten automatisch mit berücksichtigt. Hierbei ist die Nutzungssituation ausgewählt aus einer Menge von Situationen, umfassend aber nicht beschränkt auf: eine Trageweise des Hörgeräts, einen Kopplungsgrad zwischen dem Hörer und einem Ohr des Anwenders, ein Verstopfungsgrad insbesondere des Hörers durch Cerumen. Ähnlich wie bei der oben beschriebenen Einbausituation enthält die Umgebung auch in der Nutzungssituation eine Anzahl von Elementen, welche insbesondere mechanisch an den Hörer angekoppelt sind und dadurch das Antwortverhalten beeinflussen. Allerdings sind diese Elemente gerade keine Bestandteile des Hörgeräts, sondern externe Elemente, insbesondere der Gehörgang des Anwenders, dessen Ohr oder Cerumen.Alternatively or additionally, the environment is preferably determined by a usage situation of the listener. By determining the response behavior, the influence of the usage situation on the response behavior is then advantageous automatically taken into account. The usage situation is selected from a set of situations, including but not limited to: a way of wearing the hearing aid, a degree of coupling between the receiver and an ear of the user, a degree of clogging, in particular of the receiver, by cerumen. Similar to the installation situation described above, the surroundings also contain a number of elements in the usage situation, which in particular are mechanically coupled to the receiver and thereby influence the response behavior. However, these elements are precisely no components of the hearing aid, but rather external elements, in particular the user's auditory canal, his ear or cerumen.

Die Kenntnis des Antwortverhaltens ermöglicht vorteilhaft eine Reaktion auf eine Änderung desselben. Hierzu wird zweckmäßigerweise das Antwortverhalten bestimmt und als ein Ist-Antwortverhalten mit einem Soll-Antwortverhalten verglichen. Zwischen dem Ist-Antwortverhalten und dem Soll-Antwortverhalten wird dann ein Unterschied ermittelt und das Hörgerät wird in Abhängigkeit des Unterschieds eingestellt. Unter "eingestellt" wird insbesondere verstanden, dass das Hörgerät derart gesteuert wird, dass das Antwortverhalten des Hörers geändert wird, um den Unterschied zu verringern und vorzugsweise vollständig zu eliminieren. Bevorzugterweise wird dabei das Antwortverhalten an das Soll-Antwortverhalten angepasst, besonders bevorzugt derart, dass das Antwortverhalten dem Soll-Antwortverhalten entspricht.The knowledge of the response behavior advantageously enables a reaction to a change in the same. For this purpose, the response behavior is expediently determined and compared as an actual response behavior with a target response behavior. A difference is then determined between the actual response behavior and the target response behavior and the hearing aid is adjusted as a function of the difference. “Set” is understood in particular to mean that the hearing aid is controlled in such a way that the response behavior of the listener is changed in order to reduce the difference and preferably to eliminate it completely. The response behavior is preferably adapted to the target response behavior, particularly preferably in such a way that the response behavior corresponds to the target response behavior.

In einer zweckmäßigen Ausgestaltung wird das Hörgerät eingestellt, indem mittels der Steuereinheit das Audiosignal derart modifiziert wird, dass der Unterschied zumindest teilweise, vorzugsweise vollständig, ausgeglichen wird. Auf diese Weise wird dann insbesondere eine Angleichung des Antwortverhaltens an das Soll-Antwortverhalten erzielt.In an expedient embodiment, the hearing aid is adjusted by modifying the audio signal by means of the control unit in such a way that the difference is at least partially, preferably completely, compensated. In this way, in particular, an adjustment of the response behavior to the target response behavior is achieved.

Alternativ oder zusätzlich wird die Kenntnis des Antwortverhaltens genutzt, um ein Warnsignal auszugeben. Zweckmäßigerweise wird hierzu ebenfalls das Antwortverhalten bestimmt und als ein Ist-Antwortverhalten mit einem Soll-Antwortverhalten verglichen. Zwischen dem Ist-Antwortverhalten und dem Soll-Antwortverhalten wird ein Unterschied ermittelt und in Abhängigkeit des Unterschieds wird ein Warnsignal ausgegeben. Mit anderen Worten: liegt ein Unterschied vor oder liegt ein Unterschied vor, welcher größer ist als ein vorgegebener Schwellwert, wird ein Warnsignal ausgegeben. Das Warnsignal wird beispielsweise akustisch über den Hörer ausgegeben, optisch, mittels einer LED oder an eine Fernsteuerung oder Basisstation für das Hörgerät übermittelt, insbesondere zur dortigen Ausgabe oder Speicherung.As an alternative or in addition, the knowledge of the response behavior is used to output a warning signal. For this purpose, the response behavior is also expediently determined and compared as an actual response behavior with a target response behavior. Between the actual response behavior and the target response behavior a difference is determined and a warning signal is output as a function of the difference. In other words: if there is a difference or if there is a difference which is greater than a predefined threshold value, a warning signal is output. The warning signal is output, for example, acoustically via the receiver, optically, by means of an LED or transmitted to a remote control or base station for the hearing aid, in particular for output or storage there.

Besonders zweckmäßig ist die Ausgestaltung mit dem Warnsignal, um bei einem bestimmten Verstopfungsgrad des Hörers mit Cerumen auf ebenjene Verstopfung hinzuweisen und dadurch vorteilhaft den Anwender zu einer Reinigung zu veranlassen. Die Ausgestaltung mit Warnhinweis wird alternativ oder zusätzlich genutzt, um zu erkennen, ob ein bestimmter Schallschlauch am Hörgerät montiert wurde, und falls ein anderer Schallschlauch montiert wurde, darauf hinzuweisen, dass der falsche Schallschlauch montiert wurde oder dass eine Anpassung des Antwortverhaltens notwendig ist.The embodiment with the warning signal is particularly expedient in order to indicate the same blockage in the case of a certain degree of blockage of the earpiece with cerumen and thereby advantageously to induce the user to clean it. The configuration with warning notice is used alternatively or additionally to recognize whether a certain sound tube has been mounted on the hearing aid and, if another sound tube has been mounted, to indicate that the wrong sound tube has been mounted or that an adjustment of the response behavior is necessary.

Alternativ oder zusätzlich wird detektiert, ob der Hörer einen Defekt aufweist. Ein Defekt ist insbesondere eine Verzerrung bei der Ausgabe eines Schallsignals aufgrund eines mechanischen Defekts, z.B. durch einen Stoß oder einen Fall. Eine solche Verzerrung wird auch als total harmonic distortion, kurz THD bezeichnet. Alternativ ist der Defekt ein Ausfall oder ein Bruch einer elektrischen Leitung. Alternativ ist der Defekt eine Verkeilung mehreren insbesondere interner Bauteile , d.h. Komponenten des Hörers.Alternatively or additionally, it is detected whether the receiver has a defect. A defect is, in particular, a distortion in the output of a sound signal due to a mechanical defect such as an impact or a fall. Such distortion is also known as total harmonic distortion, or THD for short. Alternatively, the defect is a failure or breakage of an electrical line. Alternatively, the defect is a wedging of several, in particular internal, components, i.e. components of the receiver.

Das Soll-Antwortverhalten wird zweckmäßigerweise mittels einer Eichmessung bestimmt. Die Eichmessung erfolgt vorzugsweise in einem Zustand, in welchem ein ideales Antwortverhalten vorliegt, beispielsweise im Rahmen einer ersten Initialisierung bei der Produktion, insbesondere da zu diesem Zeitpunkt die akustische Ankopplung des Hörers bekannt ist und eine Anzahl an Modellparametern des Hörers extrahiert und vorzugsweise auch gespeichert wird. Dabei geben die Modellparameter insbesondere die Ankopplung an. Alternativ oder zusätzlich erfolgt die Eichmessung im Rahmen einer Fitting Session oder direkt danach oder nach einer Reinigung des Hörgeräts oder direkt nachdem ein neuer Schallschlauch oder eine neue Otoplastik montiert wurden. Alternativ oder zusätzlich erfolgt die Eichmessung bei oder am Ende der Herstellung des Hörgeräts und vor dessen Auslieferung an den Anwender. Dem liegt insbesondere die Überlegung zugrunde, einen Auslieferungszustand des Hörgeräts als eine Vergleichsbasis für spätere Änderungen des Antwortverhaltens zu verwenden. Dies ist beispielsweise vorteilhaft, um eine Beschädigung oder eine Fehlfunktion des Hörers zu erkennen.The target response behavior is expediently determined by means of a calibration measurement. The calibration measurement is preferably carried out in a state in which there is an ideal response behavior, for example as part of a first initialization during production, in particular since the acoustic coupling of the listener is known at this point in time and a number of model parameters of the listener are extracted and preferably also stored . The model parameters indicate the coupling in particular. Alternatively or additionally, the calibration measurement is carried out as part of a fitting session or directly after or after cleaning the hearing aid or immediately after a new sound tube or a new earmold has been fitted. Alternatively or additionally, the calibration measurement takes place at or at the end of the production of the hearing aid and before it is delivered to the user. This is based in particular on the consideration of using a delivery state of the hearing aid as a basis for comparison for later changes in the response behavior. This is advantageous, for example, in order to detect damage or a malfunction of the handset.

In einer vorteilhaften Weiterbildung werden mehrere Soll-Antwortverhalten bestimmt, beispielsweise für verschiedene Umgebungen, in welchen das Hörgerät getragen wird, für verschiedene Anwender des Hörgeräts, für verschiedene Betriebsmodi des Hörgeräts, für verschiedene Schallschläuche oder für verschiedene Otoplastiken oder für eine Kombination davon. Je nach konkreter Situation wird dann ein geeignetes Soll-Antwortverhalten ausgewählt, mit welchem das gemessene Antwortverhalten verglichen wird.In an advantageous development, several target response behaviors are determined, for example for different environments in which the hearing aid is worn, for different users of the hearing aid, for different operating modes of the hearing aid, for different sound tubes or for different otoplastics or for a combination thereof. Depending on the specific situation, a suitable target response behavior is then selected, with which the measured response behavior is compared.

Das Soll-Antwortverhalten wird bei der Eichmessung in einer geeigneten Ausgestaltung auf dieselbe Weise bestimmt wie das Antwortverhalten im Allgemeinen, d.h. vorliegend durch eine Messung des Magnetfelds. Es wird also eine initiale Magnetfeldmessung durchgeführt.In a suitable embodiment, the nominal response behavior is determined in the calibration measurement in the same way as the response behavior in general, i.e. in the present case by measuring the magnetic field. An initial magnetic field measurement is therefore carried out.

Besonders bevorzugt ist eine Ausgestaltung, bei welcher das Antwortverhalten, also die Übertragungsfunktion des Hörers, mittels eines adaptiven Filters parametrisiert wird, indem das Magnetfeld gemessen wird und in Abhängigkeit dessen ein Messsignal erzeugt wird, welches dem Filter als ein Filter-Eingangssignal zugeführt wird. Das Messsignal wird von dem Magnetfeldsensor erzeugt und ist beispielsweise eine Spannung. Der Filter ist in einer geeigneten Ausgestaltung ein Wiener-Filter. Der Filter weist eine Filterfunktion auf, welche durch eine Anzahl an Filterparametern parametrisiert ist. Dem Filter wird nun das Messsignal als Filter-Eingangssignal zugeführt, woraufhin der Filter die Filterfunktion automatisch an das Filter-Eingangssignal anpasst, um dieses abzubilden. Dabei werden die Filterparameter entsprechend verändert.An embodiment is particularly preferred in which the response behavior, i.e. the transfer function of the listener, is parameterized by means of an adaptive filter by measuring the magnetic field and, depending on this, generating a measurement signal which is fed to the filter as a filter input signal. The measurement signal is generated by the magnetic field sensor and is, for example, a voltage. In a suitable embodiment, the filter is a Wiener filter. The filter has a filter function which is parameterized by a number of filter parameters. The measurement signal is now fed to the filter as a filter input signal, whereupon the filter automatically adapts the filter function to the filter input signal in order to map it. The filter parameters are changed accordingly.

Der Filter arbeitet insbesondere selbstständig und benötigt keine separate Einstellung von außen, führt also die Anpassung und Veränderung der Filterparameter automatisch durch. Die Filterparameter ändern sich somit bei einer Änderung des Magnetfelds, d.h. auch bei einer Änderung des Antwortverhaltens, sodass das Antwortverhalten vorteilhaft mittels der Filterparameter parametrisiert ist und dadurch auch bestimmt ist. Anstatt also das Antwortverhalten im Detail zu messen, werden zur Bestimmung des Antwortverhaltens lediglich die Filterparameter genutzt. Die Verwendung eines adaptiven Filters weist dabei speziell den Vorteil auf, dass sich ein solcher Filter besonders schnell an Änderungen anpasst und daher Änderungen des Antwortverhaltens besonders schnell erkannt und bestimmt werden. Dabei ist eine Anpassung des Antwortverhaltens nicht zwingend eine Aufgabe des Filters, d.h. der Filter stellt nicht zwingend das Antwortverhalten ein, vielmehr dient der Filter vorrangig und insbesondere ausschließlich zur Parametrisierung des Antwortverhaltens, indem der Filter diesem folgt.In particular, the filter works independently and does not require a separate external setting, so it automatically adjusts and changes the filter parameters. The filter parameters therefore change with a change in the magnetic field, i.e. also with a change in the response behavior, so that the response behavior is advantageously parameterized by means of the filter parameters and is thereby also determined. Instead of measuring the response behavior in detail, only the filter parameters are used to determine the response behavior. The use of an adaptive filter has the particular advantage that such a filter adapts particularly quickly to changes and therefore changes in the response behavior are recognized and determined particularly quickly. Adapting the response behavior is not necessarily a task of the filter, i.e. the filter does not necessarily set the response behavior, but rather the filter primarily and in particular exclusively serves to parameterize the response behavior by the filter following it.

Das Magnetfeld, genauer dessen Stärke, fällt mit steigendem Abstand zum Hörgerät. Daher wird das Magnetfeld zweckmäßigerweise möglichst nah am oder im Hörgerät gemessen, d.h. der Magnetfeldsensor ist möglichst nah am oder im Hörgerät angeordnet. Im konkreten Fall eines Hörgeräts ist das Magnetfeld besonders gut um das Hörgerät herum innerhalb eines Abstands messbar, welcher in der Größenordnung einer Abmessung des Hörgeräts liegt. Übliche Hörgeräte weisen eine Abmessung von etwa 0,5 bis 5cm auf, entsprechend ist das Magnetfeld in einem Abstand von bis zu wenigen Zentimetern besonders effektiv messbar und wird daher vorzugsweise auch in diesem Bereich gemessen.The magnetic field, or more precisely its strength, falls as the distance from the hearing aid increases. Therefore, the magnetic field is expediently measured as close as possible to or in the hearing aid, i.e. the magnetic field sensor is arranged as close as possible to or in the hearing aid. In the specific case of a hearing aid, the magnetic field can be measured particularly well around the hearing aid within a distance which is in the order of magnitude of one dimension of the hearing aid. Conventional hearing aids have dimensions of approximately 0.5 to 5 cm, and accordingly the magnetic field can be measured particularly effectively at a distance of up to a few centimeters and is therefore preferably also measured in this area.

In einer bevorzugten Ausgestaltung ist der Magnetfeldsensor direkt am Hörer angeordnet, d.h. insbesondere in einem Abstand von höchstens 3cm, bevorzugt höchstens 5mm zum Hörer, besonders bevorzugt direkt am oder sogar im Hörer. Das Magnetfeld wird demnach direkt am Hörer gemessen und damit dort, wo das Magnetfeld besonders stark ist, sodass die Messung entsprechend genau ist.In a preferred embodiment, the magnetic field sensor is arranged directly on the receiver, i.e. in particular at a distance of at most 3 cm, preferably at most 5 mm from the receiver, particularly preferably directly on or even in the receiver. The magnetic field is therefore measured directly on the listener and therefore where the magnetic field is particularly strong, so that the measurement is correspondingly accurate.

In einer geeigneten Variante weist das Hörgerät eine Energieversorgung auf, insbesondere einer Batterie, welche mittels einer Energieversorgungsleitung mit dem Hörer verbunden ist, zur Energieversorgung des Hörers, und der Magnetfeldsensor ist direkt an der Energieversorgungsleitung angeordnet, d.h. insbesondere in einem Abstand von höchstens 3cm, bevorzugt höchstens 5mm zur Energieversorgungsleitung, besonders bevorzugt direkt an oder sogar in der Energieversorgungsleitung. Die vorgenannten Werte sind insbesondere für ein Hörgerät geeignet, welches als Hörhilfegerät für einen hörgeschädigten Anwender ausgebildet ist. Bei anderen Hörgeräten sind auch größere Werte geeignet, insbesondere dann, wenn die Energieversorgung stärker ist, d.h. mehr Leistung bereitstellt, als in einem Hörhilfegerät. Das Magnetfeld wird somit direkt an der Energieversorgungsleitung gemessen. Dieser Ausgestaltung liegt insbesondere die Erkenntnis zugrunde, dass der Hörer im Betrieb eine wechselnde Last erzeugt und damit der Energieversorgung einen zeitlich veränderlichen Strom entnimmt, welcher wiederum ein Magnetfeld erzeugt. Der Hörer erzeugt also ein Magnetfeld nicht lediglich in dessen unmittelbarer Nähe, sondern auch entlang der Energieversorgungsleitung, welche sich von der Energieversorgung bis zum Hörer erstreckt, sowie an ebenjener Energieversorgung. Das Magnetfeld wird demnach vorteilhaft an der Energieversorgungsleitung oder an der Energieversorgung selbst gemessen. Eine Magnetfeldmessung in der Nähe der Energieversorgungsleitung oder der Energieversorgung ist vorteilhaft dahingehend, dass diese üblicherweise außerhalb des Ohrs des Anwenders angeordnet sind. Besonders bei einem Hörgerät, bei welchem der Hörer im Ohr getragen wird, ist der Bauraum um den Hörer herum naturgemäß stark eingeschränkt, sodass ein zusätzlicher Magnetfeldsensor am Hörer unter Umständen nicht realisierbar ist. Besonders in solchen Fällen wird dann das Magnetfeld an anderer Stelle und außerhalb des Ohrs gemessen, vorzugsweise wie beschrieben in der Nähe der Energieversorgungsleitung oder der Energieversorgung. Aufgrund weiterer Bauteile des Hörgeräts, welche mit der Energieversorgung verbunden sind, ist eine Messung an der Energieversorgung selbst unter Umständen zu ungenau, weshalb eine Magnetfeldmessung an der Energieversorgungsleitung bevorzugt ist. Die Energieversorgungsleitung dient dabei insbesondere alleinig der Versorgung des Hörers, d.h. mittels der Energieversorgungsleitung sind keine weiteren Bauteile oder Verbraucher an die Energieversorgung angeschlossen. Auf diese Weise ist sichergestellt, dass das gemessene Magnetfeld überwiegend und insbesondere alleinig durch den Betrieb des Hörers verursacht ist.In a suitable variant, the hearing aid has a power supply, in particular a battery, which is connected to the by means of a power supply line Handset is connected to supply power to the handset, and the magnetic field sensor is arranged directly on the power supply line, ie in particular at a distance of at most 3cm, preferably at most 5mm from the power supply line, particularly preferably directly on or even in the power supply line. The aforementioned values are particularly suitable for a hearing aid which is designed as a hearing aid for a hearing-impaired user. In the case of other hearing aids, larger values are also suitable, in particular when the energy supply is stronger, ie provides more power, than in a hearing aid. The magnetic field is thus measured directly on the power supply line. This refinement is based in particular on the knowledge that the listener generates a changing load during operation and thus draws a current that varies over time from the power supply, which in turn generates a magnetic field. The handset therefore generates a magnetic field not only in its immediate vicinity, but also along the power supply line, which extends from the power supply to the handset, and at the same power supply. The magnetic field is therefore advantageously measured on the power supply line or on the power supply itself. A magnetic field measurement in the vicinity of the power supply line or the power supply is advantageous in that these are usually arranged outside the user's ear. Particularly in the case of a hearing aid in which the receiver is worn in the ear, the installation space around the receiver is naturally severely restricted, so that an additional magnetic field sensor on the receiver may not be possible under certain circumstances. Particularly in such cases, the magnetic field is then measured at another point and outside the ear, preferably, as described, in the vicinity of the power supply line or the power supply. Due to further components of the hearing aid which are connected to the power supply, a measurement on the power supply itself may be too imprecise, which is why a magnetic field measurement on the power supply line is preferred. The energy supply line is used in particular to supply the earpiece alone, that is to say no further components or consumers are connected to the energy supply by means of the energy supply line. This ensures that the measured Magnetic field is mainly and in particular caused solely by the operation of the handset.

Grundsätzlich ist jedoch auch eine Messung des Magnetfelds an anderen Stellen möglich und auch geeignet. Die oben genannten zwei Varianten stellen aber besonders geeignete Positionen dar und sind entsprechend bevorzugt.In principle, however, a measurement of the magnetic field at other points is also possible and also suitable. The two variants mentioned above, however, represent particularly suitable positions and are accordingly preferred.

In einer ersten bevorzugten Ausgestaltung ist der Magnetfeldsensor in das Hörgerät integriert, also ein Bestandteil des Hörgeräts. Insgesamt weist dann das Hörgerät einen Hörer auf, zur Umwandlung eines elektrischen Audiosignals in ein Schallsignal unter Erzeugung eines Magnetfelds, und einen Magnetfeldsensor, und zusätzlich eine Steuereinheit, welche derart ausgebildet ist, dass das Magnetfeld mittels des Magnetfeldsensors gemessen wird, der Hörer charakterisiert wird, indem auf Grundlage des gemessenen Magnetfelds das Antwortverhalten des Hörers bestimmt wird. In dieser Ausgestaltung bestimmt das Hörgerät insbesondere selbsttätig das Antwortverhalten des Hörers, vorzugsweise kontinuierlich, alternativ beispielsweise lediglich in einem Testmodus. Zweckmäßigerweise stellt sich das Hörgerät auch automatisch in Abhängigkeit des Antwortverhaltens ein, insbesondere um ein bestimmtes Soll-Antwortverhalten einzustellen, wie oben bereits beschrieben. Vorteilhafterweise wird der Anwender über die Messung informiert oder darüber wie sich das Hörgerät einstellt oder beides. Der Anwender wird beispielsweise mittels eines Warnsignals wie oben bereits beschrieben informiert.In a first preferred embodiment, the magnetic field sensor is integrated into the hearing aid, that is to say a component of the hearing aid. Overall, the hearing aid then has a receiver for converting an electrical audio signal into a sound signal while generating a magnetic field, and a magnetic field sensor, and additionally a control unit which is designed such that the magnetic field is measured by means of the magnetic field sensor, the receiver is characterized, by determining the listener's response behavior on the basis of the measured magnetic field. In this refinement, the hearing aid in particular automatically determines the response behavior of the listener, preferably continuously, alternatively, for example, only in a test mode. The hearing aid also expediently adjusts itself automatically as a function of the response behavior, in particular in order to set a specific target response behavior, as already described above. The user is advantageously informed about the measurement or about how the hearing aid is adjusting, or both. The user is informed, for example, by means of a warning signal as already described above.

Insbesondere bei einem Magnetfeldsensor, welches in das Hörgerät integriert ist, wird das Verfahren bevorzugterweise in einem Normalbetriebsmodus des Hörgeräts ausgeführt, d.h. insbesondere gerade nicht während einer Fitting Session oder bei der Herstellung des Hörgeräts. Vielmehr erfolgt die Charakterisierung im normalen Betrieb, während das Hörgerät vom Anwender getragen oder genutzt wird. In dem Normalbetriebsmodus wird ein elektrisches Audiosignal mittels einer Steuereinheit modifiziert und dann mittels des Hörers als Schallsignal ausgegeben. Das elektrische Audiosignal selbst wird insbesondere mittels eines Mikrofons erzeugt, welches ein Schallsignal aus der Umgebung in das Audiosignal umwandelt. Alternativ wird das Audiosignal von einer externen Quelle zugeführt. Eine externe Quelle ist beispielsweise ein Streaming-Signal beispielsweise eines Drahtlossystems, d.h. eines wireless systems.In particular in the case of a magnetic field sensor which is integrated in the hearing aid, the method is preferably carried out in a normal operating mode of the hearing aid, ie in particular not during a fitting session or during the manufacture of the hearing aid. Rather, the characterization takes place in normal operation while the hearing aid is being worn or used by the user. In the normal operating mode, an electrical audio signal is modified by means of a control unit and then output as a sound signal by means of the earpiece. The electrical audio signal itself is generated in particular by means of a microphone which converts a sound signal from the environment into the audio signal. Alternatively, the audio signal is supplied from an external source. An external source is, for example, a streaming signal from, for example, a wireless system, ie a wireless system.

In einer besonders geeigneten Ausgestaltung weist das Hörgerät eine Telefonspule auf und diese ist der Magnetfeldsensor, d.h. die Telefonspule wird als Magnetfeldsensor verwendet. Mit anderen Worten: das Hörgerät weist eine Telefonspule auf, welche derart platziert oder angeordnet ist, dass diese als Magnetfeldsensor verwendbar ist und auch verwendet wird. Insbesondere ist eine genaue Positionierung der Telefonspule von Bedeutung, um das Magnetfeld möglichst effektiv zu messen. Die Telefonspule wird auch als Telecoil oder T-Coil bezeichnet. Dem liegt die Überlegung zugrunde, dass die Telefonspule naturgemäß bereits zur Messung von Magnetfeldern ausgelegt ist und daher gewinnbringend auch für die hier beschriebene Messung des Magnetfelds, welches vom Hörer erzeugt wird, verwendet werden kann. Dadurch reduziert sich der konstruktive Aufwand erheblich, denn eine Telefonspule ist bereits in vielen Hörgeräten standardmäßig verbaut. Ein Magnetfeldsensor als zusätzliches Bauteil entfällt vorteilhaft, es wird vielmehr die vorhandene Hardware genutzt, nämlich die Telefonspule. Bei der Telefonspule handelt es sich um eine Spule, z.B. eine Leiterschleife, welche Signale per Induktion empfängt. Ein Sender, z.B. ein Telefon mit elektrodynamisch arbeitendem Wandler oder eine induktive Höranlage, sendet ein magnetisches Wechselfeld aus, welches von der Telefonspule empfangen wird und welches dann insbesondere in ein Audiosignal umgewandelt wird. Dies ist im Vergleich zur Aufnahme mittels Mikrofon auch vorteilhaft störungsfrei, da Störgeräusche üblicherweise nicht übermittelt werden. Unter "störungsfrei" wird insbesondere "weitgehend störungsfrei" verstanden. Unter "störungsfrei" wird weiterhin insbesondere verstanden, dass die Telefonspule in solchen Frequenzbereichen, welche für die Magnetfeldmessung relevant sind, störungsfrei ist, wohingegen beispielsweise die Netzspannung bei 50Hz sowie deren Harmonische unter Umständen von der Telefonspule erfasst werden. Die Telefonspule ist außerdem insbesondere bereits in geeigneter Nähe zum Hörer angeordnet.In a particularly suitable embodiment, the hearing aid has a telephone coil and this is the magnetic field sensor, ie the telephone coil is used as a magnetic field sensor. In other words: the hearing aid has a telephone coil which is placed or arranged in such a way that it can and is also used as a magnetic field sensor. In particular, precise positioning of the telephone coil is important in order to measure the magnetic field as effectively as possible. The telecoil is also known as a telecoil or T-coil. This is based on the consideration that the telephone coil is naturally already designed for measuring magnetic fields and can therefore also be used profitably for the measurement of the magnetic field, which is generated by the listener, as described here. This significantly reduces the design effort, because a telephone coil is already installed as standard in many hearing aids. A magnetic field sensor as an additional component is advantageously dispensed with, rather the existing hardware is used, namely the telephone coil. The telephone coil is a coil, for example a conductor loop, which receives signals by induction. A transmitter, for example a telephone with an electrodynamically operating transducer or an inductive hearing system, sends out an alternating magnetic field which is received by the telephone coil and which is then converted, in particular, into an audio signal. Compared to recording with a microphone, this is also advantageously interference-free, since interfering noises are usually not transmitted. “Free of disturbances” is understood in particular to mean “largely free of disturbances”. “Interference-free” is also understood to mean that the telephone coil is interference-free in those frequency ranges that are relevant for the magnetic field measurement, whereas, for example, the mains voltage at 50 Hz and its harmonics may be detected by the telephone coil. The telephone coil is also, in particular, already arranged in suitable proximity to the listener.

Das Konzept der Magnetfeldmessung ist jedoch vorteilhaft nicht auf ein Hörgerät mit einem integrierten Magnetfeldsensor beschränkt. Vielmehr ist der Magnetfeldsensor in einer zweiten bevorzugten Ausgestaltung ein Teil einer Testanordnung für ein Hörgerät. Die Testanordnung weist eine Steuereinheit auf sowie eine Testvorrichtung, welche einen Magnetfeldsensor aufweist. Die Testanordnung ist zum Testen eines Hörgeräts ausgebildet, genauer zur Charakterisierung eines Hörers des Hörgeräts. Das Hörgerät weist demnach einen Hörer auf, zur Umwandlung eines elektrischen Audiosignals in ein Schallsignal unter Erzeugung eines Magnetfelds. Die Steuereinheit ist derart ausgebildet, dass das Magnetfeld mittels des Magnetfeldsensors gemessen wird, der Hörer charakterisiert wird, indem auf Grundlage des gemessenen Magnetfelds das Antwortverhalten des Hörers bestimmt wird.However, the concept of magnetic field measurement is advantageously not limited to a hearing aid with an integrated magnetic field sensor. Rather, in a second preferred embodiment, the magnetic field sensor is part of a test arrangement for a hearing aid. The test arrangement has a control unit and a test device which has a magnetic field sensor. The test arrangement is designed for testing a hearing aid, more precisely for characterizing a listener of the hearing aid. The hearing aid accordingly has a receiver for converting an electrical audio signal into a sound signal while generating a magnetic field. The control unit is designed in such a way that the magnetic field is measured by means of the magnetic field sensor, the listener is characterized in that the response behavior of the listener is determined on the basis of the measured magnetic field.

Der Magnetfeldsensor ist somit außerhalb des Hörgeräts angeordnet, nämlich in oder an der Testvorrichtung, welche zusammen mit der Steuereinheit die Testanordnung bildet. In einer ersten geeigneten Variante sind der Magnetfeldsensor und die Steuereinheit jeweils ein Teil einer Testvorrichtung, d.h. die Testvorrichtung ist identisch mit der Testanordnung. In einer ebenfalls geeigneten zweiten Variante sind dagegen der Magnetfeldsensor und die Steuereinheit getrennt voneinander angeordnet. Der Magnetfeldsensor ist dann ein Teil einer Testvorrichtung, die Steuereinheit dagegen nicht. Die Steuereinheit ist dabei beispielsweise eine Steuereinheit des Hörgeräts oder eine Steuereinheit eines zusätzlichen externen Geräts.The magnetic field sensor is thus arranged outside the hearing aid, namely in or on the test device which, together with the control unit, forms the test arrangement. In a first suitable variant, the magnetic field sensor and the control unit are each part of a test device, i.e. the test device is identical to the test arrangement. In a likewise suitable second variant, on the other hand, the magnetic field sensor and the control unit are arranged separately from one another. The magnetic field sensor is then part of a test device, but the control unit is not. The control unit is, for example, a control unit of the hearing aid or a control unit of an additional external device.

Die Messung an sich unterscheidet sich dabei grundsätzlich nicht von der Messung mit einem Magnetfeldsensor im Hörgerät. Zur Charakterisierung des Hörers wird das Hörgerät in die Nähe der Testanordnung, genauer der Testvorrichtung gebracht und dann eine Magnetfeldmessung gestartet. Eine solche Testanordnung eignet sich besonders auch zur Verwendung bei einem Audiologen, z.B. im Rahmen einer Fitting Session.The measurement itself does not fundamentally differ from the measurement with a magnetic field sensor in the hearing aid. To characterize the listener, the hearing aid is brought into the vicinity of the test arrangement, more precisely the test device, and a magnetic field measurement is then started. Such a test arrangement is particularly suitable for use by an audiologist, e.g. as part of a fitting session.

Beispiele für eine Testvorrichtung, welche identisch mit der Testanordnung ist, sind eine Ladestation oder eine Basisstation für das Hörgerät oder eine Fernbedienung. Ganz besonders vorteilhaft ist die Verwendung eines Smartphones als Testvorrichtung, welches zweckmäßigerweise mit einer entsprechenden Software bestückt ist, um die Magnetfeldmessung und die Bestimmung des Antwortverhaltens durchzuführen.Examples of a test device which is identical to the test arrangement are a charging station or a base station for the hearing aid or a remote control. It is particularly advantageous to use a smartphone as a test device, which is expediently equipped with appropriate software in order to carry out the magnetic field measurement and the determination of the response behavior.

Bevorzugt ist eine Ausgestaltung, bei welcher die Testvorrichtung ein Audioschuh ist, welcher insbesondere als zusätzlicher Sensor mit dem Hörgerät verbunden wird. Der Audioschuh ist auf das Hörgerät, genauer auf dessen Gehäuse, aufsetzbar und wird vom Anwender zusammen mit dem Hörgerät getragen. Die Testvorrichtung ist dabei also als Adapter konzipiert. In einer vorteilhaften Ausgestaltung ist die Testvorrichtung als eigenständiges Modul konzipiert und weist ein Drahtlossystem, d.h. d.h. ein wireless system, auf, um mit dem Hörgerät zu kommunizieren.An embodiment is preferred in which the test device is an audio shoe, which is connected to the hearing aid in particular as an additional sensor. The audio shoe can be placed on the hearing aid, more precisely on its housing, and is worn by the user together with the hearing aid. The test device is designed as an adapter. In an advantageous embodiment, the test device is designed as an independent module and has a wireless system, i.e. a wireless system, in order to communicate with the hearing aid.

Besonders geeignet ist auch eine Ausgestaltung, bei welcher die Testvorrichtung ein Telefonspulenschuh ist, welcher als ein Adapter auf das Hörgerät aufsetzbar ist, und bei welcher der Magnetfeldsensor eine Telefonspule - insbesondere wie oben beschrieben - ist, welche in dem Telefonspulenschuh angeordnet ist. Die Steuereinheit ist hierbei vorzugsweise außerhalb des Telefonspulenschuhs angeordnet, also kein Teil von diesem. Vorzugsweise ist die Steuereinheit eine Steuereinheit des Hörgeräts. Der Telefonspulenschuh ist insbesondere ähnlich dem oben beschriebenen Audioschuh als Adapter konzipiert, welcher das Hörgerät nachträglich mit einer Telefonspule ausstattet. Der Telefonspulenschuh wird vom Anwender insbesondere im normalen Betrieb des Hörgeräts getragen.An embodiment is also particularly suitable in which the test device is a telephone coil shoe, which can be placed on the hearing aid as an adapter, and in which the magnetic field sensor is a telephone coil - in particular as described above - which is arranged in the telephone coil shoe. In this case, the control unit is preferably arranged outside the telephone coil shoe, that is to say not a part of it. The control unit is preferably a control unit of the hearing aid. The telephone coil shoe is designed in particular, similar to the audio shoe described above, as an adapter which retrofits the hearing aid with a telephone coil. The telephone coil shoe is worn by the user in particular during normal operation of the hearing aid.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen jeweils schematisch:

Fig. 1
ein Hörgerät mit integriertem Magnetfeldsensor,
Fig. 2
eine Testvorrichtung mit Magnetfeldsensor und ein Hörgerät,
Fig. 3
unterschiedliches Antwortverhalten eines Hörers,
Fig. 4
Magnetfeldmessungen zu den Antwortverhalten aus Fig. 3, und
Fig. 5
Impedanzmessungen zu den Antwortverhalten aus Fig. 3.
Exemplary embodiments of the invention are explained in more detail below with reference to a drawing. They each show schematically:
Fig. 1
a hearing aid with an integrated magnetic field sensor,
Fig. 2
a test device with a magnetic field sensor and a hearing aid,
Fig. 3
different response behavior of a listener,
Fig. 4
Magnetic field measurements to the response behavior Fig. 3 , and
Fig. 5
Impedance measurements to the response behavior Fig. 3 .

In Fig. 1 ist ein Hörgerät 2 dargestellt, welches zur Versorgung eines hörgeschädigten Anwenders dient. Das Hörgerät 2 weist eine Anzahl von hier zwei Mikrofonen 4 auf, mittels welcher Schallsignale aus der Umgebung aufgenommen werden und zu elektrischen Audiosignalen A gewandelt werden. Die Audiosignale A werden an eine Steuereinheit 6 weitergeleitet und dort entsprechend den Bedürfnissen des Anwenders modifiziert, üblicherweise verstärkt. Die modifizierten Audiosignale A werden von der Steuereinheit 6 an einen Hörer 8 weitergegeben, welcher die Audiosignale A wieder in Schallsignale S umwandelt und ausgibt.In Fig. 1 a hearing aid 2 is shown, which is used to supply a hearing-impaired user. The hearing aid 2 has a number of here two microphones 4, by means of which sound signals from the environment are picked up and converted into electrical audio signals A. The audio signals A are forwarded to a control unit 6, where they are modified, usually amplified, in accordance with the needs of the user. The modified audio signals A are passed on by the control unit 6 to a receiver 8, which converts the audio signals A back into sound signals S and outputs them.

Das Hörgerät 2 ist vorliegend ein BTE-Hörgerät, mit einem Gehäuse 10, welches vom Anwender hinter dem Ohr getragen wird, und mit einem Schallschlauch 12, über welchen die Schallsignale S vom Hörer 8 ausgehend zum Ohr geleitet werden. Alternativ ist das Hörgerät 2 ein RIC-Hörgerät, bei welchem das Gehäuse 10 ebenfalls hinter dem Ohr getragen wird, wobei jedoch der Hörer 8 in das Ohr eingesetzt wird und der Schallschlauch 12 dann durch ein Kabel ersetzt ist. Wiederum alternativ ist das Hörgerät 2 ein ITE-Hörgerät, welches vollständig in das Ohr eingesetzt wird. Weitere alternative Ausgestaltungen für das Hörgerät 2 sind ebenfalls geeignet.In the present case, the hearing aid 2 is a BTE hearing aid, with a housing 10, which is worn by the user behind the ear, and with a sound tube 12, via which the sound signals S are conducted from the listener 8 to the ear. Alternatively, the hearing aid 2 is a RIC hearing aid in which the housing 10 is also worn behind the ear, but the receiver 8 is inserted into the ear and the sound tube 12 is then replaced by a cable. Again as an alternative, the hearing aid 2 is an ITE hearing aid which is inserted completely into the ear. Further alternative configurations for the hearing aid 2 are also suitable.

Beim Betrieb des Hörers 8, d.h. bei der Umwandlung eines Audiosignals A in ein Schallsignal S wird ein Magnetfeld M erzeugt, welches in Fig. 1 zwecks Visualisierung lediglich skizzenhaft eingezeichnet ist. Das Magnetfeld M ergibt sich aus der allgemeinen Funktionsweise des Hörers 8, bei dessen Betrieb sich ein zeitlich variierendes elektrisches Wechselfeld ergibt, welches einem zeitlich variierenden Strom entspricht, welcher wiederum das Magnetfeld M erzeugt. Das erzeugte Magnetfeld M wird mittels eines Magnetfeldsensors 14 gemessen. Dieser gibt dann ein Messsignal U, U' aus, beispielsweise eine Spannung, welche proportional zum Magnetfeld M ist. Auf der Grundlage des gemessenen Magnetfelds M, also mittels des Messsignals U, wird ein Antwortverhalten V, V' des Hörers 8 bestimmt und dieser dadurch charakterisiert oder es wird ein Warnsignal ausgegeben oder beides. Dazu wird das Messsignal U, U' beispielsweise von der Steuereinheit 6 ausgewertet.When operating the earphone 8, ie when converting an audio signal A into a sound signal S, a magnetic field M is generated, which in Fig. 1 is only sketchily drawn in for the purpose of visualization. The magnetic field M results from the general mode of operation of the earpiece 8, during the operation of which a time-varying electrical alternating field results, which corresponds to a time-varying current, which in turn generates the magnetic field M. The generated magnetic field M is measured by means of a magnetic field sensor 14. This then outputs a measurement signal U, U ′, for example a voltage that is proportional to the magnetic field M. On the basis of the measured magnetic field M, that is, by means of the measurement signal U, a response behavior V, V 'of the receiver 8 is determined and the receiver 8 is characterized thereby, or a warning signal is output, or both. For this purpose, the measurement signal U, U ′ is evaluated by the control unit 6, for example.

Im Ausführungsbeispiel der Fig. 1 wird das Magnetfeld M in der Nähe des Hörers 8 gemessen. Dies ist jedoch nicht zwingend. Da jedes elektrische Wechselfeld naturgemäß auch ein Magnetfeld M erzeugt, wird ein entsprechendes Magnetfeld M auch entlang einer Energieversorgungsleitung 16 und in der Nähe einer Energieversorgung 18 erzeugt. Auf eine explizite Darstellung dieses Effekts in Fig. 1 wurde der Übersichtlichkeit halber verzichtet. Die Energieversorgung 18 ist in Fig. 1 eine Batterie. Diese ist mit dem Hörer 8 über die Energieversorgungsleitung 16 verbunden, um den Hörer 8 mit Energie zu versorgen. Statt den Magnetfeldsensor 14 in der Nähe des Hörers 8 anzuordnen, ist der Magnetfeldsensor 14 in einer nicht gezeigten Alternative dann in der Nähe der Energieversorgungsleitung 16 angeordnet.In the embodiment of Fig. 1 the magnetic field M is measured in the vicinity of the earpiece 8. However, this is not mandatory. Since each alternating electrical field naturally also generates a magnetic field M, a corresponding magnetic field M is also generated along an energy supply line 16 and in the vicinity of an energy supply 18. For an explicit representation of this effect in Fig. 1 was omitted for the sake of clarity. The power supply 18 is in Fig. 1 a battery. This is connected to the receiver 8 via the power supply line 16 in order to supply the receiver 8 with energy. Instead of arranging the magnetic field sensor 14 in the vicinity of the earpiece 8, the magnetic field sensor 14 is then arranged in an alternative not shown in the vicinity of the power supply line 16.

Der Magnetfeldsensor 14 ist in Fig. 1 beispielsweise ein Hall-Sensor oder eine einfache Leiterschleife. In einer nicht gezeigten Alternative wird als Magnetfeldsensor 14 eine Telefonspule verwendet, welche in das Hörgerät 2 integriert ist.The magnetic field sensor 14 is in Fig. 1 for example a Hall sensor or a simple conductor loop. In an alternative not shown, a telephone coil which is integrated in the hearing aid 2 is used as the magnetic field sensor 14.

In Fig. 1 ist der Magnetfeldsensor 14 in das Hörgerät 2 integriert. Dies ist jedoch für das zugrunde liegende Messprinzip nicht zwingend. Daher zeigt Fig. 2 eine Variante, bei welcher der Magnetfeldsensor 14 außerhalb des Hörgeräts 2 angeordnet ist, nämlich in einer Testvorrichtung 20, welche hier eine Ladestation oder eine Basisstation für das Hörgerät 2 ist und zugleich eine Testanordnung für das Hörgerät 2 bildet. Die Testvorrichtung 20 weist eine Steuereinheit 6 auf, an welche der Magnetfeldsensor 14 angeschlossen ist. Die Messung an sich unterscheidet sich dabei grundsätzlich nicht von der Messung mit einem Magnetfeldsensor 14 im Hörgerät 2. Zur Charakterisierung des Hörers 8 wird das Hörgerät 2 in die Nähe der Testvorrichtung 20 gebracht, z.B. wie in Fig. 2 gezeigt eingelegt, über den Hörer 8 ein Schallsignal S ausgegeben und dann eine Magnetfeldmessung gestartet.In Fig. 1 the magnetic field sensor 14 is integrated into the hearing aid 2. However, this is not mandatory for the underlying measurement principle. Hence shows Fig. 2 a variant in which the magnetic field sensor 14 is arranged outside the hearing aid 2, namely in a test device 20, which here is a charging station or a base station for the hearing aid 2 and at the same time forms a test arrangement for the hearing aid 2. The test device 20 has a control unit 6 to which the magnetic field sensor 14 is connected. The measurement itself does not fundamentally differ from the measurement with a magnetic field sensor 14 in the hearing aid 2. To characterize the listener 8, the hearing aid 2 is brought into the vicinity of the test device 20, for example as in FIG Fig. 2 is inserted, a sound signal S is output via the receiver 8 and a magnetic field measurement is then started.

Die Charakterisierung des Hörers 8 basiert auf der Erkenntnis, dass das vom Hörer 8 erzeugte Magnetfeld M auch das Antwortverhalten V, V' des Hörers 8 wiederspiegelt. Das Antwortverhalten V, V' ist maßgeblich durch die ausgegebene Leistung definiert und diese Leistung sowie das Magnetfeld M sind jeweils direkt vom Strom abhängig, welcher dem Hörer 8 zugeführt wird. Zusätzlich zur Abhängigkeit vom Audiosignal A ist das Antwortverhalten V, V' auch abhängig von der konkreten Umgebung, in welcher sich der Hörer 8 befindet, besonders von der Einbausituation, d.h. wie und wo der Hörer 8 im Hörgerät 2 montiert ist und mit welchen anderen Bauteilen der Hörer 8 verbunden ist. Beispielsweise bestimmen die Art und Länge des Schallschlauchs 12 das Antwortverhalten V, V'. Weiterhin ist das Antwortverhalten V, V' auch abhängig von der konkreten Verwendung des Hörgeräts 2 durch einen Anwender, insbesondere von der individuellen Trageweise und dem ebenfalls individuellen Kopplungsgrad zwischen Hörer 2 und Ohr des Anwenders. Zudem ist das Antwortverhalten V, V' auch insofern zeitabhängig, als dass sich die Umgebung und die Einbausituation über die Zeit verändern können, beispielsweise durch eine fortschreitende Verstopfung des Hörers 8 oder des Schallschlauchs 12 mit Cerumen oder durch einen Austausch des Schallschlauchs 12 oder durch andere Effekte.The characterization of the listener 8 is based on the knowledge that the magnetic field M generated by the listener 8 also reflects the response behavior V, V 'of the listener 8. The response behavior V, V 'is largely defined by the output power and this power and the magnetic field M are each directly dependent on the current which is supplied to the earpiece 8. In addition to the dependence on the audio signal A, the response behavior V, V 'is also dependent on the specific environment in which the earphone 8 is located, especially the installation situation, ie how and where the earphone 8 is mounted in the hearing aid 2 and with what other components the handset 8 is connected. For example, the type and length of the sound tube 12 determine the response behavior V, V '. Furthermore, the response behavior V, V 'is also dependent on the specific use of the hearing device 2 by a user, in particular on the individual wearing method and the likewise individual degree of coupling between the earpiece 2 and the user's ear. In addition, the response behavior V, V 'is also time-dependent insofar as the environment and the installation situation can change over time, for example due to a progressive clogging of the earpiece 8 or the sound tube 12 with cerumen or an exchange of the sound tube 12 or by others Effects.

In Fig. 3 sind zwei Antwortverhalten V, V' exemplarisch gezeigt. Das jeweilige Antwortverhalten V, V' ist definiert durch das Verhältnis der Leistungen des Audiosignals A und des resultierenden Schallsignals S. Das Antwortverhalten V, V' gibt demnach an, welche Ausgangsleistung der Hörer 8 für eine gegebene Eingangsleistung aufweist. Das Antwortverhalten V, V' ist frequenzabhängig, d.h. Audiosignale A gleicher Stärke aber unterschiedlicher Frequenz werden unter Umständen in unterschiedlich starke Schallsignale S umgewandelt. In Fig. 3 wurde das jeweilige Antwortverhalten V, V' dadurch ermittelt, dass Audiosignale A mit gleicher Leistung aber unterschiedlicher Frequenz mittels des Hörers 8 umgewandelt wurden und die Leistung des jeweils resultierenden Schallsignals S auf der Y-Achse gegen die Frequenz auf der X-Achse aufgetragen wurde. Die zwei Graphen sind für unterschiedlich lange Schallschläuche 12 erzeugt worden. Deutlich erkennbar ist, dass die Länge des Schallschlauchs 12 das Antwortverhalten V, V' ändert. In Fig. 3 ist dies besonders anhand der lokalen Maxima zu erkennen. Dadurch ist das Antwortverhalten V' gegenüber dem Antwortverhalten V geändert, einige der lokalen Maxima sind deutlich hin zu höheren Frequenzen verschoben. Führt nun beispielsweise das Antwortverhalten V zu einer bestimmten und gewollten Ausgabecharakteristik des Hörgeräts 2 insgesamt, so wird deutlich, dass das geänderte Antwortverhalten V' bei gleicher Ansteuerung des Hörers 8 durch die Steuereinheit 6 zu einer entsprechend veränderten Ausgabecharakteristik führen muss. Daher wird das gewollte Antwortverhalten V zu Beginn, z.B. in einer Fitting Session, als Soll-Antwortverhalten festgelegt und im normalen Betrieb des Hörgeräts dann oder in einer weiteren Fitting Session mit dem dann vorliegenden und möglicherweise abweichenden Antwortverhalten V' verglichen. Mit Kenntnis beider Antwortverhalten V, V' wird dann deren Unterschied ermittelt und die Ansteuerung des Hörers 8 derart geändert, dass das resultierende Antwortverhalten V dem Soll-Antwortverhalten entspricht. Eine Änderung wird z.B. durch zusätzlich Modifikation der Audiosignale A mittels der Steuereinheit 6 herbeigeführt.In Fig. 3 two response behaviors V, V 'are shown as examples. The respective response behavior V, V 'is defined by the ratio of the powers of the audio signal A and the resulting sound signal S. The response behavior V, V' accordingly indicates the output power of the listener 8 for a given input power. The response behavior V, V 'is frequency-dependent, ie audio signals A of the same strength but different frequencies are converted into sound signals S of different strengths under certain circumstances. In Fig. 3 the respective response behavior V, V 'was determined by converting audio signals A with the same power but different frequencies by means of the receiver 8 and plotting the power of the resulting sound signal S on the Y-axis against the frequency on the X-axis. The two graphs have been generated for sound tubes 12 of different lengths. It can be clearly seen that the length of the sound tube 12 has the response behavior V, V ' changes. In Fig. 3 this can be seen particularly on the basis of the local maxima. As a result, the response behavior V 'is changed compared to the response behavior V, and some of the local maxima are clearly shifted towards higher frequencies. If, for example, the response V leads to a specific and desired output characteristic of the hearing aid 2 as a whole, it becomes clear that the changed response V ′ must lead to a correspondingly modified output characteristic given the same control of the earpiece 8 by the control unit 6. The desired response behavior V is therefore set as the target response behavior at the beginning, for example in a fitting session, and then compared with the then present and possibly deviating response behavior V 'during normal operation of the hearing aid or in a further fitting session. With knowledge of the two response behaviors V, V ', their difference is then determined and the control of the receiver 8 is changed in such a way that the resulting response behavior V corresponds to the target response behavior. A change is brought about, for example, by additionally modifying the audio signals A by means of the control unit 6.

In Fig. 4 ist eine Simulation des Messsignals U, U' für das jeweilige Magnetfeld M der beiden Antwortverhalten V, V' aus Fig. 3. Im vorliegenden Fall weist das Hörgerät 2 eine Telefonspule auf, welche als Magnetfeldsensor 14 verwendet wird, und Fig. 4 zeigt die Messsignale U, U', welche von dem Magnetfeldsensor 14 erzeugt werden. Deutlich erkennbar sind die Unterschiede zwischen den beiden Messsignalen U, U' sowie deren Korrelation zu den Antwortverhalten V, V'. Insbesondere stellen die Messsignale U, U' jeweils die erste Ableitung des jeweiligen Antwortverhaltens V, V' dar.In Fig. 4 is a simulation of the measurement signal U, U 'for the respective magnetic field M of the two responses V, V' from Fig. 3 . In the present case, the hearing aid 2 has a telephone coil which is used as a magnetic field sensor 14, and Fig. 4 shows the measurement signals U, U ′ which are generated by the magnetic field sensor 14. The differences between the two measurement signals U, U 'and their correlation to the response behavior V, V' can be clearly seen. In particular, the measurement signals U, U 'each represent the first derivative of the respective response behavior V, V'.

Zum Vergleich ist in Fig. 5 eine Simulation von Impedanzmessungen I, I' zu den beiden Antwortverhalten V, V' aus Fig. 3 gezeigt. Deutlich erkennbar ist, dass die Signalstärke, welche jeweils auf der Y-Achse aufgetragen ist, in Fig. 4 deutlich größer ist. Die Dynamik der Messsignale U, U' ist demnach deutlich größer als die Dynamik der Impedanzmessungen I, I'. Die Magnetfeldmessung führt also zu einem deutlich genaueren Ergebnis, auch können kleinste Änderungen noch zuverlässig gemessen werden.For comparison, in Fig. 5 a simulation of impedance measurements I, I 'for the two responses V, V' Fig. 3 shown. It can be clearly seen that the signal strength, which is plotted on the Y-axis in each case, in Fig. 4 is significantly larger. The dynamics of the measurement signals U, U 'is accordingly significantly greater than the dynamics of the impedance measurements I, I'. The magnetic field measurement therefore leads to a significantly more precise result, even the smallest changes can still be measured reliably.

In einer nicht gezeigten Ausgestaltung wird das Antwortverhalten V, V' mittels eines adaptiven Filters parametrisiert, welcher z.B. ein Bestandteil der Steuereinheit 6 ist. Das Magnetfeld M wird gemessen und in Abhängigkeit dessen wird ein Messsignal U, U' erzeugt, welches dem Filter als ein Filter-Eingangssignal zugeführt wird. Der Filter weist eine Filterfunktion auf, welche durch eine Anzahl an Filterparametern parametrisiert ist. Dem Filter wird nun das Messsignal U, U' als Filter-Eingangssignal zugeführt, woraufhin der Filter die Filterfunktion automatisch an das Filter-Eingangssignal anpasst, um dieses abzubilden. Dabei werden die Filterparameter entsprechend verändert. Der Filter führt die Anpassung und Veränderung der Filterparameter automatisch durch. Die Filterparameter ändern sich somit bei einer Änderung des Magnetfelds M, d.h. auch bei einer Änderung des Antwortverhalten V, V', sodass das Antwortverhalten V, V' vorteilhaft mittels der Filterparameter parametrisiert ist und dadurch auch bestimmt ist. Anstatt also das Antwortverhalten V, V' im Detail zu messen, werden zur Bestimmung des Antwortverhalten V, V' lediglich die Filterparameter genutzt.In an embodiment not shown, the response behavior V, V ′ is parameterized by means of an adaptive filter, which is a component of the control unit 6, for example. The magnetic field M is measured and, as a function of this, a measurement signal U, U 'is generated, which is fed to the filter as a filter input signal. The filter has a filter function which is parameterized by a number of filter parameters. The measurement signal U, U 'is now fed to the filter as a filter input signal, whereupon the filter automatically adapts the filter function to the filter input signal in order to map it. The filter parameters are changed accordingly. The filter automatically adjusts and changes the filter parameters. The filter parameters therefore change with a change in the magnetic field M, ie also with a change in the response behavior V, V ', so that the response behavior V, V' is advantageously parameterized by means of the filter parameters and is thereby also determined. Instead of measuring the response behavior V, V 'in detail, only the filter parameters are used to determine the response behavior V, V'.

BezugszeichenlisteList of reference symbols

22
HörgerätHearing aid
44th
Mikrofonmicrophone
66th
SteuereinheitControl unit
88th
HörerListener
1010
Gehäusecasing
1212th
SchallschlauchSound tube
1414th
MagnetfeldsensorMagnetic field sensor
1616
EnergieversorgungsleitungPower supply line
1818th
Energieversorgungpower supply
2020th
TestvorrichtungTest device
AA.
AudiosignalAudio signal
I, I'I, I '
ImpedanzmessungImpedance measurement
MM.
MagnetfeldMagnetic field
SS.
SchallsignalSound signal
U, U'U, U '
MesssignalMeasurement signal
V, V'V, V '
AntwortverhaltenResponse behavior

Claims (13)

  1. Method for characterizing a receiver (8) in a hearing device (2),
    - wherein the receiver (8) is embedded in an environment and has a response behavior (V, V'), which is influenced by the environment and which indicates which output power the receiver (8) has for a given input power,
    - wherein the receiver (8) converts an electrical audio signal (A) into a sound signal (S) and thereby generates a magnetic field (M),
    - wherein the magnetic field (M) is measured by means of a magnetic field sensor (14),
    - wherein the receiver (8) is characterized by determining the response behavior (V, V') of the receiver (8) on the basis of the measured magnetic field (M).
  2. Method according to the preceding claim,
    characterized in
    that the environment is determined by an installation situation of the receiver (8) and has an element, which is a component of the hearing device (2), wherein the component is connected to the receiver (8) and influences the response behavior (V, V').
  3. Method according to one of the preceding claims,
    characterized in
    that the environment is determined by a usage situation of the receiver (8), wherein the usage situation determines the response behavior of the receiver (8) and is selected from a set of situations comprising: a wearing mode of the hearing device (2), a degree of coupling between the receiver (8) and an ear of the user, a degree of clogging by earwax.
  4. Method according to one of the preceding claims,
    characterized in
    that the response behavior (V, V') is compared as an actual response behavior with a desired response behavior, wherein a difference is determined between the actual response behavior and the desired response behavior and the hearing device (2) is adjusted based on the difference.
  5. Method according to the preceding claim,
    characterized in
    that the hearing device (2) is adjusted by modifying the audio signal (A) by means of the control unit (6) in such a way that the difference is at least partially compensated.
  6. Method according to one of the preceding claims,
    characterized in
    that the response behavior (V, V') is compared as an actual response behavior with a desired response behavior, wherein a difference is determined between the actual response behavior and the desired response behavior, and a warning signal is output as a function of the difference.
  7. Method according to one of the preceding claims,
    characterized in
    that the response behavior (V, V') is parameterized by means of an adaptive filter by measuring the magnetic field (M) and, as a function thereof, generating a measurement signal (U, U'), which is fed to the filter as a filter input signal.
  8. Method according to one of the preceding claims,
    characterized in
    that the magnetic field sensor (14) is arranged directly at the receiver (8), in particular at a distance of at most 3 cm from the receiver (8), and that the magnetic field (M) is measured directly at the receiver (8).
  9. Method according to one of the preceding claims,
    characterized in
    that the hearing device (2) has a power supply (18), which is connected to the receiver (8) by means of a power supply line (16), for supplying power to the receiver (8), and that the magnetic field sensor (14) is arranged directly at the power supply line (16), in particular at a distance of at most 5 mm from the power supply line (16), and that the magnetic field (M) is measured directly at the power supply line (16).
  10. Method according to one of the preceding claims,
    characterized in
    that the hearing device (2) has a telecoil, which is used as the magnetic field sensor (14).
  11. Hearing device (2), which has a receiver (8), for converting an electrical audio signal (A) into a sound signal (S) under generation of a magnetic field (M), and which has a magnetic field sensor (14), and which has a control unit (6) that is designed in such a way that
    - the magnetic field (M) is measured by means of the magnetic field sensor (14),
    - the receiver (8) is characterized by determining a response behavior (V, V') of the receiver (8) on the basis of the measured magnetic field (M), wherein the response behavior (V, V') indicates which output power the receiver (8) has for a given input power.
  12. Test arrangement, which is designed for testing a hearing device (2) and which has a control unit (6) and a test device (20) that has a magnetic field sensor (14), wherein the hearing device (2) has a receiver (8), for converting an electrical audio signal (A) into a sound signal (S) under generation of a magnetic field (M), wherein the control unit (6) is designed in such a way that
    - the magnetic field (M) is measured by means of the magnetic field sensor (14)
    - the receiver (8) is characterized by determining a response behavior (V, V') of the receiver (8) on the basis of the measured magnetic field (M), wherein the response behavior (V, V') indicates which output power the receiver (8) has for a given input power.
  13. Test arrangement according to the preceding claim,
    characterized in
    that the test device (20) is a telecoil shoe, which can be placed as an adapter on the hearing device (2), and
    that the magnetic field sensor (14) is a telecoil, which is arranged in the telecoil shoe.
EP18171328.0A 2017-06-09 2018-05-08 Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device Active EP3413588B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017209816.3A DE102017209816B3 (en) 2017-06-09 2017-06-09 A method for characterizing a listener in a hearing aid, hearing aid and test device for a hearing aid

Publications (2)

Publication Number Publication Date
EP3413588A1 EP3413588A1 (en) 2018-12-12
EP3413588B1 true EP3413588B1 (en) 2021-09-22

Family

ID=62143040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18171328.0A Active EP3413588B1 (en) 2017-06-09 2018-05-08 Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device

Country Status (7)

Country Link
US (1) US10575105B2 (en)
EP (1) EP3413588B1 (en)
JP (1) JP6657307B2 (en)
CN (1) CN109040930B (en)
AU (1) AU2018203365A1 (en)
DE (1) DE102017209816B3 (en)
DK (1) DK3413588T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209720B3 (en) 2018-06-15 2019-07-04 Sivantos Pte. Ltd. Method for identifying a handset, hearing system and earpiece set
US11178499B2 (en) * 2020-04-19 2021-11-16 Alpaca Group Holdings, LLC Systems and methods for remote administration of hearing tests

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7729996A (en) * 1995-11-20 1997-06-11 Resound Corporation An apparatus and method for monitoring magnetic audio systems
JP4312389B2 (en) 1998-11-09 2009-08-12 ヴェーデクス・アクティーセルスカプ Method for measuring, correcting or adjusting the output signal of a hearing aid having a model processor in the field, and a hearing aid for implementing the method
US20030163021A1 (en) * 2002-02-26 2003-08-28 Miller Douglas Alan Method and system for external assessment of hearing aids that include implanted actuators
US20030161481A1 (en) * 2002-02-26 2003-08-28 Miller Douglas Alan Method and system for external assessment of hearing aids that include implanted actuators
US7447325B2 (en) * 2002-09-12 2008-11-04 Micro Ear Technology, Inc. System and method for selectively coupling hearing aids to electromagnetic signals
AU2003297233A1 (en) * 2003-12-16 2005-07-14 Knowles Electronics, Llc Integrated circuit for hearing aids including a magnetic field sensor
US7949144B2 (en) 2006-06-12 2011-05-24 Phonak Ag Method for monitoring a hearing device and hearing device with self-monitoring function
DE102007039455A1 (en) * 2007-08-21 2009-02-26 Siemens Audiologische Technik Gmbh Hearing aid system with magnetic field sensors
US9025803B2 (en) 2011-03-18 2015-05-05 Starkey Laboratories, Inc. Hearing aid magnetic sensor with counter windings
US9185501B2 (en) 2012-06-20 2015-11-10 Broadcom Corporation Container-located information transfer module
US9648410B1 (en) 2014-03-12 2017-05-09 Cirrus Logic, Inc. Control of audio output of headphone earbuds based on the environment around the headphone earbuds
TW201537998A (en) * 2014-03-27 2015-10-01 Unlimiter Mfa Co Ltd Hearing aid
WO2016058636A1 (en) * 2014-10-15 2016-04-21 Widex A/S Method of operating a hearing aid system and a hearing aid system
JP6343397B2 (en) 2014-10-15 2018-06-13 ヴェーデクス・アクティーセルスカプ Hearing aid system operating method and hearing aid system
JP6295187B2 (en) * 2014-11-21 2018-03-14 リオン株式会社 Hearing aid checker
US10157037B2 (en) * 2016-03-31 2018-12-18 Bose Corporation Performing an operation at a headphone system
US9924255B2 (en) * 2016-03-31 2018-03-20 Bose Corporation On/off head detection using magnetic field sensing

Also Published As

Publication number Publication date
JP6657307B2 (en) 2020-03-04
US20180359573A1 (en) 2018-12-13
DK3413588T3 (en) 2021-12-13
CN109040930A (en) 2018-12-18
AU2018203365A1 (en) 2019-01-03
EP3413588A1 (en) 2018-12-12
DE102017209816B3 (en) 2018-07-26
CN109040930B (en) 2021-04-20
US10575105B2 (en) 2020-02-25
JP2019004462A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
EP2180726B2 (en) Sound localization in binaural hearing aids
EP2104376B1 (en) Method for active occlusion reduction with plausibility test and corresponding hearing aid
EP3222057B1 (en) Method and apparatus for fast recognition of a user's own voice
EP2200346B1 (en) Hearing-aid device with automatic algorithm switching
EP1926343B1 (en) Hearing aid with automatic deactivation and a corresponding method
EP2178313B1 (en) Method and hearing aid for parameter adaption by determining a speech intelligibility threshold
EP2043388B1 (en) Fully automatic on-off switching for hearing aids
EP2506603A2 (en) Hearing aid with a directional microphone system and method for operating such a hearing aid device with said directional mocrophone system
DE102007017761A1 (en) Method for adapting a binaural hearing aid system
EP3413588B1 (en) Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device
EP1898670B1 (en) Method and device for determining an effective vent
EP3275211B1 (en) Method for operating an electro-acoustic system and electro-acoustic system
DE102010043496B3 (en) Hearing aid and method for operating a hearing aid with a humidity sensor
EP2822300B1 (en) Detection of listening situations with different signal sources
DE102014217085A1 (en) Hearing aid device and method for operating the hearing aid with a communication device
EP2053877A1 (en) Method and device for adapting a hearing aid using DPOAE
EP3582512A1 (en) Method for the identification of an earpiece, hearing system and earpiece set
EP2793488B1 (en) Binaural microphone adjustment by means of the user's own voice
EP1696700B2 (en) Hearing aid with user-controlled automatic calibration system
EP2658289A1 (en) Method for controlling an alignment characteristic and hearing aid
WO2012019636A1 (en) Method for operating a hearing aid and corresponding hearing aid
EP2590437B1 (en) Periodic adaptation of a feedback suppression device
DE102010007336A1 (en) Method for compensating a feedback signal and hearing device
DE102008055726A1 (en) Hearing device e.g. concha-hearing device, for assisting hearing-impaired person, has microphone location effect-filter compensating positions of microphones, such that receiving signal is not influenced by microphone location effect-filter
DE102009018425A1 (en) Hearing device e.g. behind-the-ear hearing aid, has telephone coil for receiving telephone signal, and suppression circuit directly connected to output of telephone coil or transmission coil before signal processing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190213

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007138

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1433285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007138

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220508

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 6

Ref country code: DK

Payment date: 20230522

Year of fee payment: 6

Ref country code: DE

Payment date: 20230519

Year of fee payment: 6

Ref country code: CH

Payment date: 20230602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180508