EP3275211B1 - Method for operating an electro-acoustic system and electro-acoustic system - Google Patents

Method for operating an electro-acoustic system and electro-acoustic system Download PDF

Info

Publication number
EP3275211B1
EP3275211B1 EP16712305.8A EP16712305A EP3275211B1 EP 3275211 B1 EP3275211 B1 EP 3275211B1 EP 16712305 A EP16712305 A EP 16712305A EP 3275211 B1 EP3275211 B1 EP 3275211B1
Authority
EP
European Patent Office
Prior art keywords
signal
pressure
correction filter
eardrum
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16712305.8A
Other languages
German (de)
French (fr)
Other versions
EP3275211A1 (en
Inventor
Stephan Ernst
Marko HIIPAKKA
Birger Kollmeier
Florian DENK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Von Ossietzky Universitaet Oldenburg
Original Assignee
Carl Von Ossietzky Universitaet Oldenburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Von Ossietzky Universitaet Oldenburg filed Critical Carl Von Ossietzky Universitaet Oldenburg
Publication of EP3275211A1 publication Critical patent/EP3275211A1/en
Application granted granted Critical
Publication of EP3275211B1 publication Critical patent/EP3275211B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/05Electronic compensation of the occlusion effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception

Definitions

  • the invention relates to a method for operating an electroacoustic system in which an electroacoustic device for at least partially occluding an auditory canal is arranged at least partially on an ear.
  • the invention also relates to an electroacoustic system which is operated according to such a method.
  • a transparent hearing aid is out of the document WO 2014/070825 A1 known.
  • the hearing system has a signal processing device. Filters are used to correct and modify the transmission characteristics in order to achieve acoustic transparency.
  • the document US 2006/0002574 A1 describes a canal hearing device that is implemented with a functionality that offers acoustic transparency as well as an energy-saving function so that a user can wear the device during the sleep phase or during inactivity without significant loss of the normal unsupported reaction in the ear canal.
  • the transparent mode has an in-situ acoustic transmission function that compensates for the insertion loss caused by the presence of a hearing aid in the ear canal.
  • the object on which the invention is based is achieved by means of a method and an electroacoustic system of the type mentioned at the beginning, with a signal processing device being used to process a signal arriving at the device, and in which at least one correction unit of the signal processing device is used to modify the signal arriving at the device is used, and by means of the at least one correction unit, an outgoing signal from the device is generated to achieve acoustic transparency, in which a received signal is generated based on the outgoing signal on the eardrum, which corresponds to a free-ear received signal on the eardrum with a free ear canal is adapted without the device, wherein the at least one correction unit has a first correction filter (A) and a second correction filter (B), and the first correction filter (A) of the at least one correction unit has the second correction turfilter (B) is connected upstream of the at least one correction unit, wherein the incoming signal is first modified by means of the first correction filter (A) to achieve the acoustic transparency, a total pressure (
  • the advantage here is that ambient noises can be perceived in sufficient quality despite an at least partially occluded ear canal.
  • the method and / or the electroacoustic system make it possible to monitor, control and / or manipulate the received signals, preferably a frequency response, on the eardrum.
  • This allows the electroacoustic system to be operated in an acoustic transparency mode.
  • the perception of ambient noise by a person using the electroacoustic system is preferably not, at most slightly and / or to a non-disruptive extent, or is not disturbed or changed due to the acoustic transparency.
  • the person using the electroacoustic system preferably experiences a sound perception, in particular approximately as if with a free auditory canal.
  • the method and / or the electroacoustic system enables a more pleasant, in particular natural, perception of ambient noises in the case of a partially and / or completely occluded ear canal.
  • the electroacoustic system can enable a large number of additional functions, for example in connection with entertainment electronics, with hearing protection, with a hearing aid and / or with a communication device, in particular a mobile phone and / or a smartphone.
  • a hearing aid can additionally be provided, preferably if required.
  • the received signal generated on the eardrum can be amplified and / or attenuated in comparison to the signal arriving at the device.
  • the acoustic transparency is preferably designed as a perceptual acoustic transparency.
  • perceptual and / or acoustic transparency means that there is no audible difference to a free-ear signal or a free-ear reception signal.
  • perceptual and / or acoustic transparency can be achieved without an absolute physical match between the received signal generated on the eardrum and a free-ear received signal in the case of a free auditory canal without having to reach the device. It is preferably sufficient if a person using the device has the perception that the received signal generated with the device corresponds in perceptual terms to the free-ear received signal in the case of a free auditory canal without the device.
  • the correction unit has a first correction filter and a second correction filter.
  • the first correction filter of the signal processing device is used to achieve the acoustic transparency.
  • the second correction filter of the signal processing device is used to modify the Device outgoing, in particular acoustic, signal used.
  • the first correction filter and / or the second correction filter can be designed as, in particular digital, electrical circuits.
  • the correction unit, the first correction filter and / or the second correction filter can have at least one analog-to-digital converter and / or at least one digital-to-analog converter.
  • the first correction filter of the correction unit is connected upstream of the second correction filter of the correction unit.
  • the incoming signal is first modified by means of the first correction filter to achieve acoustic transparency.
  • the changed incoming and / or incoming signal is then modified by means of the second correction filter to filter out transmission effects in the area from the device to the eardrum due to the at least partial occlusion of the auditory canal by means of the device.
  • a received signal is generated which corresponds to the free-ear received signal with a free auditory canal without the device.
  • a disruptive influence of the device at least partially occluding the auditory canal on the perception of ambient noises can thus be reduced and / or compensated for.
  • a received signal is generated which is adapted to and / or corresponds to a free-ear received signal in this area of the auditory canal section with a free auditory canal without the device .
  • the incoming, in particular acoustic, signal is fed to the signal processing device as an incoming electrical signal by means of an external sound receiver assigned to the device and directed away from the eardrum and outward.
  • At least one additional external acoustic and / or electrical signal is preferably fed to the signal processing device, in particular by means of an additional external sound receiver and / or a direct line connection to an additional external signal source.
  • the outer sound receiver and / or the additional outer sound receiver are each designed as a microphone.
  • the additional external acoustic and / or electrical signal can also be modified by means of the correction unit.
  • a negative feedback loop can be implemented by means of the electroacoustic system.
  • the external sound receiver and the additional external sound receiver are preferably used to implement the negative feedback loop.
  • a calibration is carried out before the electroacoustic system is used.
  • a first correction filter and / or a second correction filter is determined as part of the calibration.
  • the calibration preferably takes place after each insertion of the device for at least partially occluding the auditory canal.
  • the calibration is particularly preferably carried out by means of an external sound source and / or a calibration control.
  • a start calibration for determining the first correction filter and the second correction filter, in particular by means of an external sound source can first be carried out.
  • a single correction filter in particular the first correction filter or the second correction filter, is recalibrated as part of a partial calibration.
  • Headphones which are placed on an auricle with an inserted electroacoustic device, can serve as an external sound source for calibration.
  • the use of a signal that hits the ear from the outside is particularly advantageous for detecting the spatial resolution of an incoming signal.
  • the calibration control can be in the device, an earpiece, a computer and / or a smartphone.
  • the calibration control has a processor.
  • the calibration controller can be connected to the electroacoustic device by means of a cable, a wireless connection, a near field communication and / or Bluetooth.
  • An individual calibration is preferably carried out for the respective person using the device and / or after each insertion of the device into the auditory canal.
  • a calibration and / or setting of the first and / or second correction filter is carried out during ongoing operation. This enables readjustment to be carried out.
  • a readjustment is preferably carried out if at least one predetermined triggering parameter is given. For example, readjustment can take place at specified times or at specified time intervals. Alternatively or additionally, a readjustment can be initialized if at least one predetermined and monitored trigger parameter is reached, undershot or exceeded.
  • the correction unit, the first correction filter and / or the second correction filter is recalibrated and / or adjusted during operation.
  • a continuous and / or discontinuous calibration, in particular in connection with a start and / or initial calibration, can thus take place.
  • a first correction filter of the correction unit is preferably determined on the basis of a first model and / or a second correction filter of the correction unit on the basis of a second model.
  • the first model and / or the second model is preferably based on the Thévenin equivalent and / or the Norton equivalent. These models are tried and tested and enable a sufficiently precise estimate of the relevant parameters.
  • the total pressure P tot of an external acoustic signal within the auditory canal is made up of two parts for determining a first correction filter A of the correction unit.
  • a first part of the total pressure P tot is preferably a passage pressure P HT measured by means of an internal sound receiver assigned to the device and facing an eardrum of the ear.
  • the inner sound receiver can be designed as a microphone.
  • the passage pressure P HT is a sound pressure of an external acoustic signal after passage through the auditory canal at least partially occluded with the device.
  • a second part of the total pressure P tot is preferably a pressure P EP emitted by means of a sound generator assigned to the device and facing the eardrum.
  • the sound generator can be designed as a loudspeaker and / or receiver.
  • At least one further and / or additional sound generator can be provided.
  • the at least one additional sound generator can be arranged at an end facing the eardrum or an end of the device facing away from the eardrum.
  • a pressure is preferably to be understood as a pressure frequency.
  • a pressure frequency response at a sound receiver and / or an eardrum results from a pressure frequency of a signal source, a noise source and / or a sound generator.
  • a total pressure P tot of an external acoustic signal within the auditory canal, which is at least partially occluded with the device is equated with an expected target pressure P T, E, taking into account the first correction filter (A).
  • a fine adjustment of the first correction filter A is carried out.
  • At least one predetermined calibration signal and / or a predetermined noise is preferably used.
  • the calibration signal can be in the form of white noise.
  • a pressure P E measured by means of an inner sound receiver assigned to the device and facing an eardrum of the ear is compared with a target pressure P T, E at the position of the inner sound receiver.
  • the first correction filter A can be iteratively adapted in the event of a deviation of the measured pressure P E from the target pressure P T, E until a predetermined convergence criterion is reached.
  • a pressure P E measured by means of an inner sound receiver assigned to the device and facing an ear drum is equated with an expected target pressure P T, E at the inner sound receiver, the expected target pressure P T, E at the inner sound receiver is estimated as a pressure at the location of the inner sound receiver with a free ear canal without the device.
  • the target pressure P T, E to be expected at the inner sound receiver with a free auditory canal can be estimated by means of an electroacoustic model, in particular with a Thevenin pressure source model and / or a source impedance model.
  • an estimation of the acoustic received signal is carried out on the eardrum.
  • a pressure on the eardrum P D is preferably estimated by means of a pressure P E measured on the inner sound receiver using an electroacoustic model of the auditory canal.
  • the second correction filter B can be determined with knowledge of the pressure at the eardrum P D and the pressure P E measured at the inner sound receiver.
  • the electroacoustic system with the electroacoustic device for at least partially occluding an auditory canal has a signal processing device for processing a signal arriving at the device.
  • the signal processing device has at least one correction unit for modifying the signal arriving at the device.
  • the correction unit is used to provide and / or generate an outgoing signal from the device, which serves to achieve acoustic transparency, in which a received signal can be generated on the basis of the outgoing signal on the eardrum that corresponds to a free-ear received signal on the eardrum adapted to a free ear canal without the device is.
  • the correction unit has a first correction filter and a second correction filter.
  • the first correction filter (A) of the correction unit is connected upstream of the second correction filter (B) of the correction unit, the incoming signal first being modified by means of the first correction filter (A) to achieve acoustic transparency.
  • the changed incoming signal is then modified by means of the second correction filter (B) to filter out transmission effects in the area from the device (10) to the eardrum due to the at least partial occlusion of the auditory canal by means of the device (10).
  • the use of a method according to the invention and / or an electroacoustic system according to the invention in connection with hearing protection, in-ear headphones and / or a hearing aid is particularly advantageous.
  • the method according to the invention and / or the electroacoustic system can be used in connection with entertainment electronics and / or with a communication device, in particular a mobile phone and / or a smartphone.
  • the method and / or the electroacoustic system is integrated in an existing system and / or an existing device, such as, for example, in a hearing aid, an in-ear headphone, an in-the-ear hearing aid , a hearing aid, a behind-the-ear device and / or a communication device.
  • An external and / or additional, in particular acoustic, signal can be mixed with an ambient signal of an ambient noise. In particular, the mixing takes place after the first correction filter has been applied to the incoming signal and / or the ambient signal.
  • the signal processing device can be integrated in an in-the-ear device, a behind-the-ear device, a computer and / or a communication device, in particular in a mobile phone and / or smartphone.
  • the inner sound receiver, the outer sound receiver and / or the sound generator are preferably connected by means of a line to an in-the-ear device, a behind-the-ear device, a computer and / or a communication device, in particular in a mobile phone and / or smartphone , connected.
  • the acoustic transparency can enable a perception of ambient noises that is at least largely familiar to a person and / or spatial hearing in the case of a partially occluded ear canal.
  • the electroacoustic system, the correction unit, the first correction filter and / or the second correction filter are designed to attenuate and / or suppress sound radiation to the outside, in particular away from the person using the device and / or the eardrum.
  • the electroacoustic device can have a ventilation device.
  • the ventilation device can be designed as a ventilation channel in order to enable pressure equalization in the case of a device inserted into an auditory canal. In this way, the wearing comfort can be further improved.
  • the device and / or an earpiece can comprise an air-permeable material.
  • An inner sound receiver, an outer sound receiver and / or a sound generator can be arranged at least partially or completely within the ventilation device.
  • FIG. 1 shows a schematic representation of an electroacoustic device 10 for an electroacoustic system 11 according to the invention.
  • the device 10 has an ear piece 12.
  • the shape of the ear piece 12 is adapted to an individual auditory canal of a person not shown here.
  • at least one outer coating of the earpiece 12 can be designed to be elastic, as a result of which at least a partial adaptation of the surface of the earpiece 12 to the shape of an auditory canal is made possible.
  • the earpiece 12 can be arranged in an inner auricle shell and / or an auditory canal entrance.
  • the ear canal is at least partially, that is to say partially or completely, occluded by means of the earpiece 12.
  • the device 10 has an external sound receiver 13.
  • the external sound receiver 13 is designed as an external microphone.
  • the outer sound receiver 13 is directed away from an eardrum not shown here.
  • the outer sound receiver 13 is directed outwards to receive an incoming signal, namely acoustic ambient noise.
  • the outer sound receiver 13 is arranged, for example, in the surface of the earpiece 12. The location of the outer sound receiver 13 enables the incoming signal to be all spatial contains monaural information.
  • incoming acoustic signals are converted into electrical signals.
  • the device 10 has an internal sound receiver 14.
  • the internal sound receiver 14 is designed as an internal microphone.
  • the inner sound receiver 14 faces an eardrum, not shown in detail here.
  • the inner sound receiver 14 is directed inwards to detect a sound field in an auditory canal section from the device 10 or the earpiece 12 to the eardrum.
  • the inner sound receiver 14 is arranged, for example, in the surface of the earpiece 12. By means of the inner sound receiver 14, incoming acoustic signals are converted into electrical signals.
  • the device 10 has a sound generator 15.
  • the sound generator 15 is arranged in the area of the inner sound receiver 14. Furthermore, the sound generator 15 faces an eardrum (not shown in detail here) when the earpiece 12 is inserted in an ear and / or an auditory canal.
  • the sound generator 15 is arranged, for example, on the surface of the earpiece 12.
  • the sound generator 15 is directed inwards to emit the outgoing signal into the auditory canal section between the device 10 or the earpiece 12 and the eardrum.
  • the sound generator 15 is designed to convert an electrical signal into an acoustic signal.
  • the device 10 has a signal processing device 16.
  • the outer sound receiver 13, the inner sound receiver 14 and the sound transducer 15 are each connected to the signal processing device 16 by means of a line.
  • the signal processing device 16 is integrated into the earpiece 12 in this exemplary embodiment.
  • the signal processing device 16 can also be arranged outside the earpiece 12, for example in a housing for arrangement behind an ear or in an auricle.
  • the signal processing device 16 is designed, for example, as a digital signal processing device 16.
  • the signal processing device 16 has analog-to-digital converters and digital-to-analog converters which are connected to electroacoustic sound transducers, in particular to the outer sound receiver 13, the inner sound receiver 14 and the sound transducer 15. or corrections are carried out with respect to an incoming signal at the external sound receiver 13 and an outgoing signal from the sound generator 15.
  • the signal processing device 16 has a correction unit 17.
  • the correction unit 17 By means of the correction unit 17, an on the device 10 or the external sound receiver 13 incoming signal is corrected and / or modified in order to generate a signal outgoing from the device 10 or from the sound generator 15.
  • the correction unit 17 has a first correction filter A and a second correction filter B.
  • the signal processing device 16 is connected to an additional external signal source 18 by means of a line.
  • an additional external, in particular acoustic, signal can be fed to the signal processing device 16.
  • the additional signal source can be designed as entertainment electronics, a music source and / or a communication device.
  • the device 10 or the earpiece 12 has a ventilation device 19.
  • the ventilation device 19 is designed as a ventilation channel.
  • the ventilation device 19 enables a pressure equalization with a device 10 inserted into an auditory canal.
  • An air volume of an auditory canal section between the earpiece 12 and the eardrum is connected to the environment outside the auditory canal or the ear by means of the ventilation device 19.
  • the inner sound receiver 14 With an auditory canal at least partially occluded by means of the device 10 or the earpiece 12, the inner sound receiver 14 enables an estimation of a received signal and / or an acoustic signal on the eardrum, in particular a frequency response on the eardrum due to any noise source. This estimation can be made by assuming the mechanical-acoustic properties of the device 10 in such a way that the frequency response at the position of the inner sound receiver 14 and the eardrum are the same.
  • the pressure on the eardrum is estimated by means of the pressure measured at the position of the inner sound receiver 14 using an electroacoustic model of the auditory canal P.
  • FIG. 11 shows a schematic representation of an electroacoustic model 20 of the electroacoustic device 10 according to FIG Fig. 1 .
  • the device 10 or the earpiece 12 according to FIG Fig. 1 is modeled as a Norton and / or Thevenin equivalent electroacoustic velocity and / or pressure model, which is compared with the ear canal impedance as shown in FIG Figure 2 connected is.
  • the source parameters are applied to an electroacoustic circuit model that has a voltage source for pressure or a current source for speed, an internal source impedance, the ear canal as the two-port and the eardrum as the terminating impedance of the circuit.
  • the source terms P S for the pressure, Qs for the speed and Z S for the impedance are by means of measurements the impulse responses induced by the sources when connected to various loads of known theoretical impedances. These are therefore assumed to be known and are part of the electroacoustic auditory canal model P, which is dependent on the individual design of the device 10.
  • the abbreviation P L in the Figure 2 stands for the load pressure and the abbreviation Z L for the load impedance.
  • p is the air density and c is the speed of sound.
  • the acoustic properties of the auditory canal are taken into account in the modification or correction by means of the signal processing device 16 or the correction unit 17 .
  • Figure 3 shows a schematic representation of a logic circuit 21 of a signal processing with the electroacoustic device 10 according to Fig. 1 during a calibration.
  • the electroacoustic system 11, the device 10 or the earpiece 12 can be calibrated in situ, that is to say with an at least partially occluded ear canal.
  • the aim of the calibration is to obtain a predetermined pressure and / or a predetermined frequency response on the eardrum using a calibration routine.
  • filter A is determined.
  • an outgoing signal from the device 10 or the sound generator 15 can be generated by modifying the incoming signal, which signal generates a target pressure and / or a target frequency response at the position of the inner sound receiver 14.
  • the pressure P E or the target pressure P T, E at the position of the inner sound receiver 14 results on the basis of an ambient noise signal from a noise source 22.
  • the noise source 22 is outside the ear and causes usual ambient noise.
  • the acoustic signal emanating from the noise source 22 is divided into two partial signals 23, 24 within the auditory canal and in the case of an auditory canal that is at least partially occluded by means of the device 10 or the earpiece 12.
  • the first partial signal 23 is a through signal.
  • a pressure frequency response and / or a passage pressure P HT which is measured at the position of the inner sound receiver 14, is assigned to the first partial signal 23.
  • the second sub-signal 24 is a device output signal.
  • the second partial signal 24 is generated and emitted by the earpiece 12 in the direction of the eardrum by means of the sound generator 15.
  • the second partial signal 24 results from the signal arriving at the external sound receiver 13, which is modified by means of filtering by means of the first filter A and the second filter B and is then output by means of the sound generator 15.
  • An outgoing pressure frequency and / or an outgoing pressure P EP is assigned to the second partial signal 24.
  • the through pressure P HT and the outgoing pressure P EP are measured by means of the sound receivers 13, 14 using the noise source 22, which is designed as headphones in this exemplary embodiment, when the filters A and B are not used.
  • This first correction filter A is determined in the course of an initial calibration.
  • a fine adjustment of the correction filter A can then be carried out.
  • a predetermined calibration signal is used.
  • the calibration signal is designed as white noise.
  • the calibration signal is emitted by the noise source 22.
  • the frequency response and / or the pressure P E is measured by means of the internal sound receiver 14.
  • the correction filter A is adapted accordingly. If the measured pressure P E deviates from the target pressure P T, E, the first correction filter A is iteratively adapted until a predetermined convergence criterion is reached.
  • a target model T is introduced in order to provide the frequency response and / or the pressure on the eardrum as an individual estimate for each person using the device 10.
  • the frequency response and / or the target pressure P T, D on the eardrum is not determined or estimated. Instead, the target frequency response and / or the target pressure P T, E is estimated at the position of the inner sound receiver 14 with a free auditory canal.
  • An electroacoustic circuit model is used for this, which has a Thevenin pressure source model P S and a source impedance model Z S.
  • the source pressure P S is estimated by means of the frequency response measured at the external sound receiver 13 and / or the pressure measured there when an incoming signal is generated by the noise source 22.
  • the radiation of the source pressure P S into the auditory canal in the case of a free auditory canal is estimated by means of the radiation impedance Z RAD and the auditory canal impedance Z L.
  • the individual auditory canal impedance Z L which is dependent on the respective person, is determined by means of the measurements and calculations mentioned above. However, no individual measurements and / or determinations for the radiation impedance Z RAD are possible. Therefore, an estimated value is used that is is based on a theoretical model and measurements with test subjects, as described, for example, in the following document: M. Hiipakka, T. Kinnari, and V. Pulkki; "Estimating head-related transfer functions of human subjects from pressure-velocity measurements," The Journal of the Acoustical Society of America, 2012 .
  • the calibration described above for determining the first correction filter A and the second correction filter B is carried out after each insertion of the device 10 or the earpiece 12 into the ear or the auditory canal. In this way, changes due to a different position of the device 10 or of the earpiece 12 in the auditory canal or on the ear are taken into account. In this way, acoustic transparency with a particularly high quality can be achieved.
  • the correction filters A and B remain unchanged according to this exemplary embodiment.
  • adaptive tracking and / or recalibration of the correction filter A and / or B can take place, in particular during normal operation.
  • the first correction filter A is used to modify the incoming signal, as a result of which the outgoing signal or the outgoing pressure P EP is modified.
  • the second correction filter B information about the transmission path from the position of the inner sound receiver to the eardrum is taken into account when modifying the incoming signal at device 10 or when generating the outgoing signal.
  • Figure 4 shows a schematic representation of a logic circuit 25 with a signal processing device 16 of the electroacoustic device 10 according to FIG Fig. 1 .
  • an ambient noise is picked up as an incoming acoustic signal by the external sound receiver 13, converted into an incoming electrical signal and sent to the signal processing device 16.
  • the signal processing device 16 corrects and modifies the signal by means of the two correction filters A and B in order to match the frequency response and / or the pressure on the eardrum to the frequency response and / or the pressure on the eardrum in one case adapt to the free ear canal.
  • the two correction filters A and B due to the two correction filters A and B, the same frequency response and / or the same pressure is generated on the eardrum as with a free auditory canal.
  • Such acoustic transparency is made possible because the incoming signal at the external sound receiver 13 contains all directional information.
  • the transmission path from the inner auricle to the eardrum for both the free and the at least partially occluded ear canal is independent of the incoming signal direction or sound direction.
  • Fig. 1 and Fig. 4 becomes an to the ambient noise, for example from the noise source 22 according to FIG Fig. 3 , additional signal is supplied to an additional signal source 18 of the device 10.
  • the additional signal source 18 is designed as entertainment electronics and / or as an additional sound receiver for the device 10.
  • the additional signal is used to transmit information and / or to supplement the signal arriving at device 10.
  • the frequency response and / or the pressure on the eardrum due to the additional signal or the additional signal source 18 is modified in this exemplary embodiment by means of the previously determined correction filters A and / or B.
  • the additional signal is modified in such a way that undesired transmission effects of the auditory canal in an area between an end of the device 10 or the earpiece 12 facing the eardrum and the eardrum are weakened and / or avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines elektroakustischen Systems bei dem eine elektroakustische Vorrichtung zum mindestens teilweisen Okkludieren eines Gehörganges mindestens teilweise an einem Ohr angeordnet wird. Des Weiteren betrifft die Erfindung ein elektroakustisches System, das nach einem solchen Verfahren betrieben wird.The invention relates to a method for operating an electroacoustic system in which an electroacoustic device for at least partially occluding an auditory canal is arranged at least partially on an ear. The invention also relates to an electroacoustic system which is operated according to such a method.

Ein derartiges Verfahren und ein derartiges elektroakustisches System sind aus der US 2014/0321657 A1 bekannt. Hiernach kann ein eingehendes akustisches Signal unter Berücksichtigung der akustischen Eigenschaften des Gehörganges in einem Bereich zwischen der den Gehörgang mindestens teilweise okkludierenden Vorrichtung und dem Trommelfell modifiziert werden.Such a method and such an electroacoustic system are known from US Pat US 2014/0321657 A1 known. An incoming acoustic signal can then be modified, taking into account the acoustic properties of the auditory canal in an area between the device at least partially occluding the auditory canal and the eardrum.

Ein transparentes Hörsystem ist aus dem Dokument WO 2014/070825 A1 bekannt. Das Hörsystem hat eine Signalverarbeitungseinrichtung. Zur Korrektur und Modifikation der Übertragungscharakteristik zum Erreichen einer akustischen Transparenz werden Filter eingesetzt.A transparent hearing aid is out of the document WO 2014/070825 A1 known. The hearing system has a signal processing device. Filters are used to correct and modify the transmission characteristics in order to achieve acoustic transparency.

Das Dokument US 2006/0002574 A1 beschreibt ein Kanalhörgerät, dass mit einer Funktionsweise implementiert wird, die akustische Transparenz sowie eine Energiesparfunktion bietet, sodass ein Benutzer das Gerät während der Schlafphase oder bei Inaktivität ohne wesentlichen Verlust der normalen ungestützten Reaktion im Gehörgang tragen kann. Der transparente Modus verfügt über eine in-situ-Akustikübertragungsfunktion, welche die durch das Vorhandensein eines Hörgerätes im Gehörgang verursachte Einfügedämpfung ausgleicht.The document US 2006/0002574 A1 describes a canal hearing device that is implemented with a functionality that offers acoustic transparency as well as an energy-saving function so that a user can wear the device during the sleep phase or during inactivity without significant loss of the normal unsupported reaction in the ear canal. The transparent mode has an in-situ acoustic transmission function that compensates for the insertion loss caused by the presence of a hearing aid in the ear canal.

Es ist bekannt, elektroakustische Systeme und/oder eine elektroakustische Vorrichtung, die ein Ohr und/oder einen Gehörgang mindestens teilweise oder vollständig okkludieren, ausfüllen, abschließen und/oder verschließen beispielsweise im Bereich der Unterhaltungselektronik und/oder Hörgeräte zu verwenden. Hierbei ist von Nachteil, dass die Okklusion des Gehörganges eine Änderung der Wahrnehmung von Umgebungsgeräuschen verursacht. Diese geänderte Wahrnehmung von, insbesondere natürlichen, Umgebungsgeräuschen kann eine Dämpfung, eine spektrale Modifizierung, eine Veränderung des Farbklanges, eine Veränderung des Klangspektrums und/oder eine Veränderung der räumlichen Wahrnehmung aufweisen. Besonders nachteilig ist, dass Umgebungsgeräusche bei einem mittels der elektroakustischen Vorrichtung mindestens teilweisen okkludierten Gehörganges nicht und/oder als unnatürlich wahrgenommen werden. Dies kann zu einer Gefährdung der die elektroakustische Vorrichtung nutzenden Person, insbesondere im Straßenverkehr, führen. Zudem kann das Tragen und/oder die Verwendung der elektroakustischen Vorrichtung als unangenehm empfunden werden.It is known to use electroacoustic systems and / or an electroacoustic device that at least partially or completely occlude an ear and / or an auditory canal, fill in, lock and / or lock for example in the field of entertainment electronics and / or hearing aids. The disadvantage here is that the occlusion of the auditory canal causes a change in the perception of ambient noise. This changed perception of, in particular natural, ambient noises can have an attenuation, a spectral modification, a change in the color tone, a change in the sound spectrum and / or a change in spatial perception. It is particularly disadvantageous that ambient noises are not perceived and / or as unnatural when the auditory canal is at least partially occluded by means of the electroacoustic device. This can endanger the person using the electroacoustic device, in particular in traffic. In addition, wearing and / or using the electroacoustic device can be perceived as uncomfortable.

Es ist die der Erfindung zugrunde liegende Aufgabe, ein Verfahren und ein elektroakustisches System der eingangs genannten Art derart weiter zu entwickeln, dass eine störende und/oder unerwünschte Änderung der Wahrnehmung von Umgebungsgeräuschen bei der Verwendung einer den Gehörgang mindestens teilweise okkludierenden elektroakustischen Vorrichtung reduziert, vermieden und/oder zumindest teilweise ausgeglichen wird.It is the object of the invention to further develop a method and an electroacoustic system of the type mentioned at the beginning in such a way that a disruptive and / or undesired change in the perception of ambient noise when using an electroacoustic device that at least partially occludes the ear canal reduces or prevents it and / or is at least partially offset.

Die der Erfindung zugrunde liegende Aufgabe wird mittels eines Verfahrens und eines elektroakustischen Systems der eingangs genannten Art gelöst, wobei eine Signalverarbeitungseinrichtung zum Verarbeiten eines bei der Vorrichtung eingehenden Signals verwendet wird, und bei dem mindestens eine Korrektureinheit der Signalverarbeitungseinrichtung zum Modifizieren des an der Vorrichtung eingehendes Signals verwendet wird, und mittels der mindestens einen Korrektureinheit ein von der Vorrichtung abgehendes Signal zum Erreichen einer akustischen Transparenz erzeugt wird, bei der aufgrund des abgehenden Signals am Trommelfell ein Empfangssignal erzeugt wird, das entsprechend einem Frei-Ohr-Empfangssignal am Trommelfell bei einem freien Gehörgang ohne die Vorrichtung angepasst ist, wobei die mindestens eine Korrektureinheit einen ersten Korrekturfilter (A) und einen zweiten Korrekturfilter (B) aufweist, und der erster Korrekturfilter (A) der mindestens einen Korrektureinheit dem zweiten Korrekturfilter (B) der mindestens einen Korrektureinheit vorgeschaltet ist, wobei das eingehende Signal zunächst mittels des ersten Korrekturfilters (A) zum Erreichen der akustischen Transparenz modifiziert wird, wobei zum Bestimmen des ersten Korrekturfilters (A) der mindestens einen Korrektureinheit ein Gesamtdruck (Ptot) eines äußeren akustischen Signals innerhalb des mit der Vorrichtung mindestens teilweise okkludierten Gehörganges unter Berücksichtigung des ersten Korrekturfilters (A) mit einem zu erwartenden Zieldruck (PT,E) gleichgesetzt wird, wobei der erste Korrekturfilter (A) unter Berücksichtigung eines mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessenen Durchgangsdrucks (PHT) mit der folgenden Gleichung bestimmt wird: A = P T , E P HT P tot P HT

Figure imgb0001
und nachfolgend das geänderte eingehende Signal mittels des zweiten Korrekturfilters (B) zum Ausfiltern von Übertragungseffekten im Bereich von der Vorrichtung (10) bis zum Trommelfell aufgrund der mindestens teilweisen Okklusion des Gehörganges mittels der Vorrichtung (10) modifiziert wird.The object on which the invention is based is achieved by means of a method and an electroacoustic system of the type mentioned at the beginning, with a signal processing device being used to process a signal arriving at the device, and in which at least one correction unit of the signal processing device is used to modify the signal arriving at the device is used, and by means of the at least one correction unit, an outgoing signal from the device is generated to achieve acoustic transparency, in which a received signal is generated based on the outgoing signal on the eardrum, which corresponds to a free-ear received signal on the eardrum with a free ear canal is adapted without the device, wherein the at least one correction unit has a first correction filter (A) and a second correction filter (B), and the first correction filter (A) of the at least one correction unit has the second correction turfilter (B) is connected upstream of the at least one correction unit, wherein the incoming signal is first modified by means of the first correction filter (A) to achieve the acoustic transparency, a total pressure (P tot ) for determining the first correction filter (A) of the at least one correction unit. an external acoustic signal within the auditory canal, which is at least partially occluded with the device, taking into account the first correction filter (A ) is equated with an expected target pressure (P T, E ), the first correction filter (A) taking into account a device assigned by means of one and an inner sound receiver facing the eardrum of the ear, measured throughput pressure (P HT ) is determined with the following equation: A. = P. T , E. - P. HT P. dead - P. HT
Figure imgb0001
and subsequently the changed incoming signal is modified by means of the second correction filter (B) to filter out transmission effects in the area from the device (10) to the eardrum due to the at least partial occlusion of the auditory canal by means of the device (10).

Hierbei ist von Vorteil, dass Umgebungsgeräusche trotz eines mindestens teilweise okkludierten Gehörganges in hinreichender Qualität wahrnehmbar sind. Insbesondere ermöglich das Verfahren und/oder das elektroakustische System eine Kontrolle, Steuerung und/oder Manipulierung der Empfangssignale, vorzugsweise einer Frequenzantwort, am Trommelfell. Hierdurch kann das elektroakustische System in einem akustischen Transparenz-Modus betrieben werden. Vorzugsweise wird die Wahrnehmung von Umgebungsgeräuschen einer das elektroakustische System nutzenden Person aufgrund der akustischen Transparenz nicht, allenfalls geringfügig und/oder in einem nicht-störenden Maße gestört bzw. verändert. Vorzugsweise erfährt die das elektroakustische System nutzende Person eine Geräuschwahrnehmung, insbesondere annähernd, wie mit einem freien Gehörgang. Somit ermöglicht das Verfahren und/oder das elektroakustische System eine angenehmere, insbesondere natürliche, Wahrnehmung von Umgebungsgeräuschen bei einem teilweisen und/oder vollständig okkludierten Gehörgang. Hierbei kann das elektroakustische System eine Vielzahl von zusätzlichen Funktionen ermöglichen, beispielsweise in Verbindung mit einer Unterhaltungselektronik, mit einem Gehörschutz, mit einem Hörgerät und/oder mit einer Kommunikationsvorrichtung, insbesondere einem Mobiltelefon und/oder einem Smartphone. Insbesondere kann, vorzugsweise bei Bedarf, zusätzlich eine Hörhilfe bereitgestellt werden. Das am Trommelfell erzeugte Empfangssignal kann im Vergleich zum an der Vorrichtung eingehenden Signal verstärkt und/oder gedämpft werden.The advantage here is that ambient noises can be perceived in sufficient quality despite an at least partially occluded ear canal. In particular, the method and / or the electroacoustic system make it possible to monitor, control and / or manipulate the received signals, preferably a frequency response, on the eardrum. This allows the electroacoustic system to be operated in an acoustic transparency mode. The perception of ambient noise by a person using the electroacoustic system is preferably not, at most slightly and / or to a non-disruptive extent, or is not disturbed or changed due to the acoustic transparency. The person using the electroacoustic system preferably experiences a sound perception, in particular approximately as if with a free auditory canal. Thus, the method and / or the electroacoustic system enables a more pleasant, in particular natural, perception of ambient noises in the case of a partially and / or completely occluded ear canal. Here, the electroacoustic system can enable a large number of additional functions, for example in connection with entertainment electronics, with hearing protection, with a hearing aid and / or with a communication device, in particular a mobile phone and / or a smartphone. In particular, a hearing aid can additionally be provided, preferably if required. The received signal generated on the eardrum can be amplified and / or attenuated in comparison to the signal arriving at the device.

Vorzugsweise ist im Rahmen der vorliegenden Anmeldung die akustische Transparenz als eine perzeptive akustische Transparenz ausgebildet. Insbesondere bedeutet eine perzeptive und/oder akustische Transparenz, dass es keinen hörbaren Unterschied zu einem Frei-Ohr-Signal oder Frei-Ohr-Empfangssignal gibt. Somit kann eine perzeptive und/oder akustische Transparenz erreicht werden, ohne eine absolute physikalische Übereinstimmung des erzeugten Empfangssignals am Trommelfell mit einem Frei-Ohr-Empfangssignal bei einem freien Gehörgang ohne die Vorrichtung erreichen zu müssen. Vorzugsweise reicht es aus, wenn eine die Vorrichtung nutzende Person die Wahrnehmung hat, dass das mit der Vorrichtung erzeugte Empfangssignal in perzeptiver Hinsicht mit dem Frei-Ohr-Empfangssignal bei einem freien Gehörgang ohne die Vorrichtung übereinstimmt.In the context of the present application, the acoustic transparency is preferably designed as a perceptual acoustic transparency. In particular, perceptual and / or acoustic transparency means that there is no audible difference to a free-ear signal or a free-ear reception signal. In this way, perceptual and / or acoustic transparency can be achieved without an absolute physical match between the received signal generated on the eardrum and a free-ear received signal in the case of a free auditory canal without having to reach the device. It is preferably sufficient if a person using the device has the perception that the received signal generated with the device corresponds in perceptual terms to the free-ear received signal in the case of a free auditory canal without the device.

Die Korrektureinheit weist einen ersten Korrekturfilter und einen zweiten Korrekturfilter auf. Der erste Korrekturfilter der Signalverarbeitungseinrichtung wird zum Erreichen der akustischen Transparenz verwendet. Der zweite Korrekturfilter der Signalverarbeitungseinrichtung wird zum Modifizieren des von der Vorrichtung abgehenden, insbesondere akustischen, Signals verwendet. Mittels des zweiten Korrekturfilters werden die akustischen Eigenschaften eines Gehörgangabschnittes von der Vorrichtung bis zu einem Trommelfell des Ohres berücksichtigt. Nach einer weiteren Ausführungsform können der erste Korrekturfilter und/oder der zweite Korrekturfilter als, insbesondere digitale, elektrische Schaltungen ausbildet sein. Die Korrektureinheit, der erste Korrekturfilter und/oder der zweite Korrekturfilter können mindestens einen Analog-zu-Digital-Wandler und/oder mindestens einen Digital-zu-Analog-Wandler aufweisen.The correction unit has a first correction filter and a second correction filter. The first correction filter of the signal processing device is used to achieve the acoustic transparency. The second correction filter of the signal processing device is used to modify the Device outgoing, in particular acoustic, signal used. By means of the second correction filter, the acoustic properties of a section of the auditory canal from the device to an eardrum of the ear are taken into account. According to a further embodiment, the first correction filter and / or the second correction filter can be designed as, in particular digital, electrical circuits. The correction unit, the first correction filter and / or the second correction filter can have at least one analog-to-digital converter and / or at least one digital-to-analog converter.

Der erste Korrekturfilter der Korrektureinheit ist dem zweiten Korrekturfilter der Korrektureinheit vorgeschaltet. Das eingehende Signal wird zunächst mittels des ersten Korrekturfilters zum Erreichen der akustischen Transparenz modifiziert. Nachfolgend wird das geänderte eingehende und/oder eingegangene Signal mittels des zweiten Korrekturfilters zum Ausfiltern von Übertragungseffekten im Bereich von der Vorrichtung bis zum Trommelfell aufgrund der mindestens teilweisen Okklusion des Gehörganges mittels der Vorrichtung modifiziert. Mittels des von der Vorrichtung abgehenden, insbesondere akustischen, Signals wird ein Empfangssignal erzeugt, das dem Frei-Ohr-Empfangssignal bei einem freien Gehörgang ohne die Vorrichtung entspricht. Somit kann ein störender Einfluss der den Gehörgang mindestens teilweise okkludierenden Vorrichtung auf die Wahrnehmung von Umgebungsgeräuschen reduziert und/oder ausgeglichen werden. Zur Erreichung der akustischen Transparenz aufgrund des abgehenden Signals im Bereich des Gehörgangabschnittes von der Vorrichtung bis zum Trommelfell wird ein Empfangssignal erzeugt das entsprechend einem Frei-Ohr-Empfangssignal in diesem Bereich des Gehörgangabschnittes bei einem freien Gehörgang ohne die Vorrichtung angepasst ist und/oder diesem entspricht.The first correction filter of the correction unit is connected upstream of the second correction filter of the correction unit. The incoming signal is first modified by means of the first correction filter to achieve acoustic transparency. The changed incoming and / or incoming signal is then modified by means of the second correction filter to filter out transmission effects in the area from the device to the eardrum due to the at least partial occlusion of the auditory canal by means of the device. By means of the outgoing, in particular acoustic, signal from the device, a received signal is generated which corresponds to the free-ear received signal with a free auditory canal without the device. A disruptive influence of the device at least partially occluding the auditory canal on the perception of ambient noises can thus be reduced and / or compensated for. To achieve acoustic transparency due to the outgoing signal in the area of the auditory canal section from the device to the eardrum, a received signal is generated which is adapted to and / or corresponds to a free-ear received signal in this area of the auditory canal section with a free auditory canal without the device .

Gemäß einer Weiterbildung wird das eingehende, insbesondere akustische, Signal mittels eines der Vorrichtung zugeordneten und von dem Trommelfell weg und nach außen gerichteten äußeren Schallempfängers als ein eingehendes elektrisches Signal der Signalverarbeitungseinrichtung zugeführt. Vorzugsweise wird mindestens ein zusätzliches externes akustisches und/oder elektrisches Signal der Signalverarbeitungseinrichtung, insbesondere mittels eines zusätzlichen äußeren Schallempfängers und/oder einer direkten Leitungsverbindung mit einer zusätzlichen externen Signalquelle, zugeführt. Insbesondere ist der äußere Schallempfänger und/oder der zusätzliche äußere Schallempfänger jeweils als ein Mikrofon ausgebildet. Das zusätzliche externe akustische und/oder elektrische Signal kann mittels der Korrektureinheit ebenfalls modifiziert werden.According to a further development, the incoming, in particular acoustic, signal is fed to the signal processing device as an incoming electrical signal by means of an external sound receiver assigned to the device and directed away from the eardrum and outward. At least one additional external acoustic and / or electrical signal is preferably fed to the signal processing device, in particular by means of an additional external sound receiver and / or a direct line connection to an additional external signal source. In particular, the outer sound receiver and / or the additional outer sound receiver are each designed as a microphone. The additional external acoustic and / or electrical signal can also be modified by means of the correction unit.

Insbesondere ist mittels des elektroakustischen Systems eine negative Rückkopplungsschleife realisierbar. Vorzugsweise werden zur Realisierung der negativen Rückkopplungsschleife der äußere Schallempfänger und der zusätzliche äußere Schallempfänger verwendet.In particular, a negative feedback loop can be implemented by means of the electroacoustic system. The external sound receiver and the additional external sound receiver are preferably used to implement the negative feedback loop.

Nach einer weiteren Ausführungsform wird vor der Verwendung des elektroakustischen Systems eine Kalibrierung durchgeführt. Insbesondere wird im Rahmen der Kalibrierung ein erster Korrekturfilter und/oder ein zweiter Korrekturfilter bestimmt. Vorzugsweise erfolgt die Kalibrierung nach jedem Einsetzen der Vorrichtung zum mindestens teilweisen Okkludieren des Gehörganges. Besonders bevorzugt wird die Kalibrierung mittels einer externen Schallquelle und/oder einer Kalibrierungssteuerung durchgeführt. Alternativ kann zunächst eine Startkalibrierung zum Bestimmen des ersten Korrekturfilters und des zweiten Korrekturfilters, insbesondere mittels einer externen Schallquelle, durchgeführt werden. Nach der erfolgten Startkalibrierung und einem erneuten Einsetzen der Vorrichtung zum mindestens teilweisen Okkludieren des Gehörganges wird im Rahmen einer Teilkalibrierung lediglich ein einziger Korrekturfilter, insbesondere der erste Korrekturfilter oder der zweite Korrekturfilter, neu kalibriert. Als externe Schallquelle zum Kalibrieren kann ein Kopfhörer dienen, der auf eine Ohrmuschel mit einer eingesetzten elektroakustischen Vorrichtung aufgesetzt wird. Insbesondere zum Erfassen der räumlichen Auflösung eines eingehenden Signals ist die Verwendung eines von außen auf das Ohr treffenden Signals von Vorteil. Die Kalibrierungssteuerung kann in der Vorrichtung, einem Ohrstück, einem Computer und/oder einem Smartphone sein. Insbesondere weist die Kalibrierungssteuerung einen Prozessor auf. Die Kalibrierungssteuerung kann mit der elektroakustischen Vorrichtung mittels eines Kabels, einer kabellosen Verbindung, einer Nahfeldkommunikation und/oder Bluetooth verbunden werden.According to a further embodiment, a calibration is carried out before the electroacoustic system is used. In particular, a first correction filter and / or a second correction filter is determined as part of the calibration. The calibration preferably takes place after each insertion of the device for at least partially occluding the auditory canal. The calibration is particularly preferably carried out by means of an external sound source and / or a calibration control. Alternatively, a start calibration for determining the first correction filter and the second correction filter, in particular by means of an external sound source, can first be carried out. After the initial calibration has taken place and the device for at least partially occluding the auditory canal has been reinserted, only a single correction filter, in particular the first correction filter or the second correction filter, is recalibrated as part of a partial calibration. Headphones, which are placed on an auricle with an inserted electroacoustic device, can serve as an external sound source for calibration. The use of a signal that hits the ear from the outside is particularly advantageous for detecting the spatial resolution of an incoming signal. The calibration control can be in the device, an earpiece, a computer and / or a smartphone. In particular, the calibration control has a processor. The calibration controller can be connected to the electroacoustic device by means of a cable, a wireless connection, a near field communication and / or Bluetooth.

Vorzugsweise wird eine individuelle Kalibrierung für die jeweilige die Vorrichtung nutzende Person und/oder nach jedem Einsetzen der Vorrichtung in den Gehörgang durchgeführt. Insbesondere wird eine Kalibrierung und/oder Einstellung des ersten und/oder zweiten Korrekturfilters während des laufenden Betriebes durchgeführt. Hierdurch kann eine Nachjustierung realisiert werden. Vorzugsweise erfolgt eine Nachjustierung, sofern mindestens ein vorgegebener Auslöseparameter gegeben ist. Beispielsweise kann eine Nachjustierung zu vorgegebenen Zeiten oder in vorgegebenen Zeitabständen erfolgen. Alternativ oder zusätzlich kann eine Nachjustierung initialisiert werden, wenn mindestens ein vorgegebener und überwachter Auslöseparameter erreicht, unterschritten oder überschritten wird.An individual calibration is preferably carried out for the respective person using the device and / or after each insertion of the device into the auditory canal. In particular, a calibration and / or setting of the first and / or second correction filter is carried out during ongoing operation. This enables readjustment to be carried out. A readjustment is preferably carried out if at least one predetermined triggering parameter is given. For example, readjustment can take place at specified times or at specified time intervals. Alternatively or additionally, a readjustment can be initialized if at least one predetermined and monitored trigger parameter is reached, undershot or exceeded.

Insbesondere wird die Korrektureinheit, der erste Korrekturfilter und/oder der zweite Korrekturfilter im laufenden Betrieb nachkalibriert und/oder nachgeführt. Somit kann eine kontinuierliche und/oder diskontinuierliche Kalibrierung, insbesondere in Verbindung mit einer Start- und/oder Erstkalibrierung, erfolgen.In particular, the correction unit, the first correction filter and / or the second correction filter is recalibrated and / or adjusted during operation. A continuous and / or discontinuous calibration, in particular in connection with a start and / or initial calibration, can thus take place.

Vorzugsweise wird ein erster Korrekturfilter der Korrektureinheit auf der Basis eines ersten Modells und/oder ein zweiter Korrekturfilter der Korrektureinheit auf der Basis eines zweiten Modells bestimmt. Vorzugsweise basiert das erste Modell und/oder das zweite Modell auf dem Thévenin-Äquivalent und/oder dem Norton-Äquivalent. Diese Modelle sind bewährt und ermöglichen eine hinreichend genaue Abschätzung der relevanten Parameter.A first correction filter of the correction unit is preferably determined on the basis of a first model and / or a second correction filter of the correction unit on the basis of a second model. The first model and / or the second model is preferably based on the Thévenin equivalent and / or the Norton equivalent. These models are tried and tested and enable a sufficiently precise estimate of the relevant parameters.

Gemäß einer Weiterbildung setzt sich der Gesamtdruck Ptot eines äußeren akustischen Signals innerhalb des mit der Vorrichtung mindestens teilweise okkludierten Gehörganges zum Bestimmen eines ersten Korrekturfilters A der Korrektureinheit aus zwei Teilen zusammen. Vorzugsweise ist ein erster Teil des Gesamtdrucks Ptot ein mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessener Durchgangsdruck PHT. Der innere Schallempfänger kann als ein Mikrofon ausgebildet sein. Insbesondere ist der Durchgangsdruck PHT ein Schalldruck eines äußeren akustischen Signals nach dem Durchgang durch den mit der Vorrichtung mindestens teilweise okkludierten Gehörgang. Vorzugsweise ist ein zweiter Teil des Gesamtdruckes Ptot ein mittels eines der Vorrichtung zugeordneten und dem Trommelfell zugewandten Schallerzeugers abgehender Druck PEP. Der Schallerzeuger kann als ein Lautsprecher und/oder Receiver ausgebildet sein. Es kann mindestens ein weiterer und/oder zusätzlicher Schallerzeuger vorgesehen sein. Der mindestens eine zusätzliche Schallerzeuger kann an einem dem Trommelfell zugwandten Ende oder einem von dem Trommelfell abgewandten Ende der Vorrichtung angeordnet sein.According to a further development, the total pressure P tot of an external acoustic signal within the auditory canal, which is at least partially occluded with the device, is made up of two parts for determining a first correction filter A of the correction unit. A first part of the total pressure P tot is preferably a passage pressure P HT measured by means of an internal sound receiver assigned to the device and facing an eardrum of the ear. The inner sound receiver can be designed as a microphone. In particular, the passage pressure P HT is a sound pressure of an external acoustic signal after passage through the auditory canal at least partially occluded with the device. A second part of the total pressure P tot is preferably a pressure P EP emitted by means of a sound generator assigned to the device and facing the eardrum. The sound generator can be designed as a loudspeaker and / or receiver. At least one further and / or additional sound generator can be provided. The at least one additional sound generator can be arranged at an end facing the eardrum or an end of the device facing away from the eardrum.

Vorzugsweise ist im Rahmen der vorliegenden Erfindung unter einem Druck eine Druckfrequenz zu verstehen. Insbesondere ergibt sich aufgrund einer Druckfrequenz einer Signalquelle, einer Geräuschquelle und/oder eines Schallerzeugers eine Druckfrequenzantwort an einem Schallempfänger und/oder einem Trommelfell.In the context of the present invention, a pressure is preferably to be understood as a pressure frequency. In particular, a pressure frequency response at a sound receiver and / or an eardrum results from a pressure frequency of a signal source, a noise source and / or a sound generator.

Zum Bestimmen eines ersten Korrekturfilters A der Korrektureinheit wird ein Gesamtdruck Ptot eines äußeren akustischen Signals innerhalb des mit der Vorrichtung mindestens teilweise okkludierten Gehörganges unter Berücksichtigung des ersten Korrekturfilters (A) mit einem zu erwartenden Zieldruck PT,E gleichgesetzt. Der erste Korrekturfilter A wird unter Berücksichtigung eines mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessenen Durchgangsdrucks PHT mit der folgenden Gleichung bestimmt: A = P T , E P HT P tot P HT

Figure imgb0002
To determine a first correction filter A of the correction unit, a total pressure P tot of an external acoustic signal within the auditory canal, which is at least partially occluded with the device, is equated with an expected target pressure P T, E, taking into account the first correction filter (A). The first correction filter A is determined with the following equation, taking into account a through pressure P HT measured by means of an internal sound receiver assigned to the device and facing an eardrum of the ear: A. = P. T , E. - P. HT P. dead - P. HT
Figure imgb0002

Insbesondere wird nach einer Erstbestimmung eines ersten Korrekturfilters A der Korrektureinheit, insbesondere im Rahmen einer Kalibrierung, eine Feinjustierung des ersten Korrekturfilters A durchgeführt. Vorzugsweise wird mindestens ein vorgegebenes Kalibrierungssignal und/oder ein vorgegebenes Rauschen verwendet. Das Kalibrierungssignal kann als ein weißes Rauschen ausgebildet sein. Insbesondere wird bei der Feinjustierung ein mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessener Druck PE mit einem Zieldruck PT,E an der Position des inneren Schallempfängers verglichen. Hierbei kann der erste Korrekturfilter A bei einer Abweichung des gemessenen Drucks PE von dem Zieldruck PT,E bis zum Erreichen eines vorgegebenen Konvergenzkriteriums iterativ angepasst werden.In particular, after an initial determination of a first correction filter A of the correction unit, in particular as part of a calibration, a fine adjustment of the first correction filter A is carried out. At least one predetermined calibration signal and / or a predetermined noise is preferably used. The calibration signal can be in the form of white noise. In particular, during the fine adjustment, a pressure P E measured by means of an inner sound receiver assigned to the device and facing an eardrum of the ear is compared with a target pressure P T, E at the position of the inner sound receiver. In this case, the first correction filter A can be iteratively adapted in the event of a deviation of the measured pressure P E from the target pressure P T, E until a predetermined convergence criterion is reached.

Vorzugsweise wird zum Bestimmen eines ersten Korrekturfilters A der Korrektureinheit ein mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessener Druck PE mit einem zu erwartenden Zieldruck PT,E am inneren Schallempfänger gleichgesetzt, wobei der zu erwartende Zieldruck PT,E am inneren Schallempfänger als ein Druck am Ort des inneren Schallempfängers bei einem freien Gehörgang ohne die Vorrichtung abgeschätzt wird. Preferably, to determine a first correction filter A of the correction unit, a pressure P E measured by means of an inner sound receiver assigned to the device and facing an ear drum is equated with an expected target pressure P T, E at the inner sound receiver, the expected target pressure P T, E at the inner sound receiver is estimated as a pressure at the location of the inner sound receiver with a free ear canal without the device.

Der bei einem freien Gehörgang zu erwartende Zieldruck PT,E am inneren Schallempfänger kann mittels eines elektroakustischen Modells, insbesondere mit einem Thevenin-Druckquellen-Modell und/oder einem Quellen-Impedanz-Modell, abgeschätzt werden. Vorzugsweise wird der zu erwartende Zieldruck PT,E am inneren Schallempfänger mittels eines Quellendrucks Ps, einer Gehörgangs-Impedanz ZL und einer Strahlungs-Impedanz ZRAD abgeschätzt, insbesondere mit der folgenden Gleichung: P T , E = P S Z L Z L + Z RAD

Figure imgb0003
The target pressure P T, E to be expected at the inner sound receiver with a free auditory canal can be estimated by means of an electroacoustic model, in particular with a Thevenin pressure source model and / or a source impedance model. The target pressure P T, E to be expected at the inner sound receiver is preferably estimated by means of a source pressure Ps, an auditory canal impedance Z L and a radiation impedance Z RAD , in particular using the following equation: P. T , E. = P. S. Z L. Z L. + Z WHEEL
Figure imgb0003

Gemäß einer Weiterbildung wird: zum Bestimmen eines zweiten Korrekturfilters B der Korrektureinheit mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers eine Abschätzung des akustischen Empfangssignals am Trommelfell durchgeführt. Vorzugsweise wird ein Druck am Trommelfell PD mittels eines am inneren Schallempfänger gemessenen Drucks PE unter Verwendung eines elektroakustischen Modells des Gehörgangs abgeschätzt.According to a further development: to determine a second correction filter B of the correction unit by means of an internal sound receiver assigned to the device and facing an eardrum of the ear, an estimation of the acoustic received signal is carried out on the eardrum. A pressure on the eardrum P D is preferably estimated by means of a pressure P E measured on the inner sound receiver using an electroacoustic model of the auditory canal.

Vorzugsweise wird ein Druck am Trommelfell PD mittels eines am inneren Schallempfänger gemessenen Drucks PE und mittels des Korrekturfilters B mit der folgenden Gleichung bestimmt: P D = P E B

Figure imgb0004
A pressure at the eardrum P D is preferably determined by means of a pressure P E measured at the inner sound receiver and by means of the correction filter B using the following equation: P. D. = P. E. B.
Figure imgb0004

Somit lässt der der zweite Korrekturfilter B unter Kenntnis des Drucks am Trommelfell PD und des am inneren Schallempfänger gemessenen Drucks PE bestimmen.Thus, the second correction filter B can be determined with knowledge of the pressure at the eardrum P D and the pressure P E measured at the inner sound receiver.

Das elektroakustische System mit der elektroakustischen Vorrichtung zum mindestens teilweisen Okkludieren eines Gehörganges hat eine Signalverarbeitungseinrichtung zum Verarbeiten eines bei der Vorrichtung eingehenden Signals. Hierbei weist die Signalverarbeitungseinrichtung mindestens eine Korrektureinheit zum Modifizieren des an der Vorrichtung eingehenden Signals auf. Des Weiteren dient die Korrektureinheit zum Bereitstellen und/oder Erzeugen eines von der Vorrichtung abgehenden Signals, das zum Erreichen einer akustischen Transparenz dient, bei der aufgrund des abgehenden Signals am Trommelfell ein Empfangssignal erzeugbar ist, das entsprechend einem Frei-Ohr-Empfangssignal am Trommelfell bei einem freien Gehörgang ohne die Vorrichtung angepasst ist. Die Korrektureinheit hat einen ersten Korrekturfilter und einen zweiten Korrekturfilter. Der erster Korrekturfilter (A) der Korrektureinheit ist dem zweiten Korrekturfilter (B) der Korrektureinheit vorgeschaltet, wobei das eingehende Signal zunächst mittels des ersten Korrekturfilters (A) zum Erreichen der akustischen Transparenz modifiziert wird. Zum Bestimmen des ersten Korrekturfilters (A) der Korrektureinheit wird ein Gesamtdruck (Ptot) eines äußeren akustischen Signals innerhalb des mit der Vorrichtung mindestens teilweise okkludierten Gehörganges unter Berücksichtigung des ersten Korrekturfilters (A) mit einem zu erwartenden Zieldruck (PT,E) gleichgesetzt, wobei der erste Korrekturfilter (A) unter Berücksichtigung eines mittels eines der Vorrichtung zugeordneten und einem Trommelfell des Ohrs zugewandten inneren Schallempfängers gemessenen Durchgangsdrucks (PHT) mit der folgenden Gleichung bestimmt wird: A = P T , E P HT P tot P HT

Figure imgb0005
The electroacoustic system with the electroacoustic device for at least partially occluding an auditory canal has a signal processing device for processing a signal arriving at the device. In this case, the signal processing device has at least one correction unit for modifying the signal arriving at the device. Furthermore, the correction unit is used to provide and / or generate an outgoing signal from the device, which serves to achieve acoustic transparency, in which a received signal can be generated on the basis of the outgoing signal on the eardrum that corresponds to a free-ear received signal on the eardrum adapted to a free ear canal without the device is. The correction unit has a first correction filter and a second correction filter. The first correction filter (A) of the correction unit is connected upstream of the second correction filter (B) of the correction unit, the incoming signal first being modified by means of the first correction filter (A) to achieve acoustic transparency. To determine the first correction filter (A) of the correction unit, a total pressure (P tot ) of an external acoustic signal within the auditory canal, which is at least partially occluded with the device, is equated with an expected target pressure (P T, E), taking into account the first correction filter (A) , the first correction filter (A) being determined with the following equation, taking into account a throughput pressure (P HT ) measured by means of an internal sound receiver assigned to the device and facing an eardrum of the ear: A. = P. T , E. - P. HT P. dead - P. HT
Figure imgb0005

Nachfolgend wird das geänderte eingehende Signal mittels des zweiten Korrekturfilters (B) zum Ausfiltern von Übertragungseffekten im Bereich von der Vorrichtung (10) bis zum Trommelfell aufgrund der mindestens teilweisen Okklusion des Gehörganges mittels der Vorrichtung (10) modifiziert.The changed incoming signal is then modified by means of the second correction filter (B) to filter out transmission effects in the area from the device (10) to the eardrum due to the at least partial occlusion of the auditory canal by means of the device (10).

Von besonderem Vorteil ist die Verwendung eines erfindungsgemäßen Verfahrens und/oder eines erfindungsgemäßen elektroakustischen Systems im Zusammenhang mit einem Gehörschutz, einem In-Ohr-Kopfhörer und/oder einem Hörgerät. Das erfindungsgemäße Verfahren und/oder das elektroakustische System kann in Verbindung mit einer Unterhaltungselektronik und/oder mit einer Kommunikationsvorrichtung, insbesondere einem Mobiltelefon und/oder einem Smartphone, verwendet werden. Insbesondere ist das Verfahren und/oder das elektroakustische System in einem bestehenden System und/oder einer bestehenden Vorrichtung integriert, wie beispielsweise in einem Hörgerät, einem In-Ohr-Kopfhörer (engl. In-Ear-Headphone), einem Im-Ohr-Hörgerät, einem Hörgerät, einem Hinter-dem-Ohr-Gerät und/oder einer Kommunikationsvorrichtung. Ein externes und/oder zusätzliches, insbesondere akustisches, Signal kann mit einem Umgebungssignal eines Umgebungsgeräusches gemischt werden. Insbesondere erfolgt die Mischung nach der Anwendung des ersten Korrekturfilters auf das eingehende Signal und/oder das Umgebungssignal.The use of a method according to the invention and / or an electroacoustic system according to the invention in connection with hearing protection, in-ear headphones and / or a hearing aid is particularly advantageous. The method according to the invention and / or the electroacoustic system can be used in connection with entertainment electronics and / or with a communication device, in particular a mobile phone and / or a smartphone. In particular, the method and / or the electroacoustic system is integrated in an existing system and / or an existing device, such as, for example, in a hearing aid, an in-ear headphone, an in-the-ear hearing aid , a hearing aid, a behind-the-ear device and / or a communication device. An external and / or additional, in particular acoustic, signal can be mixed with an ambient signal of an ambient noise. In particular, the mixing takes place after the first correction filter has been applied to the incoming signal and / or the ambient signal.

Die Signalverarbeitungseinrichtung kann in einem Im-Ohr-Gerät, einem Hinter-dem-Ohr-Gerät, einem Computer und/oder einer Kommunikationsvorrichtung, insbesondere in einem Mobiltelefon und/oder Smartphone, integriert sein. Vorzugsweise sind der innere Schallempfänger, der äußere Schallempfänger und/oder der Schallerzeuger mittels einer Leitung mit einem Im-Ohr-Gerät, einem Hinter-dem-Ohr-Gerät, einem Computer und/oder einer Kömmunikationsvorrichtung, insbesondere in einem Mobiltelefon und/oder Smartphone, verbunden.The signal processing device can be integrated in an in-the-ear device, a behind-the-ear device, a computer and / or a communication device, in particular in a mobile phone and / or smartphone. The inner sound receiver, the outer sound receiver and / or the sound generator are preferably connected by means of a line to an in-the-ear device, a behind-the-ear device, a computer and / or a communication device, in particular in a mobile phone and / or smartphone , connected.

Die akustische Transparenz kann eine mindestens weitgehend für eine Person gewohnte Wahrnehmung von Umgebungsgeräuschen und/oder ein räumliches Hören bei einem teilweise okkludierten Gehörgang ermöglichen.The acoustic transparency can enable a perception of ambient noises that is at least largely familiar to a person and / or spatial hearing in the case of a partially occluded ear canal.

Nach einer weiteren Ausführungsform ist das elektroakustische System, die Korrektureinheit, der erste Korrekturfilter und/oder der zweite Korrekturfilter zum Abschwächen und/oder Unterdrücken einer Schallabstrahlung nach außen, insbesondere von der die Vorrichtung nutzenden Person und/oder dem Trommelfell weg, ausgebildet.According to a further embodiment, the electroacoustic system, the correction unit, the first correction filter and / or the second correction filter are designed to attenuate and / or suppress sound radiation to the outside, in particular away from the person using the device and / or the eardrum.

Die elektroakustische Vorrichtung kann eine Entlüftungseinrichtung aufweisen. Die Entlüftungseinrichtung kann als ein Lüftungskanal ausgebildet sein, um bei einer in einen Gehörgang eingesetzten Vorrichtung einen Druckausgleich zu ermöglichen. Hierdurch kann der Tragekomfort weiter verbessert werden. Die Vorrichtung und/oder ein Ohrstück kann ein Luft-permeables Material aufweisen. Ein innerer Schallempfänger, ein äußerer Schallempfänger und/oder ein Schallerzeuger kann mindestens teilweise oder vollständig innerhalb der Entlüftungseinrichtung angeordnet sein.The electroacoustic device can have a ventilation device. The ventilation device can be designed as a ventilation channel in order to enable pressure equalization in the case of a device inserted into an auditory canal. In this way, the wearing comfort can be further improved. The device and / or an earpiece can comprise an air-permeable material. An inner sound receiver, an outer sound receiver and / or a sound generator can be arranged at least partially or completely within the ventilation device.

Nachfolgend wird die Erfindung anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung einer elektroakustischen Vorrichtung für ein erfindungsgemäßes elektroakustisches System,
Fig. 2
eine schematische Darstellung eines elektroakustisches Modells der elektroakustischen Vorrichtung gemäß Fig. 1,
Fig. 3
eine schematische Darstellung einer logischen Schaltung einer Signalverarbeitung mit der elektroakustischen Vorrichtung gemäß Fig. 1 während einer Kalibrierung, und
Fig. 4
eine schematische Darstellung einer logischen Schaltung einer Signalverarbeitungseinrichtung der elektroakustischen Vorrichtung gemäß Fig. 1.
The invention is explained in more detail below with reference to the figures. Show it:
Fig. 1
a schematic representation of an electroacoustic device for an electroacoustic system according to the invention,
Fig. 2
a schematic representation of an electroacoustic model of the electroacoustic device according to FIG Fig. 1 ,
Fig. 3
a schematic representation of a logic circuit of signal processing with the electroacoustic device according to FIG Fig. 1 during calibration, and
Fig. 4
a schematic representation of a logic circuit of a signal processing device of the electroacoustic device according to FIG Fig. 1 .

Figur 1 zeigt eine schematische Darstellung einer elektroakustischen Vorrichtung 10 für ein erfindungsgemäßes elektroakustisches System 11. Die Vorrichtung 10 hat ein Ohrstück 12. Bei diesem Ausführungsbeispiel ist das Ohrstück 12 hinsichtlich seiner Form an einen individuellen Gehörgang einer hier nicht näher dargestellten Person angepasst. Alternativ kann mindestens eine äußere Beschichtung des Ohrstückes 12 elastisch ausgebildet sein, wodurch mindestens eine teilweise Anpassung der Oberfläche des Ohrstückes 12 an die Form eines Gehörganges ermöglicht ist. Das Ohrstück 12 kann in einer inneren Ohrmuschelschale und/oder einem Gehörgangeingang angeordnet werden. Mittels des Ohrstückes 12 wird der Gehörgang mindestens teilweise, also teilweise oder vollständig, okkludiert. Figure 1 shows a schematic representation of an electroacoustic device 10 for an electroacoustic system 11 according to the invention. The device 10 has an ear piece 12. In this embodiment, the shape of the ear piece 12 is adapted to an individual auditory canal of a person not shown here. Alternatively, at least one outer coating of the earpiece 12 can be designed to be elastic, as a result of which at least a partial adaptation of the surface of the earpiece 12 to the shape of an auditory canal is made possible. The earpiece 12 can be arranged in an inner auricle shell and / or an auditory canal entrance. The ear canal is at least partially, that is to say partially or completely, occluded by means of the earpiece 12.

Die Vorrichtung 10 hat einen äußeren Schallempfänger 13. Bei diesem Ausführungsbeispiel ist der äußere Schallempfänger 13 als ein äußeres Mikrofon ausgebildet. Wenn das Ohrstück 12 in einem Ohr und/oder einem Gehörgang eingesetzt ist, ist der äußere Schallempfänger 13 von einem hier nicht näher dargestellten Trommelfell weg gerichtet. Der äußere Schallempfänger 13 ist nach außen zum Empfangen eines eingehenden Signals, nämlich von akustischen Umgebungsgeräuschen, gerichtet. Hier ist der äußere Schallempfänger 13 beispielhaft in der Oberfläche des Ohrstückes 12 angeordnet. Die Lage des äußeren Schallempfängers 13 ermöglicht, dass das eingehende Signal alle räumlichen monoauralen Informationen enthält. Mittels des äußeren Schallempfängers 13 werden eingehende akustische Signale in elektrische Signale umgewandelt.The device 10 has an external sound receiver 13. In this exemplary embodiment, the external sound receiver 13 is designed as an external microphone. When the earpiece 12 is inserted in an ear and / or an auditory canal, the outer sound receiver 13 is directed away from an eardrum not shown here. The outer sound receiver 13 is directed outwards to receive an incoming signal, namely acoustic ambient noise. Here, the outer sound receiver 13 is arranged, for example, in the surface of the earpiece 12. The location of the outer sound receiver 13 enables the incoming signal to be all spatial contains monaural information. By means of the external sound receiver 13, incoming acoustic signals are converted into electrical signals.

Des Weiteren hat die Vorrichtung 10 einen inneren Schallempfänger 14. Bei diesem Ausführungsbeispiel ist der innere Schallempfänger 14 als ein inneres Mikrofon ausgebildet. Wenn das Ohrstück 12 in einem Ohr und/oder einem Gehörgang eingesetzt ist, ist der innere Schallempfänger 14 einem hier nicht näher dargestellten Trommelfell zugewandt. Der innere Schallempfänger 14 ist nach innen zum Erfassen eines Klangfeldes in einem Gehörgangabschnitt von der Vorrichtung 10 bzw. dem Ohrstück 12 bis zum Trommelfell gerichtet. Hier ist der innere Schallempfänger 14 beispielhaft in der Oberfläche des Ohrstückes 12 angeordnet. Mittels des inneren Schallempfängers 14 werden eingehende akustische Signale in elektrische Signale umgewandelt.Furthermore, the device 10 has an internal sound receiver 14. In this exemplary embodiment, the internal sound receiver 14 is designed as an internal microphone. When the earpiece 12 is inserted in an ear and / or an auditory canal, the inner sound receiver 14 faces an eardrum, not shown in detail here. The inner sound receiver 14 is directed inwards to detect a sound field in an auditory canal section from the device 10 or the earpiece 12 to the eardrum. Here, the inner sound receiver 14 is arranged, for example, in the surface of the earpiece 12. By means of the inner sound receiver 14, incoming acoustic signals are converted into electrical signals.

Die Vorrichtung 10 weist einen Schallerzeuger 15 auf. Der Schallerzeuger 15 ist im Bereich des inneren Schallempfängers 14 angeordnet. Des Weiteren ist der Schallerzeuger 15 einem hier nicht näher dargestellten Trommelfell zugewandt, wenn das Ohrstück 12 in einem Ohr und/oder einem Gehörgang eingesetzt ist. Hier ist der Schallerzeuger 15 beispielhaft an der Oberfläche des Ohrstückes 12 angeordnet. Der Schallerzeuger 15 ist nach innen zum Abstrahlen des abgehenden Signals in den Gehörgangabschnitt zwischen der Vorrichtung 10 bzw. dem Ohrstück 12 und dem Trommelfell gerichtet. Der Schallerzeuger 15 ist zum Umwandeln eines elektrischen Signals in ein akustisches Signal ausgebildet.The device 10 has a sound generator 15. The sound generator 15 is arranged in the area of the inner sound receiver 14. Furthermore, the sound generator 15 faces an eardrum (not shown in detail here) when the earpiece 12 is inserted in an ear and / or an auditory canal. Here the sound generator 15 is arranged, for example, on the surface of the earpiece 12. The sound generator 15 is directed inwards to emit the outgoing signal into the auditory canal section between the device 10 or the earpiece 12 and the eardrum. The sound generator 15 is designed to convert an electrical signal into an acoustic signal.

Die Vorrichtung 10 hat eine Signalverarbeitungseinrichtung 16. Der äußere Schallempfänger 13, der innere Schallempfänger 14 und der Schallwandler 15 sind jeweils mittels einer Leitung mit der Signalverarbeitungseinrichtung 16 verbunden. Die Signalverarbeitungseinrichtung 16 ist bei diesem Ausführungsbeispiel in das Ohrstück 12 integriert. Alternativ kann die Signalverarbeitungseinrichtung 16 auch außerhalb des Ohrstückes 12 angeordnet sein, beispielsweise in einem Gehäuse zum Anordnen hinter einem Ohr oder in einer Ohrmuschel. Hier ist die Signalverarbeitungseinrichtung 16 beispielhaft als eine digitale Signalverarbeitungseinrichtung 16 ausgebildet. Die Signalverarbeitungseinrichtung 16 weist Analog-Digital-Umsetzer und Digital-Analog-Umsetzer auf, die mit elektroakustischen Schallwandlern verbunden sind, insbesondere mit dem äußeren Schallempfänger 13, dem inneren Schallempfänger 14 und dem Schallwandler 15. Mittels der Signalverarbeitungseinrichtung 16 werden Berechnungen, Modifizierungen und/oder Korrekturen in Bezug auf ein an dem äußeren Schallempfänger 13 eingehendes Signal und ein von dem Schallerzeuger 15 abgehendes Signal durchgeführt.The device 10 has a signal processing device 16. The outer sound receiver 13, the inner sound receiver 14 and the sound transducer 15 are each connected to the signal processing device 16 by means of a line. The signal processing device 16 is integrated into the earpiece 12 in this exemplary embodiment. Alternatively, the signal processing device 16 can also be arranged outside the earpiece 12, for example in a housing for arrangement behind an ear or in an auricle. Here, the signal processing device 16 is designed, for example, as a digital signal processing device 16. The signal processing device 16 has analog-to-digital converters and digital-to-analog converters which are connected to electroacoustic sound transducers, in particular to the outer sound receiver 13, the inner sound receiver 14 and the sound transducer 15. or corrections are carried out with respect to an incoming signal at the external sound receiver 13 and an outgoing signal from the sound generator 15.

Die Signalverarbeitungseinrichtung 16 weist eine Korrektureinheit 17 auf. Mittels der Korrektureinheit 17 wird ein an der Vorrichtung 10 bzw. dem äußeren Schallempfänger 13 eingehendes Signal korrigiert und/oder modifiziert, um ein von der Vorrichtung 10 bzw. vom Schallerzeuger 15 abgehendes Signal zu erzeugen. Die Korrektureinheit 17 hat einen ersten Korrekturfilter A und einen zweiten Korrekturfilter B.The signal processing device 16 has a correction unit 17. By means of the correction unit 17, an on the device 10 or the external sound receiver 13 incoming signal is corrected and / or modified in order to generate a signal outgoing from the device 10 or from the sound generator 15. The correction unit 17 has a first correction filter A and a second correction filter B.

Bei diesem Ausführungsbeispiel ist die Signalverarbeitungseinrichtung 16 mittels einer Leitung mit einer zusätzlichen externen Signalquelle 18 verbunden. Mittels der zusätzlichen Signalquelle 18 ist ein zusätzliches externes, insbesondere akustisches, Signal der Signalverarbeitungseinrichtung 16 zuführbar. Die zusätzliche Signalquelle kann als eine Unterhaltungselektronik, eine Musikquelle und/oder eine Kommunikationsvorrichtung ausgebildet sein.In this exemplary embodiment, the signal processing device 16 is connected to an additional external signal source 18 by means of a line. By means of the additional signal source 18, an additional external, in particular acoustic, signal can be fed to the signal processing device 16. The additional signal source can be designed as entertainment electronics, a music source and / or a communication device.

Die Vorrichtung 10 bzw. das Ohrstück 12 hat eine Entlüftungseinrichtung 19. Die Entlüftungseinrichtung 19 ist bei diesem Ausführungsbeispiel als ein Lüftungskanal ausgebildet. Die Entlüftungseinrichtung 19 ermöglicht bei einer in einen Gehörgang eingesetzten Vorrichtung 10 einen Druckausgleich. Ein Luftvolumen eines Gehörgangabschnittes zwischen dem Ohrstück 12 und dem Trommelfell ist mittels der Entlüftungseinrichtung 19 mit der Umgebung außerhalb des Gehörganges bzw. des Ohres verbunden.The device 10 or the earpiece 12 has a ventilation device 19. In this exemplary embodiment, the ventilation device 19 is designed as a ventilation channel. The ventilation device 19 enables a pressure equalization with a device 10 inserted into an auditory canal. An air volume of an auditory canal section between the earpiece 12 and the eardrum is connected to the environment outside the auditory canal or the ear by means of the ventilation device 19.

Der innere Schallempfänger 14 ermöglicht bei einem mindestens teilweise mittels der Vorrichtung 10 bzw. dem Ohrstück 12 okkludierten Gehörganges eine Abschätzung eines Empfangssignals und/oder eines akustischen Signals am Trommelfell, insbesondere einer Frequenzantwort am Trommelfell aufgrund einer beliebigen Geräuschquelle. Diese Abschätzung kann erfolgen, indem die mechanisch-akustischen Eigenschaften der Vorrichtung 10 derart angenommen werden, dass die Frequenzantwort an der Position des inneren Schallempfängers 14 und dem Trommelfell gleich sind. Bei diesem Ausführungsbeispiel wird der Druck am Trommelfell mittels des an der Position des inneren Schallempfängers 14 gemessenen Drucks unter Verwendung eines elektroakustischen Modells des Gehörganges P abgeschätzt.With an auditory canal at least partially occluded by means of the device 10 or the earpiece 12, the inner sound receiver 14 enables an estimation of a received signal and / or an acoustic signal on the eardrum, in particular a frequency response on the eardrum due to any noise source. This estimation can be made by assuming the mechanical-acoustic properties of the device 10 in such a way that the frequency response at the position of the inner sound receiver 14 and the eardrum are the same. In this exemplary embodiment, the pressure on the eardrum is estimated by means of the pressure measured at the position of the inner sound receiver 14 using an electroacoustic model of the auditory canal P.

Figur 2 zeigt eine schematische Darstellung eines elektroakustischen Modells 20 der elektroakustischen Vorrichtung 10 gemäß Fig. 1. Die Vorrichtung 10 bzw. das Ohrstück 12 gemäß Fig. 1 wird als ein Norton- und/oder Thevenin-äquivalentes elektroakustisches Geschwindigkeits- und/oder Druckmodell modelliert, das mit der Gehörgangs-Impedanz gemäß der Darstellung in Figur 2 verbunden ist. Figure 2 FIG. 11 shows a schematic representation of an electroacoustic model 20 of the electroacoustic device 10 according to FIG Fig. 1 . The device 10 or the earpiece 12 according to FIG Fig. 1 is modeled as a Norton and / or Thevenin equivalent electroacoustic velocity and / or pressure model, which is compared with the ear canal impedance as shown in FIG Figure 2 connected is.

Die Quellenparameter werden auf ein elektroakustisches Schaltungsmodell angewendet, das eine Spannungsquelle für den Druck oder eine Stromquelle für die Geschwindigkeit, eine innere Quellenimpedanz, den Gehörgang als Zweitor und das Trommelfell als die Abschlussimpedanz der Schaltung aufweist. Die Quellterme PS für den Druck, Qs für die Geschwindigkeit und ZS für die Impedanz sind mittels Messungen der Impulsantworten bestimmbar, die durch die Quellen induziert werden, wenn diese mit verschiedenen Lasten bekannter theoretischer Impedanzen verbunden werden. Daher werden diese als bekannt angenommen und sind Teil des elektroakustischen Gehörgang-Modells P, das von der individuellen Ausbildung der Vorrichtung 10 abhängig ist. Das Kürzel PL in der Figur 2 steht für den Lastdruck und das Kürzel ZL für die Lastimpedanz.The source parameters are applied to an electroacoustic circuit model that has a voltage source for pressure or a current source for speed, an internal source impedance, the ear canal as the two-port and the eardrum as the terminating impedance of the circuit. The source terms P S for the pressure, Qs for the speed and Z S for the impedance are by means of measurements the impulse responses induced by the sources when connected to various loads of known theoretical impedances. These are therefore assumed to be known and are part of the electroacoustic auditory canal model P, which is dependent on the individual design of the device 10. The abbreviation P L in the Figure 2 stands for the load pressure and the abbreviation Z L for the load impedance.

Die Lastimpedanz ZL wird mittels des an der Position des inneren Schallempfängers 14 gemessenen Drucks PE und unter Verwendung des elektroakustischen Schaltungsmodells gemäß Fig. 2 mit der folgenden Formel bestimmt: Z L = Z S P E P S P E

Figure imgb0006
The load impedance Z L is determined by means of the pressure P E measured at the position of the inner sound receiver 14 and using the electroacoustic circuit model according to FIG Fig. 2 determined using the following formula: Z L. = Z S. P. E. P. S. - P. E.
Figure imgb0006

Wenn die Quellenimpedanz ZS, die Lastimpedanz des Gehörganges ZL, insbesondere in einem Bereich von der Vorrichtung 10 bzw. dem Ohrstück 12 bis zu dem Trommelfell, und der im Inneren des Gehörganges vorhandene Druck PE und/oder eine Druckfrequenzantwort bekannt sind, wird die Teilchengeschwindigkeit UE an der Position des inneren Schallempfängers 14 unter Verwendung der Lastimpedanz ZL gemäß U E = P E Z L

Figure imgb0007
und/oder unter Verwendung der Quellenimpedanz ZS gemäß U E = P S P E Z S
Figure imgb0008
bestimmt.If the source impedance Z S , the load impedance of the auditory canal Z L , in particular in a region from the device 10 or the earpiece 12 to the eardrum, and the pressure P E present inside the auditory canal and / or a pressure frequency response are known the particle speed U E at the position of the inner sound receiver 14 using the load impedance Z L according to FIG U E. = P. E. Z L.
Figure imgb0007
and / or using the source impedance Z S according to U E. = P. S. - P. E. Z S.
Figure imgb0008
certainly.

Die Beziehung eines Drucks am Trommelfell PD zum Druck PE an der Position des inneren Schallempfängers 14 ist gemäß der Energiedichte basierten Abschätzungsmethode gegeben, wie es beispielsweise in dem folgenden Dokument beschrieben ist:
M. Hiipakka, M. Karjalainen und V. Pulkki, "Estimating pressure at eardrum with pressure-velocity measurements from ear canal entrance", Application of Signal Processing to Audio and Acoustics, 2009. WASPAA '09. IEEE Workshop on., 2009 .
The relationship of a pressure at the eardrum P D to the pressure P E at the position of the inner sound receiver 14 is given according to the energy density-based estimation method, as it is described, for example, in the following document:
M. Hiipakka, M. Karjalainen and V. Pulkki, "Estimating pressure at eardrum with pressure-velocity measurements from ear canal entrance", Application of Signal Processing to Audio and Acoustics, 2009. WASPAA '09. IEEE Workshop on., 2009 .

Der gemessene Druck PE an der Position des inneren Schallempfängers 1 und die abgeschätzte Teilchengeschwindigkeit UE werden genutzt, um die folgende Abschätzung zu erhalten: P D = P E 2 + U E ρc 2

Figure imgb0009
The measured pressure P E at the position of the inner sound receiver 1 and the estimated particle velocity U E are used to obtain the following estimate: P. D. = P. E. 2 + U E. ρc 2
Figure imgb0009

Hierbei ist p die Luftdichte und c die Schallgeschwindigkeit.Here p is the air density and c is the speed of sound.

Das Verhältnis von PE zu PD wird in den linearen Filter B überführt, wodurch sich folgende Gleichung ergibt: P D = P E B

Figure imgb0010
The ratio of P E to P D is transferred to the linear filter B, resulting in the following equation: P. D. = P. E. B.
Figure imgb0010

Mittels des Filters B werden die akustischen Eigenschaften des Gehörganges, insbesondere in einem Bereich zwischen der den Gehörgang mindestens teilweise okkludierenden Vorrichtung 10 und dem dem Trommelfell zugewandten Ende des Ohrstücks 12, bei der Modifizierung bzw. Korrektur mittels der Signalverarbeitungseinrichtung 16 bzw. der Korrektureinheit 17 berücksichtigt.By means of the filter B, the acoustic properties of the auditory canal, in particular in an area between the device 10 which at least partially occludes the auditory canal and the end of the earpiece 12 facing the eardrum, are taken into account in the modification or correction by means of the signal processing device 16 or the correction unit 17 .

Figur 3 zeigt eine schematische Darstellung einer logischen Schaltung 21 einer Signalverarbeitung mit der elektroakustischen Vorrichtung 10 gemäß Fig. 1 während einer Kalibrierung. Figure 3 shows a schematic representation of a logic circuit 21 of a signal processing with the electroacoustic device 10 according to Fig. 1 during a calibration.

Das elektroakustische System 11, die Vorrichtung 10 bzw. das Ohrstück 12 ist in-situ, also bei einem mindestens teilweise okkludierten Gehörgang, kalibrierbar. Ziel der Kalibrierung ist es, einen vorgegebenen Druck und/oder eine vorgegebene Frequenzantwort am Trommelfell unter Verwendung einer Kalibrierungsroutine zu erhalten. Hierzu wird der Filter A bestimmt. Mittels des Filters A ist ein durch Modifikation des eingehenden Signals von der Vorrichtung 10 bzw. dem Schallerzeuger 15 abgehendes Signal erzeugbar, das an der Position des inneren Schallempfängers 14 einen Zieldruck und/oder eine Zielfrequenzantwort erzeugt.The electroacoustic system 11, the device 10 or the earpiece 12 can be calibrated in situ, that is to say with an at least partially occluded ear canal. The aim of the calibration is to obtain a predetermined pressure and / or a predetermined frequency response on the eardrum using a calibration routine. For this purpose, filter A is determined. By means of the filter A, an outgoing signal from the device 10 or the sound generator 15 can be generated by modifying the incoming signal, which signal generates a target pressure and / or a target frequency response at the position of the inner sound receiver 14.

Somit entspricht der Druck PE an der Position des inneren Schallempfängers 14 dem Zieldruck PT,E an der Position des inneren Schallempfängers 14: P E = P T , E

Figure imgb0011
Thus, the pressure P E at the position of the inner sound receiver 14 corresponds to the target pressure P T, E at the position of the inner sound receiver 14: P. E. = P. T , E.
Figure imgb0011

Der Druck PE bzw. der Zieldruck PT,E an der Position des inneren Schallempfängers 14 ergibt sich aufgrund eines Umgebungsgeräuschsignals von einer Geräuschquelle 22. Die Geräuschquelle 22 liegt außerhalb des Ohres und verursacht übliche Umgebungsgeräusche.The pressure P E or the target pressure P T, E at the position of the inner sound receiver 14 results on the basis of an ambient noise signal from a noise source 22. The noise source 22 is outside the ear and causes usual ambient noise.

Wie gemäß der Figur 3 dargestellt wird das von der Geräuschquelle 22 ausgehende akustische Signal innerhalb des Gehörganges und bei einem mittels der Vorrichtung 10 bzw. dem Ohrstück 12 mindestens teilweise okkludierten Gehörgang in zwei Teilsignale 23, 24 aufgeteilt.As according to the Figure 3 the acoustic signal emanating from the noise source 22 is divided into two partial signals 23, 24 within the auditory canal and in the case of an auditory canal that is at least partially occluded by means of the device 10 or the earpiece 12.

Das erste Teilsignal 23 ist ein Durchgangssignal. Dem ersten Teilsignal 23 ist eine Druckfrequenzantwort und/oder ein Durchgangsdruck PHT zugeordnet, der an der Position des inneren Schallempfängers 14 gemessen wird. Das zweite Teilsignal 24 ist ein Vorrichtungsabgabesignal. Das zweite Teilsignal 24 wird von dem Ohrstück 12 in Richtung des Trommelfells mittels des Schallerzeugers 15 erzeugt und abgegeben. Das zweite Teilsignal 24 ergibt sich durch das am äußeren Schallempfänger 13 eingehende Signal, das mittels der Filterung mittels des ersten Filters A und des zweiten Filters B modifiziert wird und anschließend mittels des Schallerzeugers 15 abgegeben wird. Dem zweiten Teilsignal 24 ist eine abgehende Druckfrequenz und/oder ein abgehender Druck PEP zugeordnet.The first partial signal 23 is a through signal. A pressure frequency response and / or a passage pressure P HT , which is measured at the position of the inner sound receiver 14, is assigned to the first partial signal 23. The second sub-signal 24 is a device output signal. The second partial signal 24 is generated and emitted by the earpiece 12 in the direction of the eardrum by means of the sound generator 15. The second partial signal 24 results from the signal arriving at the external sound receiver 13, which is modified by means of filtering by means of the first filter A and the second filter B and is then output by means of the sound generator 15. An outgoing pressure frequency and / or an outgoing pressure P EP is assigned to the second partial signal 24.

Zur Kalibrierung wird unter Verwendung der Geräuschquelle 22, das bei diesem Ausführungsbeispiel als ein Kopfhörer ausgebildet ist, bei Nichtanwendung der Filter A und B der Durchgangsdruck PHT und der abgehende Druck PEP mittels der Schallempfänger 13, 14 gemessen. Da allerdings der abgehende Druck PEP nicht unabhängig vom Durchgangsdruck PHT messbar ist, wird eine Gesamtfrequenzantwort und/oder ein Gesamtdruck Ptot eingeführt: P tot = P EP + P HT

Figure imgb0012
For calibration, the through pressure P HT and the outgoing pressure P EP are measured by means of the sound receivers 13, 14 using the noise source 22, which is designed as headphones in this exemplary embodiment, when the filters A and B are not used. However, since the outgoing pressure P EP cannot be measured independently of the passage pressure P HT , a total frequency response and / or a total pressure P tot is introduced: P. dead = P. EP + P. HT
Figure imgb0012

Der Gesamtdruck Ptot wird unter Berücksichtigung des Korrekturfilters A mit dem Zieldruck PT,E gleichgesetzt: P T , E = P HT + P EP A = P HT + P tot P HT A

Figure imgb0013
The total pressure P tot is set equal to the target pressure P T, E , taking into account the correction filter A: P. T , E. = P. HT + P. EP A. = P. HT + P. dead - P. HT A.
Figure imgb0013

Somit wird nach der vorstehend beschriebenen Erstbestimmung ein erster Korrekturfilter A mittels der gemessenen Frequenzantworten und/oder Drücke PT,E, PHT und Ptot wie folgt berechnet: A = P T , E P HT P tot P HT

Figure imgb0014
Thus, after the first determination described above, a first correction filter A is calculated using the measured frequency responses and / or pressures P T, E , P HT and P tot as follows: A. = P. T , E. - P. HT P. dead - P. HT
Figure imgb0014

Dieser erste Korrekturfilter A wird im Rahmen einer Erstkalibrierung bestimmt.This first correction filter A is determined in the course of an initial calibration.

Anschließend kann eine Feinjustierung des Korrekturfilters A durchgeführt werden. Um die tatsächliche Frequenzantwort und/oder den Druck PE am inneren Schallempfänger 14 an den Zieldruck PT,E anzupassen, wird ein vorgegebenes Kalibrierungssignal verwendet. Bei diesem Ausführungsbeispiel ist das Kalibrierungssignal als weißes Rauschen ausgebildet. Das Kalibrierungssignal wird von der Geräuschquelle 22 abgegeben. Mittels des inneren Schallempfängers 14 wird die Frequenzantwort und/oder der Druck PE gemessen. Aufgrund einer Abweichung des gemessenen Drucks PE von dem Zieldruck PT,E wird der Korrekturfilter A entsprechend angepasst. Der erste Korrekturfilter A wird bei einer Abweichung des gemessenen Drucks PE von dem Zieldruck PT,E bis zum Erreichen eines vorgegebenen Konvergenzkriteriums iterativ angepasst.A fine adjustment of the correction filter A can then be carried out. About the actual frequency response and / or the pressure P E at the inner sound receiver 14 to adapt to the target pressure P T, E , a predetermined calibration signal is used. In this exemplary embodiment, the calibration signal is designed as white noise. The calibration signal is emitted by the noise source 22. The frequency response and / or the pressure P E is measured by means of the internal sound receiver 14. On the basis of a deviation of the measured pressure P E from the target pressure P T, E , the correction filter A is adapted accordingly. If the measured pressure P E deviates from the target pressure P T, E, the first correction filter A is iteratively adapted until a predetermined convergence criterion is reached.

Für die Bestimmung des Korrekturfilters A bzw. zum Erreichen der akustischen Transparenz muss der Zieldruck PT,E an der Position des inneren Schallempfängers 14 bekannt sein. Des Weiteren muss die erzeugte Frequenzantwort und/oder der Druck PD am Trommelfell für einen freien Gehörgang und einen mindestens teilweise okkludierten Gehörgang mit einer aktiven und kalibrierten Vorrichtung 10 gleich sein. Demnach wird der Druck PD am Trommelfell dem Zieldruck PT,D am Trommelfell gleichgesetzt: P D = P T , D

Figure imgb0015
To determine the correction filter A or to achieve the acoustic transparency, the target pressure P T, E at the position of the inner sound receiver 14 must be known. Furthermore, the generated frequency response and / or the pressure P D on the eardrum must be the same for a free auditory canal and an at least partially occluded auditory canal with an active and calibrated device 10. Accordingly, the pressure P D on the eardrum is set equal to the target pressure P T, D on the eardrum: P. D. = P. T , D.
Figure imgb0015

Es wird ein Zielmodell T eingeführt, um die Frequenzantwort und/oder den Druck am Trommelfell als individuelle Abschätzung für die jeweils die Vorrichtung 10 benutzende Person bereit zu stellen.A target model T is introduced in order to provide the frequency response and / or the pressure on the eardrum as an individual estimate for each person using the device 10.

Hierbei wird jedoch nicht die Frequenzantwort und/oder der Zieldruck PT,D am Trommelfell bestimmt oder abgeschätzt. Stattdessen wird die Zielfrequenzantwort und/oder der Zieldruck PT,E an der Position des inneren Schallempfängers 14 bei einem freien Gehörgang abgeschätzt.In this case, however, the frequency response and / or the target pressure P T, D on the eardrum is not determined or estimated. Instead, the target frequency response and / or the target pressure P T, E is estimated at the position of the inner sound receiver 14 with a free auditory canal.

Hierfür wird ein elektroakustisches Schaltungsmodell verwendet, das ein Thevenin-Druckquellen-Modell PS und ein Quellenimpedanz-Modell ZS aufweist. Der Quellendruck PS wird mittels der am äußeren Schallempfänger 13 gemessenen Frequenzantwort und/oder dem dort gemessenen Druck abgeschätzt, wenn ein eingehendes Signal von der Geräuschquelle 22 erzeugt wird. Die Strahlung des Quellendrucks PS in den Gehörgang im Falle eines freien Gehörganges wird mittels der Strahlungsimpedanz ZRAD und der Gehörgangsimpedanz ZL abgeschätzt.An electroacoustic circuit model is used for this, which has a Thevenin pressure source model P S and a source impedance model Z S. The source pressure P S is estimated by means of the frequency response measured at the external sound receiver 13 and / or the pressure measured there when an incoming signal is generated by the noise source 22. The radiation of the source pressure P S into the auditory canal in the case of a free auditory canal is estimated by means of the radiation impedance Z RAD and the auditory canal impedance Z L.

Die von der jeweiligen Person abhängige, individuelle Gehörgangsimpedanz ZL wird mittels der vorstehend genannten Messungen und Berechnungen bestimmt. Allerdings sind keine individuellen Messungen und/oder Bestimmungen für die Strahlungsimpedanz ZRAD möglich. Daher wird ein abgeschätzter Wert verwendet, der auf einem theoretischen Modell und Messungen mit Versuchspersonen basiert, wie es beispielsweise in dem folgenden Dokument beschrieben ist:
M. Hiipakka, T. Kinnari und V. Pulkki; "Estimating head-related transfer functions of human subjects from pressure-velocity measurements", The Journal of the Acoustical Society of America, 2012 .
The individual auditory canal impedance Z L , which is dependent on the respective person, is determined by means of the measurements and calculations mentioned above. However, no individual measurements and / or determinations for the radiation impedance Z RAD are possible. Therefore, an estimated value is used that is is based on a theoretical model and measurements with test subjects, as described, for example, in the following document:
M. Hiipakka, T. Kinnari, and V. Pulkki; "Estimating head-related transfer functions of human subjects from pressure-velocity measurements," The Journal of the Acoustical Society of America, 2012 .

Damit ergibt sich die Zielfrequenzantwort und/oder der Zieldruck PT,E an der Position des inneren Schallempfängers 14 bei einem freien Gehörgang wie folgt: P T , E = P S Z L Z L + Z RAD

Figure imgb0016
This results in the target frequency response and / or the target pressure P T, E at the position of the inner sound receiver 14 with a free ear canal as follows: P. T , E. = P. S. Z L. Z L. + Z WHEEL
Figure imgb0016

Bei diesem Ausführungsbeispiel wird die vorstehend beschrieben Kalibrierung zum Bestimmen des ersten Korrekturfilters A und des zweiten Korrekturfilters B nach jedem Einsetzen der Vorrichtung 10 bzw. des Ohrstücks 12 in das Ohr bzw. den Gehörgang durchgeführt. Hierdurch werden Veränderungen aufgrund einer abweichenden Lage der Vorrichtung 10 bzw. des Ohrstücks 12 in dem Gehörgang bzw. an dem Ohr berücksichtigt werden. Hierdurch ist eine akustische Transparenz mit einer besonders hohen Qualität erreichbar. Nach der Kalibrierung bzw. im normalen Betrieb der Vorrichtung 10 bzw. des Ohrstückes 12 verbleiben die Korrekturfilter A und B gemäß diesem Ausführungsbeispiel unverändert. Alternativ kann eine adaptive Nachführung und/oder Nachkalibrierung des Korrekturfilters A und/oder B, insbesondere während des normalen Betriebs, erfolgen.In this exemplary embodiment, the calibration described above for determining the first correction filter A and the second correction filter B is carried out after each insertion of the device 10 or the earpiece 12 into the ear or the auditory canal. In this way, changes due to a different position of the device 10 or of the earpiece 12 in the auditory canal or on the ear are taken into account. In this way, acoustic transparency with a particularly high quality can be achieved. After the calibration or during normal operation of the device 10 or the earpiece 12, the correction filters A and B remain unchanged according to this exemplary embodiment. Alternatively, adaptive tracking and / or recalibration of the correction filter A and / or B can take place, in particular during normal operation.

Nach der Kalibrierung wird der erste Korrekturfilter A zum Modifizieren des eingehenden Signals verwendet, wodurch das abgehende Signal bzw. der abgehende Druck PEP modifiziert wird. Mittels des zweiten Korrekturfilters B werden bei der Modifikation des an der Vorrichtung 10 eingehenden Signals bzw. bei der Erzeugung des abgehenden Signals Informationen über den Übertragungsweg von der Position des inneren Schallempfängers bis zum Trommelfell berücksichtigt.After the calibration, the first correction filter A is used to modify the incoming signal, as a result of which the outgoing signal or the outgoing pressure P EP is modified. By means of the second correction filter B, information about the transmission path from the position of the inner sound receiver to the eardrum is taken into account when modifying the incoming signal at device 10 or when generating the outgoing signal.

Figur 4 zeigt eine schematische Darstellung einer logischen Schaltung 25 mit einer Signalverarbeitungseinrichtung 16 der elektroakustischen Vorrichtung 10 gemäß Fig. 1. Figure 4 shows a schematic representation of a logic circuit 25 with a signal processing device 16 of the electroacoustic device 10 according to FIG Fig. 1 .

Im normalen Betrieb wird ein Umgebungsgeräusch als eingehendes akustisches Signal von dem äußeren Schallempfänger 13 aufgenommen, in ein eingehendes elektrisches Signal umgewandelt und an die Signalverarbeitungseinrichtung 16 geleitet. Die Signalverarbeitungseinrichtung 16 korrigiert und modifiziert das Signal mittels der beiden Korrekturfilter A und B, um die Frequenzantwort und/oder den Druck am Trommelfell an die Frequenzantwort und/oder den Druck am Trommelfell bei einem freien Gehörgang anzupassen. Bei diesem Ausführungsbeispiel wird aufgrund der beiden Korrekturfilter A und B die gleiche Frequenzantwort und/oder der gleiche Druck am Trommelfell erzeugt wie bei einem freien Gehörgang.During normal operation, an ambient noise is picked up as an incoming acoustic signal by the external sound receiver 13, converted into an incoming electrical signal and sent to the signal processing device 16. The signal processing device 16 corrects and modifies the signal by means of the two correction filters A and B in order to match the frequency response and / or the pressure on the eardrum to the frequency response and / or the pressure on the eardrum in one case adapt to the free ear canal. In this exemplary embodiment, due to the two correction filters A and B, the same frequency response and / or the same pressure is generated on the eardrum as with a free auditory canal.

Eine derartige akustische Transparenz ist ermöglicht, da das eingehende Signal am äußeren Schallempfänger 13 alle Richtungsinformationen enthält. Dagegen ist der Übertragungsweg von der inneren Ohrmuschel bis zum Trommelfell sowohl für den freien als auch den mindestens teilweise okkludierten Gehörgang unabhängig von der eingehenden Signalrichtung oder Schallrichtung.Such acoustic transparency is made possible because the incoming signal at the external sound receiver 13 contains all directional information. In contrast, the transmission path from the inner auricle to the eardrum for both the free and the at least partially occluded ear canal is independent of the incoming signal direction or sound direction.

Gemäß Fig. 1 und Fig. 4 wird ein zu dem Umgebungsgeräusch, beispielsweise von der Geräuschquelle 22 gemäß Fig. 3, zusätzliches Signal einer zusätzlichen Signalquelle 18 der Vorrichtung 10 zugeführt. Beispielsweise ist die zusätzliche Signalquelle 18 als eine Unterhaltungselektronik und/oder als ein zusätzlicher Schallempfänger für die Vorrichtung 10 ausgebildet. Abhängig vom Zweck und/oder der Art der Signalquelle 18 wird das zusätzliche Signal zum Übermitteln von Information und/oder zum Ergänzen des an der Vorrichtung 10 eingehenden Signals genutzt. Die Frequenzantwort und/oder der Druck am Trommelfell aufgrund des zusätzlichen Signals bzw. der zusätzlichen Signalquelle 18 wird bei diesem Ausführungsbeispiel mittels der zuvor bestimmten Korrekturfilter A und/oder B modifiziert. Aufgrund einer Korrektur mittels des Korrekturfilters B wird das zusätzliche Signal derart modifiziert, dass unerwünschte Übermittlungseffekte des Gehörganges in einem Bereich zwischen einem dem Trommelfell zugewandten Ende der Vorrichtung 10 bzw. des Ohrstücks 12 und dem Trommelfell abgeschwächt und/oder vermieden werden.According to Fig. 1 and Fig. 4 becomes an to the ambient noise, for example from the noise source 22 according to FIG Fig. 3 , additional signal is supplied to an additional signal source 18 of the device 10. For example, the additional signal source 18 is designed as entertainment electronics and / or as an additional sound receiver for the device 10. Depending on the purpose and / or the type of signal source 18, the additional signal is used to transmit information and / or to supplement the signal arriving at device 10. The frequency response and / or the pressure on the eardrum due to the additional signal or the additional signal source 18 is modified in this exemplary embodiment by means of the previously determined correction filters A and / or B. As a result of a correction by means of the correction filter B, the additional signal is modified in such a way that undesired transmission effects of the auditory canal in an area between an end of the device 10 or the earpiece 12 facing the eardrum and the eardrum are weakened and / or avoided.

Bezugszeichenliste:List of reference symbols:

1010
elektroakustische Vorrichtungelectroacoustic device
1111
elektroakustisches Systemelectroacoustic system
1212th
OhrstückEarpiece
1313th
äußerer Schallempfängerexternal sound receiver
1414th
innerer Schallempfängerinner sound receiver
1515th
SchallerzeugerSound generator
1616
SignalverarbeitungseinrichtungSignal processing device
1717th
KorrektureinheitCorrection unit
1818th
zusätzliche Signalquelleadditional signal source
1919th
EntlüftungseinrichtungVentilation device
2020th
elektroakustisches Modellelectroacoustic model
2121
logische Schaltunglogic circuit
2222nd
GeräuschquelleSource of noise
2323
erstes Teilsignalfirst partial signal
2424
zweites Teilsignalsecond partial signal
AA.
erster Korrekturfilterfirst correction filter
BB.
zweiter Korrekturfiltersecond correction filter
PP.
Gehörgangs-ModellEar canal model
TT
ZielmodellTarget model
PSPS
QuellendruckSource print
QSQS
QuellengeschwindigkeitSource speed
ZSZS
QuellenimpedanzSource impedance
ZLZL
Last- bzw. GehörgangsimpedanzLoad or ear canal impedance
PLPL
LastdruckLoad pressure
PEPE
Druck am inneren SchallempfängerPressure on the inner sound receiver
UEUE
Teilchengeschwindigkeit am inneren SchallempfängerParticle speed at the inner sound receiver
PDPD
Druck am TrommelfellPressure on the eardrum
ρρ
LuftdichteAirtightness
cc
SchallgeschwindigkeitSpeed of sound
PT,DPT, D
Zieldruck am TrommelfellTarget pressure on the eardrum
PT,EPT, E
Zieldruck am inneren SchallempfängerTarget pressure on the inner sound receiver
PtotPtot
GesamtdruckTotal pressure
PHTPHT
Durchgangsdruck am inneren SchalldämpferPassage pressure at the inner silencer
PEPPEP
abgehender Druckoutgoing pressure
ZRADZRAD
StrahlungsimpedanzRadiation impedance

Claims (13)

  1. Method for operating an electroacoustic system (11), in which an electroacoustic device (10) is arranged to at least partially occlude an ear canal, at least partially on one ear, in which a signal processing device (16) is used to process an incoming signal to the electroacoustic device (10), and in which at least one correction unit (17) of the signal processing device (16) is used to modify the signal incoming to the device (10), and by means of the at least one correction unit (17) an outgoing signal from the device (10) is generated to achieve acoustic transparency, by which, on the basis of the outgoing signal, a received signal is generated on the eardrum which is adapted to correspond to a free-ear received signal at the eardrum in the case of a free ear canal without the device (10), wherein the at least one correction unit (17) possesses a first correction filter (A) and a second correction filter (B), and the first correction filter (A) of the at least one correction unit (17) is arranged upstream of the second correction filter (B) of the at least one correction unit (17), wherein the incoming signal is firstly modified by the first correction filter (A) to achieve acoustic transparency, wherein for the determination of the first correction filter (A) of the at least one correction unit (17) a total pressure (Ptot) of an outer acoustic signal within the ear canal at least partially occluded by the device (10) is equated by taking into account the first correction filter (A) with an expected target pressure (PT,E), wherein the first correction filter (A), by taking into account a passageway pressure (PHT) measured by means of the inner receiver (14) associated with the device (10) and facing the eardrum of the ear, is determined with the following equation: A = P T , E P HT P tot P HT
    Figure imgb0021
    and then the modified incoming signal is modified by means of the second correction filter (B) to filter out transmission effects in the area from the device (10) to the ear drum on the basis of the at least partial occlusion of the ear canal by the device (10).
  2. Method according to claim 1, characterised in that the incoming, especially acoustic signal is supplied as an incoming electrical signal from the signal processing device (16) by means of the outwardly facing outer receiver (13) associated with the device (10) and away from the eardrum, preferably at least one additional external acoustic and/or electrical signal is supplied from the signal processing device (16), in particular by means of an additional outer receiver and/or from a direct wire connection with an additional external signal source (18), particularly preferably the additional external acoustic and/or electrical signal is modified by means of the correction unit (17).
  3. Method according to one of the preceding claims, characterised in that a calibration is carried out before using the electroacoustic system (11), in particular in the course of the calibration the first correction filter (A) and/or the second correction filter (B) is determined, the calibration is preferably carried out after each insertion of the device (10) for at least partially occluding the ear canal, and particularly preferably the calibration is carried out by means of an external sound source (22) and/or a calibration control unit.
  4. Method according to one of the preceding claims, characterised in that the first correction filter (A) of the correction unit (17) is determined on the basis of a first model and/or the second correction filter (B) of the correction unit (17) is determined on the basis of a second model, preferably the first model and/or the second model is based on the Thevenin equivalent and/or on the Norton equivalent.
  5. Method according to one of the preceding claims, characterised in that the total pressure (Ptot) of an external acoustic signal within the ear canal that is at least partially occluded by the device (10) is composed of two parts to determine the first correction filter (A) of the correction unit (17), preferably a first part of the total pressure (Ptot) is a passage pressure (PHT) measured by means of an internal sound receiver (14) that is associated with the device (10) and is facing an eardrum of the ear, and/or a second part of the total pressure (Ptot) is an outgoing pressure (PEP) provided by a sound generator (15) that is associated with the device (10) and is facing the eardrum.
  6. Method according to one of the preceding claims, characterised in that after a first determination of the first correction filter (A) of the correction unit (17), in particular in the course of a calibration, a fine adjustment of the first correction filter (A) is carried out, preferably at least one predefined calibration signal and/or a predefined noise is used, in particular a pressure (PE) measured by means of an internal sound receiver (14) that is associated with the device (10) and is facing an eardrum of the ear, is compared with a target pressure (PT,E) during the fine adjustment, wherein the first correction filter (A), in the case of a deviation of the measured pressure (PE) from the target pressure (PT,E), is iteratively adapted until a predefined convergence criterion is achieved.
  7. Method according to one of the preceding claims, characterised in that to determine the first correction filter (A) of the correction unit (17), a pressure (PE) measured by means of an internal sound receiver (14) that is associated with the device (10) and is facing an eardrum of the ear, is compared with an expected target pressure (PT,E) on the internal sound receiver (14), wherein the expected target pressure (PT,E) on the internal sound receiver (14) is estimated as the pressure at the location of an internal sound receiver (14) for a free ear canal without the device (10).
  8. Method according to claim 7, characterised in that the expected target pressure (PT,E) on the internal sound receiver (14) is estimated by means of an electroacoustic model, in particular with a Thevenin-pressure source model and/or a source-impedance model, preferably the expected target pressure (PT,E) on the internal sound receiver (14) is estimated by means of a source pressure (Ps), an ear canal impedance (ZL) and a radiation impedance (ZRAD), in particular with the following equation: P T , E = P S Z L Z L + Z RAD
    Figure imgb0022
  9. Method according to one of the preceding claims, characterised in that an estimation of the acoustic received signal at the eardrum is carried out to determine the second correction filter (B) of the correction unit (17) by means of an internal sound receiver(14) that is associated with the device (10) and is facing an eardrum of the ear, preferably the pressure at the eardrum (PD) is estimated by means of the pressure (PE) that is measured at the internal sound receiver(14) by using an electroacoustic model of the ear canal.
  10. Method according to one of the preceding claims, characterised in that a pressure on the eardrum (PD) is determined by means of a pressure (PE) measured at the internal sound receiver (14) and by means of the second correction filter (B) with the following equation: P D = P E B
    Figure imgb0023
  11. Electroacoustic system with an electroacoustic device (10) to at least partially occlude an ear canal, with a signal processing device (16) for processing an incoming signal from the device (10), the signal processing device (16) possesses at least one correction unit (17) configured to modify the incoming signal at the device (10) and to prepare an outgoing signal from the device (10), which serves to achieve an acoustic transparency, by which, based on the outgoing signal, a received signal can be generated on the eardrum which is adapted to correspond to a free-ear received signal at the eardrum in the case of a free ear canal without the device (10), the at least one correction unit (17) has a first correction filter (A) and a second correction filter (B), the first correction filter (A) of the at least one correction unit (17) being arranged upstream of the second correction filter (B) of the at least one correction unit (17), wherein the incoming signal is firstly modified by means of the first correction filter (A) so as to achieve acoustic transparency, wherein to determine the first correction filter (A) of the at least one correction unit (17) a total pressure (PTOT) of an external acoustic signal within the ear canal at least partially occluded by the device (10) is equated by taking into account the first correction filter (A) with an expected target pressure (PT,E), wherein the first correction filter (A), by taking into account a passageway pressure (PHT) measured by means of inner receiver (14) associated with the device (10) and facing the eardrum of the ear, is determined with the following equation: A = P T , E P HT P tot P HT
    Figure imgb0024
    and then the modified incoming signal is modified by means of the second correction filter (B) to filter out transmission effects in the area from the device (10) to the ear drum on the basis of the at least partial occlusion of the ear canal by the device (10).
  12. Use of a method according to one of claims 1 to 10, wherein the method is integrated in a hearing protector, an in-ear headphone and/or in a hearing aid.
  13. Use of an electroacoustic system (11) according to claim 11, wherein the electroacoustic system (11) is integrated in a hearing protector, an in-ear headphone and/or in a hearing aid.
EP16712305.8A 2015-03-26 2016-03-22 Method for operating an electro-acoustic system and electro-acoustic system Active EP3275211B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015003855.9A DE102015003855A1 (en) 2015-03-26 2015-03-26 Method for operating an electroacoustic system and an electroacoustic system
PCT/EP2016/056232 WO2016150947A1 (en) 2015-03-26 2016-03-22 Method for operating an electro-acoustic system and electro-acoustic system

Publications (2)

Publication Number Publication Date
EP3275211A1 EP3275211A1 (en) 2018-01-31
EP3275211B1 true EP3275211B1 (en) 2021-06-30

Family

ID=55640715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16712305.8A Active EP3275211B1 (en) 2015-03-26 2016-03-22 Method for operating an electro-acoustic system and electro-acoustic system

Country Status (5)

Country Link
US (1) US10313778B2 (en)
EP (1) EP3275211B1 (en)
DE (1) DE102015003855A1 (en)
DK (1) DK3275211T3 (en)
WO (1) WO2016150947A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3917155B1 (en) * 2020-05-26 2023-11-08 Harman International Industries, Incorporated Auto-calibrating in-ear headphone
DK202070493A1 (en) * 2020-07-17 2022-01-20 Gn Hearing As Method at an electronic device involving a hearing device
EP4124060A1 (en) * 2021-07-19 2023-01-25 Sonova AG Hearing instrument
EP4344403A1 (en) * 2022-06-10 2024-04-03 Google Technology Holdings LLC Respiration rate sensing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1129601B1 (en) * 1998-11-09 2007-05-02 Widex A/S Method for in-situ measuring and correcting or adjusting the output signal of a hearing aid with a model processor and hearing aid employing such a method
US6914994B1 (en) * 2001-09-07 2005-07-05 Insound Medical, Inc. Canal hearing device with transparent mode
DK2208367T3 (en) * 2007-10-12 2017-11-13 Earlens Corp Multifunction system and method for integrated listening and communication with noise cancellation and feedback management
US8477957B2 (en) * 2009-04-15 2013-07-02 Nokia Corporation Apparatus, method and computer program
JP4686622B2 (en) * 2009-06-30 2011-05-25 株式会社東芝 Acoustic correction device and acoustic correction method
CN104094615A (en) 2011-11-22 2014-10-08 福纳克股份公司 A method of processing a signal in a hearing instrument, and hearing instrument
US8798283B2 (en) * 2012-11-02 2014-08-05 Bose Corporation Providing ambient naturalness in ANR headphones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016150947A1 (en) 2016-09-29
US20180084328A1 (en) 2018-03-22
US10313778B2 (en) 2019-06-04
EP3275211A1 (en) 2018-01-31
DE102015003855A1 (en) 2016-09-29
DK3275211T3 (en) 2021-10-11

Similar Documents

Publication Publication Date Title
EP3222057B1 (en) Method and apparatus for fast recognition of a user's own voice
US7650005B2 (en) Automatic gain adjustment for a hearing aid device
EP3275211B1 (en) Method for operating an electro-acoustic system and electro-acoustic system
EP2172063B1 (en) User-adaptable hearing aid comprising an initialization module
DE102009010892B4 (en) Apparatus and method for reducing impact sound effects in hearing devices with active occlusion reduction
EP1239700B1 (en) Method of operating a hearing device or hearing system and a corresponding device and system
EP3104627B1 (en) Method for improving a recording signal in a hearing system
EP1931172A1 (en) Hearing aid with noise cancellation and corresponding method
EP2782260A1 (en) Method and apparatus for controlling voice communication and use thereof
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
DE102008021613A1 (en) Method and device for determining a degree of closure in hearing aids
EP3355592A1 (en) Method for operating a binaural hearing aid system
EP2595414A1 (en) Hearing aid with a device for reducing a microphone noise and method for reducing a microphone noise
EP2373063B1 (en) Hearing device and method for setting the same for acoustic feedback-free operation
EP3413588B1 (en) Method for characterizing a speaker in a hearing device, hearing device and test device for a hearing device
WO2021239864A1 (en) Method, device, headphones and computer program for actively suppressing the occlusion effect during the playback of audio signals
EP3913618A1 (en) Hearing aid and method for operating a hearing aid
DE102017214942A1 (en) Method for adjusting a hearing device
EP3985994B1 (en) Hearing aid and method for operating a hearing aid
DE102022202713B3 (en) Method for operating a hearing aid and hearing aid
EP2590437B1 (en) Periodic adaptation of a feedback suppression device
EP0723381B2 (en) Device for hearing assistance
DE102010007336A1 (en) Method for compensating a feedback signal and hearing device
DE8905756U1 (en) Behind-the-ear hearing aid with ventilation to the ear canal
EP4134002A1 (en) Method for creating an audiogram of a subject by means of a hearing aid

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016013310

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04R0025000000

Ipc: H04R0001100000

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 5/12 20060101ALI20201209BHEP

Ipc: H04R 25/00 20060101ALI20201209BHEP

Ipc: H04R 1/10 20060101AFI20201209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013310

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1407510

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211004

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013310

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26N No opposition filed

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1407510

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220322

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 9

Ref country code: GB

Payment date: 20240322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 9

Ref country code: DK

Payment date: 20240321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 9