EP2200345A1 - Method for selecting a preferred direction of a directional microphone and corresponding hearing device - Google Patents

Method for selecting a preferred direction of a directional microphone and corresponding hearing device Download PDF

Info

Publication number
EP2200345A1
EP2200345A1 EP09177982A EP09177982A EP2200345A1 EP 2200345 A1 EP2200345 A1 EP 2200345A1 EP 09177982 A EP09177982 A EP 09177982A EP 09177982 A EP09177982 A EP 09177982A EP 2200345 A1 EP2200345 A1 EP 2200345A1
Authority
EP
European Patent Office
Prior art keywords
directional
signal
frequency bands
directional microphone
hearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09177982A
Other languages
German (de)
French (fr)
Other versions
EP2200345B1 (en
Inventor
Henning Puder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2200345A1 publication Critical patent/EP2200345A1/en
Application granted granted Critical
Publication of EP2200345B1 publication Critical patent/EP2200345B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/43Electronic input selection or mixing based on input signal analysis, e.g. mixing or selection between microphone and telecoil or between microphones with different directivity characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/01Noise reduction using microphones having different directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic

Definitions

  • the present invention relates to a method for operating a hearing device with a directional microphone, which is switchable at least in a first and in a second directional characteristic. Moreover, the present invention relates to a corresponding hearing device.
  • hearing device is understood to mean here any sound-emitting device which can be worn on or in the ear or on the head, in particular a hearing aid, a headset, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for Carrying behind the ear, one or more microphones 2 are installed for recording the sound from the environment.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • Directional microphones usually amplify signals from the direction of the hearing aid wearer. But there are situations in which this approach is more of a hindrance than useful, eg. As in cars, where the signals of other speakers for driver or front passenger rather have a lateral or backward facing direction of incidence. Then the directional microphone should react and focus on the direction from which the highest voice component is incident.
  • the object of the present invention is thus to automatically focus a directional microphone of a hearing device in that direction from which the highest speech component is incident.
  • a corresponding method and a corresponding hearing device are to be provided.
  • a determined signal-to-noise ratio is used as the basis for selecting a directional characteristic of a directional microphone. This selection can be made automatically, so that the use of the hearing for each person is comfortable.
  • an interference power in several frequency bands is estimated for determining the signal-to-noise ratios. It is particularly advantageous if a signal processing of the hearing device is performed in a plurality of frequency bands, but for the determination of the signal-to-noise ratios only in selected one of the frequency bands each an interference power is estimated. In this way, computing capacity can be saved, because experience has shown that the lower bands hardly contribute when it comes to determine the differences in the signal-to-noise ratios for the different directional characteristics.
  • the estimation of the interference power in one of the frequency bands only takes place when a noise reduction the respective frequency band component on the z. B. for the filter used maximum possible value attenuates. This is an indication that this frequency component contains no speech component. In the other case, d. H. at times when the noise reduction does not apply the maximum attenuation, it is assumed that a useful signal component in this frequency component. Then, no estimate of the disturbance power can be made, but the old estimate is held until the estimate is released again.
  • the switching of the directional microphone in one of the directional characteristics can also be done by a gradual blending. This means that switching is not done hard at one time, but soft over a period of time, which may increase hearing comfort.
  • first directivity may prefer a forward direction and the second directivity may prefer an opposite rearward direction.
  • the directions “front” and “back” refer to the situation when wearing the hearing device, with “front” in the direction of the user.
  • the directional microphone can be switched into a third directional characteristic, which corresponds to an omnidirectional characteristic. This can be taken into account a situation in which voice components come from several directions.
  • the basis for the selection of a suitable directional characteristic of the directional microphone is the estimation of the useful portion and in particular of the voice component for, for example, three different adjustment variants of the directional microphone: 1) adaptive with the preferred direction forward, 2) omnidirectional and 3) preferred direction to the rear.
  • the choice of direction could be made for speech according to the amount of speech present, calculated on the basis of the amount of 4 Hz modulation of the envelope for each of these three signals.
  • Disadvantage of this method is a certain inertia of the 4-Hz modulation. Associated with this is the need for a speaker to speak from behind for a few seconds before his activity is detected, and the directional microphone fades in his direction.
  • an alternative for calculating the 4-Hz modulation is proposed, with the faster and more reliable the preferred direction of the directional microphone is detected and switched to this.
  • the idea is based on a special and very cost-efficient calculation of the signal-to-noise ratio (SNR) for each of the three different adjustment options of the directional microphone.
  • SNR signal-to-noise ratio
  • the basis for this are the three output signals of the three different directional microphone variants, for example in 48 frequency bands in which the directional microphone is currently being calculated.
  • the detection system which can be integrated, for example, in a hearing aid as part of a directional microphone control unit receives each multichannel (bold lines in FIG. 2 ) an input signal In1 from a directional microphone setting "omnidirectional", an input signal In2 from a directional microphone setting "directional forward”, and an input signal In3 for the directional microphone setting "directional backward". For each of the input signals, an SNR estimate is performed. First of all, the power of the respective overall signal is determined. Absolute value units 10 form band-specific or channel-specific the amount of each input signal.
  • the absolute value unit 10 is followed by a selector 11 to select only the desired bands.
  • the lower bands are usually not selected, as they usually do not contribute to the difference of the three signals.
  • the signals of the remaining bands are summed in adders 12.
  • a broadband overall signal results (the blocked bands do not contribute), which serves for a corresponding estimating device 13 for estimating the power of the overall signal (S + N).
  • Each estimation device 13 has, for example, a low-pass filter LP.
  • each estimator 13 requires a fixed, predetermined smoothing constant ks.
  • the power of the noise (N) is also estimated for each input signal In1, In2, In3.
  • the selected bands are fed, after the selectors 11, to further estimation devices 14 with multiple channels or multiple bands (in FIG FIG. 2 multi-channel connections with thick lines and single-channel connections with thin lines are shown).
  • Such an estimator 14 for multi-channel processing may include an IIR filter, e.g. As a low-pass filter first order included.
  • the interference power is thus calculated channel-specifically.
  • the respective estimating device 14 requires a fixed smoothing constant kn. It should be noted, however, that the disturbance can only be reliably estimated if none Net power in each band is present.
  • the information from a Vienna-based noise reduction can be used. This is done so that it is evaluated in each frequency band, whether the noise reduction at the current time maximum attenuates the respective frequency component or passes to a certain extent. If a given maximum damping is applied, it can be assumed that there is only noise and the estimation is released. Otherwise, the estimate is paused and retained until the revaluation enable the old estimate.
  • Information about whether or not maximum attenuation is due to the noise reduction can be input to a further input In4 in a channel-specific manner.
  • a switch 15 switches the smoothing constant to kn, if only noise is present and otherwise to 0, even if a useful signal is present at the selected time.
  • Another selector 16 selects from the output channels of the switch 15 those who have also selected the selectors 11 from the input signals.
  • the interference power can now be estimated channel-specifically in the estimation means 14.
  • the channel-specific interference power is added up in adders 17 over all frequency bands. This results in a total interference power for each of the three input signals.
  • a level (in dB) of the total disturbances as well as the total signal powers is formed.
  • subtracters 20 the difference of the levels of total signal power and interference power is formed for each input signal. This difference gives an estimate of the SNR value. In this way, estimates can be made for the three microphone variants.
  • the SNR values are optionally subjected to a smoothing. For this purpose, they are first compared in comparison units 21 with a limit l. The larger value is output. If, therefore, the SNR falls below the value 1, the output value is set to the limit l. This can be avoided that at very low SNR switching already takes place. Subsequently, the resulting values are smoothed by low-pass filters 22 having a smoothing constant kg.
  • the smoothed output signals Out1, Out2, and Out3 can now be used for further signal processing. For example, they represent the SNR value for omnidirectional operation, the SNR value for directional operation, and the SNR value for antidirectional operation (opposite direction) in the order named.
  • the three values are compared, for example, and the variant with the largest SNR value is a hysteresis logic (just as little as the just-mentioned predicates in FIG. 2 is drawn) used to select the cheapest directional microphone variant.

Abstract

The method involves switching a directional microphone in at least two directional characteristics. A one signal-to-noise ratio for the former and latter directional characteristics is determined. The switching of the directional microphone in two directional characteristics results to the signal-to-noise ratio. An independent claim is also included for a hearing device.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Hörvorrichtung mit einem Richtmikrofon, das zumindest in eine erste und in eine zweite Richtcharakteristik schaltbar ist. Darüber hinaus betrifft die vorliegende Erfindung eine entsprechende Hörvorrichtung. Unter dem Begriff "Hörvorrichtung" wird hier jedes am oder im Ohr bzw. am Kopf tragbare schallausgebende Gerät verstanden, insbesondere ein Hörgerät, ein Headset, Kopfhörer und dergleichen.The present invention relates to a method for operating a hearing device with a directional microphone, which is switchable at least in a first and in a second directional characteristic. Moreover, the present invention relates to a corresponding hearing device. The term "hearing device" is understood to mean here any sound-emitting device which can be worn on or in the ear or on the head, in particular a hearing aid, a headset, headphones and the like.

Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.Hearing aids are portable hearing aids that are used to care for the hearing impaired. In order to meet the numerous individual needs, different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (IDO), e.g. Concha hearing aids or canal hearing aids (ITE, CIC). The hearing aids listed by way of example are worn on the outer ear or in the ear canal. In addition, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.

Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer. The input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil. The output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized. The amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for Carrying behind the ear, one or more microphones 2 are installed for recording the sound from the environment. A signal processing unit 3, which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them. The output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5

Richtmikrophone verstärken üblicherweise Signale aus der Blickrichtung des Hörgeräteträgers. Es gibt aber Situationen, in denen dieses Vorgehen eher hinderlich als nützlich ist, z. B. in Autos, in denen für Fahrer oder Beifahrer die Signale anderer Sprecher eher eine seitliche oder nach hinten gewandte Einfallsrichtung aufweisen. Hierauf sollte das Richtmikrofon reagieren und sich auf die Richtung fokussieren, aus der der höchste Sprachanteil einfällt.Directional microphones usually amplify signals from the direction of the hearing aid wearer. But there are situations in which this approach is more of a hindrance than useful, eg. As in cars, where the signals of other speakers for driver or front passenger rather have a lateral or backward facing direction of incidence. Then the directional microphone should react and focus on the direction from which the highest voice component is incident.

Bislang ist lediglich bekannt, die Richtcharakteristik eines Richtmikrofons manuell umzuschalten. Diese manuelle Betätigung führt für den Nutzer jedoch vielfach zu Unannehmlichkeiten und ist insbesondere für Fahrer nicht geeignet.So far, it is only known to switch the directivity of a directional microphone manually. However, this manual operation often leads to inconvenience for the user and is not suitable in particular for drivers.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Richtmikrofon einer Hörvorrichtung automatisch auf diejenige Richtung zu fokussieren, aus der der höchste Sprachanteil einfällt. Hierzu soll ein entsprechendes Verfahren und eine entsprechende Hörvorrichtung bereitgestellt werden.The object of the present invention is thus to automatically focus a directional microphone of a hearing device in that direction from which the highest speech component is incident. For this purpose, a corresponding method and a corresponding hearing device are to be provided.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zum Betreiben einer Hörvorrichtung mit einem Richtmikrofon, das zumindest in eine erste und eine zweite Richtcharakteristik schaltbar ist, durch

  • Ermitteln je eines Signal-Rausch-Verhältnisses für die erste und die zweite Richtcharakteristik und
  • Schalten des Richtmikrofons in diejenige der beiden Richtcharakteristiken, die zu dem höheren Signal-Rausch-Verhältnis führt.
According to the invention, this object is achieved by a method for operating a hearing device with a directional microphone which is switchable at least into a first and a second directional characteristic
  • Determining a signal-to-noise ratio for each of the first and second directional characteristics and
  • Switching the directional microphone in that of the two directional characteristics, which leads to the higher signal-to-noise ratio.

Darüber hinaus wird erfindungsgemäß bereitgestellt eine Hörvorrichtung mit

  • einem Richtmikrofon, das zumindest in eine erste und in eine zweite Richtcharakteristik schaltbar ist, sowie umfassend
  • eine Recheneinrichtung zum Ermitteln je eines Signal-Rausch-Verhältnisses für die erste und die zweite Richtcharakteristik und
  • einer Schalteinrichtung zum Schalten des Richtmikrofons in diejenige der beiden Richtcharakteristiken, die zu dem höheren Signal-Rausch-Verhältnis führt.
In addition, the invention provides a hearing device
  • a directional microphone, which is switchable at least in a first and in a second directional characteristic, and comprehensive
  • a computing device for determining a respective signal-to-noise ratio for the first and the second directional characteristic and
  • a switching device for switching the directional microphone in that of the two directional characteristics, which leads to the higher signal-to-noise ratio.

In vorteilhafter Weise wird ein ermitteltes Signal-Rausch-Verhältnis als Grundlage für eine Auswahl einer Richtcharakteristik eines Richtmikrofons verwendet. Diese Auswahl kann automatisch erfolgen, so dass die Nutzung der Hörvorrichtung für die jeweilige Person komfortabler wird.Advantageously, a determined signal-to-noise ratio is used as the basis for selecting a directional characteristic of a directional microphone. This selection can be made automatically, so that the use of the hearing for each person is comfortable.

Vorzugsweise wird für das Ermitteln der Signal-Rausch-Verhältnisse jeweils eine Störleistung in mehreren Frequenzbändern geschätzt. Dabei ist es von besonderem Vorteil, wenn zwar eine Signalverarbeitung der Hörvorrichtung in einer Vielzahl von Frequenzbändern durchgeführt wird, aber für das Ermitteln der Signal-Rausch-Verhältnisse nur in ausgewählten der Frequenzbänder jeweils eine Störleistung geschätzt wird. Auf diese Weise kann Rechenkapazität eingespart werden, denn erfahrungsgemäß tragen die unteren Bänder kaum dazu bei, wenn es darum geht, die Unterschiede der Signal-Rausch-Verhältnisse für die verschiedenen Richtcharakteristiken zu ermitteln.Preferably, an interference power in several frequency bands is estimated for determining the signal-to-noise ratios. It is particularly advantageous if a signal processing of the hearing device is performed in a plurality of frequency bands, but for the determination of the signal-to-noise ratios only in selected one of the frequency bands each an interference power is estimated. In this way, computing capacity can be saved, because experience has shown that the lower bands hardly contribute when it comes to determine the differences in the signal-to-noise ratios for the different directional characteristics.

Gemäß einer weiteren bevorzugten Ausführungsform erfolgt das Schätzen der Störleistung in einem der Frequenzbänder nur dann, wenn eine Geräuschreduktion die jeweilige Frequenzbandkomponente auf den z. B. für die eingesetzte Filterung vorgegebenen maximal möglichen Wert dämpft. Dies ist ein Indiz, dass diese Frequenzkomponente keinen Sprachanteil enthält. Im anderen Fall, d. h. zu Zeitpunkten, in denen die Geräuschreduktion nicht die maximale Dämpfung appliziert, ist von einem Nutzsignalanteil in dieser Frequenzkomponente auszugehen. Dann kann keine Schätzung der Störleistung durchgeführt werden, sondern der alte Schätzwert wird bis zur erneuten Freigabe der Schätzung gehalten.According to a further preferred embodiment, the estimation of the interference power in one of the frequency bands only takes place when a noise reduction the respective frequency band component on the z. B. for the filter used maximum possible value attenuates. This is an indication that this frequency component contains no speech component. In the other case, d. H. at times when the noise reduction does not apply the maximum attenuation, it is assumed that a useful signal component in this frequency component. Then, no estimate of the disturbance power can be made, but the old estimate is held until the estimate is released again.

Das Schalten des Richtmikrofons in eine der Richtcharakteristiken kann auch durch ein allmähliches Überblenden erfolgen. Dies bedeutet, dass das Schalten nicht hart zu einem Zeitpunkt, sondern weich über einen gewissen Zeitraum durchgeführt wird, was unter Umständen den Hörkomfort steigert.The switching of the directional microphone in one of the directional characteristics can also be done by a gradual blending. This means that switching is not done hard at one time, but soft over a period of time, which may increase hearing comfort.

Darüber hinaus kann die erste Richtcharakteristik eine Vorne-Richtung und die zweite Richtcharakteristik eine entgegengesetzte Hinten-Richtung bevorzugen. Dabei beziehen sich die Richtungsangaben "vorne" und "hinten" auf die Situation beim Tragen der Hörvorrichtung, wobei "vorne" in Blickrichtung des Nutzers ist.In addition, the first directivity may prefer a forward direction and the second directivity may prefer an opposite rearward direction. The directions "front" and "back" refer to the situation when wearing the hearing device, with "front" in the direction of the user.

Ferner kann das Richtmikrofon in eine dritte Richtcharakteristik schaltbar sein, die einer Omnidirektionalcharakteristik entspricht. Damit kann einer Situation Rechnung getragen werden, in der Sprachanteile aus mehreren Richtungen einfallen.Furthermore, the directional microphone can be switched into a third directional characteristic, which corresponds to an omnidirectional characteristic. This can be taken into account a situation in which voice components come from several directions.

Die vorliegende Erfindung ist anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
eine schematische Ansicht eines Grundaufbaus eines Hörgeräts und
FIG 2
ein Blockschaltdiagramm einer Schaltungsanordnung für ein Hörgerät zum automatischen Auswählen einer geeigneten Richtcharakteristik eines Richtmikrofons.
The present invention will be explained in more detail with reference to the accompanying drawings, in which:
FIG. 1
a schematic view of a basic structure of a hearing aid and
FIG. 2
a block diagram of a circuit arrangement for a hearing aid for automatically selecting a suitable directional characteristic of a directional microphone.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments described in more detail below represent preferred embodiments of the present invention.

Basis für die Auswahl einer geeigneten Richtcharakteristik des Richtmikrofons ist die Schätzung des Nutzanteils und insbesondere des Sprachanteils für beispielsweise drei verschiedene Einstellvarianten des Richtmikrofons: 1) adaptiv mit der Vorzugsrichtung nach vorne, 2) omnidirektional und 3) Vorzugsrichtung nach hinten. Die Auswahl der Richtung könnte für Sprache nach dem vorhandenen Sprachanteil erfolgen, der auf Basis der Höhe der 4-Hz-Modulation der Einhüllenden für jedes dieser drei Signale berechnet wird. Nachteil dieser Methode ist eine gewisse Trägheit der 4-Hz-Modulation. Damit verbunden ist die Notwendigkeit, dass ein Sprecher von hinten ein paar Sekunden sprechen muss, bevor seine Aktivität erkannt wird, und das Richtmikrofon in seine Richtung umblendet.The basis for the selection of a suitable directional characteristic of the directional microphone is the estimation of the useful portion and in particular of the voice component for, for example, three different adjustment variants of the directional microphone: 1) adaptive with the preferred direction forward, 2) omnidirectional and 3) preferred direction to the rear. The choice of direction could be made for speech according to the amount of speech present, calculated on the basis of the amount of 4 Hz modulation of the envelope for each of these three signals. Disadvantage of this method is a certain inertia of the 4-Hz modulation. Associated with this is the need for a speaker to speak from behind for a few seconds before his activity is detected, and the directional microphone fades in his direction.

Erfindungsgemäß wird daher eine Alternative zur Berechnung der 4-Hz-Modulation vorgeschlagen, mit der schneller und auch zuverlässiger die Vorzugsrichtung des Richtmikrofons erkannt und auf diese umgeschaltet wird. Die Idee basiert auf einer speziellen und sehr aufwandseffizienten Berechnung des Signal-Rausch-Anteils (SNR) für jede der hier drei verschiedenen Einstellvarianten des Richtmikrofons. Basis hierfür sind die drei Ausgangssignale der drei verschiedenen Richtmikrofonvarianten beispielsweise in 48 Frequenzbändern, in denen das Richtmikrofon aktuell gerechnet wird.According to the invention, therefore, an alternative for calculating the 4-Hz modulation is proposed, with the faster and more reliable the preferred direction of the directional microphone is detected and switched to this. The idea is based on a special and very cost-efficient calculation of the signal-to-noise ratio (SNR) for each of the three different adjustment options of the directional microphone. The basis for this are the three output signals of the three different directional microphone variants, for example in 48 frequency bands in which the directional microphone is currently being calculated.

Ein beispielhaftes Detektionssystem zur Erkennung des größten Sprachanteils in den drei verschiedenen Richtmikrofoneinstellungen wird nun anhand von FIG 2 näher erläutert. Das Detektionssystem, das beispielsweise in ein Hörgerät als Teil einer Richtmikrofonsteuereinheit integriert werden kann, erhält jeweils mehrkanalig (fette Linien in FIG 2) ein Eingangssignal In1 von einer Richtmikrofoneinstellung "omnidirektional", ein Eingangssignal In2 von einer Richtmikrofoneinstellung "direktional nach vorne" und ein Eingangssignal In3 für die Richtmikrofoneinstellung "direktional nach hinten". Für jedes der Eingangssignale wird eine SNR-Schätzung durchgeführt. Zunächst wird dafür die Leistung des jeweiligen Gesamtsignals bestimmt. Dazu bilden Absolutwerteinheiten 10 band- bzw. kanalspezifisch den Betrag jedes Eingangssignals. In jedem Signalpfad ist der Absolutwerteinheit 10 ein Selektor 11 nachgeschaltet, um nur die gewünschten Bänder auszuwählen. Insbesondere werden die unteren Bänder in der Regel nicht ausgewählt, da sie meist keinen Beitrag zum Unterschied der drei Signale liefern. Anschließend werden die Signale der verbleibenden Bänder in Addierern 12 aufsummiert. Es ergibt sich somit für jedes mehrbandige Eingangssignal In1, In2, In3 jeweils ein breitbandiges Gesamtsignal (die blockierten Bänder liefern keinen Beitrag), welches zu einer korrespondierenden Schätzeinrichtung 13 zum Schätzen der Leistung des Gesamtsignals (S+N) dient. Jede Schätzeinrichtung 13 weist beispielsweise ein Tiefpassfilter LP auf. Um die Gesamtleistung sachgerecht schätzen zu können, benötigt jede Schätzeinrichtung 13 eine feste, vorgegebene Glättungskonstante ks.An exemplary detection system for detecting the largest portion of speech in the three different directional microphone settings is now based on FIG. 2 explained in more detail. The detection system, which can be integrated, for example, in a hearing aid as part of a directional microphone control unit receives each multichannel (bold lines in FIG. 2 ) an input signal In1 from a directional microphone setting "omnidirectional", an input signal In2 from a directional microphone setting "directional forward", and an input signal In3 for the directional microphone setting "directional backward". For each of the input signals, an SNR estimate is performed. First of all, the power of the respective overall signal is determined. Absolute value units 10 form band-specific or channel-specific the amount of each input signal. In each signal path, the absolute value unit 10 is followed by a selector 11 to select only the desired bands. In particular, the lower bands are usually not selected, as they usually do not contribute to the difference of the three signals. Subsequently, the signals of the remaining bands are summed in adders 12. Thus, for each multi-band input signal In1, In2, In3, a broadband overall signal results (the blocked bands do not contribute), which serves for a corresponding estimating device 13 for estimating the power of the overall signal (S + N). Each estimation device 13 has, for example, a low-pass filter LP. In order to properly estimate the overall performance, each estimator 13 requires a fixed, predetermined smoothing constant ks.

Parallel zur Schätzung der Leistung des Gesamtsignals (S+N) wird auch die Leistung der Störung (N) für jedes Eingangssignal In1, In2, In3 geschätzt. Hierzu werden die ausgewählten Bänder nach den Selektoren 11 weiteren Schätzeinrichtungen 14 mehrkanalig bzw. mehrbandig zugeführt (in FIG 2 sind mehrkanalige Verbindungen mit dicken Linien und einkanalige Verbindungen mit dünnen Linien eingezeichnet). Eine derartige Schätzeinrichtung 14 zur mehrkanaligen Verarbeitung kann ein IIR-Filter, z. B. ein Tiefpass-Filter erster Ordnung, enthalten. In jeder dieser Schätzeinrichtungen 14 wird somit kanalspezifisch die Störleistung berechnet. Auch hierzu benötigt die jeweilige Schätzeinrichtung 14 eine feste Glättungskonstante kn. Dabei ist jedoch zu berücksichtigen, dass die Störleistung nur dann sicher geschätzt werden kann, wenn keine Nutzleistung im jeweiligen Band vorhanden ist. Hierzu kann beispielsweise die Information aus einer Wiener-basierten Geräuschreduktion genutzt werden. Dies geschieht so, dass in jedem Frequenzband ausgewertet wird, ob die Geräuschreduktion zum aktuellen Zeitpunkt die jeweilige Frequenzkomponente maximal dämpft oder zu einem gewissen Anteil durchlässt. Wenn eine vorgegebene maximale Dämpfung appliziert wird, kann davon ausgegangen werden, dass nur Geräusch vorliegt und die Schätzung freigegeben werden. Im anderen Fall wird die Schätzung angehalten und bis zur erneuten Schätzungsfreigabe der alte Schätzwert beibehalten.In parallel with the estimation of the power of the total signal (S + N), the power of the noise (N) is also estimated for each input signal In1, In2, In3. For this purpose, the selected bands are fed, after the selectors 11, to further estimation devices 14 with multiple channels or multiple bands (in FIG FIG. 2 multi-channel connections with thick lines and single-channel connections with thin lines are shown). Such an estimator 14 for multi-channel processing may include an IIR filter, e.g. As a low-pass filter first order included. In each of these estimation devices 14, the interference power is thus calculated channel-specifically. Again, the respective estimating device 14 requires a fixed smoothing constant kn. It should be noted, however, that the disturbance can only be reliably estimated if none Net power in each band is present. For this purpose, for example, the information from a Vienna-based noise reduction can be used. This is done so that it is evaluated in each frequency band, whether the noise reduction at the current time maximum attenuates the respective frequency component or passes to a certain extent. If a given maximum damping is applied, it can be assumed that there is only noise and the estimation is released. Otherwise, the estimate is paused and retained until the revaluation enable the old estimate.

Eine diesbezügliche Information, ob maximale Dämpfung durch die Geräuschreduktion erfolgt oder nicht, kann in einen weiteren Eingang In4 kanalspezifisch eingegeben werden. Auf der Basis der jeweiligen kanalspezifischen Funktion schaltet ein Schalter 15 die Glättungskonstante auf kn, wenn nur Geräusch vorliegt und anderenfalls auf 0, wenn auch ein Nutzsignal zum gewählten Zeitpunkt vorliegt. Ein weiterer Selektor 16 wählt aus den Ausgangskanälen des Schalters 15 diejenigen aus, die auch die Selektoren 11 aus den Eingangssignalen gewählt haben. Anhand der zusätzlichen Information, wann die Geräuschreduktion in den einzelnen Bändern durchgeführt wird, kann nun in den Schätzeinrichtungen 14 die Störleistung kanalspezifisch geschätzt werden.Information about whether or not maximum attenuation is due to the noise reduction can be input to a further input In4 in a channel-specific manner. On the basis of the respective channel-specific function, a switch 15 switches the smoothing constant to kn, if only noise is present and otherwise to 0, even if a useful signal is present at the selected time. Another selector 16 selects from the output channels of the switch 15 those who have also selected the selectors 11 from the input signals. On the basis of the additional information as to when the noise reduction in the individual bands is carried out, the interference power can now be estimated channel-specifically in the estimation means 14.

Die kanalspezifischen Störleistungen werden in Addierern 17 über alle Frequenzbänder aufaddiert. Es ergibt sich damit eine Gesamtstörleistung für jedes der drei Eingangssignale. Durch weitere Verarbeitungselemente 18 und 19 wird je ein Pegel (in dB) der Gesamtstörleistungen sowie der Gesamtsignalleistungen gebildet. In Subtrahierern 20 wird für jedes Eingangssignal die Differenz der Pegel von Gesamtsignalleistung und Störleistung gebildet. Diese Differenz ergibt eine Schätzung des SNR-Werts. Auf diese Weise lassen sich somit Schätzungen für die drei Mikrofonvarianten durchführen.The channel-specific interference power is added up in adders 17 over all frequency bands. This results in a total interference power for each of the three input signals. By further processing elements 18 and 19, a level (in dB) of the total disturbances as well as the total signal powers is formed. In subtracters 20, the difference of the levels of total signal power and interference power is formed for each input signal. This difference gives an estimate of the SNR value. In this way, estimates can be made for the three microphone variants.

Am Ende des Detektionssystems werden die SNR-Werte optional noch einer Glättung unterzogen. Hierzu werden sie in Vergleichseinheiten 21 zunächst mit einem Limit l verglichen. Der jeweils größere Wert wird ausgegeben. Wenn somit das SNR den Wert l unterschreitet, wird der Ausgangswert auf das Limit l gesetzt. Dadurch kann vermieden werden, dass bei sehr niedrigem SNR bereits ein Umschalten erfolgt. Anschließend werden die resultierenden Werte durch Tiefpassfilter 22 mit einer Glättungskonstante kg geglättet. Die geglätteten Ausgangssignale Out1, Out2, und Out3 können nun zur weiteren Signalverarbeitung herangezogen werden. Sie repräsentieren in der genannten Reihenfolge beispielsweise den SNR-Wert für Omnidirektionalbetrieb, den SNR-Wert für Direktionalbetrieb und den SNR-Wert für Antidirektionalbetrieb (entgegengesetzte Richtung). Die drei Werte werden dabei beispielsweise verglichen und diejenige Variante mit dem größten SNR-Wert wird über eine Hysterese-Logik (die ebensowenig wie die soeben genannten Vergleichselemente in FIG 2 eingezeichnet ist) zur Auswahl der günstigsten Richtmikrofonvariante verwendet.At the end of the detection system, the SNR values are optionally subjected to a smoothing. For this purpose, they are first compared in comparison units 21 with a limit l. The larger value is output. If, therefore, the SNR falls below the value 1, the output value is set to the limit l. This can be avoided that at very low SNR switching already takes place. Subsequently, the resulting values are smoothed by low-pass filters 22 having a smoothing constant kg. The smoothed output signals Out1, Out2, and Out3 can now be used for further signal processing. For example, they represent the SNR value for omnidirectional operation, the SNR value for directional operation, and the SNR value for antidirectional operation (opposite direction) in the order named. The three values are compared, for example, and the variant with the largest SNR value is a hysteresis logic (just as little as the just-mentioned predicates in FIG. 2 is drawn) used to select the cheapest directional microphone variant.

In vorteilhafter Weise kann somit eine SNR-basierte Auswahl der besten Richtmikrofonvariante, d. h. der Variante mit dem größten Sprachanteil, erfolgen. Insbesondere hervorzuheben ist die aufwandsgünstige Kopplung mit der Geräuschreduktion, die eine einfache Geräuschschätzung für jede der drei Richtmikrofonvarianten ermöglicht.Advantageously, therefore, a SNR-based selection of the best directional microphone variant, d. H. the variant with the largest language share, done. Particularly noteworthy is the cost-effective coupling with the noise reduction, which allows a simple noise estimate for each of the three directional microphone variants.

Untersuchungen zeigen, dass die Auswahl der optimalen Richtmikrofonvariante zuverlässiger und schneller erfolgt. Es lassen sich korrekte Detektionsraten von über 90 % erreichen.Studies show that the selection of the optimal directional microphone version is more reliable and faster. It can achieve correct detection rates of over 90%.

Claims (11)

Verfahren zum Betreiben einer Hörvorrichtung mit einem Richtmikrofon, das zumindest in eine erste und eine zweite Richtcharakteristik schaltbar ist,
gekennzeichnet durch - Ermitteln je eines Signal-Rausch-Verhältnisses (10 bis 20) für die erste und die zweite Richtcharakteristik und - Schalten des Richtmikrofons in diejenige der beiden Richtcharakteristiken, die zu dem höheren Signal-Rausch-Verhältnis führt.
Method for operating a hearing device with a directional microphone which is switchable into at least a first and a second directional characteristic,
marked by - Determining each of a signal-to-noise ratio (10 to 20) for the first and the second directional characteristic and - Switching the directional microphone in that of the two directional characteristics, which leads to the higher signal-to-noise ratio.
Verfahren nach Anspruch 1, wobei für das Ermitteln der Signal-Rausch-Verhältnisse (10 bis 20) jeweils eine Störleistung in mehreren Frequenzbändern geschätzt wird.The method of claim 1, wherein for determining the signal-to-noise ratios (10 to 20) is estimated in each case a noise power in a plurality of frequency bands. Verfahren nach Anspruch 2, wobei eine Signalverarbeitung der Hörvorrichtung in einer Vielzahl von Frequenzbändern durchgeführt wird und für das Ermitteln der Signal-Rausch-Verhältnisse (10 bis 20) nur in ausgewählten der Frequenzbänder jeweils eine Störleistung geschätzt wird.The method of claim 2, wherein a signal processing of the hearing device in a plurality of frequency bands is performed and for determining the signal-to-noise ratios (10 to 20) is estimated only in selected one of the frequency bands in each case an interference power. Verfahren nach Anspruch 2 oder 3, wobei das Schätzen der Störleistung (14) in einem der Frequenzbänder nur erfolgt, wenn ein Geräuschreduktionsalgorithmus in einem der Frequenzbänder eine vorgegebene maximale Dämpfung appliziert.The method of claim 2 or 3, wherein the estimation of the interference power (14) in one of the frequency bands only takes place when a noise reduction algorithm in one of the frequency bands applies a predetermined maximum attenuation. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Schalten durch ein allmähliches Überblenden erfolgt.Method according to one of the preceding claims, wherein the switching is effected by a gradual cross-fading. Verfahren nach einem der vorhergehenden Ansprüche, wobei die erste Richtcharakteristik eine Vorne-Richtung und die zweite Richtcharakteristik eine entgegengesetzte Hinten-Richtung bevorzugt.Method according to one of the preceding claims, wherein the first directivity preferred a forward direction and the second directivity preferred an opposite rearward direction. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Richtmikrofon in eine dritte Richtcharakteristik schaltbar ist, die einer Omnidirektional-Charakteristik entspricht.Method according to one of the preceding claims, wherein the directional microphone is switchable into a third directional characteristic, which corresponds to an omnidirectional characteristic. Hörvorrichtung mit - einem Richtmikrofon, das zumindest in eine erste und in eine zweite Richtcharakteristik schaltbar ist, gekennzeichnet durch - eine Recheneinrichtung (10 bis 20) zum Ermitteln je eines Signal-Rausch-Verhältnisses für die erste und die zweite Richtcharakteristik und - einer Schalteinrichtung zum Schalten des Richtmikrofons in diejenige der beiden Richtcharakteristiken, die zu dem höheren Signal-Rausch-Verhältnis führt. Hearing device with a directional microphone which is switchable at least into a first and a second directional characteristic, marked by - A computing device (10 to 20) for determining each a signal-to-noise ratio for the first and the second directional characteristic and - A switching device for switching the directional microphone in that of the two directional characteristics, which leads to the higher signal-to-noise ratio. Hörvorrichtung nach Anspruch 8, wobei mit der Recheneinrichtung (10 bis 20) jeweils eine Störleistung (14) in mehreren Frequenzbändern schätzbar ist.Hearing apparatus according to claim 8, wherein with the computing means (10 to 20) each an interference power (14) in a plurality of frequency bands is estimated. Hörvorrichtung nach Anspruch 9, wobei mit der Recheneinrichtung (10 bis 20) eine Signalverarbeitung in einer Vielzahl von Frequenzbändern durchführbar ist, und jeweils eine Störleistung (14) nur in ausgewählten (11, 16) der Frequenzbänder geschätzt wird.Hearing apparatus according to claim 9, wherein with the computing means (10 to 20) signal processing in a plurality of frequency bands is feasible, and in each case an interference power (14) is estimated only in selected (11, 16) of the frequency bands. Hörvorrichtung nach Anspruch 9 oder 10, wobei mit der Recheneinrichtung (10 bis 20) eine Schätzung der Störleistung (14) in einem der Frequenzbänder nur dann erfolgt, wenn eine Geräuschreduktionseinheit in einem der Frequenzbänder eine vorgegebene maximale Dämpfung appliziert.Hearing apparatus according to claim 9 or 10, wherein the computing device (10 to 20) an estimate of the interference power (14) in one of the frequency bands only takes place when a noise reduction unit in one of the frequency bands applied a predetermined maximum attenuation.
EP09177982A 2008-12-22 2009-12-04 Method for selecting a preferred direction of a directional microphone and corresponding hearing device Active EP2200345B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008064484A DE102008064484B4 (en) 2008-12-22 2008-12-22 Method for selecting a preferred direction of a directional microphone and corresponding hearing device

Publications (2)

Publication Number Publication Date
EP2200345A1 true EP2200345A1 (en) 2010-06-23
EP2200345B1 EP2200345B1 (en) 2012-08-01

Family

ID=41818925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09177982A Active EP2200345B1 (en) 2008-12-22 2009-12-04 Method for selecting a preferred direction of a directional microphone and corresponding hearing device

Country Status (4)

Country Link
US (1) US9301058B2 (en)
EP (1) EP2200345B1 (en)
DE (1) DE102008064484B4 (en)
DK (1) DK2200345T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002045B2 (en) 2011-12-30 2015-04-07 Starkey Laboratories, Inc. Hearing aids with adaptive beamformer responsive to off-axis speech

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049086B4 (en) * 2008-09-26 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hearing aid with a directional microphone system and method for operating such a hearing aid
DE102012206759B4 (en) * 2012-04-25 2018-01-04 Sivantos Pte. Ltd. Method for controlling a directional characteristic and hearing system
US9398379B2 (en) 2012-04-25 2016-07-19 Sivantos Pte. Ltd. Method of controlling a directional characteristic, and hearing system
US9424859B2 (en) * 2012-11-21 2016-08-23 Harman International Industries Canada Ltd. System to control audio effect parameters of vocal signals
EP3346725B1 (en) 2017-01-05 2019-09-25 Harman Becker Automotive Systems GmbH Active noise reduction earphones

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027600A1 (en) 2001-05-09 2003-02-06 Leonid Krasny Microphone antenna array using voice activity detection
EP1827058A1 (en) 2006-02-22 2007-08-29 Oticon A/S Hearing device providing smooth transition between operational modes of a hearing aid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119000A (en) * 1991-02-25 1992-06-02 Motorola, Inc. Low noise motor drive circuit
US6449593B1 (en) * 2000-01-13 2002-09-10 Nokia Mobile Phones Ltd. Method and system for tracking human speakers
DE10334396B3 (en) * 2003-07-28 2004-10-21 Siemens Audiologische Technik Gmbh Electrical hearing aid has individual microphones combined to provide 2 microphone units in turn combined to provide further microphone unit with same order directional characteristic
EP2151821B1 (en) * 2008-08-07 2011-12-14 Nuance Communications, Inc. Noise-reduction processing of speech signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027600A1 (en) 2001-05-09 2003-02-06 Leonid Krasny Microphone antenna array using voice activity detection
EP1827058A1 (en) 2006-02-22 2007-08-29 Oticon A/S Hearing device providing smooth transition between operational modes of a hearing aid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEYER ET AL.: "MULTI-CHANNEL SPEECH ENCHANCEMENT IN A CAR ENVIRONMENT USING WIENER FILTERING AND SPECTRAL SUBTRACTION", 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. SPEECH PROCESSING. MUNICH, APR: 21 - 24, 1997; [IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)], LOS ALAMITOS, IEEE COMP. SOC: PRESS, 21 April 1997 (1997-04-21) - 24 April 1997 (1997-04-24), pages 1167 - 1170
MEYER J ET AL: "MULTI-CHANNEL SPEECH ENCHANCEMENT IN A CAR ENVIRONMENT USING WIENER FILTERING AND SPECTRAL SUBTRACTION", 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. SPEECH PROCESSING. MUNICH, APR. 21 - 24, 1997; [IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP)], LOS ALAMITOS, IEEE COMP. SOC. PRESS,, 21 April 1997 (1997-04-21), pages 1167 - 1170, XP000822660, ISBN: 978-0-8186-7920-9 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002045B2 (en) 2011-12-30 2015-04-07 Starkey Laboratories, Inc. Hearing aids with adaptive beamformer responsive to off-axis speech
US9749754B2 (en) 2011-12-30 2017-08-29 Starkey Laboratories, Inc. Hearing aids with adaptive beamformer responsive to off-axis speech

Also Published As

Publication number Publication date
DE102008064484B4 (en) 2012-01-19
DK2200345T3 (en) 2012-11-12
EP2200345B1 (en) 2012-08-01
DE102008064484A1 (en) 2010-07-22
US20100158290A1 (en) 2010-06-24
US9301058B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
EP1771038B1 (en) Method for operating a hearing-aid system for binaural treatment of a user
EP2164283B1 (en) Hearing aid and operation of a hearing aid with frequency transposition
EP3451705A1 (en) Method and apparatus for the rapid detection of own voice
EP1962556A2 (en) Method for improving spatial awareness and corresponding hearing device
EP2645743B1 (en) Hearing aid for a binaural supply and method for providing a binaural supply
EP2200345B1 (en) Method for selecting a preferred direction of a directional microphone and corresponding hearing device
EP2811762B1 (en) Logic-based binaural beam forming system
EP3629601A1 (en) Method for processing microphone signals in a hearing system and hearing system
EP2070384B1 (en) Hearing device controlled by a perceptive model and corresponding method
DE102011006129B4 (en) Hearing device with feedback suppression device and method for operating the hearing device
DE102007035171A1 (en) Method for adapting a hearing aid by means of a perceptive model
DE102008046040B4 (en) Method for operating a hearing device with directivity and associated hearing device
DE102007051308B4 (en) A method of processing a multi-channel audio signal for a binaural hearing aid system and corresponding hearing aid system
DE102008053458A1 (en) Hearing device with special situation recognition unit and method for operating a hearing device
EP1962554A2 (en) Hearing device with interference signal separation and corresponding method
DE102014218672B3 (en) Method and apparatus for feedback suppression
EP2658289B1 (en) Method for controlling an alignment characteristic and hearing aid
DE102007035173A1 (en) Method for adjusting a hearing system with a perceptive model for binaural hearing and hearing aid
EP2262282A2 (en) Method for determining a frequency response and corresponding hearing aid
DE102007030067B4 (en) Hearing aid with passive, input-level-dependent noise reduction and method
DE102020201615B3 (en) Hearing system with at least one hearing instrument worn in or on the user's ear and a method for operating such a hearing system
EP2590437B1 (en) Periodic adaptation of a feedback suppression device
DE102009014053B4 (en) Method for setting a directional characteristic and hearing devices
EP3048813A1 (en) Method and device for suppressing noise based on inter-subband correlation
DE102015119834A1 (en) Microphone headphone device for an external processing unit and method for secure real-time transmission of computer-processed sound signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100921

17Q First examination report despatched

Effective date: 20101102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: AT

Ref legal event code: REF

Ref document number: 569194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004239

Country of ref document: DE

Effective date: 20120927

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121101

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SIEMENS MEDICAL INSTRUMENTS PTE. LTD.

Effective date: 20121231

26N No opposition filed

Effective date: 20130503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004239

Country of ref document: DE

Effective date: 20130503

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009004239

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009004239

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009004239

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009004239

Country of ref document: DE

Owner name: SIVANTOS PTE. LTD., SG

Free format text: FORMER OWNER: SIEMENS MEDICAL INSTRUMENTS PTE. LTD., SINGAPORE, SG

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 569194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 15

Ref country code: DK

Payment date: 20231219

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15