EP2590437B1 - Periodic adaptation of a feedback suppression device - Google Patents

Periodic adaptation of a feedback suppression device Download PDF

Info

Publication number
EP2590437B1
EP2590437B1 EP12190159.9A EP12190159A EP2590437B1 EP 2590437 B1 EP2590437 B1 EP 2590437B1 EP 12190159 A EP12190159 A EP 12190159A EP 2590437 B1 EP2590437 B1 EP 2590437B1
Authority
EP
European Patent Office
Prior art keywords
feedback
adaptation
activation
signal
step size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12190159.9A
Other languages
German (de)
French (fr)
Other versions
EP2590437A1 (en
Inventor
Sebastian Pape
Tobias Wurzbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2590437A1 publication Critical patent/EP2590437A1/en
Application granted granted Critical
Publication of EP2590437B1 publication Critical patent/EP2590437B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback

Definitions

  • the present invention relates to a method for adapting a feedback suppression device of a hearing device to a predetermined situation by activating an adaptation process of the feedback suppression device and performing the adaptation process of the feedback suppression device. Moreover, the present invention relates to a corresponding feedback suppression device.
  • hearing device here is understood to mean any device which can be worn in or on the ear and triggers a stimulus, in particular a hearing device, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is standard integrated into a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • the present invention can be applied not only to hearing devices, but generally to audio systems that include at least one microphone for receiving ambient sound, subsequent signal processing of the microphone signal (e.g., gain), and output of the processed signal by a transducer (e.g. Speakers) to the environment.
  • a hearing aid is, for example, such an audio system.
  • feedback whistling A very unpleasant condition of such an audio system is so-called "feedback whistling".
  • acoustic feedback arises when the sound emitted by the transducer again enters through the microphone in the audio system and is amplified there again. This results in a closed loop (microphone-> gain-> transducer-> microphone, etc.), and feedback whistling occurs when the gain exceeds a certain threshold.
  • an adaptive filter models the time-variant impulse response g of the acoustic feedback path.
  • k represents the discrete time index
  • x the input signal of the feedback cancellation system
  • e mc an error signal defined by the difference of the microphone signal m and the feedback compensation signal c
  • the adaptation parameter step size parameter and * a conjugate complex operation.
  • FIG. 2 played.
  • the representation of the time dependence (discrete time index k) is dispensed with.
  • a desired signal s is picked up by a microphone 10. This results in the microphone signal m.
  • a signal processor 11 further processes the signal. From the microphone signal m, a compensation signal c is subtracted, whereby an error signal e is obtained.
  • This error signal e is supplied to a main processing unit 12 (eg, including a filter bank).
  • a main processing unit 12 eg, including a filter bank
  • the output signal x of the main processing unit 12 is supplied to a converter (eg loudspeaker 13) and to a feedback compensator 14.
  • the feedback compensator 14 (FBC), together with its specific circuitry, constitutes a feedback compensation device. It has the transfer function h, which serves as an estimate of the acoustic path g from the loudspeaker 13 to the microphone 10.
  • the feedback compensator 14 is controlled by the error signal e.
  • the acoustic signal a reaches not only the eardrum of the user but is, as already indicated, fed back via the feedback path 15 to the microphone 10.
  • This feedback path 15 has the said transfer function g.
  • the parameter ⁇ is also called step size. With it, the adaptation speed of a filter can be controlled. A suitable, time-dependent control of the step size ⁇ is important for effective and stable feedback suppression. When ⁇ is large, the filter quickly adapts to changes in the position of the acoustic feedback path g, thereby preventing feedback whistles. Otherwise, if the step size is constantly too high, mis-adaptation to tonal signals (eg, music) may result.
  • tonal signals eg, music
  • ⁇ opt ⁇ E ⁇
  • the above formula helps to stabilize the adaptation, but it does not help to solve the above problem, to find a suitable step to avoid mis-adaptions.
  • the adaptation In a normal mode, the adaptation is "frozen" in that the step size ⁇ has a very small value. Adaptation is only allowed when the feedback detector becomes active, indicating a change in the acoustic feedback path (g). Consequently, the need for a new adaptation of the feedback suppression filter with the transfer function h is triggered by the temporal increase of the step size parameter ⁇ . On the one hand, freezing the adaptation guarantees stability (no mis-adaptions for tonal excitation signals) unless the feedback detector is activated in error. On the other hand - and this is a massive drawback - the feedback suppression device only adapts when the feedback detector becomes active at all.
  • the acoustic feedback path (g) changes only slightly (eg when passing through a door or when sitting in a couch). This usually leads to no feedback detection. Since there is no adaptation, the instantaneous transfer function h of the feedback cancellation system does not represent the current acoustic path (g), resulting in an audible, rougher sound quality. The reduced soundness will continue until the feedback detector becomes active, which is usually accompanied by a feedback whistle. As a countermeasure, the sensitivity of the feedback detector could be adjusted so that even minor changes in the acoustic path are detected. However, this leads to increased erroneous feedback detections and thus to more artifacts.
  • FIG. 3 A corresponding scenario is in FIG. 3 shown.
  • the block diagram shown is based essentially on that of FIG. 2 , Reference is made in this regard to the above description.
  • a feedback detector 16 FD
  • Step size control unit 17 SWS
  • the step size ⁇ is therefore not here as in the example of FIG. 2 controlled by the error signal e.
  • the feedback compensator 14 receives the error signal e as well as the step size control unit 17.
  • the latter receives the compensation signal c of the feedback capacitor 14 as a further input variable.
  • the US 2011/0164762 A1 describes a method for feedback suppression of an amplifier by phase shifting and a feedback suppression device.
  • the input signal is processed with an input frequency such that the output signal has the same amplitude, but an additional phase, which varies in particular temporally.
  • the US 2006/0008076 A1 describes an adaptive feedback suppression unit for amplifier systems installed in halls or auditoriums with a plurality of adaptive filters designed to update the respective filter coefficients in intervals of different lengths, the updating of the filter coefficients of the respective filter continuing to be periodic.
  • the US 2008/0279395 A1 discloses a method of feedback suppression in which an input signal is combined with a feedback signal estimated by a feedback estimator by an adder, and an input signal Frequency shift unit is supplied. At least a portion of this signal is subsequently amplified by an amplifier and combined with the unamplified output of the frequency shifting unit and output as an output.
  • the frequency shift unit is activated only from time to time, eg periodically.
  • the US 2007/0258579 A1 discloses a method for stereo reverberation cancellation for teleconferencing systems.
  • the object of the present invention is therefore to reduce artifacts in the automatic adaptation of feedback suppression devices.
  • this object is achieved by a method as in claim 1 and a corresponding device as in claim 5.
  • the adaptation process of the feedback suppression device is activated periodically. It can thus be ensured that adaptations of the feedback suppression system take place even in the case of minor path changes in which the feedback detector does not respond.
  • the adaptation is not always immediate, but at least in the foreseeable future.
  • an adaptive filter with a variable step size is adapted. This allows the adaptation to be carried out faster and less quickly as required.
  • the activation of the adaptation process takes place with a periodic activation signal which has more than two values, the values being changed as a function of a current hearing situation. Ie. the activation signal can also have several states (multiple discrete states) or even have a steady course. Thus, so-called soft decisions for the initiation of the adaptation process are possible.
  • the activation of the adaptation process can take place in that the step size is increased by leaps and bounds.
  • the erratic increase leads to a short mismatch, which initiates an immediate readjustment.
  • the adaptation process can also be activated by a feedback detector in parallel or independently of the periodic activation if a feedback is detected by it. As a result, it can also be adapted as required during a predetermined trigger period.
  • the duration of the on state or the time duration between two temporally successive individual states can be changed as a function of a current auditory situation.
  • a current hearing situation can be represented by a classification result of a classifier. Depending on this, then a "high” state and / or a "low” state is changed in its duration.
  • a frequency-shifting algorithm or a frequency-compression algorithm may be used to be started. This further improves the stability of the feedback suppression.
  • the feedback cancellation can be used in any audio system and in particular in any hearing device, especially in hearing aids.
  • the adaptation is frozen in known systems by the step size ⁇ is chosen to be very small for the adaptation.
  • the step size ⁇ is periodically set to a higher or predetermined high value. This increase in the step size independent of the current acoustic situation leads to a spontaneous readjustment of the feedback suppression. This means that the feedback suppression is transferred from a frozen state to an adaptation state.
  • This periodic triggering of the adaptation can be used in addition to or in parallel with existing step size control methods.
  • FIG. 4 A schematic block diagram of a system with inventive feedback suppression device is shown in FIG. 4 played. This figure also reproduces corresponding method steps for adapting the feedback suppression.
  • the basis is the system of FIG. 3 , It is with regard to the system according to the invention thus expressly to the description of FIG. 3 respectively.
  • FIG. 2 pointed. Same components have in FIG. 3 and in FIG. 4 The same reference numerals and they also exercise the same function, unless otherwise described.
  • FIG. 4 shows that in the signal processing device 11 of the hearing device, an additional activation device 18 is located. Its output signal is supplied to the step size controller 17.
  • the activation device 18 is formed in the simplest case so that it is a periodic binary signal 19 with unchanged structure. This binary signal 19 has only two different states, namely an on state (eg "high”) and an off state (eg "low”). As soon as the activation signal 19 is in the on state or on an edge from the off state to the on state, the step size ⁇ in the step size control 17 for the feedback compensator 14 (jump) is increased significantly.
  • the activation device 18 can also be designed such that it generates other activation signals 20, 21. It can generate only one of these activation signals 19 to 21 or even several of them.
  • activation signal 20 in which the signal period is variable, and called the activation signal 21, which is not purely binary and can also assume intermediate values.
  • the activation device 18 is actuated by other components of the signal processing device 11 in order to change the activation signal to be output as a function of current signal processing variables. Such driving possibilities are in FIG. 4 not shown.
  • the activation signal (activation trigger) for the step size ⁇ z. B. is "low” (OFF state)
  • the feedback suppression device remains in the frozen state.
  • the activation signal is "high”
  • the filter adapts to the feedback suppression device so that it adapts to the current acoustic feedback situation (g).
  • the periodic enable signal is in a "low” state and the feedback detector 16 becomes active, the step size ⁇ is also adapted.
  • the step size control of the feedback suppression device is thus triggered periodically.
  • the filter coefficients are renewed from time to time, which softens the frozen state somewhat.
  • the feedback detector it is not absolutely necessary for the feedback detector to detect a corresponding feedback event.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Adaptieren einer Rückkopplungsunterdrückungseinrichtung einer Hörvorrichtung an eine vorgegebene Situation durch Aktivieren eines Adaptionsvorgangs der Rückkopplungsunterdrückungseinrichtung und Durchführen des Adaptionsvorgangs der Rückkopplungsunterdrückungseinrichtung. Darüber hinaus betrifft die vorliegende Erfindung eine entsprechende Rückkopplungsunterdrückungseinrichtung. Unter dem Begriff Hörvorrichtung wird hier jedes im oder am Ohr tragbare, einen Hörreiz auslösende Gerät, insbesondere ein Hörgerät, ein Headset, Kopfhörer und dergleichen, verstanden.The present invention relates to a method for adapting a feedback suppression device of a hearing device to a predetermined situation by activating an adaptation process of the feedback suppression device and performing the adaptation process of the feedback suppression device. Moreover, the present invention relates to a corresponding feedback suppression device. The term hearing device here is understood to mean any device which can be worn in or on the ear and triggers a stimulus, in particular a hearing device, a headset, headphones and the like.

Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.Hearing aids are portable hearing aids that are used to care for the hearing impaired. In order to meet the numerous individual needs, different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC). The hearing aids listed by way of example are worn on the outer ear or in the ear canal. In addition, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.

Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer. The input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil. The output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized. The amplifier is standard integrated into a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed. A signal processing unit 3, which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them. The output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5

Die vorliegende Erfindung kann nicht nur für Hörvorrichtungen, sondern generell für Audiosysteme angewandt werden, die mindestens ein Mikrofon zur Aufnahme von Umgebungsschall, eine nachfolgende Signalverarbeitung des Mikrofonsignals (z. B. Verstärkung) und eine Ausgabe des verarbeiteten Signals durch einen Wandler (z. B. Lautsprecher) an die Umgebung aufweisen. Ein Hörgerät ist beispielsweise ein derartiges Audiosystem.The present invention can be applied not only to hearing devices, but generally to audio systems that include at least one microphone for receiving ambient sound, subsequent signal processing of the microphone signal (e.g., gain), and output of the processed signal by a transducer (e.g. Speakers) to the environment. A hearing aid is, for example, such an audio system.

Ein sehr unangenehmer Zustand eines solchen Audiosystems ist sogenanntes "Rückkopplungspfeifen". In bekannter Weise entsteht nämlich akustische Rückkopplung, wenn der vom Wandler abgegebene Schall erneut durch das Mikrofon in das Audiosystem eintritt und dort wieder verstärkt wird. Es ergibt sich dabei eine geschlossene Schleife(Mikrofon-> Verstärkung-> Wandler-> Mikrofon usw.), und Rückkopplungspfeifen tritt auf, wenn die Verstärkung einen gewissen Schwellwert übersteigt.A very unpleasant condition of such an audio system is so-called "feedback whistling". In a known manner, namely acoustic feedback arises when the sound emitted by the transducer again enters through the microphone in the audio system and is amplified there again. This results in a closed loop (microphone-> gain-> transducer-> microphone, etc.), and feedback whistling occurs when the gain exceeds a certain threshold.

Das unerwünschte Pfeifen kann durch eine Rückkopplungsunterdrückungseinrichtung reduziert oder gar eliminiert werden. Bei bekannten Rückkopplungsunterdrückungssystemen modelliert ein adaptives Filter die zeitvariante Impulsantwort g des akustischen Rückkopplungspfads. Ein gängiges Beispiel für eine Adaptionsregel zum Aktualisieren von Filterkoeffizienten h ist ein normalisierter NLMS-Algorithmus (normalisiertes kleinstes Fehlerquadrat): h k + 1 = h k + μ e * k x k / x * k x k .

Figure imgb0001
The unwanted whistling can be reduced or even eliminated by a feedback suppression device. In known feedback cancellation systems, an adaptive filter models the time-variant impulse response g of the acoustic feedback path. A common example of one Adaptation rule for updating filter coefficients h is a normalized least squares (NLMS) algorithm: H k + 1 = H k + μ e * k x k / x * k x k ,
Figure imgb0001

In dieser Gleichung repräsentiert k den diskreten Zeitindex, x das Eingangssignal des Rückkopplungsunterdrückungssystems, e=m-c ein durch die Differenz des Mikrofonsignals m und das Rückkopplungskompensationssignal c definiertes Fehlersignal, µ den Schrittweitenparameter zur Steuerung der Adaptionsgeschwindigkeit und * eine konjugiert komplexe Operation. Ein Blockdiagramm hierzu ist in FIG 2 wiedergegeben. Der Einfachheit halber ist auf die Darstellung der Zeitabhängigkeit (diskreter Zeitindex k) verzichtet. Ein gewünschtes Signal s wird von einem Mikrofon 10 aufgenommen. Es resultiert das Mikrofonsignal m. Eine Signalverarbeitungseinrichtung 11 verarbeitet das Signal weiter. Von dem Mikrofonsignal m wird ein Kompensationssignal c subtrahiert, wodurch ein Fehlersignal e erhalten wird. Dieses Fehlersignal e wird einer Hauptverarbeitungseinheit 12 (z. B. einschließlich einer Filterbank) zugeführt. Das Ausgangssignal x der Hauptverarbeitungseinheit 12 (SP) wird zum einen einem Wandler (z. B. Lautsprecher 13) und zum anderen einem Rückkopplungskompensator 14 zugeführt. Der Rückkopplungskompensator 14 (FBC) stellt zusammen mit seiner spezifischen Verschaltung eine Rückkopplungskompensationseinrichtung dar. Er besitzt die Übertragungsfunktion h, welche als Schätzwert für den akustischen Pfad g vom Lautsprecher 13 zu dem Mikrofon 10 dient. Der Rückkopplungskompensator 14 gibt das Kompensationssignal c=h*x aus. Darüber hinaus wird der Rückkopplungskompensator 14 mit Hilfe des Fehlersignals e gesteuert.In this equation, k represents the discrete time index, x the input signal of the feedback cancellation system, e = mc an error signal defined by the difference of the microphone signal m and the feedback compensation signal c, μ the adaptation parameter step size parameter and * a conjugate complex operation. A block diagram for this is in FIG. 2 played. For the sake of simplicity, the representation of the time dependence (discrete time index k) is dispensed with. A desired signal s is picked up by a microphone 10. This results in the microphone signal m. A signal processor 11 further processes the signal. From the microphone signal m, a compensation signal c is subtracted, whereby an error signal e is obtained. This error signal e is supplied to a main processing unit 12 (eg, including a filter bank). The output signal x of the main processing unit 12 (SP) is supplied to a converter (eg loudspeaker 13) and to a feedback compensator 14. The feedback compensator 14 (FBC), together with its specific circuitry, constitutes a feedback compensation device. It has the transfer function h, which serves as an estimate of the acoustic path g from the loudspeaker 13 to the microphone 10. The feedback compensator 14 outputs the compensation signal c = h * x. In addition, the feedback compensator 14 is controlled by the error signal e.

Das akustische Signal a erreicht nicht nur das Trommelfell des Nutzers sondern wird, wie bereits angedeutet, über den Rückkopplungspfad 15 zum Mikrofon 10 rückgekoppelt. Dieser Rückkopplungspfad 15 besitzt die genannte Übertragungsfunktion g.The acoustic signal a reaches not only the eardrum of the user but is, as already indicated, fed back via the feedback path 15 to the microphone 10. This feedback path 15 has the said transfer function g.

Nähere Hinweise hierzu finden sich beispielsweise in S. Haykin, Adaptive Filter Theory Englewood Cliffs, NJ: Prentice-Hall, 1996 , sowie in Toon van Waterschoot und Marc Moonen, "Fifty years of acoustic feedback control: state of the art and future challenges", Proc. IEEE, Band 99, Nr. 2, Feb. 2011, Seiten 288-327 .Further information can be found for example in S. Haykin, Adaptive Filter Theory Englewood Cliffs, NJ: Prentice-Hall, 1996 , as in Toon van Waterschoot and Marc Moonen, "Fifty years of acoustic feedback control: state of the art and future challenges", Proc. IEEE, Vol. 99, No. 2, Feb. 2011, pages 288-327 ,

Der Parameter µ wird auch als Schrittweite bezeichnet. Mit ihm kann die Adaptionsgeschwindigkeit eines Filters gesteuert werden. Eine geeignete, zeitabhängige Steuerung der Schrittweite µ ist für eine wirksame und stabile Rückkopplungsunterdrückung wichtig. Wenn µ groß ist, adaptiert sich das Filter rasch an Situationsänderungen des akustischen Rückkopplungspfads g, wodurch Rückkopplungspfeifen verhindert wird. Andernfalls, wenn die Schrittweite ständig zu hoch ist, kann eine Fehladaption gegenüber tonalen Signalen (z. B. Musik) die Folge sein.The parameter μ is also called step size. With it, the adaptation speed of a filter can be controlled. A suitable, time-dependent control of the step size μ is important for effective and stable feedback suppression. When μ is large, the filter quickly adapts to changes in the position of the acoustic feedback path g, thereby preventing feedback whistles. Otherwise, if the step size is constantly too high, mis-adaptation to tonal signals (eg, music) may result.

Es gibt mehrere Konzepte, die Schrittweite µ in geeigneter Weise zu steuern. Bei allen Konzepten müssen jedoch Kompromisse gemacht werden. Im Folgenden werden zwei bekannte Konzepte vorgestellt:There are several concepts for controlling the step size μ in a suitable manner. However, compromises have to be made in all concepts. In the following two known concepts are presented:

a) Optimale Schrittweitenschätzunga) Optimal step size estimation

Durch Treffen von einigen Vereinfachungen wird unter gewissen Voraussetzungen eine theoretische, optimale Schrittweite µ wie folgt bestimmt: µ opt∼=E{|c|2}/E{|e|2},
wobei E { } den Erwartungswert-Operator bedeutet. Obige Formel hilft, die Adaption zu stabilisieren, aber sie hilft nicht, das obige Problem zu lösen, eine geeignete Schrittweite zur Vermeidung von Fehladaptionen zu finden. In der Praxis sind nämlich die Voraussetzungen, die für die Herleitung obiger Schätzung notwendig sind, nicht erfüllt (z. B. die Annahme von unkorrelierten Hörer- und Mikrofonsignalen sowie die Annahme dass der unbekannte akustische Rückkopplungspfad die Übertragungsfunktion g=0 hat). Aufgrund dieser Mängel ergeben sich Funktionsstörungen.
By meeting some simplifications, a theoretical optimal step size μ is determined under certain conditions as follows: μ opt ~ = E {| c | 2 } / E {| e | 2 },
where E {} means the expectation operator. The above formula helps to stabilize the adaptation, but it does not help to solve the above problem, to find a suitable step to avoid mis-adaptions. In practice, the prerequisites necessary for the derivation of the above estimate are not met (eg the assumption of uncorrelated receiver and microphone signals and the assumption that the unknown acoustic feedback path has the transfer function g = 0). Due to these defects, malfunctions arise.

b) Durch Rückkopplungsdetektor getriggerte Adaptionb) Feedback triggered by feedback detector

In einem Normalmodus ist die Adaption "eingefroren", indem die Schrittweite µ einen sehr kleinen Wert besitzt. Adaption ist nur erlaubt, wenn der Rückkopplungsdetektor aktiv wird, was auf eine Veränderung des akustischen Rückkopplungspfads (g) hindeutet. Folglich wird die Notwendigkeit einer Neuadaption des Rückkopplungsunterdrückungsfilters mit der Übertragungsfunktion h durch den zeitlichen Anstieg des Schrittweitenparameters µ getriggert. Einerseits garantiert das Einfrieren der Adaption Stabilität (keine Fehladaptionen für tonale Anregungssignale), solange der Rückkopplungsdetektor nicht irrtümlich aktiviert wird. Andererseits - und dies ist ein massiver Nachteil - adaptiert die Rückkopplungsunterdrückungseinrichtung nur, wenn der Rückkopplungsdetektor überhaupt aktiv wird. In der Praxis kann es oft vorkommen, dass sich der akustische Rückkopplungspfad (g) nur geringfügig ändert (z. B. beim Hindurchtreten durch eine Tür oder beim Setzen in eine Couch). Dies führt in der Regel zu keiner Rückkopplungsdetektion. Da es zu keiner Adaption kommt, stellt die momentane Übertragungsfunktion h des Rückkopplungsunterdrückungssystems nicht den aktuellen akustischen Pfad (g) dar, was zu einer hörbaren, raueren Schallqualität führt. Die reduzierte Klangschärfe wird solange andauern, bis der Rückkopplungsdetektor aktiv wird, was üblicherweise von einem Rückkopplungspfeifen begleitet wird. Als Gegenmaßnahme könnte die Empfindlichkeit des Rückkopplungsdetektors angepasst werden, sodass auch geringfügige Änderungen des akustischen Pfads erkannt werden. Dies führt aber zu vermehrten fehlerhaften Rückkopplungsdetektionen und damit zu mehr Artefakten.In a normal mode, the adaptation is "frozen" in that the step size μ has a very small value. Adaptation is only allowed when the feedback detector becomes active, indicating a change in the acoustic feedback path (g). Consequently, the need for a new adaptation of the feedback suppression filter with the transfer function h is triggered by the temporal increase of the step size parameter μ. On the one hand, freezing the adaptation guarantees stability (no mis-adaptions for tonal excitation signals) unless the feedback detector is activated in error. On the other hand - and this is a massive drawback - the feedback suppression device only adapts when the feedback detector becomes active at all. In practice, it often happens that the acoustic feedback path (g) changes only slightly (eg when passing through a door or when sitting in a couch). This usually leads to no feedback detection. Since there is no adaptation, the instantaneous transfer function h of the feedback cancellation system does not represent the current acoustic path (g), resulting in an audible, rougher sound quality. The reduced soundness will continue until the feedback detector becomes active, which is usually accompanied by a feedback whistle. As a countermeasure, the sensitivity of the feedback detector could be adjusted so that even minor changes in the acoustic path are detected. However, this leads to increased erroneous feedback detections and thus to more artifacts.

Beide Steuerungsverfahren für die Schrittweite µ können natürlich miteinander genutzt werden. Ein entsprechendes Szenario ist in FIG 3 dargestellt. Das dargestellte Blockdiagramm basiert im Wesentlichen auf dem von FIG 2. Es wird diesbezüglich auf die obige Beschreibung verwiesen. Zusätzlich zu dem System von FIG 2 ist hier in die Signalverarbeitungseinrichtung 11 ein Rückkopplungsdetektor 16 (FD) integriert, der das Mikrofonsignal m aufnimmt. Sein Ausgangssignal wird einer Schrittweitensteuerungseinheit 17 (SWS) zugeführt, mit der die Schrittweite µ bei der Adaption des Rückkopplungskompensators 14 gesteuert wird. Die Schrittweite µ wird hier also nicht wie in dem Beispiel von FIG 2 anhand des Fehlersignals e gesteuert. Als zusätzliche Eingangsgröße erhält der Rückkopplungskompensator 14 das Fehlersignal e ebenso wie die Schrittweitensteuerungseinheit 17. Letztere erhält als weitere Eingangsgröße das Kompensationssignal c des Rückkopplungskondensators 14.Of course, both control methods for the step size μ can be used together. A corresponding scenario is in FIG. 3 shown. The block diagram shown is based essentially on that of FIG. 2 , Reference is made in this regard to the above description. In addition to the system of FIG. 2 Here, in the signal processing device 11, a feedback detector 16 (FD) is integrated, which receives the microphone signal m. Its output signal becomes one Step size control unit 17 (SWS) supplied with the step size μ is controlled in the adaptation of the feedback compensator 14. The step size μ is therefore not here as in the example of FIG. 2 controlled by the error signal e. As additional input variable, the feedback compensator 14 receives the error signal e as well as the step size control unit 17. The latter receives the compensation signal c of the feedback capacitor 14 as a further input variable.

Der Nutzer eines derartigen Rückkopplungsunterdrückungssystems muss jedoch mit einem Kompromiss leben. Entweder akzeptiert er eine raue Schallqualität bei nicht detektierten Pfadänderungen, oder er akzeptiert falsche Rückkopplungsdetektionen mit dem Risiko von Fehladaptionen, was zu tonalen Störungen oder anderen Verarbeitungsartefakten führt.However, the user of such a feedback suppression system must live with a compromise. It either tolerates harsh sound quality in undetected path changes, or it accepts false feedback detections with the risk of mis-adaptions, resulting in tonal glitches or other processing artifacts.

Die US 2011/0164762 A1 beschreibt ein Verfahren zur Rückkopplungsunterdrückung eines Verstärkers durch Phasen- bzw. Frequenzverschiebung und eine Rückkopplungsunterdrückungseinrichtung. Dabei wird das Eingangssignal mit einer Eingangsfrequenz derart verarbeitet, dass das Ausgangssignal die gleiche Amplitude, jedoch eine zusätzliche Phase, die insbesondere zeitlich variiert, hat.The US 2011/0164762 A1 describes a method for feedback suppression of an amplifier by phase shifting and a feedback suppression device. In this case, the input signal is processed with an input frequency such that the output signal has the same amplitude, but an additional phase, which varies in particular temporally.

Die US 2006/0008076 A1 beschreibt eine adaptive Rückkopplungsunterdrückungseinheit für in Hallen oder Auditorien installierte Verstärkersysteme mit einer Mehrzahl an adaptiven Filtern, die so ausgestaltet sind, dass die Aktualisierung der jeweiligen Filterkoeffizienten in unterschiedlich langen Zeitintervallen erfolgt, wobei die Aktualisierung der Filterkoeffizienten des jeweiligen Filters weiterhin periodisch erfolgt.The US 2006/0008076 A1 describes an adaptive feedback suppression unit for amplifier systems installed in halls or auditoriums with a plurality of adaptive filters designed to update the respective filter coefficients in intervals of different lengths, the updating of the filter coefficients of the respective filter continuing to be periodic.

Die US 2008/0279395 A1 offenbart ein Verfahren zur Rückkopplungsunterdrückung, bei dem ein Eingangssignal mit einem durch eine Rückkopplungsschätzeinrichtung geschätzten Rückkopplungssignal durch einen Addierer kombiniert und einer Frequenzverschiebungseinheit zugeführt wird. Zumindest ein Teil dieses Signals wird im Anschluss durch einen Verstärker verstärkt und mit dem unverstärkten Ausgangssignal der Frequenzverschiebungseinheit kombiniert und als Ausgangssignal ausgegeben. Die Frequenzverschiebungseinheit wird dabei nur von Zeit zu Zeit, z.B. periodisch, aktiviert.The US 2008/0279395 A1 discloses a method of feedback suppression in which an input signal is combined with a feedback signal estimated by a feedback estimator by an adder, and an input signal Frequency shift unit is supplied. At least a portion of this signal is subsequently amplified by an amplifier and combined with the unamplified output of the frequency shifting unit and output as an output. The frequency shift unit is activated only from time to time, eg periodically.

Die US 2007/0258579 A1 offenbart ein Verfahren zur Stereo-Hall-Auslöschung für Telekonferenz-Systeme.The US 2007/0258579 A1 discloses a method for stereo reverberation cancellation for teleconferencing systems.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, Artefakte bei der automatischen Adaption von Rückkopplungsunterdrückungseinrichtungen zu vermindern.The object of the present invention is therefore to reduce artifacts in the automatic adaptation of feedback suppression devices.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren wie in Anspruch 1 und eine entsprechende Einrichtung wie in Anspruch 5.According to the invention this object is achieved by a method as in claim 1 and a corresponding device as in claim 5.

In vorteilhafter Weise wird also der Adaptionsvorgang der Rückkopplungsunterdrückungseinrichtung periodisch aktiviert. Damit kann gewährleistet werden, dass selbst bei geringfügigen Pfadänderungen, bei denen der Rückkopplungsdetektor nicht anspricht, Adaptionen des Rückkopplungsunterdrückungssystems stattfinden. Die Adaption erfolgt jedoch nicht immer unmittelbar, aber zumindest in einem absehbaren Zeitraum.Advantageously, therefore, the adaptation process of the feedback suppression device is activated periodically. It can thus be ensured that adaptations of the feedback suppression system take place even in the case of minor path changes in which the feedback detector does not respond. However, the adaptation is not always immediate, but at least in the foreseeable future.

Bei dem Adaptionsvorgang wird ein adaptives Filter mit einer veränderbaren Schrittweite adaptiert. Damit lässt sich die Adaption je nach Bedarf rascher und weniger rasch durchführen.In the adaptation process, an adaptive filter with a variable step size is adapted. This allows the adaptation to be carried out faster and less quickly as required.

Das Aktivieren des Adaptionsvorgangs erfolgt mit einem periodischen Aktivierungssignal, das mehr als zwei Werte aufweist, wobei die Werte in Abhängigkeit von einer aktuellen Hörsituation verändert werden. D. h. das Aktivierungssignal kann auch mehrere Zustände aufweisen (mehrere diskrete zustände) oder sogar einen stetigen Verlauf besitzen. Damit sind sogenannte weiche Entscheidungen für das Anstoßen des Adaptionsvorgangs möglich.The activation of the adaptation process takes place with a periodic activation signal which has more than two values, the values being changed as a function of a current hearing situation. Ie. the activation signal can also have several states (multiple discrete states) or even have a steady course. Thus, so-called soft decisions for the initiation of the adaptation process are possible.

Hierbei kann das Aktivieren des Adaptionsvorgangs dadurch erfolgen, dass die Schrittweite sprunghaft erhöht wird. Die sprunghafte Erhöhung führt zu einer kurzen Fehlanpassung, wodurch eine sofortige Neuanpassung initiiert wird.In this case, the activation of the adaptation process can take place in that the step size is increased by leaps and bounds. The erratic increase leads to a short mismatch, which initiates an immediate readjustment.

Der Adaptionsvorgang kann parallel bzw. unabhängig von dem periodischen Aktivieren auch von einem Rückkopplungsdetektor aktiviert werden, wenn von ihm eine Rückkopplung detektiert wird. Dadurch kann auch während einer vorgegebenen Triggerperiode bei Bedarf adaptiert werden.The adaptation process can also be activated by a feedback detector in parallel or independently of the periodic activation if a feedback is detected by it. As a result, it can also be adapted as required during a predetermined trigger period.

Gemäß einer speziellen Ausführungsform kann die Zeitdauer des Einzustands oder die Zeitdauer zwischen zwei zeitlich aufeinanderfolgenden Einzuständen in Abhängigkeit von einer aktuellen Hörsituation verändert werden. Insbesondere kann eine aktuelle Hörsituation durch ein Klassifikationsergebnis eines Klassifikators repräsentiert werden. In Abhängigkeit davon wird dann ein "high"-Zustand und/oder ein "low"-Zustand in seiner Zeitdauer verändert.According to a specific embodiment, the duration of the on state or the time duration between two temporally successive individual states can be changed as a function of a current auditory situation. In particular, a current hearing situation can be represented by a classification result of a classifier. Depending on this, then a "high" state and / or a "low" state is changed in its duration.

Darüber hinaus kann mit dem Aktivieren des Adaptionsvorgangs der Rückkopplungsunterdrückungseinrichtung ein Frequenzverschiebungsalgorithmus oder ein Frequenzkompressionsalgorithmus gestartet werden. Hierdurch lässt sich die Stabilität der Rückkopplungsunterdrückung weiter verbessern.In addition, with the activation of the adaptation process of the feedback suppression device, a frequency-shifting algorithm or a frequency-compression algorithm may be used to be started. This further improves the stability of the feedback suppression.

Die vorliegende Erfindung ist anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
den prinzipiellen Aufbau eines Hörgeräts gemäß dem Stand der Technik;
FIG 2
ein Blockdiagramm zu einer einfachen Rückkopplungsunterdrückung gemäß dem Stand der Technik;
FIG 3
ein Blockdiagramm zu einer Rückkopplungsunterdrückung mit Schrittweitensteuerung gemäß dem Stand der Technik; und
FIG 4
ein Blockdiagramm zu einer Rückkopplungsunterdrückung mit periodischer Aktivierung gemäß der vorliegenden Erfindung.
The present invention will be explained in more detail with reference to the accompanying drawings, in which:
FIG. 1
the basic structure of a hearing aid according to the prior art;
FIG. 2
a block diagram to a simple feedback suppression according to the prior art;
FIG. 3
a block diagram of feedback control with step size control according to the prior art; and
FIG. 4
a block diagram to a periodically activated feedback suppression according to the present invention.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments described in more detail below represent preferred embodiments of the present invention.

Die Rückkopplungsunterdrückung, wie sie unten beschrieben ist, kann in jedem Audiosystem und insbesondere in jeder Hörvorrichtung, vor allem auch in Hörgeräten, genutzt werden.The feedback cancellation, as described below, can be used in any audio system and in particular in any hearing device, especially in hearing aids.

In dem eingangs beschriebenen Normalmodus ist die Adaption bei bekannten Systemen eingefroren, indem die Schrittweite µ für die Anpassung sehr klein gewählt wird. Erfindungsgemäß wird nun vorgeschlagen, dass die Schrittweite µ periodisch auf einen höheren bzw. vorgegebenen hohen Wert gesetzt wird. Diese Erhöhung der Schrittweite unabhängig von der jeweiligen aktuellen akustischen Situation führt zu einer spontanen Neuanpassung der Rückkopplungsunterdrückung. Dies bedeutet, dass die Rückkopplungsunterdrückung von einem eingefrorenen Zustand in einen Adaptionszustand übergeführt wird. Dieses periodische Triggern bzw. Anstoßen der Adaption kann zusätzlich oder parallel zu bestehenden Schrittweitensteuerverfahren eingesetzt werden.In the normal mode described above, the adaptation is frozen in known systems by the step size μ is chosen to be very small for the adaptation. According to the invention it is now proposed that the step size μ is periodically set to a higher or predetermined high value. This increase in the step size independent of the current acoustic situation leads to a spontaneous readjustment of the feedback suppression. This means that the feedback suppression is transferred from a frozen state to an adaptation state. This periodic triggering of the adaptation can be used in addition to or in parallel with existing step size control methods.

Ein schematisches Blockdiagramm eines Systems mit erfindungsgemäßer Rückkopplungsunterdrückungseinrichtung ist in FIG 4 wiedergegeben. Diese Figur gibt auch entsprechende Verfahrensschritte zum Adaptieren der Rückkopplungsunterdrückung wieder. Die Basis bildet das System von FIG 3. Es wird hinsichtlich des erfindungsgemäßen Systems also ausdrücklich auf die Beschreibung von FIG 3 bzw. FIG 2 hingewiesen. Gleiche Komponenten besitzen in FIG 3 und in FIG 4 gleiche Bezugszeichen und sie üben auch, sofern nicht anders beschrieben, die gleiche Funktion aus.A schematic block diagram of a system with inventive feedback suppression device is shown in FIG FIG. 4 played. This figure also reproduces corresponding method steps for adapting the feedback suppression. The basis is the system of FIG. 3 , It is with regard to the system according to the invention thus expressly to the description of FIG. 3 respectively. FIG. 2 pointed. Same components have in FIG. 3 and in FIG. 4 The same reference numerals and they also exercise the same function, unless otherwise described.

FIG 4 zeigt, dass in die Signalverarbeitungseinrichtung 11 der Hörvorrichtung eine zusätzliche Aktivierungseinrichtung 18 eingezeichnet ist. Ihr Ausgangssignal wird der Schrittweitensteuerung 17 zugeführt. Die Aktivierungseinrichtung 18 ist im einfachsten Fall so ausgebildet, dass sie ein periodisches binäres Signal 19 mit unveränderter Struktur bereitstellt. Dieses binäre Signal 19 weist nur zwei verschiedene Zustände, nämlich einen Einzustand (z. B. "high") und einen Auszustand (z. B. "low") auf. Sobald das Aktivierungssignal 19 im Einzustand ist, bzw. an einer Flanke vom Auszustand zum Einzustand, wird die Schrittweite µ in der Schrittweitensteuerung 17 für den Rückkopplungskompensator 14 (sprunghaft) deutlich erhöht. FIG. 4 shows that in the signal processing device 11 of the hearing device, an additional activation device 18 is located. Its output signal is supplied to the step size controller 17. The activation device 18 is formed in the simplest case so that it is a periodic binary signal 19 with unchanged structure. This binary signal 19 has only two different states, namely an on state (eg "high") and an off state (eg "low"). As soon as the activation signal 19 is in the on state or on an edge from the off state to the on state, the step size μ in the step size control 17 for the feedback compensator 14 (jump) is increased significantly.

Die Aktivierungseinrichtung 18 kann auch so ausgebildet sein, dass sie andere Aktivierungssignale 20, 21 erzeugt. Dabei kann sie nur eines dieser Aktivierungssignale 19 bis 21 oder auch mehrere davon erzeugen.The activation device 18 can also be designed such that it generates other activation signals 20, 21. It can generate only one of these activation signals 19 to 21 or even several of them.

Stellvertretend für andere Aktivierungssignale sind hier das Aktivierungssignal 20, bei dem die Signalperiode veränderbar ist, und das Aktivierungssignal 21 genannt, das nicht rein binär ist und auch Zwischenwerte annehmen kann. Gegebenenfalls wird die Aktivierungseinrichtung 18 von anderen Komponenten der Signalverarbeitungseinrichtung 11 angesteuert, um das auszugebende Aktivierungssignal in Abhängigkeit von aktuellen Signalverarbeitungsgrößen zu verändern. Derartige Ansteuermöglichkeiten sind in FIG 4 nicht eingezeichnet.Representative of other activation signals here are the activation signal 20, in which the signal period is variable, and called the activation signal 21, which is not purely binary and can also assume intermediate values. Optionally, the activation device 18 is actuated by other components of the signal processing device 11 in order to change the activation signal to be output as a function of current signal processing variables. Such driving possibilities are in FIG. 4 not shown.

Wenn in einem konkreten Ausführungsbeispiel das Aktivierungssignal (Aktivierungstrigger) für die Schrittweite µ z. B. "low" (Auszustand) ist, bleibt die Rückkopplungsunterdrückungseinrichtung im eingefrorenen Zustand. Wenn das Aktivierungssignal hingegen "high" (Einzustand) ist, adaptiert das Filter der Rückkopplungsunterdrückungseinrichtung neu, sodass eine Anpassung an die aktuelle akustische Rückkopplungssituation (g) erfolgt. Wenn sich das periodische Aktivierungssignal in einem "low"-Zustand befindet und der Rückkopplungsdetektor 16 aktiv wird, wird die Schrittweite µ ebenfalls adaptiert.If in a specific embodiment, the activation signal (activation trigger) for the step size μ z. B. is "low" (OFF state), the feedback suppression device remains in the frozen state. On the other hand, if the activation signal is "high", the filter adapts to the feedback suppression device so that it adapts to the current acoustic feedback situation (g). When the periodic enable signal is in a "low" state and the feedback detector 16 becomes active, the step size μ is also adapted.

Im Folgenden werden mehrere Möglichkeiten dargestellt, wie die Adaption der Rückkopplungsunterdrückung aktiviert bzw. die Schrittweite µ erhöht werden kann.

  1. a) Die Zeitdauer des "low"-Zustands und die Zeitdauer des "high"-Zustands sind entweder gleich oder voneinander verschieden. Beispielsweise kann das Aktivierungssignal die Struktur besitzen: 1 Sekunde "low", 1 Sekunde "high", 1 Sekunde "low", 1 Sekunde "high", etc. Entsprechend einem anderen Beispiel besitzt das Aktivierungssignal die Struktur: 5 Sekunden "low", 1 Sekunde "high", 5 Sekunden "low", 1 Sekunde "high", 5 Sekunden "low", etc.
  2. b) Die Zeitdauer zwischen zwei aufeinanderfolgenden "high"-Zuständen (Periodendauer) und die Zeitdauer des "high"-Zustands selbst kann während des Betriebs entweder fest oder variabel sein. Die variable Zeitdauer kann beispielsweise in Abhängigkeit von einer Entscheidung des Rückkopplungsdetektors und/oder in Abhängigkeit von einer Klassifikation der aktuellen Hörsituation ermittelt werden (vergleiche Aktivierungssignal 20).
  3. c) Das periodische Aktivierungssignal ist so gestaltet (vergleiche Aktivierungssignal 21), dass eine sogenannte weiche Entscheidung möglich wird. Bei einer weichen Entscheidung erfolgt der Übergang der Schrittweite µ kontinuierlich, wodurch eine flexiblere und situationsangepasste Steuerung der Anpassgeschwindigkeit möglich wird.
  4. d) Es besteht die Möglichkeit, die periodische Aktivierung mit anderen Stabilitätsmaßnahmen bei der Adaption zu kombinieren. Beispielsweise kann eine Frequenzverschiebung oder Frequenzkompression angeschaltet werden, wenn sich das periodische Trigger- bzw. Aktivierungssignal im "high"-Zustand befindet.
In the following several possibilities are shown how the adaptation of the feedback suppression can be activated or the step size μ can be increased.
  1. a) The duration of the "low" state and the duration of the "high" state are either the same or different. For example, the activation signal may have the structure: 1 second "low", 1 second "high", 1 second "low", 1 second "high", etc. According to another example, the activation signal has the structure: 5 seconds "low", 1 second "high", 5 seconds "low", 1 second "high", 5 seconds "low", etc.
  2. b) The time between two consecutive "high" states (period) and the duration of the "high" state itself may be either fixed or variable during operation. The variable time duration can be determined, for example, as a function of a decision of the feedback detector and / or as a function of a classification of the current hearing situation (compare activation signal 20).
  3. c) The periodic activation signal is designed (see activation signal 21) that a so-called soft decision is possible. In the case of a soft decision, the transition of the step width μ takes place continuously, as a result of which a more flexible and situation-adapted control of the adaptation speed becomes possible.
  4. d) It is possible to combine the periodic activation with other stability measures during adaptation. For example, a frequency shift or frequency compression may be turned on when the periodic trigger signal is in the "high" state.

Erfindungsgemäß wird somit die Schrittweitensteuerung der Rückkopplungsunterdrückungseinrichtung periodisch angestoßen. Damit werden die Filterkoeffizienten von Zeit zu Zeit erneuert, wodurch der eingefrorene Zustand etwas aufgeweicht wird. Damit ist es nicht unbedingt notwendig, dass der Rückkopplungsdetektor ein entsprechendes Rückkopplungsereignis aufspürt. Hierdurch ergibt sich der Vorteil, dass während der meisten Zeit einer typischen Nutzung das periodische Aktivierungssignal in einem "low"-Zustand gehalten werden kann, sodass die Adaption eingefroren wird. Damit entstehen keine Verarbeitungs- oder Fehlanpassungs-Artefakte der Rückkopplungsunterdrückungseinrichtung.According to the invention, the step size control of the feedback suppression device is thus triggered periodically. Thus, the filter coefficients are renewed from time to time, which softens the frozen state somewhat. Thus, it is not absolutely necessary for the feedback detector to detect a corresponding feedback event. This has the advantage that during most of the time of a typical use, the periodic activation signal can be kept in a "low" state so that the adaptation is frozen. Thus, no processing or mismatch artifacts of the feedback suppression device arise.

Bei geringfügigen Änderungen des akustischen Pfads hatten bekannte Schrittweitensteuerungen den eingefrorenen Zustand nicht verlassen, was zu rauer, metallischer Schallqualität führt. Dieser Zustand wurde beibehalten, bis eine Änderung des akustischen Pfads so gravierend wurde, dass ein Rückkopplungsdetektor anschlug oder bis der Hörgeräteträger selbst mit seiner Hand eine Rückkopplung provozierte. Nur so konnte die Situation der mangelnden Anpassung behoben werden. Dies aber bedeutete, dass für die Situationsänderung ein Rückkopplungspfeifen unvermeidbar war. Mit der erfindungsgemäßen periodischen Aktivierung des Anpassvorgangs wird die Zeitspanne automatisch eingeschränkt, in der die Rückkopplungsunterdrückungseinrichtung in dem unkomfortablen Zustand verweilt. Bei entsprechend kurzer Periode des Aktivierungssignals ist dieser unkomfortable Zustand vorüber, bevor der Träger der Hörvorrichtung sich der rauen Schallqualität überhaupt bewusst ist. Darüber hinaus verursacht die Neuadaption an die Änderung des akustischen Pfads durch die periodische Aktivierung kein zusätzliches Rückkopplungspfeifen wie früher. Die Reduktion der Häufigkeit von Rückkopplungspfeifen erhöht somit den Tragekomfort von Hörvorrichtungen und das Vertrauen in ein gut funktionierendes Instrument.With minor changes in the acoustic path, known step size controllers had not left the frozen state, resulting in harsh, metallic sound quality. This condition was maintained until a change in the acoustic path became so severe that a feedback detector struck or until the hearing aid wearer himself provoked feedback with his hand. Only then could the situation of the lack of adaptation be remedied. But this meant that a feedback whistle was inevitable for the situation change. With the periodic activation of the fitting process according to the invention, the time span in which the feedback suppression device dwells in the uncomfortable state is automatically restricted. With a correspondingly short period of the activation signal, this uncomfortable state is over before the wearer of the hearing device is even aware of the harsh sound quality. Moreover, the re-adaptation to the change of the acoustic path by the periodic activation does not cause any additional feedback whistle as before. The reduction in the frequency of feedback whistles thus increases the wearing comfort of hearing devices and confidence in a well-functioning instrument.

Claims (5)

  1. Method for adapting a feedback suppression device of a hearing device to a prescribed situation by
    - periodically activating an adaptation process of the feedback suppression device and
    - performing the adaptation process of the feedback suppression device, wherein the adaptation process involves an adaptive filter for adapting to changes of situation on an acoustic feedback path (g) being adapted, wherein the adaptive filter has an alterable step size that controls the speed of adaptation of the adaptive filter,
    characterized in that
    the activation is effected using a periodic, not purely binary, activation signal (21) that has more than two values and wherein the values are altered on the basis of a current hearing situation.
  2. Method according to Claim 1, wherein the activation is effected by virtue of the step size being increased erratically.
  3. Method according to either of the preceding claims, wherein the adaptation process is activated in parallel with the periodic activation by a feedback detector (16) when the latter detects feedback.
  4. Method according to one of the preceding claims, wherein the activation of the adaptation process of the feedback suppression device prompts a frequency shifting algorithm or a frequency compression algorithm to be started.
  5. Feedback suppression device for a hearing device having
    - an adaptation device for adapting the feedback suppression device to a prescribed situation and
    - an activation unit (18) for activating the adaptation device,
    - wherein the adaptation device can be periodically activated using the activation device (18),
    - wherein the adaptation process involves an adaptive filter for adapting to changes of situation on an acoustic feedback path (g) being able to be adapted, wherein the adaptive filter has an alterable step size that controls the speed of adaptation of the adaptive filter,
    characterized in that
    the activation unit (18) is in a form such that the activation is effected using a periodic, not purely binary, activation signal (21) that has more than two values, wherein the values can be altered on the basis of a current hearing situation.
EP12190159.9A 2011-11-03 2012-10-26 Periodic adaptation of a feedback suppression device Not-in-force EP2590437B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011085668 2011-11-03

Publications (2)

Publication Number Publication Date
EP2590437A1 EP2590437A1 (en) 2013-05-08
EP2590437B1 true EP2590437B1 (en) 2015-09-23

Family

ID=47594258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12190159.9A Not-in-force EP2590437B1 (en) 2011-11-03 2012-10-26 Periodic adaptation of a feedback suppression device

Country Status (3)

Country Link
US (1) US8861759B2 (en)
EP (1) EP2590437B1 (en)
DK (1) DK2590437T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016226112A1 (en) * 2016-12-22 2018-06-28 Sivantos Pte. Ltd. Method for operating a hearing aid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418227B1 (en) * 1996-12-17 2002-07-09 Texas Instruments Incorporated Active noise control system and method for on-line feedback path modeling
JP3506138B2 (en) * 2001-07-11 2004-03-15 ヤマハ株式会社 Multi-channel echo cancellation method, multi-channel audio transmission method, stereo echo canceller, stereo audio transmission device, and transfer function calculation device
JP4836032B2 (en) * 2004-01-29 2011-12-14 エスティー‐エリクソン、ソシエテ、アノニム Echo canceller with step size controlled by the level of interference
JP4297003B2 (en) * 2004-07-09 2009-07-15 ヤマハ株式会社 Adaptive howling canceller
US8477952B2 (en) * 2005-04-27 2013-07-02 Oticon A/S Audio system with feedback detection means
AU2005232314B2 (en) * 2005-11-11 2010-08-19 Phonak Ag Feedback compensation in a sound processing device
DE102006029194B4 (en) 2006-06-26 2010-04-15 Siemens Audiologische Technik Gmbh Device and method for increment control of an adaptive filter
EP2086250B1 (en) 2008-02-01 2020-05-13 Oticon A/S A listening system with an improved feedback cancellation system, a method and use
US8571244B2 (en) * 2008-03-25 2013-10-29 Starkey Laboratories, Inc. Apparatus and method for dynamic detection and attenuation of periodic acoustic feedback
JP2010004149A (en) * 2008-06-18 2010-01-07 Yamaha Corp Howling prevention device
DE102009016845B3 (en) * 2009-04-08 2010-08-05 Siemens Medical Instruments Pte. Ltd. Arrangement and method for detecting feedback in hearing devices
DE102010006154B4 (en) 2010-01-29 2012-01-19 Siemens Medical Instruments Pte. Ltd. Hearing aid with frequency shift and associated method

Also Published As

Publication number Publication date
EP2590437A1 (en) 2013-05-08
US8861759B2 (en) 2014-10-14
US20130114837A1 (en) 2013-05-09
DK2590437T3 (en) 2016-01-11

Similar Documents

Publication Publication Date Title
EP3451705B1 (en) Method and apparatus for the rapid detection of own voice
EP1379102B1 (en) Sound localization in binaural hearing aids
EP1307072A2 (en) Method for operating a hearing aid and hearing aid
EP2991379B1 (en) Method and device for improved perception of own voice
EP2988529B1 (en) Adaptive separation frequency in hearing aids
DE102015216822B4 (en) A method of suppressing feedback in a hearing aid
DE102007017761A1 (en) Method for adapting a binaural hearing aid system
EP2070384B1 (en) Hearing device controlled by a perceptive model and corresponding method
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
EP1906702B2 (en) Method for operating control of a hearing device and corresponding hearing device
EP2200345A1 (en) Method for selecting a preferred direction of a directional microphone and corresponding hearing device
EP2161949A2 (en) Method for operating a hearing aid with directional effect and accompanying hearing aid
DE102014218672B3 (en) Method and apparatus for feedback suppression
EP2373063B1 (en) Hearing device and method for setting the same for acoustic feedback-free operation
EP2590437B1 (en) Periodic adaptation of a feedback suppression device
EP2658289B1 (en) Method for controlling an alignment characteristic and hearing aid
EP2023667A2 (en) Method for adjusting a hearing aid with a perceptive model for binaural hearing and corresponding hearing system
DE602004010317T2 (en) Method for operating a hearing aid and hearing aid
DE102019201879B3 (en) Method for operating a hearing system and hearing system
EP2262282A2 (en) Method for determining a frequency response and corresponding hearing aid
DE102010007336B4 (en) Method for compensating a feedback signal and hearing device
EP2592850B1 (en) Automatic activating and deactivating of a binaural hearing system
DE102020201615B3 (en) Hearing system with at least one hearing instrument worn in or on the user's ear and a method for operating such a hearing system
EP2362687A2 (en) Hearing aid with parallel feedback reduction filters and method
DE102007030067B4 (en) Hearing aid with passive, input-level-dependent noise reduction and method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20131213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004674

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIVANTOS PTE. LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012004674

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502012004674

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160107

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004674

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160624

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20181025

Year of fee payment: 7

Ref country code: DE

Payment date: 20181024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181023

Year of fee payment: 7

Ref country code: CH

Payment date: 20181025

Year of fee payment: 7

Ref country code: GB

Payment date: 20181025

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012004674

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20191031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191026

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031