EP3408471B1 - Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot - Google Patents

Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot Download PDF

Info

Publication number
EP3408471B1
EP3408471B1 EP17706557.0A EP17706557A EP3408471B1 EP 3408471 B1 EP3408471 B1 EP 3408471B1 EP 17706557 A EP17706557 A EP 17706557A EP 3408471 B1 EP3408471 B1 EP 3408471B1
Authority
EP
European Patent Office
Prior art keywords
robot
cleaning robot
pressure
cleaning
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17706557.0A
Other languages
German (de)
English (en)
Other versions
EP3408471A1 (fr
Inventor
Thierry Michelon
Philippe Pichon
Jérôme BONNIN
Philippe BLANC TAILLEUR
Hendrikus Johannes Van Der Meijden
Philip John NEWMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zodiac Pool Care Europe SAS
Original Assignee
Zodiac Pool Care Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55590063&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3408471(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zodiac Pool Care Europe SAS filed Critical Zodiac Pool Care Europe SAS
Publication of EP3408471A1 publication Critical patent/EP3408471A1/fr
Application granted granted Critical
Publication of EP3408471B1 publication Critical patent/EP3408471B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners

Definitions

  • the present invention relates to the field of equipment for swimming pools. It relates more particularly to a swimming pool cleaning device capable of moving along inclined walls.
  • the invention relates to a device for cleaning a surface immersed in a liquid, such as a surface formed by the walls of a pool, in particular a swimming pool.
  • a mobile pool cleaning robot performs said cleaning by traversing the bottom and the walls of the swimming pool basin, by brushing these walls, and by sucking the debris towards a filter.
  • Debris denotes all the particles present within the basin, such as pieces of leaves, micro-algae, etc., these debris being normally deposited at the bottom of the basin or bonded to the side walls thereof.
  • the robot is supplied with energy by an electric cable connecting the robot to an outdoor control and power unit.
  • patents FR 2 925 557 and 2,925,551 of the plaintiff, who are targeting an apparatus for submerged surface cleaning with a removable filtering device.
  • Such devices generally include a body, members for driving said body on the immersed surface, a filtration chamber provided within the body and comprising a liquid inlet, a liquid outlet, a hydraulic circuit for circulating liquid between the 'entry and exit through a filtering device.
  • a filtration chamber provided within the body and comprising a liquid inlet, a liquid outlet, a hydraulic circuit for circulating liquid between the 'entry and exit through a filtering device.
  • We still know the patent FR 2 954 380 by the same applicant, who is targeting a swimming pool cleaning robot equipped with an accelerometer making it possible to determine changes in attitude within the pool.
  • These devices have automatic programs for cleaning the bottom of the pool and possibly the side walls of the pool.
  • Such a program determines a cleaning of the swimming pool in a predetermined time, for example an hour and a half.
  • the maintenance of the robot in the water line is usually carried out using the balance between the buoyancy and the weight of the robot when the latter is at the level of the water line.
  • the cleaning devices are balanced by the addition of float or ballast in order to float at the level of the water line, thus making it possible to clean the water line by following it naturally.
  • the robot is removed from the water by the user at the end of the cycle or at regular intervals to be cleaned, when the filter is too full of particles (leaves, microparticles etc.).
  • the filter is filled with particles generating an additional mass or even a blockage of the filter.
  • the robot the filter of which is blocked, may have difficulties climbing along the walls and reaching the water line. Indeed, the robot has on the one hand a greater mass linked to the filling of the filter.
  • closing the filter results in a reduction in the plating or axial thrust forces of the robot towards the surface. .
  • the invention therefore aims to solve some of these problems.
  • the invention relates in particular to a swimming pool cleaning apparatus, the behavior of which along an vertical wall is improved, and allowing uniform cleaning of the swimming pool.
  • a main objective of the invention is to propose a swimming pool cleaning robot technique which can reach the water line of a basin in a reliable manner, in particular whatever the circumstances, and more particularly whatever the adhesion of the robot to the surface of a vertical wall of the basin and whatever the filling of the filter.
  • the adjustment of a cleaning robot is generally carried out for a clean filter and an adhesion to the wall of the medium pool.
  • Another main objective of the invention is to propose a swimming pool cleaning robot technique which can carry out a uniform cleaning of the swimming pool, and more particularly a cleaning at a constant immersion depth.
  • the invention relates in a first aspect to a swimming pool cleaning robot according to claim 1 attached.
  • washing pool cleaning robot an apparatus for cleaning an immersed surface, that is to say typically an apparatus, mobile within or at the bottom of a swimming pool, and suitable for carrying out filtration. debris deposited along a wall.
  • Such an apparatus is commonly known under the name of swimming pool cleaning robot, when it comprises means for automated management of movements at the bottom and on the walls of the swimming pool to cover the entire surface to be cleaned.
  • liquid is used here to refer to the mixture of water and debris suspended in the pool or in the fluid circulation circuit within the cleaning device.
  • the drive and guide means comprise means for pressing the robot onto the surface.
  • These plating means can for example be linked to the pumping means creating a vacuum between the robot and the surface traversed by the robot. It should be emphasized that the drive, guidance and plating means can be controlled independently.
  • control means comprise a pressure sensor making it possible to determine the immersion depth of the cleaning robot in a pool of a swimming pool, from the measurement of the ambient pressure of the robot.
  • the robot has a means of knowing the pressure at which it is immersed.
  • the pressure sensor can be attached to the robot or connected by a flexible hose to the robot.
  • the pressure sensor can be independently inside the body of the robot or outside of it.
  • the electronic component can be protected from water by being housed inside a waterproof housing or coated with resin. It can also be a waterproof sensor integrating the electronics inside the sensor body.
  • the pressure sensor allows the robot to be guided at a constant depth, for example to clean the water line in the basin.
  • control means also comprise means for controlling the pressure measured by the pressure sensor to a set value.
  • the pressure control means compare the measured pressure value with a value, commonly called the setpoint, established manually or preferably automatically by the control means.
  • the setpoint makes it possible in particular to indicate a depth of immersion to which the cleaning robot must move for a predetermined period. From the difference between the measured value and the setpoint, the servo means modify at least one of the parameters of the drive and guide means in order to guide the robot to the desired immersion depth.
  • the control means can for example be produced using a PID regulation system (acronym of Proportional-Integral-Derivative).
  • control means such as a regulation system P (Proportional) or PI (Proportional - Integral) can be used because the required precision and the speed of variation of the pressure are low.
  • P Proportional
  • PI Proportional - Integral
  • the pressure sensor is an absolute pressure sensor.
  • the pressure sensor is a relative pressure sensor measuring the pressure difference with respect to a pressure of a sealed enclosure serving as a reference.
  • the sealed enclosure can be a box comprising a pressure equal to atmospheric pressure, at a bar or under vacuum.
  • the sealed enclosure can also correspond to the engine block of the robot, the engine block corresponding to a sealed enclosure in which one of the motors of the cleaning robot is housed.
  • the pressure sensor is a piezoelectric sensor.
  • the pressure sensor delivers an electrical signal as a function of the pressure exerted on a piezoelectric material.
  • the pressure sensor is a piezoresistive sensor.
  • the pressure sensor is a strain gauge fixed to a wall subjected to ambient pressure.
  • control means comprise means for recording the time spent at at least a determined immersion depth of said cleaning robot.
  • the robot can be guided to a stage where the robot has spent less time cleaning.
  • control means are connected to an inclinometer secured to the body of the robot.
  • control means evaluate the information provided by the pressure sensor and the inclinometer, and more finely adjust the operating parameters of the drive and guide means of the cleaning robot.
  • the inclinometer can be an accelerometer.
  • the pressure sensor is located in a median plane of the body of the robot, said plane being perpendicular to the usual axis of movement.
  • the pressure sensor being located in the middle of the cleaning robot between the front face and the rear face of the robot, makes it possible to detect the water line or the approach of the water line in the same way regardless of the front or rear movement of the robot.
  • the pressure sensor is housed, at least in part, inside the rigid waterproof case comprising a flexible membrane, the pressure sensor measuring the pressure internal to said waterproof case.
  • the waterproof case can be a case fixed to the body of the cleaning robot or be the waterproof block containing the robot motors.
  • the pressure sensor measures a pressure proportional to the ambient pressure in the robot.
  • said electronic card can advantageously be housed inside the waterproof case. It should be emphasized that the body of the sensor can pass through a wall of said sealed housing in a sealed manner.
  • the pressure sensor is housed, at least in part, inside a rigid waterproof housing crossed by a capillary tube having one end inside the housing, said pressure sensor being connected sealingly at said end of the capillary tube, measuring the pressure at said end of the capillary tube, the sealed case being secured to the body of the robot.
  • an electronic card associated with the pressure sensor can also be placed inside the waterproof case.
  • the waterproof case is made of a plastic material having low thermal conduction.
  • the temperature inside the box is substantially constant, equal to the temperature of the water in the basin.
  • the waterproof case includes a Faraday cage.
  • the electronic components located inside the case are not subjected to the magnetic field induced by the coils of an electric motor included in the plating means and the drive and guide means of the robot.
  • Such a method comprises a step in which the ambient pressure of the robot is compared with a so-called set pressure value and a step of controlling the operating parameters of the drive and guide means in order to reduce the difference between the ambient pressure and the set pressure.
  • the method comprises a step of adjusting the operating parameters of the drive and guide means as a function of the pressure detected by the pressure sensor.
  • the method comprises a step in which the control means guide the cleaning robot to a constant immersion depth by controlling the pressure measured by the pressure sensor to a value of instructions.
  • the method comprises a step in which the control means are calibrated during the first climb along a wall of the basin to be cleaned, by adjusting the operating parameters of the means drive and guidance to guide the robot to reach the water line with certainty.
  • the method comprises a step in which the control means determine the atmospheric pressure as the minimum pressure recorded during the first climb.
  • the method comprises a step in which the control means record the atmospheric pressure before the robot is immersed in the pool.
  • the method comprises a step in which the cleaning robot follows the water line while being guided by a set pressure substantially equal to atmospheric pressure.
  • the method comprises a step in which the control means modify the atmospheric pressure setpoint if the cleaning robot sucks in air when the robot cleans the water line.
  • the method comprises a step in which, after detecting that the cleaning robot has difficulty reaching the water line, or even is unable to reach it despite the adjustment of the operating parameters of the drive and guiding and / or guiding means, an indication is displayed on a user interface indicating that the filter must be cleaned.
  • the method comprises a step of recording the cleaning time spent by the cleaning robot in at least a given depth range.
  • a depth range corresponds for example to the depth values in the interval centered around a given depth value.
  • the method comprises a step in which the control means comprise at least one cleaning instruction in time to pass for cleaning a given depth range.
  • the method comprises a step in which the control means comprise at least one relative cleaning instruction comparing the times spent between at least two given depth ranges.
  • the invention also relates to a submerged surface cleaning device characterized in combination by all or some of the characteristics mentioned above or below.
  • the invention finds its place within a technical swimming pool environment, for example a family type buried swimming pool.
  • a submerged surface cleaning device comprises, in the present nonlimiting example of embodiment, a cleaning unit, hereinafter called swimming pool cleaning robot, a supply unit and a control unit of said swimming pool cleaning robot.
  • the cleaning unit is shown according to an embodiment given here by way of example, in Figures 1 and 2 .
  • the swimming pool cleaning robot 10 comprises a body 11 and a drive and guide device comprising drive and guide members 12 of the body on an immersed surface.
  • these drive and guide members consist of wheels or tracks arranged laterally to the body (see figure 1 ).
  • the swimming pool cleaning robot 10 further comprises a motor driving said drive and guide members, said motor being supplied, in the present embodiment, via an on-board card.
  • the drive and guide members define a guide plane on a submerged surface through their points of contact with said submerged surface.
  • Said guide plane parallel to the plane formed by the longitudinal and transverse axes, is generally substantially tangent to the immersed surface at the point at which the device is located.
  • Said guide plane is for example substantially horizontal when the device moves on a submerged surface of the pool bottom.
  • the swimming pool cleaning robot 10 comprises a hydraulic circuit comprising at least one liquid inlet 13 and a liquid outlet 14.
  • the liquid inlet 13 is, in the present nonlimiting example, located at the base of the body 11 (in other words under it, when the pool cleaning robot 10 is placed in its normal operating position at the bottom of the pool), that is to say immediately opposite an immersed surface on which moves the swimming pool cleaning robot 10 in order to be able to vacuum the debris accumulated on said submerged surface.
  • the liquid outlet 14 is located on the top of the swimming pool cleaning robot 10.
  • the liquid outlet 14 takes place in a direction substantially perpendicular to the guide plane, that is to say vertically if the swimming pool cleaning robot 10 rests on the bottom of the swimming pool, and horizontally if the cleaning device is traversing a vertical wall of the swimming pool.
  • the hydraulic circuit connects the liquid inlet 13 to the liquid outlet 14.
  • the hydraulic circuit is adapted to be able to ensure the circulation of liquid from the liquid inlet 13 to the liquid outlet 14.
  • the swimming pool cleaning robot 10 for this purpose comprises a pump comprising a motor 19 and a propeller 20 disposed in the hydraulic circuit.
  • the motor 19 drives the propeller 20 in rotation.
  • This pump causes, on the one hand, a suction of water at the level of the water inlet 13 located under the cleaning robot 10, therefore as close as possible to the surface against which the cleaning robot 10 operates, and, on the other hand, a discharge of water through the water outlet 14, which is substantially perpendicular to the support plane of the cleaning robot 10 and therefore to the surface traversed.
  • suction under the robot 10 and evacuation of pressurized water above the robot 10 determine the plating forces exerted on the cleaning robot 10 towards the surface that the robot 10 is traveling. .
  • the adhesion of the cleaning robot 10 to the wall is thereby increased, which facilitates the ascent of the cleaning robot 10.
  • the apparatus comprises a filtration chamber 15 interposed, on the hydraulic circuit, between the liquid inlet 13 and the liquid outlet 14.
  • the filtration chamber 15 ensuring the separation and storage of the debris suspended in the liquid, comprises a filtration basket 16 and a cover 17 forming the upper wall of the filtration chamber 15.
  • the filter basket 16 is extractable, that is to say it can be extracted from, and introduced into, the body 11 of the cleaning robot 10.
  • the body 11 of the cleaning robot 10 has for this purpose a housing in which the filter basket 16 can be mounted.
  • the fact that the filtration basket 16 is removable makes it easy to empty it, in particular without having to handle the entire robot 10.
  • the swimming pool cleaning robot 10 is, in the present example, supplied with energy by means of a waterproof flexible cable.
  • this flexible cable is attached to the body of the swimming pool cleaning robot 10 at its upper part.
  • This flexible cable is connected, at its other end, to the power supply unit (not shown on the figure 1 ), arranged outside the basin, this supply unit being itself connected to the electric current on the sector.
  • the swimming pool cleaning robot 10 further comprises here a handle 18 adapted to allow a user to remove the robot from the water, in particular when the filter has to be cleaned.
  • the operating parameters of the cleaning robot 10, such as, for example, the type of cleaning cycle requested by the user, are adjusted via a user interface located on the supply unit.
  • such a cleaning robot frequently comprises two cleaning cycles.
  • a first cycle the robot traverses, the bottom of the pool, and cleans it, without climbing along the side walls.
  • second cycle the robot traverses both the bottom of the pool and also rises along the side walls, so as to take off the debris that are stuck to it, or that concentrate at the level of the water line.
  • the robot climbs along the side wall, partially emerges to rub the water line with its brush, tilts to move laterally along the wall, and dives backwards by reversing its direction of travel to descend to the bottom while still cleaning the wall.
  • control unit (not illustrated on the figure 1 ) of the robot 10, housed in a sealed casing close to the motors, adjusts the operating parameters of the drive motor for the displacement members and of the fluid circulation pump, thus acting on the plating forces exerted on the robot towards the surface it is traveling.
  • the cleaning robot 10 comprises a pressure sensor 21 fixed to the body 11 of the cleaning robot 10.
  • the pressure sensor is connected to the robot by a flexible hose.
  • the flexible hose can be attached to the robot body.
  • the piezoresistive type pressure sensor 21 allows the robot control unit 10 to determine the depth of immersion in the basin from the measurement of the absolute pressure to which the cleaning robot 10 is subjected.
  • the robot control unit 10 comprises pressure control means making it possible to guide the robot 10 to a pressure corresponding to a set value, hereinafter called the set pressure.
  • the pressure control means are in the present nonlimiting example of the invention produced using a PID regulator.
  • the set pressure varies over time in order to guide the cleaning of the robot 10 in the swimming pool basin.
  • the set pressure can also be constant over a period of time in order to guide the robot 10 to a given depth.
  • the pressure sensor can be a piezoelectric sensor, comprising for example a strain gauge. It can also be any other type of measurement sensor indicating the depth to which the cleaning robot is located, such as for example a float in a capillary tube.
  • the pressure sensor 21 comprises in the present example a sealed body in which the electronics of the sensor are inserted.
  • the electronics of the sensor can be protected by resin or be included in a waterproof case.
  • the pressure sensor 21 is advantageously housed outside the hydraulic fluid circulation circuit because the pumps cause a vacuum inside the hydraulic circuit relative to the local pressure.
  • the value of this vacuum being a function of the instantaneous power of the pumps, varies over time.
  • control unit adjusts the power of the drive and / or pumping motors, in order to increase the capacity of the robot to reach the water line.
  • control unit deduces the ascent or descent speed from the pressure variations detected by the pressure sensor 21.
  • the control unit then automatically adjusts the speed of the drive members, according to the conditions d adhesion of the robot on the wall.
  • control unit can detect via the pressure sensor 21 when the robot is close to the water line during the ascent phases along a wall of the basin.
  • the pressure sensor 21 is advantageously fixed in the middle of the cleaning robot 10 in the usual direction of movement of the robot 10, near one of the displacement and guide members 12. This central position of the pressure sensor 21 thus allows the control unit for detecting the water line when the pressure measured corresponds to the atmospheric pressure plus the pressure corresponding to the half-length of the cleaning robot 10. It should be emphasized that this detection of the water line is performed both in the usual or reverse direction of movement of the cleaning robot 10.
  • the pressure sensor 21 is housed in the center of the front face of the robot, thus allowing the device for controlling the drive and guide means to detect the line of water when the pressure detected is significantly higher than atmospheric pressure.
  • the pressure sensor 21 can be arranged at any other location of the robot, preferably but not limited to in the robot.
  • the control unit of the robot 10 is calibrated during the first climb along a wall of the basin to be cleaned. To this end, the control unit adjusts the operating parameters of the drive and plating motors leading the robot 10 to reach the water line with certainty.
  • the control unit determines the atmospheric pressure as the minimum of the pressure recorded during this first climb.
  • the control unit also confirms that the atmospheric pressure is substantially constant each time the cleaning robot reaches the water line.
  • control unit records the atmospheric pressure before the robot is immersed in the pool.
  • the use of the pressure sensor 21 also allows the control unit to modify the parameters of the motors during the ascent of the cleaning robot 21 along a wall of a swimming pool basin.
  • control unit of the cleaning robot 21 follows the piloting method 300 illustrated in figure 3a in the form of a block diagram.
  • the control unit detects the rise of the cleaning robot along a wall. This rise results in a continuous decrease in the pressure recorded by the pressure sensor 21. It should be emphasized that the measurement of the pressure can be smoothed so as not to take account of the minute variations brought about by the noise of the sensor.
  • control unit adjusts the operating parameters of the drive and plating motors of the cleaning robot 10, during step 320, in order to allow the ascent along the wall.
  • the control unit detects during step 330, the approach of the water line. This detection can be carried out for example at a distance of the order of fifty centimeters from the water line. This distance is detected when the pressure recorded by the pressure sensor 21 is equal to the sum of the atmospheric pressure P atm and of the pressure P CE of the water column from a height of fifty centimeters. In this case, P CE is equal to fifty millibars or fifty hectoPascal.
  • control unit then gradually decreases the operating power of the drive and tackling motors during step 340, so that the cleaning robot 10 reaches the water line with a low vertical speed, substantially equal to zero.
  • the robot 10 can then follow the water line while being guided at a pressure substantially equal to atmospheric pressure.
  • the value of the set pressure can be equal to atmospheric pressure or to a value substantially greater than atmospheric pressure in order to allow the robot 10 to follow the water line while still being submerged.
  • the use of the pressure sensor 21 also allows the control unit to modify the atmospheric pressure setpoint if the cleaning robot 10 sucks air when the robot cleans the water line.
  • the cleaning robot 10 has an excess mass caused by the collection of numerous debris, the robot hardly reaches the water line, or even is unable to reach it despite the adjustment of the operating parameters of the motors. An indication is then displayed on the user interface indicating that the filter must be cleaned.
  • the set pressure allowing the robot to reach the water line is recorded.
  • the robot 10 can also advantageously be guided to a constant immersion depth by slaving the pressure measured by the pressure sensor 21 to a set value greater than atmospheric pressure.
  • the robot 10 can thus for example clean the water line of the basin or carry out a cleaning along any depth of the basin.
  • the pressure control is generally carried out by first comparing the ambient pressure of the robot with the current set pressure. The operating parameters of the drive and guide means are then adjusted in order to reduce the difference between the ambient pressure and the set pressure.
  • control unit also records the time spent at each depth.
  • Generally recording is done for depth ranges.
  • a depth range represents a depth interval centered around a value of the set pressure.
  • the control unit can thus adapt the time spent by the robot to clean a particular depth, for example to clean the water line of the basin.
  • Curve 30 shown in figure 3b illustrates an example of recording as a function of time of the ambient pressure in the robot submerged in a basin of a swimming pool.
  • the basin is divided into two zones: a shallow zone and a deeper zone corresponding to a plunge pool.
  • Three pressure levels are visible on the curve 30.
  • the highest pressure 31 corresponds to the bottom of the pit to be plunged.
  • the pressure 32 corresponding to the intermediate bearing is linked to the bottom of the shallow area.
  • the lowest pressure 33 substantially equal to atmospheric pressure, reflects the cleaning of the basin's water line.
  • the robot 10 starts here by cleaning the bottom of the plunge pool, translated by a pressure level 34 31.
  • the robot then goes up into the shallow area and cleans the bottom of this area.
  • the curve 30 thus has an intermediate pressure bearing 35.
  • the robot then rises along a wall of the basin in order to clean the water line.
  • a new bearing 36 corresponding to the lowest pressure 33 translates the cleaning of the water line.
  • the robot then descends into the shallow area. The robot thus cleans the different areas of the pool.
  • the control unit of the cleaning robot 10 records the time spent cleaning the bottom of each zone of the basin.
  • the control unit compares the time spent in this zone with that recorded in the shallow zone. If the time spent in the dive pit is greater than a previously determined threshold time, the robot 10 reverses its direction of movement and returns to the shallow area in order to continue cleaning this area. This reversal of direction of movement is illustrated on curve 30 by peak 37.
  • a threshold duration is determined in each cleaning zone. This threshold can be determined either in absolute or in relative with respect to a duration of another zone to be cleaned. These threshold times are determined in order to standardize the cleaning of the swimming pool basin. These threshold times can be a function of the surface area to be cleaned.
  • the pressure sensor 21 advantageously measures the pressure inside a rigid waterproof case.
  • the waterproof case 41 comprising a pressure sensor 21 is secured to a blank of the body 11 of the cleaning robot 10, as illustrated in figure 4a .
  • the waterproof case 41 illustrated in more detail in figure 4b , is made of a rigid plastic material and comprises a flexible membrane 42.
  • the pressure sensor 21 is located on an electronic card 43 fixed inside the waterproof case 41.
  • the electronic card 43 is connected to the robot control unit 10 by a cable 44 passing through the waterproof housing 41 by means of a cable gland 45.
  • the waterproof cable 44 transmits a signal proportional to the ambient pressure at which the cleaning robot 10 evolved.
  • the flexible membrane 42 is produced in the present example from flexible PVC. Its thickness is significantly less than one millimeter.
  • the membrane can also be made of flexible polyurethane or coated fabric.
  • the housing 41 also makes it possible to thermally isolate the pressure sensor 21 from the motors and other energy dissipating components.
  • the pressure sensor 21 thus has a substantially constant temperature, corresponding to the temperature of the water. The measurements obtained by the pressure sensor 21 are then reliable and reproducible.
  • the waterproof case 41 also makes it possible to magnetically isolate magneto-sensitive components of the compass type, or electronic components, inserted into the case 41.
  • the waterproof case 41 may comprise a Faraday cage.
  • the pressure sensor is partly housed inside a rigid waterproof case secured to the body of the robot.
  • the waterproof housing is traversed by a capillary tube, one end of which is connected in leaktight manner to the pressure sensor.
  • the pressure sensor is a relative pressure sensor measuring the pressure relative to a pressure of a sealed enclosure serving as a reference.
  • the sealed enclosure can be a box comprising a pressure equal to atmospheric pressure, at a bar or under vacuum.
  • the sealed enclosure can also correspond to the engine block of the robot, the engine block being a sealed enclosure in which is housed the motor for driving the movement members of the cleaning robot.
  • the temperature of the engine block changes over time. So it is necessary to correct this reference pressure in order to take into account the pressure variations linked to the temperature variations in a constant volume.
  • the cleaning robot 10 also includes means for determining at any time its attitude in the swimming pool.
  • the cleaning robot 10 comprises for example at least one inclinometer of a type known per se, or a means of detecting vertical passage of the "tilt" type or other equivalent device known to those skilled in the art.
  • This inclinometer which can be an accelerometer, makes it possible to determine the orientation of the cleaning robot along three axes.
  • the control unit can then process the information coming from the means for determining the orientation of the robot 10 in the pool, by associating them with the immersion depth measured by the pressure sensor 21.
  • the control unit can more precisely and finely adjust the operating parameters of the drive and plating motors of the cleaning robot 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)

Description

  • La présente invention relève du domaine des équipements pour piscines. Elle concerne plus particulièrement un appareil de nettoyage de piscine capable de se mouvoir le long de parois inclinées.
  • Préambule et art antérieur
  • L'invention concerne un appareil nettoyeur de surface immergée dans un liquide, telle qu'une surface formée par les parois d'un bassin, notamment d'une piscine. Il s'agit notamment d'un robot mobile de nettoyage de piscine. Un tel robot de nettoyage réalise ledit nettoyage en parcourant le fond et les parois du bassin de la piscine, en brossant ces parois, et en aspirant les débris vers un filtre. On désigne par débris toutes les particules présentes au sein du bassin, telles que morceaux de feuilles, micro-algues, etc., ces débris étant normalement déposés au fond du bassin ou collés sur les parois latérales de celui-ci.
  • Le plus couramment, le robot est alimenté en énergie par un câble électrique reliant le robot à une unité extérieure de commande et d'alimentation.
  • On connaît, par exemple, dans ce domaine, les brevets FR 2 925 557 et 2 925 551 , de la demanderesse, qui visent un appareil nettoyeur de surface immergée à dispositif de filtrage démontable. De tels dispositifs comprennent généralement un corps, des organes d'entraînement dudit corps sur la surface immergée, une chambre de filtration ménagée au sein du corps et comportant une entrée de liquide, une sortie de liquide, un circuit hydraulique de circulation de liquide entre l'entrée et la sortie à travers un dispositif de filtrage. On connaît encore le brevet FR 2 954 380 , du même demandeur, qui vise un robot de nettoyage de piscine doté d'un accéléromètre permettant de déterminer des changements d'attitude au sein du bassin.
  • On connait également la demande de brevet FR 2 929 311 , de la demanderesse, qui concerne un appareil roulant nettoyeur de surface immergée à entraînement mixte hydraulique et électrique. L'appareil roulant monte le long de la surface notamment grâce à la présence d'un dispositif de pompage fournissant un flux hydraulique orienté pour apporter une poussée verticale à l'appareil roulant. Un capteur de pression, permettant de connaître la profondeur d'immersion à partir de la mesure d'une pression, est présent dans l'appareil roulant pour détecter la proximité de la ligne d'eau afin de limiter la vitesse ascensionnelle de l'appareil roulant à proximité de la ligne d'eau. Cette limitation de la vitesse ascensionnelle, permettant d'éviter que l'appareil dépasse la ligne d'eau et aspire de l'air, est effectuée en réduisant la puissance du dispositif de pompage, et par conséquent la poussée verticale du jet d'eau.
  • Ces appareils disposent de programmes automatiques de nettoyage du fond du bassin et éventuellement des parois latérales du bassin. Un tel programme détermine un nettoyage de la piscine en un temps prédéterminé, par exemple d'une heure et demi.
  • Par ailleurs, le maintien du robot en ligne d'eau, pour assurer le nettoyage de cette dernière, est usuellement effectué en utilisant l'équilibre entre la poussée d'Archimède et le poids du robot lorsque celui-ci se trouve an niveau de la ligne d'eau. En effet, les appareils nettoyeurs sont équilibrés par l'ajout de flotteur ou lest afin de flotter au niveau de la ligne d'eau, permettant ainsi de nettoyer la ligne d'eau en la suivant naturellement.
  • Généralement, le robot est retiré de l'eau par l'utilisateur à la fin du cycle ou à intervalles réguliers pour être nettoyé, lorsque le filtre est trop plein de particules (feuilles, microparticules etc.).
  • Par ailleurs, dans l'art antérieur, selon la nature de la surface du bassin, le robot de nettoyage parvenait correctement ou non à monter le long des parois de la piscine pour nettoyer celles-ci. Il était connu de lui ajouter des lests ou des flotteurs pour corriger son comportement. Il est clair que cette installation n'était pas aisée, demandait des moyens complémentaires non disponibles à l'utilisateur final du robot, et provoquait des variations importantes de comportement du robot dans l'ensemble de ses évolutions.
  • Par ailleurs, au cours du nettoyage du bassin, le filtre se remplit de particules générant une masse supplémentaire voire une obturation du filtre. Ainsi, le robot dont le filtre est obturé, peut présenter des difficultés à monter le long des parois et à atteindre la ligne d'eau. En effet, le robot présente d'une part une masse plus importante liée au remplissage du filtre. D'autre part, dans le cas d'un robot comprenant des moyens de plaquage ou de poussée axiale liés au pompage de l'eau, l'obturation du filtre entraîne une réduction des forces de plaquage ou de poussée axiale du robot vers la surface.
  • L'invention vise donc à résoudre certains de ces problèmes. L'invention vise notamment un appareil de nettoyage de piscine dont le comportement le long d'une paroi verticale est amélioré, et permettant un nettoyage homogène de la piscine.
  • Un objectif principal de l'invention est de proposer une technique de robot de nettoyage de piscine pouvant atteindre la ligne d'eau d'un bassin de manière fiable, notamment quels que soient les circonstances, et plus particulièrement quelle que soit l'adhérence du robot à la surface d'une paroi verticale du bassin et quel que soit le remplissage du filtre. Actuellement, le réglage d'un robot de nettoyage est généralement effectué pour un filtre propre et une adhérence à la paroi du bassin moyenne.
  • Un autre objectif principal de l'invention est de proposer une technique de robot de nettoyage de piscine pouvant effectuer un nettoyage homogène de la piscine, et plus particulièrement un nettoyage à une profondeur d'immersion constante.
  • Exposé de l'invention
  • L'invention vise sous un premier aspect un robot de nettoyage de piscine selon la revendication 1 ci-jointe.
  • On appelle "robot de nettoyage de piscine" un appareil pour le nettoyage d'une surface immergée, c'est-à-dire typiquement un appareil, mobile au sein ou au fond d'un bassin de piscine, et adapté à effectuer la filtration de débris déposés le long d'une paroi. Un tel appareil est communément connu sous le nom de robot de nettoyage de piscine, lorsqu'il comporte des moyens de gestion automatisée des déplacements au fond et sur les parois de la piscine pour couvrir toute la surface à nettoyer.
  • On nomme ici par abus de langage "liquide" le mélange d'eau et de débris en suspension dans la piscine ou dans le circuit de circulation de fluide au sein de l'appareil de nettoyage.
  • Etant donné que le robot se déplace par friction sur une surface, on comprend que les moyens d'entraînement et de guidage comprennent des moyens de plaquage du robot sur la surface. Ces moyens de plaquage peuvent être par exemple liés aux moyens de pompage créant une dépression entre le robot et la surface parcourue par le robot. Il convient de souligner que les moyens d'entraînement, de guidage et de plaquage peuvent être commandés indépendamment.
  • Selon l'invention, les moyens de commande comprennent un capteur de pression permettant de déterminer la profondeur d'immersion du robot de nettoyage dans un bassin d'une piscine, à partir de la mesure de la pression ambiante du robot.
  • Ainsi, le robot dispose d'un moyen pour connaître la pression à laquelle il est immergé. Le capteur de pression peut être fixé au robot ou relié par un flexible souple au robot. En outre, le capteur de pression peut être indépendamment à l'intérieur du corps du robot ou à l'extérieur de celui-ci.
  • Il convient de souligner que dans le cas d'un capteur comprenant au moins un composant électronique, le composant électronique peut être protégé de l'eau en étant logé à l'intérieur d'un boitier étanche ou enduit de résine. Il peut également s'agir d'un capteur étanche intégrant l'électronique à l'intérieur du corps du capteur.
  • Un état du robot peut être défini à partir de la pression relevée du robot. L'état du robot peut être par exemple l'un des états suivants :
    • robot hors d'eau ;
    • robot à la ligne d'eau ;
    • robot proche de la ligne d'eau ;
    • robot en immersion peu profonde ;
    • robot en immersion profonde.
  • En outre, le capteur de pression permet un guidage du robot selon une profondeur constante pour par exemple nettoyer la ligne d'eau du bassin.
  • Selon l'invention, les moyens de commande comprennent également des moyens d'asservissement de la pression relevée par le capteur de pression à une valeur de consigne.
  • Les moyens d'asservissement de la pression comparent la valeur mesurée de la pression à une valeur, couramment appelée consigne, établie manuellement ou préférentiellement de manière automatique par les moyens de commande. La consigne permet notamment d'indiquer une profondeur d'immersion à laquelle le robot de nettoyage doit se déplacer pendant une durée prédéterminée. A partir de la différence entre la valeur mesurée et la consigne, les moyens d'asservissement modifient au moins un des paramètres des moyens d'entraînement et de guidage afin de guider le robot vers la profondeur d'immersion souhaitée.
  • Les moyens d'asservissement peuvent par exemple être réalisés à l'aide d'un système de régulation PID (acronyme de Proportionnelle-Intégrale-Dérivée).
  • D'autres moyens d'asservissement tel qu'un système de régulation P (Proportionnel) ou PI (Proportionnelle - Intégrale) peuvent être utilisés car la précision requise et les vitesses de variation de la pression sont faibles.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est un capteur de pression absolue.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est un capteur de pression relative mesurant la différence de pression par rapport à une pression d'une enceinte étanche servant de référence.
  • L'enceinte étanche peut être un boitier comprenant une pression égale à la pression atmosphérique, à un bar ou au vide. L'enceinte étanche peut également correspondre au bloc moteur du robot, le bloc moteur correspondant à une enceinte étanche dans lequel est logé un des moteurs du robot de nettoyage.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est un capteur piézoélectrique.
  • Ainsi, le capteur de pression délivre un signal électrique fonction de la pression exercée sur un matériau piézoélectrique.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est un capteur piézorésistif.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est une jauge de contrainte fixée sur une paroi soumise à la pression ambiante.
  • Dans des modes de réalisation particuliers de l'invention, les moyens de commande comprennent des moyens d'enregistrement de la durée passée à au moins une profondeur d'immersion déterminée dudit robot de nettoyage.
  • Ainsi, lorsque le bassin comprend plusieurs paliers à nettoyer, le robot peut être guidé vers un palier où le robot a passé moins de temps à nettoyer.
  • Dans des modes de réalisation particuliers de l'invention, les moyens de commande sont reliés à un inclinomètre solidarisé au corps du robot.
  • Ainsi, les moyens de commandes évaluent les informations fournies par le capteur de pression et l'inclinomètre, et ajustent plus finement les paramètres de fonctionnement des moyens d'entrainement et de guidage du robot de nettoyage. Il convient de souligner que l'inclinomètre peut être un accéléromètre.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est situé dans un plan médian du corps du robot, ledit plan étant perpendiculaire à l'axe usuel de déplacement.
  • Ainsi, le capteur de pression étant situé au milieu du robot de nettoyage entre la face avant et la face arrière du robot, permet de détecter la ligne d'eau ou l'approche de la ligne d'eau de manière identique quelque soit le déplacement avant ou arrière du robot.
  • Dans des modes de réalisation particuliers de l'invention, le capteur de pression est logé, au moins en partie, à l'intérieur du boitier étanche rigide comprenant une membrane souple, le capteur de pression mesurant la pression interne audit boitier étanche.
  • Le boitier étanche peut être un boitier fixé au corps du robot de nettoyage ou être le bloc étanche contenant les moteurs du robot. Le capteur de pression mesure une pression proportionnelle à la pression ambiante au robot. Dans le cas où le capteur de pression est associé à une carte électronique, ladite carte électronique peut être avantageusement logée à l'intérieur du boitier étanche. Il convient de souligner que le corps du capteur peut traverser de manière étanche une paroi dudit boitier étanche.
  • Dans des modes de réalisation particuliers, le capteur de pression est logé, au moins en partie, à l'intérieur d'un boitier étanche rigide traversé par un tube capillaire présentant une extrémité à l'intérieur du boitier, ledit capteur de pression étant connecté de manière étanche à ladite extrémité du tube capillaire, mesurant la pression à ladite extrémité du tube capillaire, le boitier étanche étant solidarisé au corps du robot.
  • Ainsi, une carte électronique associée au capteur de pression peut également être placée à l'intérieur du boitier étanche.
  • Dans des modes de réalisation particuliers, le boitier étanche est réalisé dans une matière plastique présentant une faible conduction thermique.
  • Ainsi, la température à l'intérieur du boitier est sensiblement constante, égale à la température de l'eau du bassin.
  • Dans des modes de réalisation particuliers, le boitier étanche comprend une cage de Faraday.
  • Ainsi, les composants électroniques situés à l'intérieur du boitier ne sont pas soumis au champ magnétique induit par les bobines d'un moteur électrique compris dans les moyens de plaquage et les moyens d'entrainement et de guidage du robot.
  • L'invention concerne également un procédé de pilotage d'un robot de nettoyage de piscine, ledit robot comprenant :
    • des moyens de pompage assurant l'écoulement du liquide dans ledit circuit hydraulique,
    • des moyens d'entrainement et de guidage dudit robot de nettoyage sur une surface,
    • des moyens de commande des paramètres de fonctionnement des moyens d'entrainement et de guidage dudit robot de nettoyage, les moyens de commande comprenant un capteur de pression permettant de déterminer la profondeur d'immersion du robot de nettoyage dans un bassin d'une piscine, à partir de la mesure de la pression ambiante du robot,
  • Un tel procédé comprend une étape dans laquelle la pression ambiante du robot est comparée à une valeur dite pression de consigne et une étape de commande des paramètres de fonctionnement des moyens d'entraînement et de guidage afin de réduire l'écart entre la pression ambiante et la pression de consigne.
  • Dans des modes particuliers de mise en œuvre, le procédé comprend une étape d'ajustement des paramètres de fonctionnement des moyens d'entrainement et de guidage en fonction de la pression relevée par le capteur de pression.
  • Dans des modes particuliers de mise en oeuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande guident le robot de nettoyage à une profondeur d'immersion constante en asservissant la pression relevée par le capteur de pression à une valeur de consigne.
  • Dans des modes particuliers de mise en oeuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande sont calibrés lors de la première montée le long d'une paroi du bassin à nettoyer, en ajustant les paramètres de fonctionnement des moyens d'entraînement et de guidage afin de conduire le robot à atteindre la ligne d'eau de manière certaine.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande déterminent la pression atmosphérique comme le minimum de pression enregistrée au cours de la première montée.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande enregistrent la pression atmosphérique avant l'immersion du robot dans la piscine.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend les étapes suivantes :
    • les moyens de commande détecte l'ascension du robot de nettoyage le long d'une paroi ;
    • dès lors que l'ascension est détectée, les moyens de commande ajustent les paramètres de fonctionnement des moyens d'entraînement et de guidage du robot de nettoyage, afin de permettre l'ascension le long de la paroi ;
    • les moyens de commande détectent l'approche de la ligne d'eau à une distance D de la ligne d'eau, lorsque la pression relevée par le capteur de pression est égale à la somme de la pression atmosphérique et de la pression de la colonne d'eau de hauteur D ;
    • dès lors que l'approche de la ligne d'eau est détectée, les moyens de commande ajustent les paramètres de fonctionnement des moyens d'entraînement et de guidage du robot de nettoyage, en diminuant progressivement la puissance des moyens d'entraînement et de guidage, afin que le robot de nettoyage atteigne la ligne d'eau avec une vitesse verticale faible, sensiblement égale à zéro.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle le robot de nettoyage suit la ligne d'eau en étant guidé grâce à une pression de consigne sensiblement égale à la pression atmosphérique.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande modifient la consigne de pression atmosphérique si le robot de nettoyage aspire de l'air lorsque le robot nettoie la ligne d'eau.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle, après détection de ce que le robot de nettoyage atteint difficilement la ligne d'eau, voire est incapable de l'atteindre malgré l'ajustement des paramètres de fonctionnement des moyens d'entraînement et de guidage et/ou de guidage, une indication est affichée sur une interface utilisateur signalant que le filtre doit être nettoyé.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape d'enregistrement du temps de nettoyage passé par le robot de nettoyage dans au moins une gamme de profondeur donnée.
  • Une gamme de profondeur correspond par exemple aux valeurs de profondeur dans l'intervalle centré autour d'une valeur de profondeur donnée.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande comprennent au moins une consigne de nettoyage en temps à passer pour le nettoyage d'une gamme de profondeur donnée.
  • Dans des modes particuliers de mise en œuvre de l'invention, le procédé comprend une étape dans laquelle les moyens de commande comprennent au moins une consigne de nettoyage relative comparant les temps passés entre au moins deux gammes de profondeur données.
  • L'invention concerne également un appareil nettoyeur de surface immergée caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.
  • Présentation des figures
  • Les caractéristiques et avantages de l'invention seront mieux appréciés grâce à la description qui suit, description qui expose les caractéristiques de l'invention au travers d'un exemple non limitatif d'application.
  • La description s'appuie sur les figures annexées dans lesquelles :
    • La figure 1 illustre une vue en perspective d'un robot de nettoyage de piscine mettant en œuvre un système de filtration tel qu'exposé,
    • La figure 2 illustre une vue en coupe du même appareil selon un plan vertical longitudinal,
    • La figure 3a illustre un procédé de pilotage du même appareil sous la forme d'un schéma synoptique,
    • La figure 3b illustre une courbe d'enregistrement en fonction du temps de la pression mesurée par le capteur de pression du même appareil,
    • La figure 4a illustre une vue de devant d'une variante de réalisation du même appareil,
    • La figure 4b illustre une vue en perspective d'un boitier étanche logeant le capteur de pression de cette variante de réalisation du même appareil.
    Description détaillée d'un mode de réalisation de l'invention
  • L'invention trouve sa place au sein d'un environnement technique de piscine, par exemple une piscine enterrée de type familial.
  • Un appareil nettoyeur de surface immergée comporte, dans le présent exemple de réalisation non limitatif, une unité de nettoyage, appelé plus loin robot de nettoyage de piscine, une unité d'alimentation et une unité de commande dudit robot de nettoyage de piscine.
  • L'unité de nettoyage est représentée selon un mode de réalisation donné ici à titre d'exemple, en figures 1 et 2 .
  • Le robot de nettoyage de piscine 10 comprend un corps 11 et un dispositif d'entraînement et de guidage comprenant des organes d'entraînement et de guidage 12 du corps sur une surface immergée. Dans le présent exemple non limitatif, ces organes d'entrainement et de guidage sont constitués de roues ou de chenilles disposées de façon latérale au corps (voir figure 1).
  • Le robot de nettoyage de piscine 10 comprend en outre un moteur entraînant lesdits organes d'entraînement et de guidage, ledit moteur étant alimenté, dans le présent exemple de réalisation, via une carte embarquée.
  • On définit pour la suite de la description un repère XrYrZr relatif à ce robot de nettoyage 10, dans lequel :
    • un axe longitudinal Xr est défini comme l'axe de déplacement du robot de nettoyage 10 lorsque les roues de déplacement 12 sont commandées à se mouvoir de façon identique,
    • un axe transversal Yr est défini comme perpendiculaire à l'axe longitudinal Xr, et situé dans un plan parallèle au plan d'appui des roues de déplacement 12 du robot de nettoyage 10, cet axe latéral Yr étant ainsi parallèle à l'axe de rotation des roues,
    • un axe vertical Zr est défini comme perpendiculaire aux deux autres axes, le dessous du robot selon cet axe vertical Zr étant situé entre ledit robot et la paroi parcourue, et le dessus du robot selon cet axe étant la partie du robot la plus éloignée de la surface parcourue.
  • Les notions d'avant, arrière, gauche, droite, haut, bas, supérieur, inférieur, etc. relatives au robot de nettoyage sont définies par rapport à ce repère XrYrZr.
  • Les organes d'entraînement et du guidage définissent un plan de guidage sur une surface immergée par leurs points de contact avec ladite surface immergée. Ledit plan de guidage, parallèle au plan formé par les axes longitudinaux et transversaux, est généralement sensiblement tangent à la surface immergée au point auquel se trouve l'appareil. Ledit plan de guidage est par exemple sensiblement horizontal lorsque l'appareil se déplace sur une surface immergée de fond de piscine.
  • Dans tout le texte un élément « bas » est plus proche du plan de guidage qu'un élément haut.
  • Le robot de nettoyage de piscine 10 comporte un circuit hydraulique comportant au moins une entrée de liquide 13 et une sortie de liquide 14. L'entrée de liquide 13 est, dans le présent exemple non limitatif, située à la base du corps 11 (en d'autres termes sous celui-ci, lorsque le robot de nettoyage de piscine 10 est posé dans sa position de fonctionnement normale au fond de la piscine), c'est-à-dire immédiatement en regard d'une surface immergée sur laquelle se déplace le robot de nettoyage de piscine 10 afin de pouvoir aspirer les débris accumulés sur ladite surface immergée. La sortie de liquide 14 se situe sur le dessus du robot de nettoyage de piscine 10.
  • Dans le présent exemple de réalisation, la sortie de liquide 14 se fait dans une direction sensiblement perpendiculaire au plan de guidage, c'est-à-dire verticalement si le robot de nettoyage de piscine 10 repose sur le fond de la piscine, et horizontalement si l'appareil de nettoyage est en train de parcourir une paroi verticale de la piscine.
  • Le circuit hydraulique relie l'entrée de liquide 13 à la sortie de liquide 14. Le circuit hydraulique est adapté pour pouvoir assurer une circulation de liquide depuis l'entrée de liquide 13 vers la sortie de liquide 14. Le robot de nettoyage de piscine 10 comprend à cet effet une pompe comprenant un moteur 19 et une hélice 20 disposée dans le circuit hydraulique. Le moteur 19 entraîne l'hélice 20 en rotation.
  • Cette pompe provoque, d'une part, une aspiration d'eau au niveau de l'entrée d'eau 13 située sous le robot de nettoyage 10, donc au plus près de la surface contre laquelle le robot de nettoyage 10 évolue, et, d'autre part, une évacuation d'eau par la sortie d'eau 14, laquelle est sensiblement perpendiculaire au plan d'appui du robot de nettoyage 10 et donc à la surface parcourue. Ces deux phénomènes, d'aspiration sous le robot 10 et d'évacuation d'eau sous pression au dessus du robot 10, déterminent des forces de plaquage exercées sur le robot de nettoyage 10 vers la surface que le robot 10 est en train de parcourir. L'adhérence du robot de nettoyage 10 sur la paroi s'en trouve accrue, ce qui facilite l'ascension du robot de nettoyage 10.
  • L'appareil comprend une chambre de filtration 15 interposée, sur le circuit hydraulique, entre l'entrée de liquide 13 et la sortie de liquide 14.
  • La chambre de filtration 15 assurant la séparation et le stockage des débris en suspension dans le liquide, comprend un panier de filtration 16 et un couvercle 17 formant la paroi supérieure de la chambre de filtration 15.
  • Le panier de filtration 16 est extractible, c'est-à-dire qu'il peut être extrait du, et introduit dans, le corps 11 du robot de nettoyage 10. Le corps 11 du robot de nettoyage 10 présente à cet effet un logement dans lequel le panier de filtration 16 peut être monté. Le fait que le panier de filtration 16 soit extractible permet de le vider facilement, notamment sans devoir manipuler le robot 10 en entier.
  • Le robot de nettoyage de piscine 10 est, dans le présent exemple, alimenté en énergie au moyen d'un câble souple étanche. Dans le présent exemple, ce câble souple est attaché au corps du robot de nettoyage de piscine 10 en sa partie supérieure. Ce câble souple est relié, en son autre extrémité, à l'unité d'alimentation (non illustrée sur la figure 1), disposée à l'extérieur du bassin, cette unité d'alimentation étant elle-même reliée au courant électrique sur le secteur.
  • Le robot de nettoyage de piscine 10 comporte en outre ici une poignée de préhension 18 adaptée à permettre à un utilisateur de sortir le robot de l'eau, notamment lorsqu'il faut nettoyer le filtre.
  • Les paramètres de fonctionnement du robot de nettoyage 10, tels que, par exemple, le type de cycle de nettoyage demandé par l'utilisateur, sont réglés par l'intermédiaire d'une interface utilisateur située sur l'unité d'alimentation.
  • On rappelle qu'un tel robot de nettoyage comporte fréquemment deux cycles de nettoyage. Dans un premier cycle, le robot parcourt, le fond de la piscine, et nettoie celui-ci, sans monter le long des parois latérales. Dans un second cycle, le robot parcourt à la fois le fond de la piscine et monte également le long des parois latérales, de manière à décoller les débris qui y sont collés, ou qui se concentrent au niveau de la ligne d'eau. Dans ce second cycle, le robot monte le long de la paroi latérale, émerge partiellement pour frotter la ligne d'eau avec sa brosse, s'incline pour se déplacer latéralement le long de la paroi, et replonge en inversant son sens de marche pour redescendre au fond tout en nettoyant encore la paroi.
  • Au cours des différents cycles, l'unité de commande (non illustrée sur la figure 1) du robot 10, logée dans un carter étanche à proximité des moteurs, ajuste les paramètres de fonctionnement du moteur d'entraînement des organes de déplacement et de la pompe de circulation du fluide, agissant ainsi sur les forces de plaquage exercées sur le robot vers la surface qu'il est en train de parcourir.
  • Dans le présent exemple de réalisation, le robot de nettoyage 10 comprend un capteur de pression 21 fixé au corps 11 du robot de nettoyage 10.
  • Dans une variante de ce mode de réalisation particulier de l'invention, le capteur de pression est relié au robot par un flexible souple. Le flexible souple peut être fixé au corps du robot.
  • Le capteur de pression 21 de type piézorésistif, permet à l'unité de commande du robot 10 de déterminer la profondeur d'immersion dans le bassin à partir de la mesure de la pression absolue à laquelle est soumis le robot de nettoyage 10.
  • L'unité de commande du robot 10 comprend des moyens d'asservissement de la pression permettant de guider le robot 10 à une pression correspondant à une valeur de consigne, appelée par la suite pression de consigne. Les moyens d'asservissement de la pression sont dans le présent exemple non limitatif de l'invention réalisés à l'aide d'un régulateur PID. La pression de consigne varie au cours du temps afin de guider le nettoyage du robot 10 dans le bassin de la piscine. La pression de consigne peut également être constante sur une plage de temps afin de guider le robot 10 à une profondeur donnée.
  • Dans des variantes de ce mode de réalisation particulier de l'invention, le capteur de pression peut être un capteur piézoélectrique, comprenant par exemple une jauge de contrainte. Il peut également s'agir de tout autre type de capteur de mesure indiquant la profondeur à laquelle le robot de nettoyage se trouve, comme par exemple un flotteur dans un tube capillaire.
  • Le capteur de pression 21 comprend dans le présent exemple un corps étanche dans lequel est insérée l'électronique du capteur.
  • Dans une variante de ce mode de réalisation particulier de l'invention, l'électronique du capteur peut être protégé par de la résine ou être inclus dans un boitier étanche.
  • Il convient de souligner que le capteur de pression 21 est avantageusement logé hors du circuit hydraulique de circulation de fluide car les pompes provoquent une dépression à l'intérieur du circuit hydraulique par rapport à la pression locale. En outre, la valeur de cette dépression étant fonction de la puissance instantanée des pompes, varie au cours du temps.
  • Etant donné que la masse du robot a tendance à augmenter avec la collecte de débris au cours du nettoyage du bassin, l'unité de commande ajuste la puissance des moteurs d'entraînement et/ou de pompage, afin d'augmenter la capacité du robot à atteindre la ligne d'eau.
  • En outre, l'unité de commande déduit la vitesse d'ascension ou de descente des variations de pression relevées par le capteur de pression 21. L'unité de commande règle alors automatiquement la vitesse des organes d'entraînement, en fonction des conditions d'adhérence du robot sur la paroi.
  • Par ailleurs, l'unité de commande peut détecter par l'intermédiaire du capteur de pression 21 lorsque le robot est proche de la ligne d'eau lors des phases d'ascension le long d'une paroi du bassin.
  • Le capteur de pression 21 est avantageusement fixé au milieu du robot de nettoyage 10 dans le sens usuel du déplacement du robot 10, à proximité d'un des organes de déplacement et de guidage 12. Cette position médiane du capteur de pression 21 permet ainsi à l'unité de commande de détecter la ligne d'eau lorsque la pression relevée correspond à la pression atmosphérique additionnée de la pression correspondant à la demi-longueur du robot de nettoyage 10. Il convient de souligner que cette détection de la ligne d'eau est effectuée aussi bien dans le sens de déplacement usuel ou inverse du robot de nettoyage 10.
  • Dans une variante de ce mode de réalisation particulier de l'invention, le capteur de pression 21 est logé au centre de la face avant du robot, permettant ainsi au dispositif de commande des moyens d'entraînement et de guidage de détecter la ligne d'eau lorsque la pression relevée est sensiblement supérieure à la pression atmosphérique. Dans des variantes de ce mode de réalisation de l'invention, le capteur de pression 21 peut être disposé à tout autre emplacement du robot, préférentiellement mais non limitativement dans le robot.
  • Il convient de souligner qu'afin que la détection de la ligne d'eau soit fiable, l'unité de commande du robot 10 est calibrée lors de la première montée le long d'une paroi du bassin à nettoyer. A cet effet, l'unité de commande ajuste les paramètres de fonctionnement des moteurs d'entrainement et de plaquage conduisant le robot 10 à atteindre la ligne d'eau de manière certaine. L'unité de commande détermine la pression atmosphérique comme le minimum de la pression enregistrée au cours de cette première montée. L'unité de commande confirme également que la pression atmosphérique est sensiblement constante à chaque fois que le robot de nettoyage atteint la ligne d'eau.
  • Dans une variante de réalisation de ce mode de réalisation, l'unité de commande enregistre la pression atmosphérique avant l'immersion du robot dans la piscine.
  • L'utilisation du capteur de pression 21 permet également à l'unité de commande de modifier les paramètres des moteurs lors de l'ascension du robot de nettoyage 21 le long d'une paroi d'un bassin d'une piscine.
  • A cet effet, l'unité de commande du robot de nettoyage 21 suit le procédé de pilotage 300 illustré en figure 3a sous la forme d'un diagramme synoptique.
  • Lors d'une première étape 310, l'unité de commande détecte l'ascension du robot de nettoyage le long d'une paroi. Cette ascension se traduit par une diminution continue de la pression relevée par le capteur de pression 21. Il convient de souligner que la mesure de la pression peut être lissée afin de ne pas tenir compte des infimes variations apportées par le bruit du capteur.
  • Dès lors que l'ascension est détectée, l'unité de commande ajuste les paramètres de fonctionnement des moteurs d'entraînement et de plaquage du robot de nettoyage 10, lors de l'étape 320, afin de permettre l'ascension le long de la paroi.
  • L'unité de commande détecte lors de l'étape 330, l'approche de la ligne d'eau. Cette détection peut s'effectuer par exemple à une distance de l'ordre de cinquante centimètres de la ligne d'eau. Cette distance est détectée lorsque la pression relevée par le capteur de pression 21 est égale à la somme de la pression atmosphérique Patm et de la pression PCE de la colonne d'eau d'une hauteur de cinquante centimètres. Dans le cas présent, PCE est égale à cinquante millibars ou cinquante hectoPascal.
  • Dès lors que l'approche de la ligne d'eau est détectée, l'unité de commande diminue alors progressivement la puissance de fonctionnement des moteurs d'entraînement et de plaquage lors de l'étape 340, afin que le robot de nettoyage 10 atteigne la ligne d'eau avec une vitesse verticale faible, sensiblement égale à zéro.
  • Le robot 10 peut alors suivre la ligne d'eau en étant guidé à une pression sensiblement égale à la pression atmosphérique. A cet effet, la valeur de la pression de consigne peut être égale à la pression atmosphérique ou à une valeur sensiblement supérieur à la pression atmosphérique afin de permettre au robot 10 de suivre la ligne d'eau en étant toujours immergé.
  • Il convient de noter que l'utilisation du capteur de pression 21 permet également à l'unité de commande de modifier la consigne de pression atmosphérique si le robot de nettoyage 10 aspire de l'air lorsque le robot nettoie la ligne d'eau.
  • Néanmoins, si le robot de nettoyage 10 présente un surplus de masse entraîné par la collecte de nombreux débris, le robot atteint difficilement la ligne d'eau, voire même est incapable de l'atteindre malgré l'ajustement des paramètres de fonctionnement des moteurs. Une indication est alors affichée sur l'interface utilisateur signalant que le filtre doit être nettoyé.
  • La pression de consigne permettant au robot d'atteindre la ligne d'eau est enregistrée.
  • D'autre part, le robot 10 peut également être avantageusement guidé à une profondeur d'immersion constante en asservissant la pression relevée par le capteur de pression 21 à une valeur de consigne supérieure à la pression atmosphérique. Le robot 10 peut ainsi par exemple nettoyer la ligne d'eau du bassin ou effectuer un nettoyage le long d'une profondeur quelconque du bassin.
  • L'asservissement de la pression est généralement effectué en comparant dans un premier temps la pression ambiante du robot avec la pression de consigne en cours. Les paramètres de fonctionnement des moyens d'entraînement et de guidage sont alors ajustés afin de réduire l'écart entre la pression ambiante et la pression de consigne.
  • Dans le présent mode de réalisation décrit ici à titre non limitatif, l'unité de commande enregistre également la durée passée à chaque profondeur. Généralement l'enregistrement est effectué pour des gammes de profondeur. Dans le présent exemple non limitatif de l'invention, une gamme de profondeur représente un intervalle de profondeur centré autour d'une valeur de la pression de consigne.
  • L'unité de commande peut ainsi adapter le temps de passé par le robot à nettoyer une profondeur en particulier, par exemple pour nettoyer la ligne d'eau du bassin.
  • La courbe 30 représentée en figure 3b illustre un exemple d'enregistrement en fonction du temps de la pression ambiante au robot immergé dans un bassin d'une piscine. Dans cet exemple, le bassin est divisé en deux zones : une zone peu profonde et une zone plus profonde correspondant à une fosse à plonger. Trois paliers de pression sont visibles sur la courbe 30. La pression la plus forte 31 correspond au fond de la fosse à plonger. La pression 32 correspondant au palier intermédiaire est liée au fond de la zone peu profonde. La pression la plus faible 33, sensiblement égale à la pression atmosphérique, traduit le nettoyage de la ligne d'eau du bassin.
  • Le robot 10 commence ici par nettoyer le fond de la fosse à plonger, traduit par un palier 34 de pression 31. Le robot remonte ensuite dans la zone peu profonde et nettoie le fond de cette zone. La courbe 30 présente ainsi un palier 35 de pression intermédiaire 32. Le robot monte ensuite le long d'une paroi du bassin afin de nettoyer la ligne d'eau. Un nouveau palier 36 correspondant à la pression la plus faible 33 traduit le nettoyage de la ligne d'eau. Le robot redescend ensuite dans la zone peu profonde. Le robot nettoie ainsi les différentes zones de la piscine.
  • A chaque palier de pression, l'unité de commande du robot de nettoyage 10 enregistre les durées passées pour nettoyer le fond de chaque zone du bassin. Lorsque le robot entre par exemple dans la zone la plus profonde, l'unité de commande compare la durée passée dans cette zone avec celle relevée dans la zone peu profonde. Si la durée passée dans la fosse à plonger est supérieure à une durée seuil préalablement déterminée, le robot 10 inverse son sens de déplacement et retourne dans la zone peu profonde afin de poursuivre le nettoyage de cette zone. Cette inversion de sens de déplacement est illustrée sur la courbe 30 par le pic 37.
  • Il convient de souligner qu'une durée seuil est déterminée dans chaque zone de nettoyage. Ce seuil peut être aussi bien déterminée en absolue ou en relatif par rapport à une durée d'une autre zone à nettoyer. Ces durées seuil sont déterminées afin d'homogénéiser le nettoyage du bassin de la piscine. Ces durées seuil peuvent être fonction de la superficie des surfaces à nettoyer.
  • L'enregistrement de la durée passée à chaque profondeur permet également un nettoyage homogène des escaliers et des plages inclus dans un bassin d'une piscine.
  • Dans des variantes de ce mode de réalisation particulier de l'invention, le capteur de pression 21 mesure avantageusement la pression à l'intérieur d'un boitier étanche rigide. Les figures 4a et 4b illustrent un exemple de réalisation d'une de ces variantes. Le boitier étanche 41 comprenant un capteur de pression 21 est solidarisé sur un flan du corps 11 du robot de nettoyage 10, comme illustré en figure 4a. Le boitier étanche 41, illustré plus en détails en figure 4b, est réalisé dans une matière plastique rigide et comprend une membrane souple 42. Dans cette variante, le capteur de pression 21 est situé sur une carte électronique 43 fixée à l'intérieur du boitier étanche 41. La carte électronique 43 est reliée à l'unité de commande du robot 10 par un câble 44 traversant le boitier étanche 41 par l'intermédiaire d'un presse-étoupe 45. Le câble étanche 44 assure la transmission d'un signal proportionnel à la pression ambiante à laquelle le robot de nettoyage 10 évolue. La membrane souple 42 est réalisée dans le présent exemple en PVC souple. Son épaisseur est sensiblement inférieure à un millimètre. La membrane peut également être réalisée en polyuréthane souple ou en tissu enduit.
  • Il convient de souligner que le boitier 41 permet également d'isoler thermiquement le capteur de pression 21 des moteurs et autres composants dissipateurs d'énergie. Le capteur de pression 21 a ainsi une température sensiblement constante, correspondant à la température de l'eau. Les mesures obtenues par le capteur de pression 21 sont alors fiables et reproductibles. Le boitier étanche 41 permet également d'isoler magnétiquement des composants magnéto-sensibles de type compas, ou des composants électroniques, insérés dans le boitier 41. A cet effet, le boitier étanche 41 peut comprendre une cage de Faraday.
  • Dans des variantes de réalisation de l'invention, le capteur de pression est logé en partie à l'intérieur d'un boitier étanche rigide solidarisé au corps du robot. Le boitier étanche est traversé par un tube capillaire dont une extrémité vient se connecter, de manière étanche, au capteur de pression.
  • Dans des variantes de réalisation de l'invention, le capteur de pression est un capteur de pression relative mesurant la pression par rapport à une pression d'une enceinte étanche servant de référence. L'enceinte étanche peut être un boitier comprenant une pression égale à la pression atmosphérique, à un bar ou au vide. L'enceinte étanche peut également correspondre au bloc moteur du robot, le bloc moteur étant une enceinte étanche dans lequel est logé le moteur d'entraînement des organes de déplacement du robot de nettoyage. Il convient néanmoins de souligner que la température du bloc moteur évolue au cours du temps. Il est donc nécessaire de corriger cette pression de référence afin de prendre en compte les variations de pression liées aux variations de température dans un volume constant.
  • Dans des variantes de réalisation de l'invention, le robot de nettoyage 10 comporte également des moyens de déterminer à tout moment son attitude dans la piscine. A cet effet, le robot de nettoyage 10 comporte par exemple au moins un inclinomètre de type connu en soi, ou un moyen de détection de passage à la verticale de type « tilt » ou autre dispositif équivalent connu de l'homme du métier. Cet inclinomètre, pouvant être un accéléromètre, permet de déterminer l'orientation du robot de nettoyage selon trois axes. L'unité de commande peut alors traiter les informations provenant des moyens de détermination de l'orientation du robot 10 dans la piscine, en les associant avec la profondeur d'immersion mesurée par le capteur de pression 21. Ainsi, l'unité de commande peut ajuster avec plus de précision et de finesse les paramètres de fonctionnement des moteurs d'entraînement et de plaquage du robot de nettoyage 10.
  • Les caractéristiques décrites précédemment ne sont pas limitatives et de nombreuses autres caractéristiques liées à l'utilisation d'un capteur de pression ambiante sont réalisables selon le cadre de l'invention, définit par les revendications ci-jointes.

Claims (25)

  1. Robot de nettoyage de piscine (10) comprenant :
    - un corps (11),
    - au moins un circuit hydraulique de circulation de liquide entre au moins une entrée de liquide (13) et au moins une sortie de liquide (14), ledit circuit hydraulique comprenant au moins un moyen de séparation des débris en suspension dans le liquide,
    - des moyens de pompage assurant l'écoulement du liquide dans ledit circuit hydraulique,
    - des moyens d'entrainement et de guidage dudit robot de nettoyage sur une surface,
    - des moyens de commande des paramètres de fonctionnement des moyens d'entrainement et de guidage dudit robot de nettoyage (10), les moyens de commande comprenant un capteur de pression (21) permettant de déterminer la profondeur d'immersion du robot de nettoyage dans un bassin d'une piscine, à partir de la mesure de la pression ambiante du robot,
    caractérisé en ce que les moyens de commande comprennent également des moyens d'asservissement de la pression relevée par le capteur de pression à une valeur de consigne.
  2. Robot de nettoyage selon la revendication 1, caractérisé en ce que le capteur de pression est un capteur de pression absolue.
  3. Robot de nettoyage selon la revendication 1, caractérisé en ce que le capteur de pression est un capteur de pression relative mesurant la différence de pression par rapport à une pression d'une enceinte étanche servant de référence.
  4. Robot de nettoyage selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le capteur de pression est un capteur piézoélectrique.
  5. Robot de nettoyage selon la revendication 4, caractérisé en ce que le capteur de pression est un capteur piézorésistif.
  6. Robot de nettoyage selon l'une quelconque des revendications 4 et 5, caractérisé en ce que le capteur de pression est une jauge de contrainte fixée sur une paroi soumise à la pression ambiante.
  7. Robot de nettoyage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les moyens de commande comprennent des moyens d'enregistrement de la durée passée dans au moins une gamme de profondeur d'immersion déterminée dudit robot de nettoyage.
  8. Robot de nettoyage selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens de commande sont reliés à au moins un inclinomètre solidarisé au corps du robot.
  9. Robot de nettoyage selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le capteur de pression est situé dans un plan médian du corps du robot, ledit plan étant perpendiculaire à l'axe usuel de déplacement.
  10. Robot de nettoyage selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le capteur de pression est logé, au moins en partie, à l'intérieur d'un boitier étanche rigide comprenant une membrane souple, le capteur de pression mesurant la pression interne audit boitier étanche.
  11. Robot de nettoyage selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le capteur de pression est logé, au moins en partie, à l'intérieur d'un boitier étanche rigide traversé par un tube capillaire présentant une extrémité à l'intérieur du boitier, ledit capteur de pression étant connecté de manière étanche à ladite extrémité du tube capillaire, mesurant la pression à ladite extrémité du tube capillaire.
  12. Robot de nettoyage selon l'une quelconque des revendications 10 et 11, caractérisé en ce que le boitier étanche est réalisé dans une matière plastique présentant une faible conduction thermique.
  13. Robot de nettoyage selon l'une quelconque des revendications 9 à 12, caractérisé en ce que le boitier étanche comprend une cage de Faraday.
  14. Procédé de pilotage d'un robot de nettoyage de piscine, ledit robot comprenant :
    - des moyens de pompage assurant l'écoulement du liquide dans ledit circuit hydraulique,
    - des moyens d'entrainement et de guidage dudit robot de nettoyage sur une surface,
    - des moyens de commande des paramètres de fonctionnement des moyens d'entrainement et de guidage dudit robot de nettoyage (10), les moyens de commande comprenant un capteur de pression (21) permettant de déterminer la profondeur d'immersion du robot de nettoyage dans un bassin d'une piscine, à partir de la mesure de la pression ambiante du robot,
    caractérisé en ce que le procédé comprend une étape dans laquelle la pression ambiante du robot est comparée à une valeur dite pression de consigne et une étape de commande des paramètres de fonctionnement des moyens d'entraînement et de guidage afin de réduire l'écart entre la pression ambiante et la pression de consigne.
  15. Procédé selon la revendication 14, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande sont calibrés lors de la première montée le long d'une paroi du bassin à nettoyer, en ajustant les paramètres de fonctionnement des moyens d'entraînement et de guidage afin de conduire le robot à atteindre la ligne d'eau de manière certaine.
  16. Procédé selon la revendication 15, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande déterminent la pression atmosphérique comme le minimum de pression enregistrée au cours de la première montée.
  17. Procédé selon l'une quelconque des revendications 14 à 16, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande enregistrent la pression atmosphérique avant l'immersion du robot dans la piscine.
  18. Procédé selon l'une quelconque des revendications 16 à 17, caractérisé en ce qu'il comprend les étapes suivantes :
    - 310, les moyens de commande détecte l'ascension du robot de nettoyage le long d'une paroi ;
    - 320, dès lors que l'ascension est détectée, les moyens de commande ajustent les paramètres de fonctionnement des moyens d'entraînement et de guidage du robot de nettoyage, afin de permettre l'ascension le long de la paroi ;
    - 330, les moyens de commande détectent l'approche de la ligne d'eau à une distance D de la ligne d'eau, lorsque la pression relevée par le capteur de pression est égale à la somme de la pression atmosphérique et de la pression de la colonne d'eau de hauteur D ;
    - 340, dès lors que l'approche de la ligne d'eau est détectée, les moyens de commande ajustent les paramètres de fonctionnement des moyens d'entraînement et de guidage du robot de nettoyage, en diminuant progressivement la puissance des moyens d'entraînement et de guidage, afin que le robot de nettoyage atteigne la ligne avec une vitesse verticale faible, sensiblement égale à zéro.
  19. Procédé selon la revendication 18, caractérisé en ce qu'il comprend une étape dans laquelle le robot de nettoyage suit la ligne d'eau en étant guidé grâce à une pression de consigne sensiblement égale à la pression atmosphérique.
  20. Procédé selon l'une quelconque des revendications 18 à 19, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande modifient la consigne de pression atmosphérique si le robot de nettoyage aspire de l'air lorsque le robot nettoie la ligne d'eau.
  21. Procédé selon l'une quelconque des revendications 18 à 20, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande modifient la consigne des paramètres de fonctionnement des moyens d'entraînement et de guidage du robot de nettoyage, pour réduire la vitesse d'approche de la ligne d'eau, si le robot de nettoyage aspire de l'air lorsque le robot nettoie la ligne d'eau.
  22. Procédé selon l'une quelconque des revendications 14 à 21, caractérisé en ce qu'il comprend une étape dans laquelle, après détection de ce que le robot de nettoyage atteint difficilement la ligne d'eau, voire est incapable de l'atteindre malgré l'ajustement des paramètres de fonctionnement des moyens d'entraînement et de guidage, une indication est affichée sur une interface utilisateur signalant que le filtre doit être nettoyé.
  23. Procédé selon l'une quelconque des revendications 14 à 22, caractérisé en ce qu'il comprend une étape d'enregistrement du temps de nettoyage passé par le robot de nettoyage à au moins une gamme de profondeur donnée.
  24. Procédé selon la revendication 23, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande comprennent au moins une consigne de nettoyage en temps à passer pour le nettoyage d'une gamme de profondeur donnée.
  25. Procédé selon la revendication 23, caractérisé en ce qu'il comprend une étape dans laquelle les moyens de commande comprennent au moins une consigne de nettoyage relative comparant les temps passés entre au moins deux gammes de profondeurs données.
EP17706557.0A 2016-01-29 2017-01-23 Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot Active EP3408471B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650744A FR3047261B1 (fr) 2016-01-29 2016-01-29 Robot nettoyeur de piscine et procede d'utilisation d'un tel robot
PCT/FR2017/050133 WO2017129884A1 (fr) 2016-01-29 2017-01-23 Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot

Publications (2)

Publication Number Publication Date
EP3408471A1 EP3408471A1 (fr) 2018-12-05
EP3408471B1 true EP3408471B1 (fr) 2020-03-04

Family

ID=55590063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706557.0A Active EP3408471B1 (fr) 2016-01-29 2017-01-23 Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot

Country Status (6)

Country Link
US (1) US10316534B2 (fr)
EP (1) EP3408471B1 (fr)
AU (1) AU2017212758B2 (fr)
ES (1) ES2784526T3 (fr)
FR (1) FR3047261B1 (fr)
WO (1) WO2017129884A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9977433B1 (en) 2017-05-05 2018-05-22 Hayward Industries, Inc. Automatic pool cleaner traction correction
WO2019060734A1 (fr) * 2017-09-21 2019-03-28 Nc Brands L.P. Dispositif de nettoyage de piscine à roues avec couvercle amovible
WO2021024085A1 (fr) * 2019-08-07 2021-02-11 Zodiac Pool Care Europe Systèmes et procédés de fonctionnement de dispositifs de nettoyage automatiques de piscine à durée de cycle améliorée
ES2955673T3 (es) * 2019-12-30 2023-12-05 Maytronics Ltd Robot de limpieza de piscinas con diafragma de sensor de presión
CN112049475A (zh) * 2020-09-07 2020-12-08 杨智琼 一种可爬柱吸污机
AU2022356468A1 (en) * 2021-10-01 2024-04-11 Zodiac Pool Care Europe Systems and methods of monitoring a waterline level of a swimming pool or spa
US20230344252A1 (en) 2022-03-29 2023-10-26 Zodiac Pool Care Europe Systems and methods for contact self-protection for automatic swimming pool cleaner
US20230313550A1 (en) 2022-03-29 2023-10-05 Zodiac Pool Care Europe Automatic swimming pool cleaner systems with improved visual communication
WO2023187590A1 (fr) 2022-03-29 2023-10-05 Zodiac Pool Care Europe Systèmes de guidage pour nettoyeur de piscine automatique
US20230313551A1 (en) 2022-03-29 2023-10-05 Zodiac Pool Care Europe Automatic swimming pool cleaner charging systems and devices with corrosion mitigation
WO2024035739A1 (fr) 2022-08-08 2024-02-15 Zodiac Pool Systems Llc Systèmes et procédés de contrôle de débris pour piscines et spas
WO2024035734A1 (fr) 2022-08-08 2024-02-15 Zodiac Pool Systems Llc Piscines et spas à commande d'utilisation d'eau
US20240046651A1 (en) 2022-08-08 2024-02-08 Zodiac Pool Systems Llc Swimming pools and spas with pool vision
US20240068258A1 (en) 2022-08-26 2024-02-29 Zodiac Pool Care Europe Automatic swimming pool cleaner with water sensing
WO2024042463A1 (fr) 2022-08-26 2024-02-29 Zodiac Pool Care Europe Équipement de piscine avec cavité remplie d'eau
US20240093522A1 (en) 2022-09-15 2024-03-21 Zodiac Pool Care Europe Docking system with camera for automatic swimming pool cleaner
WO2024057269A1 (fr) 2022-09-15 2024-03-21 Zodiac Pool Care Europe Système d'accueil pour nettoyeur de piscine automatique
CN115584877A (zh) * 2022-11-02 2023-01-10 智橙动力(北京)科技有限公司 泳池清洁机器人的控制方法及泳池清洁机器人

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704708A (en) 1970-05-04 1972-12-05 Gen Technical Services Inc Blood pressure measuring mechanism
FR2733318A1 (fr) 1995-04-18 1996-10-25 Galichet Gilles Dispositif de mesure de la masse volumique d'un liquide
US5985156A (en) 1996-06-26 1999-11-16 Henkin; Melvyn L. Automatic swimming pool cleaning system
US20030201218A1 (en) 2000-11-14 2003-10-30 Henkin Melvyn L. Automatic pool cleaner system utilizing electric and suction power
EP1431722A2 (fr) 2002-12-17 2004-06-23 Robert Bosch Gmbh Capteur de pression différentielle pour la mesure du niveau du liquide dans un récipient
US20090301522A1 (en) 2005-10-18 2009-12-10 Aquatron Inc. Customized Programmable Pool Cleaner Method and Apparatus
US20110197932A1 (en) 2009-12-22 2011-08-18 Emmanuel Mastio Apparatus for cleaning an immersed surface provided with an accelerometer device which detects gravitational acceleration
EP2255048B1 (fr) 2008-03-27 2011-09-07 Zodiac Pool Care Europe SAS Appareil roulant nettoyeur de surface immergée à entraînement mixte hydraulique et électrique et procédé correspondant
US20120006352A1 (en) 2009-11-23 2012-01-12 Searobotics Corporation Robotic submersible cleaning system
WO2014062316A2 (fr) 2012-09-14 2014-04-24 Raytheon Company Navigation autonome pour l'inspection d'une coque
US20140230168A1 (en) 2012-09-11 2014-08-21 Maytronics Ltd. Pool cleaning robot having waterline movement capabilities
US20140262997A1 (en) 2013-03-15 2014-09-18 Hayward Industries, Inc. Automatic Electric Top Bottom Swimming Pool Cleaner with Internal Pumps
US20150300034A1 (en) 2010-02-11 2015-10-22 Aqua Products, Inc. Water jet pool cleaner with opposing dual propellers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435031A (en) * 1993-07-09 1995-07-25 H-Tech, Inc. Automatic pool cleaning apparatus
US6485638B2 (en) * 1999-11-15 2002-11-26 Melvyn L. Henkin Electric powered automatic swimming pool cleaning system
FR2925551B1 (fr) 2007-12-21 2010-01-22 Zodiac Pool Care Europe Appareil nettoyeur de surface immergee a dispositif de filtrage demontable
FR2925557B1 (fr) 2007-12-21 2013-09-20 Zodiac Pool Care Europe Appareil nettoyeur de surface immergee a circuit sale demontable
FR2954380B1 (fr) 2009-12-18 2015-03-20 Zodiac Pool Care Europe Appareil nettoyeur de surface immergee a giration par cabrage
US20110247970A1 (en) * 2010-04-08 2011-10-13 Michael Evingham Portable Pump And Filter Assembly For Use In Pools, Spas And Open Bodies Of Water
US9758980B2 (en) * 2013-10-13 2017-09-12 Maytronics Ltd. System for extracting a pool cleaning robot
US11129256B2 (en) * 2016-01-22 2021-09-21 Hayward Industries, Inc. Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US10843106B2 (en) * 2017-02-10 2020-11-24 Maytronics Ltd. Self cleaning pool cleaner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704708A (en) 1970-05-04 1972-12-05 Gen Technical Services Inc Blood pressure measuring mechanism
FR2733318A1 (fr) 1995-04-18 1996-10-25 Galichet Gilles Dispositif de mesure de la masse volumique d'un liquide
US5985156A (en) 1996-06-26 1999-11-16 Henkin; Melvyn L. Automatic swimming pool cleaning system
US20030201218A1 (en) 2000-11-14 2003-10-30 Henkin Melvyn L. Automatic pool cleaner system utilizing electric and suction power
EP1431722A2 (fr) 2002-12-17 2004-06-23 Robert Bosch Gmbh Capteur de pression différentielle pour la mesure du niveau du liquide dans un récipient
US20090301522A1 (en) 2005-10-18 2009-12-10 Aquatron Inc. Customized Programmable Pool Cleaner Method and Apparatus
EP2255048B1 (fr) 2008-03-27 2011-09-07 Zodiac Pool Care Europe SAS Appareil roulant nettoyeur de surface immergée à entraînement mixte hydraulique et électrique et procédé correspondant
US20120006352A1 (en) 2009-11-23 2012-01-12 Searobotics Corporation Robotic submersible cleaning system
US20110197932A1 (en) 2009-12-22 2011-08-18 Emmanuel Mastio Apparatus for cleaning an immersed surface provided with an accelerometer device which detects gravitational acceleration
US20150300034A1 (en) 2010-02-11 2015-10-22 Aqua Products, Inc. Water jet pool cleaner with opposing dual propellers
US20140230168A1 (en) 2012-09-11 2014-08-21 Maytronics Ltd. Pool cleaning robot having waterline movement capabilities
WO2014062316A2 (fr) 2012-09-14 2014-04-24 Raytheon Company Navigation autonome pour l'inspection d'une coque
US20140262997A1 (en) 2013-03-15 2014-09-18 Hayward Industries, Inc. Automatic Electric Top Bottom Swimming Pool Cleaner with Internal Pumps

Also Published As

Publication number Publication date
WO2017129884A1 (fr) 2017-08-03
FR3047261A1 (fr) 2017-08-04
US20190040642A1 (en) 2019-02-07
FR3047261B1 (fr) 2020-06-12
ES2784526T3 (es) 2020-09-28
EP3408471A1 (fr) 2018-12-05
AU2017212758B2 (en) 2021-07-08
US10316534B2 (en) 2019-06-11
AU2017212758A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
EP3408471B1 (fr) Robot nettoyeur de piscine et procédé d'utilisation d'un tel robot
EP2255048B1 (fr) Appareil roulant nettoyeur de surface immergée à entraînement mixte hydraulique et électrique et procédé correspondant
US9945712B2 (en) Method and apparatus for detection of phase separation in storage tanks
EP2516774B1 (fr) Appareil nettoyeur de surface immergée muni d'un dispositif accélérométrique détectant l'accélération gravitationnelle
EP3126595B1 (fr) Robot nettoyeur de piscine a puissance de pompage réglable
EP3356620B1 (fr) Système de nettoyage de piscine à dispositif de prise d'images
CA2709897A1 (fr) Apparatus for cleaning a submerged surface and having a pumping engine outside the hydraulic system
EP3567188B1 (fr) Dispositif de nettoyage de piscine avec capacité d'identification d'escaliers
JP2016094137A (ja) 水中観察装置
KR101394171B1 (ko) 시추공 내 시료 채취 장치 및 방법
EP3356621B1 (fr) Appareil nettoyeur de piscine comprenant des moyens de réglage de la pression interne audit appareil
CA2033367A1 (fr) Dispositif de separation d'un melange de gaz libre et de liquide a l'admission d'une pompe au fond d'un puits fore
EP3292258B1 (fr) Appareil nettoyeur de piscine à pilotage optimisé
WO2014102055A1 (fr) Dispositif de contrôle non destructif automatisé de raidisseurs d'une structure composite d'aéronef
EP3339115B1 (fr) Réservoir de liquide, en particulier lave-glace, pour un système d'essuyage de véhicule
FR3051205A1 (fr) Realisation de pieux avec un dispositif de forage a outil telescopable.
CA2879312A1 (fr) Methode et appareil d'enlevement de liquide flottant d'un plan d'eau
FR3008748A1 (fr) Pompe rotative a fluide protecteur, procede de fabrication et installation de pompage correspondants

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191025

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200103

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017012595

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2784526

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1240521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017012595

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OPILEX

Effective date: 20201203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

R26 Opposition filed (corrected)

Opponent name: OPILEX

Effective date: 20201203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602017012595

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

27O Opposition rejected

Effective date: 20221011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240125

Year of fee payment: 8