EP3400323B1 - Self-lubricating electrolytically deposited phosphate coating - Google Patents

Self-lubricating electrolytically deposited phosphate coating Download PDF

Info

Publication number
EP3400323B1
EP3400323B1 EP17700126.0A EP17700126A EP3400323B1 EP 3400323 B1 EP3400323 B1 EP 3400323B1 EP 17700126 A EP17700126 A EP 17700126A EP 3400323 B1 EP3400323 B1 EP 3400323B1
Authority
EP
European Patent Office
Prior art keywords
solid lubricant
workpiece
lubricant particles
phosphating
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700126.0A
Other languages
German (de)
French (fr)
Other versions
EP3400323A2 (en
Inventor
Jörg Gerhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Staku Anlagenbau GmbH
Original Assignee
Staku Anlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Staku Anlagenbau GmbH filed Critical Staku Anlagenbau GmbH
Priority to PL17700126T priority Critical patent/PL3400323T3/en
Publication of EP3400323A2 publication Critical patent/EP3400323A2/en
Application granted granted Critical
Publication of EP3400323B1 publication Critical patent/EP3400323B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • the present invention relates to a self-lubricating, electrolytically deposited phosphating coating on metallic workpieces comprising stabilized solid lubricants embedded in the phosphating coating and a method for producing the same.
  • metallic workpieces can nowadays be expanded in a targeted manner through a large number of downstream processing steps.
  • industrial processes are provided which are able to change both the aesthetic and the application properties in such a way that more durable and visually more appealing products are available.
  • coating processes are preferably used for further processing, in which gaseous, liquid, dissolved or solid substances are used to build up additional, coherent layers on the workpiece.
  • gaseous, liquid, dissolved or solid substances are used to build up additional, coherent layers on the workpiece.
  • liquid, predominantly aqueous systems are used, from which dissolved substances can be deposited chemically or electrochemically.
  • Examples of electrolytic coating processes are chromating, galvanic galvanizing and phosphating, the latter being used when the corrosion resistance is increased or else cold massive forming of the metallic base body is intended.
  • the surface pressure creates a high level of friction between the tool and the workpiece, which can lead to local welding of the surfaces sliding on each other and subsequent damage of the workpiece and / or the tool.
  • a phosphating layer is applied before the deformation, which, in combination with the application of further lubricants, usually contributes to a reduction in the friction in the subsequent deformation process.
  • the sliding effect of the phosphate layer itself is only of secondary importance; it is more important that this layer has a crystalline structure with high porosity, which can absorb up to 13 times more lubricant, for example oil, compared to untreated metal surfaces. Solid lubricants also adhere better to a phosphated metal surface than to bare steel.
  • Electrolytic depositions from acidic aqueous solutions which contain at least zinc and phosphate ions and are carried out with the simultaneous application of direct current. Simultaneously with the deposition of the phosphating layer, an electrolytic deposition of zinc takes place in the same electrolyte, the current density being greater than -5 A / dm 2 .
  • the DE 164 492 7 discloses a process for the production of particles containing dry lubricant which are to be incorporated into metal coatings to be applied by electroplating in workpieces exposed to sliding friction, by placing them in the electrolyte introduces and during the galvanic deposition of the metal coating against the surface of the workpiece connected as cathode, with finely divided, powdered dry lubricant, optionally together with silicon carbide or aluminum oxide particles as wear-resistant particles in a synthetic resin solution or in a silicate solution, which optionally as a conversion into poorly soluble compounds effecting substances are admixed with lime water, aluminum chloride or sulfuric acid, is stirred in, that the solvent is driven out of the mixture by evaporation and the residue is mechanically comminuted to the desired particle size.
  • Another method for double phosphating is in the DE 197 81 959 B4 describe.
  • the phosphated workpiece is bathed in a bath of 8.5 to 100 Ca +1 g / l; 0.5 to 100 Zn 2+ g / l, 5 to 100 PO4 3 g / l; 0 to 100 NO 3 g / l; 0 to 100 CIO 3 g / l and 0 to 50 F - or Cl - g / l, to which polymers and solid lubricants are added to improve the friction properties of the second phosphating layer.
  • an electrolytically deposited phosphating layer is at least comprising the elements zinc and phosphorus on a metallic workpiece, the phosphating layer having solid lubricant particles stabilized by hydrocolloids, the stabilized solid lubricant particles being at least partially embedded in the phosphating layer, the hydrocolloids being selected from the group comprising polyamines , polyimines as well as their quaternary salts, polyvinyl pyrrolidones, polyvinyl pyridines, collagen, gelatin, Chitosanhydrolysat, keratin hydrolyzate, casein hydrolyzate, Amidopektine, as well as their copolymers and / or mixtures thereof, and the solid lubricant particles metal and ammonium salts are selected from the group comprising saturated fatty acids, MoS 2 , h-BN, WS 2 , graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS,
  • the layers according to the invention are produced with the same or similar deposition rates, so that there are no or only minimal losses in the efficiency of the baths. Furthermore, it is advantageous that the incorporation of the lubricant particles the additional step of applying lubricant or lubricant / lubricant particles is omitted, so that the workpieces phosphated according to the invention can be fed to mechanical cold forming without further process steps.
  • the high-quality deposition and the resulting stability of the phosphating layers, which are additionally laden with solid lubricant result from the presence of the hydrocolloids in the phosphating bath.
  • hydrocolloids are apparently able to stabilize the solid lubricants in the solution in the form of coacervates by attaching themselves to the solid lubricant particles.
  • These addition complexes can apparently contribute to a better distribution of the solid lubricant particles in the solution.
  • these coacervates appear to be able to In comparison to the non-stabilized particles, the layer structure is stored more quickly and less disruptively in the phosphating layer. The result is a more uniform and coherent phosphating layer structure, which is mechanically more stable compared to layers with non-stabilized particles.
  • a phosphating layer in the context of the invention is an electrolytically deposited zinc phosphate layer on a metallic workpiece.
  • this can be applied using known methods and is widely used, for example, to protect low-alloy steels from corrosion.
  • zinc phosphate crystals hopeite
  • the layer that forms is generally approx. 2 - 20 ⁇ m thick and can have a coverage of the component surface of approx. 90% to 95%, sometimes up to 100%.
  • the phosphating layer applied according to the invention is deposited electrolytically. This can be done either by applying a direct current or by applying a pulsed direct current. Usual currents are in the range of 0.1 and 250 mA / cm 2 and the bath temperatures can be selected in a range from 20 to 90 ° C. The temperature is preferably between 25 ° C and 80 ° C.
  • the coating duration ie the time in which a current flows through the workpiece and metal ions are deposited from the solution on the workpiece, can be freely determined and can expediently be between a few seconds, for example 1 second, and several minutes, such as 5 minutes. The coating time is expediently the desired as a function of the concentration of the ions to be deposited Layer thickness and the workpiece geometry selected.
  • the treatment times of modern systems for electrolytic galvanizing and phosphating of steel strips are between 90 and 120 m / min. There are deposition times in the range of up to 5 seconds. In general, treatment times of 0.5 to 5 seconds can be used in this coating situation. In the most common applications, the layer thickness of the phosphating layer can be from 5 ⁇ m to 15 ⁇ m.
  • Metallic workpieces can be equipped with the phosphating coatings according to the invention.
  • the concept of a metallic workpiece includes one-, two- or three-dimensional structures made of usually low-alloy steels. These layers can also be used on stainless steels and other noble and base metals, such as Iron, Al, Ti, Cu, Ni, or their alloys, as well as hot-dip galvanized materials can be attached.
  • the term one-dimensional structure includes, for example, wires, the two-dimensional structure, for example, strips or sheets, and the three-dimensional structure, for example, more complex shapes such as bearing shells.
  • the metallic workpieces can be constructed in one or more layers. In particular, it is also within the meaning of the invention that the phosphating layer having stabilized solid lubricant particles can also be applied to a “normal” layer that is not provided with stabilized solid lubricant particles.
  • the solid lubricant particles are stabilized by hydrocolloids both in the solution and most likely in the phosphating layer.
  • the hydrocolloids preferably have a chain-like structure made up of individual, successive building blocks.
  • the hydrocolloids are able to form viscous solutions in water by swelling with the accumulation of water on the hydrocolloid structure.
  • the hydrocolloids which can be used according to the invention can be built up from one and the same (homopolymer) or else from different building blocks (heteropolymer).
  • the hydrocolloids can have a weight of preferably 1000 to 1,000,000 Da. This particle size has proven to be a effective interaction with the solid lubricant particles proved to be particularly suitable.
  • the weight of the hydrocolloids can expediently be determined using gel permeation techniques using defined reference samples. Suitable hydrocolloids are especially the water-soluble, ie swellable, hydrocolloids.
  • Examples include phenol sulfonate / formaldehyde condensates, polyvinyl alcohol, polyethers, polyacrylates and methacrylates, polyacrylamides, polyvinylamines, polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, polyvinylphosphonates and their copolymers, as well as natural hydrocolloids such as collagen, gelatine, and chysate, keratin hydrolysates , Casein hydrolyzate, guar, pectins, agar-agar, starch and modified starch, cellulose derivatives such as carboxyalkyl cellulose or cellulose ethers, or mixtures and copolymers thereof.
  • the solid lubricant particles are stabilized by means of the hydrocolloids. This means that the solid lubricant particles in the aqueous solution come into contact with the swollen polymeric hydrocolloids and interact with them on the surface. In principle, it is possible here for the solid lubricant particle to be stabilized both through interaction with the side chains or through contact with the backbone of the hydrocolloid. Without being bound by theory, the hydrocolloid particles are adsorbed on the lubricant surface, with a polymer layer being at least partially formed around the solid lubricant. This adhesive hydrocolloid layer is able to mechanically stabilize the lubricant particle in the solution and in the phosphating layer.
  • the deposited phosphating layer it is possible for the deposited phosphating layer to have a proportion of 15 to 60% by weight, more preferably 20 to 40% by weight, of solid lubricant particles.
  • the size of the stabilized solid lubricant particles can be in the range between 0.5 ⁇ m and 3 ⁇ m, preferably between 1.0 ⁇ m and 2 ⁇ m.
  • the size of the stabilized lubricant particles can be determined by dynamic laser light scattering or by means of microscopic methods.
  • the weight ratio of solid lubricant particles to hydrocolloid can be varied within a wide range without departing from the area of effective stabilization of the solid particle. The ratio can expediently be varied from 100: 1 up to 1: 100. This means that an effective stabilization of the lubricant particle can also be achieved if only part of its surface is covered by the hydrocolloids which can be used according to the invention.
  • the stabilized lubricant particles are, at least partially, embedded in the phosphating layer.
  • the stabilized solid lubricant particles are not only deposited on the surface or in the pores of the phosphating layer, but rather are also incorporated into the phosphating layer.
  • a stabilized solid lubricant particle can be completely or partially surrounded by zinc phosphate.
  • the stabilized solid lubricant particles after a single immersion of the workpiece without additional mechanical movement in demineralized water at 20 ° C for 1 minute, at least 60% by weight, preferably 80% by weight and furthermore preferably at least 90% by weight of the stabilized solid lubricant particles remain non-washable within the layer .
  • the total amount of stabilized solid lubricant particles can be determined by dissolving the material and subsequent quantitative elemental analysis.
  • the amount of stabilized solid lubricant particles bound only on the surface can result from a determination of the concentration of the stabilized solid lubricant particles in the washing water.
  • the proportion of the washed / unwashed coated workpieces can also be determined using quantitative X-ray methods such as ED-RFX.
  • the hydrocolloid can be a nitrogen-containing hydrocolloid.
  • the nitrogen-containing hydrocolloids seem to be able to form stable coacervates with the solid lubricant particles. These special coacervates enable a particularly adequate stabilization of the solid lubricant particles in the solution and ensure that the particles are correctly incorporated into the phosphating layer.
  • the nitrogen-containing hydrocolloids can therefore contribute to an effective separation of the solid lubricant particles without the separation of the other phosphating constituents being impaired in a quality-reducing manner.
  • the cationic charge of the N-hydrocolloid in the prevailing bath conditions also seems to favor this separation behavior, with both the stabilization of the lubricant particles in the bath and the incorporation of these in the phosphating layer being positively influenced .
  • the result is a mechanically flexible and sufficiently stable encapsulation of the solid lubricants, which do not disturb the layer structure of the phosphating layer on the workpiece and can easily be released in a cold forming process under mechanical stress.
  • the hydrocolloid has the nitrogen either in the side chains, on the hydrocolloid backbone or both and.
  • the hydrocolloids can preferably have nitrogen atoms both within the chain and on the side groups. The nitrogen can also form different organic functional groups known to the person skilled in the art.
  • the hydrocolloids can be selected from the group comprising polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, collagen, gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate, amidopectins, and copolymers and / or mixtures thereof.
  • This group of nitrogen-containing hydrocolloids in particular leads in combination with the most common solid lubricant particles to particularly strong interactions and thus to a particularly suitable mechanical stabilization of the solid lubricant particles and / or the resulting phosphating layer.
  • the hydrocolloid can preferably have between 5 and 40 mol%, furthermore preferably between 10 and 30 mol% nitrogen. These amounts of nitrogen in the hydrocolloid can lead to a sufficient swelling behavior with development of the hydrocolloid in the phosphating solution and thus contribute to a quick and effective interaction with the solid lubricant particles.
  • the hydrocolloids can be selected from the group of vegetable or animal nitrogen-containing hydrocolloids consisting of gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate or mixtures thereof.
  • the hydrocolloid can be gelatin with a molecular weight of greater than or equal to 1000 Da and less than or equal to 100,000 Da.
  • Gelatin with a molecular weight in the range specified above can form particularly stable complexes with solid lubricant particles. This can be due in particular to the fact that gelatine swells particularly well in acid phosphating baths and forms an almost completely unfolding chain. This unfolded chain is in turn able to interact particularly effectively with the solid lubricant particles and to stabilize them mechanically.
  • Another reason for the special stabilization could be that gelatine has nitrogen in both the basic structure and the side chains. This division of the nitrogen allows the hydrocolloid chain to bind to the solid lubricant particles particularly quickly and effectively.
  • Preferred molecular weight ranges for the gelatin are furthermore between greater than or equal to 5000 Da and less than or equal to 75,000 Da, more preferably between greater than or equal to 10000 Da and less than or equal to 50,000 Da. High quality phosphating layers can be obtained within these areas.
  • the solid lubricant particles from the group comprising metal and ammonium salts of saturated fatty acids, MoS 2 , h-BN, WS 2 , graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS PET, PUR, clay, talc, TiO 2 , mullite, CuS, PbS, Bi 2 S 3 , CdS or mixtures thereof can be selected.
  • These compounds can be sufficiently stabilized by the nitrogen-containing hydrocolloids in the chemical environment of a phosphating bath and built into a phosphating layer in sufficient quantities without the structure of the layer being excessively disturbed.
  • Coherent, stable phosphating layers are obtained which are provided with a sufficient amount of lubricant so that further lubricant application in the course of further mechanical processing can be dispensed with.
  • the lubricant particles are advantageously present in particulate form.
  • the particles without stabilization can have a size (greatest distance within the lubricant particle) of greater than or equal to 10 nm and less than or equal to 10 ⁇ m, preferably greater than or equal to 25 nm and less than or equal to 5 ⁇ m, further preferably greater than or equal to 30 nm and less than or equal to 2.5 ⁇ m.
  • These particle sizes can be incorporated without destroying the basic structure of the phosphating layer and provide sufficient quantities of lubricant.
  • the size of the lubricant particles can be determined using methods known to those skilled in the art, such as laser light scattering.
  • the solid lubricant particles can consist of MoS 2 and have a platelet-shaped geometry.
  • Molybdenum sulphide lubricant particles can be stabilized particularly effectively by hydrocolloids and provide installation kinetics that can be controlled over a wide range. In this way, sufficient quantities of lubricant particles can be built into the layer deposits even with short live contact times.
  • An extremely minor disruption of the layer structure the phosphating layer also results in particular when the particles have a platelet-shaped geometry. This geometry can lead to a higher loading of the phosphating layer with lubricant particles and can guarantee an immediate lubricating effect during mechanical processing.
  • the latter can be the case because the lubricant particles appear to be built into the phosphating layer with their elongated sides parallel to the workpiece surface.
  • the MoS 2 flakes then have a flaky geometry when the particle dimensions are within the following limits: an average length selected from a range with a lower limit of 0.1 ⁇ m and an upper limit of 2 ⁇ m and an average width a range with a lower limit of 0.1 ⁇ m and an upper limit of 2 ⁇ m and an average height selected from a range with a lower limit of 2 nm and an upper limit of 50 nm.
  • coherent phosphating layers can be produced which are provided with a sufficient amount of lubricant and do not require any additional lubricant additive in the context of mechanical aftertreatment.
  • This process can also be operated with high current densities, so that high deposition speeds and thus high layer thicknesses can be achieved with short process times.
  • the process can be easily combined with the common phosphating pre-treatment steps such as alkaline cleaning with or without surfactant and with or without intermediate rinsing.
  • the process is preferably an immersion process
  • the bath composition can furthermore have accelerators such as urea, nitrates, chlorates, bromates, hydrogen peroxide, ozone, organic nitro bodies, peroxy compounds, hydroxylamine, nitrite nitrate, nitrate perborate or mixtures thereof.
  • the coating solution is preferably an emulsion with emulsion droplets in the sub-micron range.
  • the zinc phosphate solution can be adjusted to an acidic pH range using acids. Rinsing with demin, for example, are possible follow-up treatments. Water or post-passivation with chromic acid, chromic acid / phosphoric acid solution or organic post-passivation with poly (vinylphenol).
  • Preferred bath parameters can result from: - temperature ⁇ 20 and ⁇ 70 ° C - PH value ⁇ 0.5 and ⁇ 2.5 - Zn concentration ⁇ 10 and ⁇ 70 g / L - phosphate concentration ⁇ 35 and ⁇ 70 g / L - lubricant particle concentration ⁇ 2 and ⁇ 25 g / L - hydrocolloid concentration ⁇ 0.01 and ⁇ 5 g / L - wetting agent concentration ⁇ 0.5 and ⁇ 5 g / L - current density ⁇ 10 and ⁇ 20 A / dm 2 - contact time ⁇ 1 and ⁇ 15 sec
  • the stabilized phosphating layer containing solid lubricant particles can be deposited on a workpiece which has a phosphating layer with the elements ZnXP on the surface, X being selected from the group comprising Fe, Ni, Ca, Mn.
  • X being selected from the group comprising Fe, Ni, Ca, Mn.
  • the deposition of further metals from the group mentioned above can contribute to an additional mechanical stabilization of the phosphating layer. In this way, the proportion of lubricant can be increased so that particularly effective, self-lubricating workpieces can be obtained.
  • the current-carrying contact time of a surface element of the workpiece with the aqueous electrolyte solution can be greater than or equal to 1 second and less than or equal to 100 seconds.
  • the method according to the invention is particularly suitable for being able to deposit a sufficiently thick phosphating layer on a metal workpiece within short process times. For this reason, the live contact time, i.e. the time in which the workpiece is immersed in the bath and the workpiece is flowed through, can be kept very short. This is particularly important for wires and tapes which are drawn through the coating baths at high speeds. This time period expressly does not include the time during which components of the bath are still on the surface of the workpiece, but no actual coating (deposit) takes place.
  • the weight per unit area of the deposited, stabilized solid lubricant particles containing phosphating layer can be greater than or equal to 0.5 g / m 2 and less than or equal to 10 g / m 2 .
  • the incorporation of stabilized solid lubricant particles can lead to significantly lower surface weights compared to the usual phosphating processes. In this way, for example, costs for the use of coating metals can also be saved.
  • These weights per unit area provide sufficiently coherent and firmly adhering layers, which can only be partially destroyed after significant mechanical stress and, as a result, release the lubricant.
  • the weight per unit area can also be greater than or equal to 0.75 g / m 2 and less than or equal to 8 g / m 2 and furthermore preferably greater than or equal to 1.0 g / m 2 and less than or equal to 5.0 g / m 2 .
  • the aqueous electrolyte solution can additionally contain an anionic, cationic, amphoteric or non-ionic wetting agent in one concentration of greater than or equal to 0.1 and less than or equal to 10 g / l.
  • the addition of this amount of wetting agent can lead to the stabilized solid lubricant particles being distributed more homogeneously in the bath solution and overall a homogeneous application to the metallic workpiece is achieved.
  • the wetting agents can contribute to increasing the coating speed. This can contribute to a reduction in the overall process times.
  • the phosphating solution can have a ratio of free acid to total acid (FSV, free acid ratio) of 2.5 and 10 and more preferably of 5.0 and 8 8.0.
  • metallic, coated workpieces at least comprising a self-lubricating phosphating layer having solid lubricant particles stabilized by hydrocolloids.
  • draw-peeled workpieces in particular draw-peeled wires.
  • draw-peeled surface of the workpiece is electrochemical, e.g. by pickling, or mechanically, e.g. by blasting, brushing or grinding, is activated before a coating according to the invention takes place.
  • a phosphated cold heading wire is produced, a steel wire with a diameter of 10 mm being coated with a phosphating solution of the following composition for about 10 seconds
  • Zinc 40 g / L
  • Phosphate 40 g / L
  • Acid ratio of free acid to total acid 7.5 PH value: 1.2 gelatin 0.2 g / L (hydrocolloid)
  • Wetting agent (BASF Crafol AP 261) 0.2 g / L Molybdenum disulfide particles (5 ⁇ m) 6.0 g / L is pulled.
  • the temperature of the bath is approx. 55 ° C and the strength of the direct current is approx. 12 A / dm 2 .
  • a phosphating layer with an average thickness of 4-8 g / m 2 is deposited, which has embedded molybdenum sulfide particles.
  • the phosphated cold heading wire is rinsed with water and then drawn in one step to a diameter of 7 mm at a speed of 0.06 m / sec. Pulling takes place without the addition of any other lubricant.
  • the wire can be adjusted with a constant final diameter pull without problems and there is no breakage of the wire or any other loss of quality.
  • a phosphated cold heading wire is produced, a cold heading wire with a diameter of 10 mm for approx. 2 seconds through a phosphating solution of the following composition: Zinc: 45 g / L Phosphate: 40 g / L Acid ratio of free acid to total acid: 6.5 PH value: 1.2 Polyethyleneimine G 35 BASF 0.1 g / L (hydrocolloid) Wetting agent (BASF Lutensol ON 110) 0.5 g / L Boron nitride particles 1 ⁇ m (Hebofill 410) 5.5 g / L is pulled.
  • the other bath parameters correspond to those of Example 1.
  • a phosphating layer with an average thickness of 6 g / m 2 is deposited which has embedded boron nitride particles.
  • the phosphated cold heading wire is rinsed with water and then drawn in one step to a diameter of 7 mm. Pulling takes place without the addition of any other lubricant.
  • the wire can be drawn with a constant final diameter without problems and there is no tearing of the wire or any other loss of quality.

Description

Die vorliegende Erfindung betrifft eine selbstschmierende, elektrolytisch abgeschiedene Phosphatierungsbeschichtung auf metallischen Werkstücken aufweisend stabilisierte, in die Phosphatierungsbeschichtung eingelagerte Festschmierstoffe und ein Verfahren zur Herstellung derselben.The present invention relates to a self-lubricating, electrolytically deposited phosphating coating on metallic workpieces comprising stabilized solid lubricants embedded in the phosphating coating and a method for producing the same.

Die Funktionalität metallischer Werkstücke lässt sich heutzutage durch eine Vielzahl nachgelagerter Verarbeitungsschritte gezielt erweitern. Insbesondere zur Modifikation der Oberflächeneigenschaften werden industrielle Verfahren bereitgestellt, welche in der Lage sind sowohl die ästhetischen wie auch die Anwendungseigenschaften so zu verändern, dass langlebigere und optisch ansprechendere Produkte erhältlich sind. Neben abtragenden Verfahren wie das Polieren und Schleifen kommen für die Weiterverarbeitung vorzugsweise Beschichtungsverfahren zum Einsatz, in denen gasförmige, flüssige, gelöste oder feste Substanzen zum Aufbau zusätzlicher, kohärenter Schichten auf dem Werkstück genutzt werden. Für schnelle Beschichtungen setzt man flüssige, vorwiegend wässrige Systeme ein, aus welchen gelöste Substanzen chemisch oder aber auch elektrochemisch abgeschieden werden können. Beispiele für elektrolytische Beschichtungsverfahren sind das Chromatieren, das galvanische Verzinken und das Phosphatieren, wobei letzteres dann Verwendung findet, wenn die Korrosionsbeständigkeit erhöht oder aber eine Kaltmassivumformung des metallischen Grundkörper beabsichtigt ist. Bei der Kaltmassivumformung metallischer Werkstücke entsteht aufgrund der Flächenpressung eine hohe Reibung zwischen Werkzeug und Werkstück und es kann zum lokalen Verschweißen der aufeinander gleitenden Oberflächen und nachfolgender Beschädigung des Werkstücks und/oder des Werkzeugs kommen. Zur Verminderung der Reibung wird vor der Umformung eine Phosphatierungsschicht aufgebracht, welche üblicherweise in Kombination mit dem Auftrag weiterer Schmiermittel zu einer Reduzierung der Reibung bei dem folgenden Umformprozess beiträgt. Die Gleitwirkung der Phosphatschicht ist dabei selbst von nur untergeordneter Bedeutung, wichtiger ist, dass diese Schicht eine kristalline Struktur mit hoher Porosität aufweist, welche im Vergleich zu unbehandelten Metalloberflächen bis zu 13 mal mehr Schmiermittel, beispielsweise Öl, aufnehmen kann. Auch Festschmierstoffe haften auf einer phosphatierten Metalloberfläche besser als auf blankem Stahl. Mittels dieser Kombinationsbehandlung aus Phosphatierung und anschließender Öl-/Schmierstoffauflage lassen sich die auftretenden Kräfte bei der Kaltumformung so vermindern, dass ein reproduzierbarer Bearbeitungsprozess ermöglicht wird.The functionality of metallic workpieces can nowadays be expanded in a targeted manner through a large number of downstream processing steps. In particular, for the modification of the surface properties, industrial processes are provided which are able to change both the aesthetic and the application properties in such a way that more durable and visually more appealing products are available. In addition to abrasive processes such as polishing and grinding, coating processes are preferably used for further processing, in which gaseous, liquid, dissolved or solid substances are used to build up additional, coherent layers on the workpiece. For fast coatings, liquid, predominantly aqueous systems are used, from which dissolved substances can be deposited chemically or electrochemically. Examples of electrolytic coating processes are chromating, galvanic galvanizing and phosphating, the latter being used when the corrosion resistance is increased or else cold massive forming of the metallic base body is intended. During the cold forging of metallic workpieces, the surface pressure creates a high level of friction between the tool and the workpiece, which can lead to local welding of the surfaces sliding on each other and subsequent damage of the workpiece and / or the tool. In order to reduce the friction, a phosphating layer is applied before the deformation, which, in combination with the application of further lubricants, usually contributes to a reduction in the friction in the subsequent deformation process. The sliding effect of the phosphate layer itself is only of secondary importance; it is more important that this layer has a crystalline structure with high porosity, which can absorb up to 13 times more lubricant, for example oil, compared to untreated metal surfaces. Solid lubricants also adhere better to a phosphated metal surface than to bare steel. By means of this combination treatment of phosphating and subsequent oil / lubricant coating, the forces that occur during cold forming can be reduced so that a reproducible machining process is made possible.

Ein mögliches Verfahren zur Phosphatierung von Metallschichten nennt beispielweise die DE 103 48 251 A1 . Es werden elektrolytische Abscheidungen aus sauren wässrigen Lösungen offenbart, die zumindest Zink- und Phosphationen enthalten und unter gleichzeitiger Anwendung von Gleichstrom erfolgen. Simultan mit der Abscheidung der Phosphatierungsschicht findet dabei eine elektrolytische Abscheidung von Zink im selben Elektrolyten statt, wobei die Stromdichte größer als -5 A/dm2 beträgt.One possible method for phosphating metal layers is named for example DE 103 48 251 A1 . Electrolytic depositions from acidic aqueous solutions are disclosed which contain at least zinc and phosphate ions and are carried out with the simultaneous application of direct current. Simultaneously with the deposition of the phosphating layer, an electrolytic deposition of zinc takes place in the same electrolyte, the current density being greater than -5 A / dm 2 .

Ein weiteres Verfahren zur Phosphatierung einer Metallschicht durch elektrolytische Abscheidung aus sauren wässrigen Lösungen, die zumindest Zink- und Phosphationen enthalten ist in der DE 10 2006 035 974 A1 offenbart. Diese Schrift offenbart Metallschichten, welche mit einer Zink(Zinklegierung)/Zinkphosphatschicht bedeckt sind, wobei in die Zink(Zinklegierung)/Zinkphosphatschicht Fremdpartikel eingelagert wurden.Another method for phosphating a metal layer by electrolytic deposition from acidic aqueous solutions that contain at least zinc and phosphate ions is in the DE 10 2006 035 974 A1 disclosed. This document discloses metal layers which are covered with a zinc (zinc alloy) / zinc phosphate layer, foreign particles having been incorporated into the zinc (zinc alloy) / zinc phosphate layer.

Die DE 164 492 7 gibt ein Verfahren zum Herstellen von Trockenschmiermittel enthaltenden Teilchen an, die in auf gleitender Reibung ausgesetzten Werkstücken auf galvanischem Wege aufzubringende Metallüberzüge eingelagert werden sollen, indem man sie in den Elektrolyten einbringt und während der galvanischen Abscheidung des Metallüberzuges gegen die Oberfläche des als Kathode geschalteten Werkstückes lenkt, wobei feinzerteiltes, pulverisiertes Trockenschmiermittel gegebenenfalls zusammen mit Siliziumcarbid- oder Aluminiumoxidteilchen als verschleißfeste Teilchen in eine Kunstharzlösung oder in eine Silikatlösung, der gegebenenfalls als eine Umsetzung in schwer lösliche Verbindungen bewirkende Stoffe Kalkwasser, Aluminiumchlorid oder Schwefelsäure beigemischt sind, eingerührt wird, dass man das Lösungsmittel aus der Mischung durch Verdampfen austreibt und den Rückstand auf die gewünschte Teilchengröße mechanisch zerkleinert.The DE 164 492 7 discloses a process for the production of particles containing dry lubricant which are to be incorporated into metal coatings to be applied by electroplating in workpieces exposed to sliding friction, by placing them in the electrolyte introduces and during the galvanic deposition of the metal coating against the surface of the workpiece connected as cathode, with finely divided, powdered dry lubricant, optionally together with silicon carbide or aluminum oxide particles as wear-resistant particles in a synthetic resin solution or in a silicate solution, which optionally as a conversion into poorly soluble compounds effecting substances are admixed with lime water, aluminum chloride or sulfuric acid, is stirred in, that the solvent is driven out of the mixture by evaporation and the residue is mechanically comminuted to the desired particle size.

Eine weitere Methode zum doppelten Phosphatieren, gegebenenfalls auch unter Zuhilfenahme eines Polymers in der Phosphatierlösung, ist in der DE 197 81 959 B4 beschreiben. Nach einer ersten Phosphatierung wird das phosphatierte Werkstück einem Bad aus 8,5 bis 100 Ca+1 g /l; 0,5 bis 100 Zn2+ g/l, 5 bis 100 PO43- g/l; 0 bis 100 NO3- g/l; 0 bis 100 CIO3- g/l und 0 bis 50 F- oder Cl- g/l ausgesetzt, welchem zur Verbesserung der Reibungseigenschaften der zweiten Phosphatierungsschicht Polymere und Festschmiermitteln zugegeben werden.Another method for double phosphating, optionally also with the aid of a polymer in the phosphating solution, is in the DE 197 81 959 B4 describe. After an initial phosphating, the phosphated workpiece is bathed in a bath of 8.5 to 100 Ca +1 g / l; 0.5 to 100 Zn 2+ g / l, 5 to 100 PO4 3 g / l; 0 to 100 NO 3 g / l; 0 to 100 CIO 3 g / l and 0 to 50 F - or Cl - g / l, to which polymers and solid lubricants are added to improve the friction properties of the second phosphating layer.

Des Weiteren beschäftigen sich die DE 19 781 959 B4 und die GB 20 28 830 A mit phosphatierten Metalloberflächen.Furthermore, the DE 19 781 959 B4 and the GB 20 28 830 A with phosphated metal surfaces.

Die bisherigen Verfahren zum Aufbringen von Festschmiermitteln auf Phosphatierungsschichten sind aufwendig und teuer und gestatten es insbesondere nicht, hohe Beschichtungsgeschwindigkeiten zu erreichen oder integrierte Festschmierstoffpartikel innerhalb von Phosphatierungsschichten bereitzustellen. Es ist daher die Aufgabe der folgenden Erfindung die Nachteile des Standes der Technik auszuräumen und insbesondere selbstschmierende Phosphatierungsschichten sowie Verfahren zu deren Herstellung bereitzustellen.The previous methods of applying solid lubricants to phosphating layers are complex and expensive and, in particular, do not allow high coating speeds to be achieved or integrated solid lubricant particles to be provided within phosphating layers. It is therefore the object of the following invention to eliminate the disadvantages of the prior art and, in particular, to provide self-lubricating phosphating layers and processes for their production.

Die Merkmale des erfindungsgemäßen Verfahrens und die Merkmale der erfindungsgemäßen Phosphatierungsschichten sind in den unabhängigen Ansprüchen wiedergegeben. Die abhängigen Ansprüche geben hingegen bevorzugte Ausgestaltungen des Verfahrens und der Schichten wieder.The features of the method according to the invention and the features of the phosphating layers according to the invention are reproduced in the independent claims. The The dependent claims, however, reproduce preferred configurations of the method and the layers.

Erfindungsgemäß ist eine elektrolytisch abgeschiedene Phosphatierungsschicht mindestens umfassend die Elemente Zink und Phosphor auf einem metallischen Werkstück, wobei die Phosphatierungsschicht durch Hydrokolloide stabilisierte Festschmierstoffpartikel aufweist, wobei die stabilisierten Festschmierstoffpartikel zumindest partiell in die Phosphatierungsschicht eingelagert sind, , wobei die Hydrokolloide ausgewählt sind aus der Gruppe umfassend Polyamine, Polyimine sowie deren quaternäre Salze, Polyvinylpyrrolidone, Polyvinylpyridine, Kollagen, Gelatine, Chitosanhydrolysat, Keratinhydrolysat, Caseinhydrolysat, Amidopektine, sowie deren Copolymere und/oder Mischungen daraus, und die Festschmierstoffpartikel ausgewählt sind aus der Gruppe umfassend Metall- und Ammoniumsalze gesättigter Fettsäuren, MoS2, h-BN, WS2, Graphit, oxidiertes und fluoriertes Graphit, PTFE, Nylon, PE, PP, PVC, PS, PET, PUR, Ton, Talk, TiO2, Mullit, CuS, PbS, Bi2S3, CdS oder Mischungen daraus. Überraschenderweise wurde gefunden, dass sich Phosphatierungsschichten mit oben genannten Merkmalen auf Werkstücken reproduzierbar abscheiden lassen und selbst hohe Abscheidegeschwindigkeiten zu kohärenten Schichten führen, welche sich ohne weiteren Gleitmittel- oder Schmierstoffauftrag in folgenden Kaltumformungsschritten ohne Probleme verarbeiten lassen. Dieser Befund ist insbesondere deshalb erstaunlich, da zu erwarten gewesen wäre, dass der Einbau von Festschmierstoffpartikeln in die Phosphatierungsschicht zu deutlichen Qualitätseinbußen der abgeschiedenen Schicht führt. Diese Feststoffpartikel können nämlich dazu führen, dass die Schicht mechanisch destabilisiert wird oder aber, dass überhaupt keine zusammenhängenden (kohärenten) Schichten gebildet werden. Zusätzlich ist überraschend, dass diese qualitativ hochwertigen Schichten mit eingebauten Schmierstoffpartikeln innerhalb üblicher Badzusammensetzungen und -Parameter erhalten werden können. So ist es insbesondere möglich, die erfindungsgemäßen Schichten mit gleichen oder ähnlichen Abscheidegeschwindigkeiten herzustellen, so dass sich im Rahmen der Effizienz der Bäder keine oder nur minimale Einbußen ergeben. Weiterhin ist es von Vorteil, dass durch den Einbau der Schmierstoffpartikel der zusätzliche Schritt eines Gleitmittel- oder Gleitmittel/Schmierstoffpartikelauftrags entfällt, so dass die erfindungsgemäß phosphatierten Werkstücke ohne weitere Verfahrensschritte einer mechanischen Kaltumformung zugeführt werden können. Ohne durch die Theorie gebunden zu sein, ergibt sich die qualitätsgerechte Abscheidung und die daraus resultierende Stabilität der zusätzlich festschmierstoffbeladenen Phosphatierungsschichten aus der Anwesenheit der Hydrokolloide im Phosphatierungsbad. Diese Hydrokolloide sind anscheinend in der Lage, die Festschmierstoffe in der Lösung in der Form von Koazervaten zu stabilisieren, indem sie sich an die Festschmierstoffpartikel anlagern. Diese Anlagerungskomplexe können anscheinend zu einer besseren Verteilung der Festschmierstoffpartikel in der Lösung beitragen. Zudem scheinen diese Koazervate in der Lage, sich im Vergleich zu den nicht-stabilisierten Partikeln schneller und weniger das Schichtgefüge störend in die Phosphatierungsschicht einzulagern. Es ergibt sich ein gleichmäßigerer und kohärenter Phosphatierungsschichtaufbau, welcher im Vergleich zu Schichten mit nicht stabilisierten Partikeln mechanisch stabiler ist.According to the invention, an electrolytically deposited phosphating layer is at least comprising the elements zinc and phosphorus on a metallic workpiece, the phosphating layer having solid lubricant particles stabilized by hydrocolloids, the stabilized solid lubricant particles being at least partially embedded in the phosphating layer, the hydrocolloids being selected from the group comprising polyamines , polyimines as well as their quaternary salts, polyvinyl pyrrolidones, polyvinyl pyridines, collagen, gelatin, Chitosanhydrolysat, keratin hydrolyzate, casein hydrolyzate, Amidopektine, as well as their copolymers and / or mixtures thereof, and the solid lubricant particles metal and ammonium salts are selected from the group comprising saturated fatty acids, MoS 2 , h-BN, WS 2 , graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS, PET, PUR, clay, talc, TiO 2 , mullite, CuS, PbS, Bi 2 S 3 , CdS or mixtures thereof. Surprisingly, it has been found that phosphating layers with the above features can be reproducibly deposited on workpieces and even high deposition speeds lead to coherent layers which can be processed without any problems in subsequent cold forming steps without further application of lubricant or lubricant. This finding is particularly astonishing because it would have been expected that the incorporation of solid lubricant particles into the phosphating layer would lead to a significant loss of quality of the deposited layer. These solid particles can lead to the fact that the layer is mechanically destabilized or that no contiguous (coherent) layers are formed at all. In addition, it is surprising that these high-quality layers with built-in lubricant particles can be obtained within conventional bath compositions and parameters. In particular, it is possible to produce the layers according to the invention with the same or similar deposition rates, so that there are no or only minimal losses in the efficiency of the baths. Furthermore, it is advantageous that the incorporation of the lubricant particles the additional step of applying lubricant or lubricant / lubricant particles is omitted, so that the workpieces phosphated according to the invention can be fed to mechanical cold forming without further process steps. Without being bound by theory, the high-quality deposition and the resulting stability of the phosphating layers, which are additionally laden with solid lubricant, result from the presence of the hydrocolloids in the phosphating bath. These hydrocolloids are apparently able to stabilize the solid lubricants in the solution in the form of coacervates by attaching themselves to the solid lubricant particles. These addition complexes can apparently contribute to a better distribution of the solid lubricant particles in the solution. In addition, these coacervates appear to be able to In comparison to the non-stabilized particles, the layer structure is stored more quickly and less disruptively in the phosphating layer. The result is a more uniform and coherent phosphating layer structure, which is mechanically more stable compared to layers with non-stabilized particles.

Eine Phosphatierungsschicht im Sinne der Erfindung ist eine elektrolytisch abgeschiedene Zinkphosphatschicht auf einem metallischen Werkstück. Diese kann prinzipiell nach bekannten Verfahren aufgetragen werden und ist beispielsweise zum Korrosionsschutz niedrig legierter Stähle weit verbreitet. In einer pH-gesteuerten Fällungsreaktion werden beim Phosphatieren Zinkphosphatkristalle (Hopeit) durch Überschreiten dessen Löslichkeitsprodukts auf der Bauteiloberfläche abgeschieden. Dies kann beispielsweise durch ein Anbeizen des Grundmetalls (z. B. Fe → Fe2+ + 2e-) erreicht werden, wobei die frei werdenden Elektronen der Protonenreduktion dienen. Hierbei wird der pH-Wert der wässrigen Badlösung in einen neutralen bis basischen Bereich verschoben und das Löslichkeitsprodukt des Zinkphosphats überschritten. Die sich bildende Schicht ist in der Regel ca. 2 - 20 µm stark und kann einen Bedeckungsgrad der Bauteiloberfläche von ca. 90% bis 95%, teilweise auch bis 100% aufweisen.A phosphating layer in the context of the invention is an electrolytically deposited zinc phosphate layer on a metallic workpiece. In principle, this can be applied using known methods and is widely used, for example, to protect low-alloy steels from corrosion. In a pH-controlled precipitation reaction, zinc phosphate crystals (hopeite) are deposited on the component surface during phosphating by exceeding its solubility product. This can be achieved, for example, by pickling the base metal (e.g. Fe → Fe 2+ + 2e - ), with the electrons being released serving to reduce protons. This shifts the pH of the aqueous bath solution into a neutral to basic range and exceeds the solubility product of the zinc phosphate. The layer that forms is generally approx. 2 - 20 µm thick and can have a coverage of the component surface of approx. 90% to 95%, sometimes up to 100%.

Die erfindungsgemäß aufgebrachte Phosphatierungsschicht wird elektrolytisch abgeschieden. Dies kann entweder durch das Anlegen eines Gleichstroms oder aber auch durch Anlegen eines gepulsten Gleichstromes erfolgen. Übliche Stromstärken liegen in einem Bereich von 0,1 und 250 mA/cm2 und die Badtemperaturen können in einem Bereich von 20 bis zu 90 °C gewählt werden. Bevorzugt liegt die Temperatur zwischen 25°C und 80°C. Die Beschichtungsdauer, d.h. die Zeit in welcher ein Strom durch das Werkstück fließt und Metallionen aus der Lösung auf dem Werkstück abgeschieden werden, ist frei bestimmbar und kann zweckmäßigerweise zwischen wenigen Sekunden, beispielsweise 1 Sekunde und mehreren Minuten, wie beispielsweise 5 Minuten betragen. Zweckmäßigerweise wird die Beschichtungszeit als Funktion der Konzentration der abzuscheidenden Ionen, der gewünschten Schichtdicke und der Werkstückgeometrie gewählt. So liegen die Behandlungszeiten moderner Anlagen zur elektrolytischen Verzinkung und Phosphatierung von Stahlbändern bei 90 bis 120 m/min. Es ergeben sich Abscheidezeiten im Bereich bis zu 5 Sekunden. Im Allgemeinen kann bei dieser Beschichtungssituation mit Behandlungszeiten von 0,5 bis 5 Sekunden gearbeitet werden. In den gängigsten Anwendungen kann die Schichtdicke der Phosphatierungsschicht von 5 µm bis 15 µm betragen.The phosphating layer applied according to the invention is deposited electrolytically. This can be done either by applying a direct current or by applying a pulsed direct current. Usual currents are in the range of 0.1 and 250 mA / cm 2 and the bath temperatures can be selected in a range from 20 to 90 ° C. The temperature is preferably between 25 ° C and 80 ° C. The coating duration, ie the time in which a current flows through the workpiece and metal ions are deposited from the solution on the workpiece, can be freely determined and can expediently be between a few seconds, for example 1 second, and several minutes, such as 5 minutes. The coating time is expediently the desired as a function of the concentration of the ions to be deposited Layer thickness and the workpiece geometry selected. The treatment times of modern systems for electrolytic galvanizing and phosphating of steel strips are between 90 and 120 m / min. There are deposition times in the range of up to 5 seconds. In general, treatment times of 0.5 to 5 seconds can be used in this coating situation. In the most common applications, the layer thickness of the phosphating layer can be from 5 µm to 15 µm.

Mittels der erfindungsgemäßen Phosphatierungsbeschichtungen lassen sich metallische Werkstücke ausrüsten. Unter den Begriff eines metallischen Werkstückes fallen ein-, zwei- oder drei-dimensionale Gebilde aus in der Regel niedrig legierten Stählen. Ebenso können diese Schichten aber auch auf rostfreien Stählen sowie anderen edlen und unedlen Metallen, wie z.B. Eisen, Al, Ti, Cu, Ni, oder deren Legierungen, sowie feuerverzinkten Materialien angebracht werden. Unter den Begriff der eindimensionalen Gebilde fallen beispielsweise Drähte, der zwei-dimensionalen beispielsweise Bänder oder Bleche und der dreidimensionalen beispielsweise komplexere Formen wie Lagerschalen. Die metallischen Werkstücke können ein- oder mehrschichtig aufgebaut sein. So ist es insbesondere auch im Sinne der Erfindung, dass die stabilisierte Festschmierstoffpartikel aufweisende Phosphatierungsschicht auch auf einer "normalen" nicht mit stabilisierten Festschmierstoffpartikeln ausgerüsteten Schicht aufgebracht werden kann.Metallic workpieces can be equipped with the phosphating coatings according to the invention. The concept of a metallic workpiece includes one-, two- or three-dimensional structures made of usually low-alloy steels. These layers can also be used on stainless steels and other noble and base metals, such as Iron, Al, Ti, Cu, Ni, or their alloys, as well as hot-dip galvanized materials can be attached. The term one-dimensional structure includes, for example, wires, the two-dimensional structure, for example, strips or sheets, and the three-dimensional structure, for example, more complex shapes such as bearing shells. The metallic workpieces can be constructed in one or more layers. In particular, it is also within the meaning of the invention that the phosphating layer having stabilized solid lubricant particles can also be applied to a “normal” layer that is not provided with stabilized solid lubricant particles.

Die Festschmierstoffpartikel werden sowohl in der Lösung wie auch hochwahrscheinlich in der Phosphatierungsschicht durch Hydrokolloide stabilisiert. Die Hydrokolloide weisen dabei bevorzugt eine kettenartige Struktur aus einzelnen, aufeinanderfolgenden Bausteinen auf. Die Hydrokolloide sind befähigt in Wasser durch Quellen unter Anlagerung von Wasser an das Hydrokolloidgerüst viskose Lösungen ausbilden. Die erfindungsgemäß einsetzbaren Hydrokolloide können aus ein und demselben (Homopolymer) oder aber auch aus unterschiedlichen Bausteinen (Heteropolymer) aufgebaut sein. Die Hydrokolloide können dabei ein Gewicht von vorzugsweise 1000 bis zu 1.000.000 Da aufweisen. Diese Teilchengröße hat sich für eine effektive Interaktion mit den Festschmierstoffpartikeln als besonders geeignet erwiesen. Größere Teilchen können den Einbau des Schmierstoffpartikels in die Schicht stören und kleinere Hydrokolloidgrößen können zu einer nur ungenügenden Stabilisierung des Schmierstoffteilchens und damit zu mechanisch instabilen Phosphatierungsschichten führen. Zweckmäßigerweise kann das Gewicht der Hydrokolloide über Gelpermeationstechniken anhand definierter Referenzproben bestimmt werden. Geeignete Hydrokolloide sind insbesondere die wasserlöslichen, d.h. quellbaren Hydrokolloide. Beispielhaft seien genannt Phenolsulfonat/Formaldehyd-Kondensate, Polyvinylalkohol, Polyether, Polyacrylate und -methacrylate, Polyacrylamide, Polyvinylamine, Polyamine, Polyimine sowie deren quaternäre Salze, Polyvinylpyrrolidone, Polyvinylpyridine, Polyvinylphosphonate sowie deren Copolymere, sowie natürliche Hydrokolloide wie Kollagen, Gelatine, Chitosanhydrolysat, Keratinhydrolysat, Caseinhydrolysat, Guar, Pektine, Agar-Agar, Stärke und modifizierte Stärke, Cellulosederivate wie Carboxyalkylcellulose oder Celluloseether, oder Mischungen und Copolymere daraus.The solid lubricant particles are stabilized by hydrocolloids both in the solution and most likely in the phosphating layer. The hydrocolloids preferably have a chain-like structure made up of individual, successive building blocks. The hydrocolloids are able to form viscous solutions in water by swelling with the accumulation of water on the hydrocolloid structure. The hydrocolloids which can be used according to the invention can be built up from one and the same (homopolymer) or else from different building blocks (heteropolymer). The hydrocolloids can have a weight of preferably 1000 to 1,000,000 Da. This particle size has proven to be a effective interaction with the solid lubricant particles proved to be particularly suitable. Larger particles can interfere with the incorporation of the lubricant particle into the layer and smaller hydrocolloid sizes can only lead to insufficient stabilization of the lubricant particle and thus to mechanically unstable phosphating layers. The weight of the hydrocolloids can expediently be determined using gel permeation techniques using defined reference samples. Suitable hydrocolloids are especially the water-soluble, ie swellable, hydrocolloids. Examples include phenol sulfonate / formaldehyde condensates, polyvinyl alcohol, polyethers, polyacrylates and methacrylates, polyacrylamides, polyvinylamines, polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, polyvinylphosphonates and their copolymers, as well as natural hydrocolloids such as collagen, gelatine, and chysate, keratin hydrolysates , Casein hydrolyzate, guar, pectins, agar-agar, starch and modified starch, cellulose derivatives such as carboxyalkyl cellulose or cellulose ethers, or mixtures and copolymers thereof.

Mittels der Hydrokolloide werden die Festschmierstoffpartikel stabilisiert. Dies bedeutet, dass die Festschmierstoffpartikel in der wässrigen Lösung mit den gequollenen polymeren Hydrokolloiden in Kontakt treten und an der Oberfläche mit diesen interagieren. Dabei ist prinzipiell möglich, dass der Festschmierstoffpartikel sowohl durch Wechselwirkung mit den Seitenketten oder aber auch durch Kontakt mit dem Rückgrat des Hydrokolloids stabilisiert wird. Ohne durch die Theorie gebunden zu sein wird, kommt es zu einer Adsorption der Hydrokolloidteilchen auf der Schmierstoffoberfläche, wobei zumindest partiell eine Polymerschicht um den Festschmierstoff ausgebildet wird. Diese haftende Hydrokolloidschicht ist in der Lage, das Schmierstoffteilchen in der Lösung und in der Phosphatierungsschicht mechanisch zu stabilisieren. In einer bevorzugten Ausführungsform ist es möglich, dass die abgeschiedene Phosphatierungsschicht einen Anteil von 15 bis 60 Gewichts-%, weiterhin bevorzugt von 20 bis 40 Gewichts-%, Festschmierstoffpartikel aufweist. Mittels dieses Schmierstoffanteils lässt sich für viele Anwendungen eine ausreichende intrinsische Schmierung unter gleichzeitiger Beibehaltung guter mechanischer Eigenschaften der Phosphatierungsschicht bewerkstelligen. Die Größe der stabilisierten Festschmierstoffpartikel kann im Bereich zwischen 0,5 µm bis zu 3 µm, bevorzugt zwischen 1,0 µm und 2 µm liegen. Die Größe der stabilisierten Schmierstoffpartikel kann dabei durch dynamische Laserlichtstreuung oder mittels mikroskopischer Methoden bestimmt werden. Das Gewichtsverhältnis Festschmierstoffpartikel zu Hydrokolloid kann innerhalb eines weiten Bereichs variiert werden, ohne dass das Gebiet einer effektiven Stabilisierung des Feststoffpartikels verlassen wird. Zweckmäßigerweise kann das Verhältnis von 100:1 bis zu 1:100 variiert werden. Dies bedeutet, dass eine effektive Stabilisierung des Schmierstoffpartikels auch dann erreichbar ist, wenn nur ein Teil dessen Oberfläche durch die erfindungsgemäß einsetzbaren Hydrokolloide belegt ist.The solid lubricant particles are stabilized by means of the hydrocolloids. This means that the solid lubricant particles in the aqueous solution come into contact with the swollen polymeric hydrocolloids and interact with them on the surface. In principle, it is possible here for the solid lubricant particle to be stabilized both through interaction with the side chains or through contact with the backbone of the hydrocolloid. Without being bound by theory, the hydrocolloid particles are adsorbed on the lubricant surface, with a polymer layer being at least partially formed around the solid lubricant. This adhesive hydrocolloid layer is able to mechanically stabilize the lubricant particle in the solution and in the phosphating layer. In a preferred embodiment, it is possible for the deposited phosphating layer to have a proportion of 15 to 60% by weight, more preferably 20 to 40% by weight, of solid lubricant particles. By means of this proportion of lubricant, sufficient intrinsic lubrication can be achieved for many applications with simultaneous Maintain good mechanical properties of the phosphating layer. The size of the stabilized solid lubricant particles can be in the range between 0.5 μm and 3 μm, preferably between 1.0 μm and 2 μm. The size of the stabilized lubricant particles can be determined by dynamic laser light scattering or by means of microscopic methods. The weight ratio of solid lubricant particles to hydrocolloid can be varied within a wide range without departing from the area of effective stabilization of the solid particle. The ratio can expediently be varied from 100: 1 up to 1: 100. This means that an effective stabilization of the lubricant particle can also be achieved if only part of its surface is covered by the hydrocolloids which can be used according to the invention.

In Folge der Elektrolyse werden die stabilisierten Schmierstoffpartikel, zumindest partiell, in die Phosphatierungsschicht eingelagert. Erfindungsgemäß werden die stabilisierten Festschmierstoffpartikel nicht nur auf der Oberfläche oder in die Poren der Phosphatierungsschicht abgeschieden, sondern vielmehr auch in die Phosphatierungsschicht mit eingebaut. Demzufolge kann ein stabilisierter Festschmierstoffpartikel sowohl ganz, wie auch partiell von Zinkphosphat umgeben sein. Es ist aber auch möglich, dass nicht jeder stabilisierter Festschmierstoffpartikel in die Schicht fest eingebaut ist, sondern, dass einige der stabilisierten Festschmierstoffpartikel nur adsorptiv auf der Werkstückoberfläche gebunden sind. Erfindungsgemäß verbleiben nach einem einmaligen Eintauchen des Werkstücks ohne zusätzliche mechanische Bewegung in entmineralisiertem Wasser bei 20°C für 1 Minute mindestens 60 Gewichts-%, bevorzugt 80 Gewichts-% und des Weiteren bevorzugt mindestens 90 Gewichts-% der stabilisierten Festschmierstoffpartikel nicht abwaschbar innerhalb der Schicht. Die Gesamtmenge an stabilisierten Festschmierstoffpartikeln kann dabei über ein Auflösen des Werkstoffs und anschließender quantitativer Elementaranalyse bestimmt werden. Die Menge an nur oberflächlich gebundenen stabilisierten Festschmierstoffpartikel kann sich aus einer Konzentrationsbestimmung der stabilisierten Festschmierstoffpartikel im Waschwasser ergeben. Alternativ lässt sich der Anteil auch an den gewaschenen/ungewaschenen beschichteten Werkstücken mittels quantitativer röntgenografischer Methoden wie ED-RFX bestimmen.As a result of the electrolysis, the stabilized lubricant particles are, at least partially, embedded in the phosphating layer. According to the invention, the stabilized solid lubricant particles are not only deposited on the surface or in the pores of the phosphating layer, but rather are also incorporated into the phosphating layer. As a result, a stabilized solid lubricant particle can be completely or partially surrounded by zinc phosphate. However, it is also possible that not every stabilized solid lubricant particle is permanently built into the layer, but that some of the stabilized solid lubricant particles are only bound adsorptively on the workpiece surface. According to the invention, after a single immersion of the workpiece without additional mechanical movement in demineralized water at 20 ° C for 1 minute, at least 60% by weight, preferably 80% by weight and furthermore preferably at least 90% by weight of the stabilized solid lubricant particles remain non-washable within the layer . The total amount of stabilized solid lubricant particles can be determined by dissolving the material and subsequent quantitative elemental analysis. The amount of stabilized solid lubricant particles bound only on the surface can result from a determination of the concentration of the stabilized solid lubricant particles in the washing water. Alternatively, the proportion of the washed / unwashed coated workpieces can also be determined using quantitative X-ray methods such as ED-RFX.

In einer ersten Ausgestaltung kann das Hydrokolloid ein stickstoffhaltiges Hydrokolloid sein. Insbesondere die stickstoffhaltigen Hydrokolloide scheinen in der Lage zu sein, mit den Festschmierstoffpartikeln stabile Koazervate auszubilden. Diese speziellen Koazervate ermöglichen eine besonders ausreichende Stabilisierung der Festschmierstoffpartikel in der Lösung und sorgen für einen korrekten Einbau der Partikel in die Phosphatierungsschicht. Speziell die stickstoffhaltigen Hydrokolloide können also zu einer effektiven Abscheidung der Festschmierstoffpartikel beitragen, ohne dass die Abscheidung der weiteren Phosphatierungsbestanteile qualitätsmindernd beeinträchtigt wird. Ohne hier durch die Theorie gebunden zu sein, scheint insbesondere auch die bei den vorherrschenden Badbedingungen kationische Ladung des N-Hydrokolloids dieses Abscheideverhalten zu begünstigen, wobei sowohl die Stabilisierung der Schmierstoffpartikel im Bad, wie auch der Einbau der Einbau dieser in die Phosphatierungsschicht positiv beeinflusst werden. Als Resultat ergibt sich eine mechanisch flexible und hinreichend stabile Einkapselung der Festschmierstoffe, welche das Schichtgefüge der Phosphatierungsschicht auf dem Werkstück nicht stören und bei mechanischer Belastung in einer Kaltumformung leicht freigesetzt werden können. Prinzipiell ist es möglich, dass das Hydrokolloid den Stickstoff entweder in den Seitenketten, am Hydrokolloidrückrat oder sowohl als auch aufweist. Bevorzugt können die Hydrokolloide sowohl innerhalb der Kette wie auch an den Seitengruppen Stickstoffatome aufweisen. Die Stickstoffe können zudem unterschiedliche, dem Fachmann bekannte organische funktionelle Gruppen bilden.In a first embodiment, the hydrocolloid can be a nitrogen-containing hydrocolloid. In particular, the nitrogen-containing hydrocolloids seem to be able to form stable coacervates with the solid lubricant particles. These special coacervates enable a particularly adequate stabilization of the solid lubricant particles in the solution and ensure that the particles are correctly incorporated into the phosphating layer. In particular, the nitrogen-containing hydrocolloids can therefore contribute to an effective separation of the solid lubricant particles without the separation of the other phosphating constituents being impaired in a quality-reducing manner. Without being bound by theory, the cationic charge of the N-hydrocolloid in the prevailing bath conditions also seems to favor this separation behavior, with both the stabilization of the lubricant particles in the bath and the incorporation of these in the phosphating layer being positively influenced . The result is a mechanically flexible and sufficiently stable encapsulation of the solid lubricants, which do not disturb the layer structure of the phosphating layer on the workpiece and can easily be released in a cold forming process under mechanical stress. In principle it is possible that the hydrocolloid has the nitrogen either in the side chains, on the hydrocolloid backbone or both and. The hydrocolloids can preferably have nitrogen atoms both within the chain and on the side groups. The nitrogen can also form different organic functional groups known to the person skilled in the art.

In einer weiteren Ausgestaltung können die Hydrokolloide aus der Gruppe umfassend Polyamine, Polyimine sowie deren quaternäre Salze, Polyvinylpyrrolidone, Polyvinylpyridine, Kollagen, Gelatine, Chitosanhydrolysat, Keratinhydrolysat, Caseinhydrolysat, Amidopektine, sowie Copolymere und/oder Mischungen daraus ausgewählt sein. Insbesondere diese Gruppe an stickstoffhaltigen Hydrokolloiden führt in Kombination mit den gängigsten Festschmierstoffpartikeln zu besonders starken Wechselwirkungen und damit zu einer besonders geeigneten mechanischen Stabilisierung der Festschmierstoffpartikeln und/oder auch der daraus resultierenden Phosphatierungsschicht. Ohne durch die Theorie gebunden zu sein, kann dies insbesondere an dem mol-Verhältnis zwischen Stickstoff und den anderen Bestandteilen der genannten Polymere und dem Quellverhalten dieser Hydrokolloide mit der wässrigen Badzusammensetzung liegen. Bevorzugt kann das Hydrokolloid zwischen 5 und 40 mol%, des Weiteren bevorzugt zwischen 10 und 30 mol% Stickstoff aufweisen. Diese Stickstoffmengen im Hydrokolloid können zu einem hinreichenden Quellverhalten unter Entfaltung des Hydrokolloids in der Phosphatierungslösung führen und so zu einer schnellen und effektiven Interaktion mit dem Festschmierstoffpartikel beitragen.In a further embodiment, the hydrocolloids can be selected from the group comprising polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, collagen, gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate, amidopectins, and copolymers and / or mixtures thereof. This group of nitrogen-containing hydrocolloids in particular leads in combination with the most common solid lubricant particles to particularly strong interactions and thus to a particularly suitable mechanical stabilization of the solid lubricant particles and / or the resulting phosphating layer. Without being bound by theory, this may be due in particular to the molar ratio between nitrogen and the other constituents of the polymers mentioned and the swelling behavior of these hydrocolloids with the aqueous bath composition. The hydrocolloid can preferably have between 5 and 40 mol%, furthermore preferably between 10 and 30 mol% nitrogen. These amounts of nitrogen in the hydrocolloid can lead to a sufficient swelling behavior with development of the hydrocolloid in the phosphating solution and thus contribute to a quick and effective interaction with the solid lubricant particles.

In einer weiteren Ausgestaltung können die Hydrokolloide ausgewählt sein aus der Gruppe der pflanzlichen oder tierischen stickstoffhaltigen Hydrokolloiden bestehend aus Gelatine, Chitosanhydrolysat, Keratinhydrolysat, Caseinhydrolysat oder Mischungen daraus.In a further embodiment, the hydrocolloids can be selected from the group of vegetable or animal nitrogen-containing hydrocolloids consisting of gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate or mixtures thereof.

In einer weiteren Ausführungsform kann das Hydrokolloid Gelatine mit einem Molekulargewicht von größer oder gleich 1000 Da und kleiner oder gleich 100.000 Da sein. Gelatine mit einem Molekulargewicht im oben angegebenen Bereich kann mit Festschmierstoffpartikel besonders stabile Komplexe eingehen. Dies kann insbesondere daher rühren, dass Gelatine in sauren Phosphatierungsbädern besonders gut quillt und eine fast gänzlich entfaltende Kette ausbildet. Diese entfaltete Kette ist wiederum in der Lage besonders effektiv mit den Festschmierstoffpartikeln zu interagieren und diese mechanische zu stabilisieren. Ein weiterer Grund für die besondere Stabilisierung könnte zudem darin liegen, dass Gelatine Stickstoff sowohl im Grundgerüst wie auch in den Seitenketten trägt. Durch diese Aufteilung des Stickstoffs kann die Hydrokolloidkette besonders schnell und effektiv an den Festschmierstoffpartikel binden. Bevorzugte Molekulargewichtsbereiche für die Gelatine liegen des Weiteren zwischen größer oder gleich 5000 Da und kleiner oder gleich 75.000 Da, weiter bevorzugt zwischen größer oder gleich 10000 Da und kleiner oder gleich 50.000 Da. Innerhalb dieser Bereiche lassen sich qualitativ hochwerte Phosphatierungsschichten erhalten.In a further embodiment, the hydrocolloid can be gelatin with a molecular weight of greater than or equal to 1000 Da and less than or equal to 100,000 Da. Gelatin with a molecular weight in the range specified above can form particularly stable complexes with solid lubricant particles. This can be due in particular to the fact that gelatine swells particularly well in acid phosphating baths and forms an almost completely unfolding chain. This unfolded chain is in turn able to interact particularly effectively with the solid lubricant particles and to stabilize them mechanically. Another reason for the special stabilization could be that gelatine has nitrogen in both the basic structure and the side chains. This division of the nitrogen allows the hydrocolloid chain to bind to the solid lubricant particles particularly quickly and effectively. Preferred molecular weight ranges for the gelatin are furthermore between greater than or equal to 5000 Da and less than or equal to 75,000 Da, more preferably between greater than or equal to 10000 Da and less than or equal to 50,000 Da. High quality phosphating layers can be obtained within these areas.

In einer zusätzlichen Charakteristik der Phosphatierungsschicht können die Festschmierstoffpartikel aus der Gruppe umfassend Metall- und Ammoniumsalze gesättigter Fettsäuren, MoS2, h-BN, WS2, Graphit, oxidiertes und fluoriertes Graphit, PTFE, Nylon, PE, PP, PVC, PS PET, PUR, Ton, Talk, TiO2, Mullit, CuS, PbS, Bi2S3, CdS oder Mischungen daraus ausgewählt sein. Diese Verbindungen lassen sich in ausreichender Art und Weise durch die stickstoffhaltigen Hydrokolloide in der chemischen Umgebung eines Phosphatierungsbades stabilisieren und in ausreichender Menge in eine Phosphatierungsschicht einbauen, ohne dass das Gefüge der Schicht zu stark gestört wird. Man erhält kohärente, stabile Phosphatierungsschichten, welche mit einer hinreichenden Menge an Schmierstoff versehen sind, sodass auf weiteren Schmiermittelauftrag im Zuge einer mechanischen Weiterverarbeitung verzichtet werden kann. Vorteilhafterweise liegen die Schmierstoffpartikel partikulär vor. Insbesondere können die Teilchen ohne Stabilisierung eine Größe (größter Abstand innerhalb des Schmierstoffpartikels) von größer oder gleich 10 nm und kleiner oder gleich 10 µm, bevorzugt von größer oder gleich 25 nm und kleiner oder gleich 5 µm, des Weiteren bevorzugt von größer oder gleich 30 nm und kleiner oder gleich 2,5 µm aufweisen. Diese Partikelgrößen können ohne Zerstörung des Grundgefüges der Phosphatierungsschicht eingebaut werden und liefern ausreichende Schmiermittelmengen. Die Größe der Schmierstoffpartikel kann über dem Fachmann bekannte Methoden, wie beispielsweise Laserlichtstreuung bestimmt werden.In an additional characteristic of the phosphating layer, the solid lubricant particles from the group comprising metal and ammonium salts of saturated fatty acids, MoS 2 , h-BN, WS 2 , graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS PET, PUR, clay, talc, TiO 2 , mullite, CuS, PbS, Bi 2 S 3 , CdS or mixtures thereof can be selected. These compounds can be sufficiently stabilized by the nitrogen-containing hydrocolloids in the chemical environment of a phosphating bath and built into a phosphating layer in sufficient quantities without the structure of the layer being excessively disturbed. Coherent, stable phosphating layers are obtained which are provided with a sufficient amount of lubricant so that further lubricant application in the course of further mechanical processing can be dispensed with. The lubricant particles are advantageously present in particulate form. In particular, the particles without stabilization can have a size (greatest distance within the lubricant particle) of greater than or equal to 10 nm and less than or equal to 10 μm, preferably greater than or equal to 25 nm and less than or equal to 5 μm, further preferably greater than or equal to 30 nm and less than or equal to 2.5 µm. These particle sizes can be incorporated without destroying the basic structure of the phosphating layer and provide sufficient quantities of lubricant. The size of the lubricant particles can be determined using methods known to those skilled in the art, such as laser light scattering.

Weiterhin können in einer bevorzugten Charakteristik die Festschmierstoffpartikel aus MoS2 bestehen und eine plättchenförmige Geometrie aufweisen. Schmierstoffpartikel aus Molybdänsulfid lassen sich durch Hydrokolloide besonders effektiv stabilisieren und liefern eine Einbaukinetik, welche sich über einen weiten Bereich steuern lässt. So können auch unter kurzen stromführenden Kontaktzeiten ausreichende Mengen an Schmierstoffpartikeln in Schichtabscheidungen eingebaut werden. Eine äußerst geringe Störung des Schichtaufbaus der Phosphatierungsschicht ergibt sich insbesondere auch dann, wenn die Teilchen eine plättchenförmige Geometrie aufweisen. Diese Geometrie kann zu einer höheren Beladung der Phosphatierungsschicht mit Schmierstoffpartikeln führen und kann einen sofortigen Schmiereffekt bei einer mechanischen Bearbeitung gewährleisten. Letzteres kann deshalb der Fall sein, da anscheinend die Schmierstoffpartikel mit ihren länglichen Seiten parallel zur Werkstückoberfläche in die Phosphatierungsschicht eingebaut werden. Die MoS2-Plättchen weisen dann eine plättchenförmige Geometrie auf, wenn die Teilchenabmessungen innerhalb der folgenden Grenzen liegen: eine mittleren Länge ausgewählt aus einem Bereich mit einer unteren Grenze von 0,1 µm und einer oberen Grenze von 2 µm und einer mittleren Breite ausgewählt aus einem Bereich mit einer unteren Grenze von 0,1 µm und einer oberen Grenze von 2 µm und einer mittleren Höhe ausgewählt aus einem Bereich mit einer unteren Grenze von 2 nm und einer oberen Grenze von 50 nm.Furthermore, in a preferred characteristic, the solid lubricant particles can consist of MoS 2 and have a platelet-shaped geometry. Molybdenum sulphide lubricant particles can be stabilized particularly effectively by hydrocolloids and provide installation kinetics that can be controlled over a wide range. In this way, sufficient quantities of lubricant particles can be built into the layer deposits even with short live contact times. An extremely minor disruption of the layer structure the phosphating layer also results in particular when the particles have a platelet-shaped geometry. This geometry can lead to a higher loading of the phosphating layer with lubricant particles and can guarantee an immediate lubricating effect during mechanical processing. The latter can be the case because the lubricant particles appear to be built into the phosphating layer with their elongated sides parallel to the workpiece surface. The MoS 2 flakes then have a flaky geometry when the particle dimensions are within the following limits: an average length selected from a range with a lower limit of 0.1 μm and an upper limit of 2 μm and an average width a range with a lower limit of 0.1 μm and an upper limit of 2 μm and an average height selected from a range with a lower limit of 2 nm and an upper limit of 50 nm.

Ebenfalls erfindungsgemäß ist ein Verfahren zur Herstellung einer stabilisierte Festschmierstoffpartikel aufweisenden Phosphatierungsschicht, welches mindestens die Schritte umfasst:

  1. a) Bereitstellen eines metallischen Werkstückes,
  2. b) Eintauchen des metallischen Werkstückes in eine wässrige Elektrolytlösung mindestens umfassend Zink, Phosphationen, Festschmierstoffpartikel und Hydrokolloide, wobei die Hydrokolloide ausgewählt sind aus der Gruppe umfassend Polyamine, Polyimine sowie deren quaternäre Salze, Polyvinylpyrrolidone, Polyvinylpyridine, Kollagen, Gelatine, Chitosanhydrolysat, Keratinhydrolysat, Caseinhydrolysat, Amidopektine, sowie deren Copolymere und/oder Mischungen daraus, und die Festschmierstoffpartikel ausgewählt sind aus der Gruppe umfassend Metall- und Ammoniumsalze gesättigter Fettsäuren, MoS2, h-BN, WS2, Graphit, oxidiertes und fluoriertes Graphit, PTFE, Nylon, PE, PP, PVC, PS PET, PUR, Ton, Talk, TiO2, Mullit, CuS, PbS, Bi2S3, CdS oder Mischungen daraus,
  3. c) Leiten eines elektrischen Stromes durch das metallische Werkstück zur Abscheidung einer Phosphatierungsschicht auf dem Werkstück und
  4. d) optional, Nachbehandeln der elektrolytisch abgeschiedenen Phosphatierungsschicht.
Also according to the invention is a method for producing a phosphating layer having stabilized solid lubricant particles, which comprises at least the steps:
  1. a) Provision of a metallic workpiece,
  2. b) Immersing the metallic workpiece in an aqueous electrolyte solution at least comprising zinc, phosphate ions, solid lubricant particles and hydrocolloids, the hydrocolloids being selected from the group comprising polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, collagen, gelatin, chitosan hydrolyzate, keratin hydrolyzate, keratin hydrolyzate , Amido pectins, as well as their copolymers and / or mixtures thereof, and the solid lubricant particles are selected from the group comprising metal and ammonium salts of saturated fatty acids, MoS 2 , h-BN, WS 2 , graphite, oxidized and fluorinated graphite, PTFE, nylon, PE , PP, PVC, PS PET, PUR, clay, talc, TiO 2 , mullite, CuS, PbS, Bi 2 S 3 , CdS or mixtures thereof,
  3. c) conducting an electric current through the metallic workpiece to deposit a phosphating layer on the workpiece and
  4. d) optionally, post-treatment of the electrolytically deposited phosphating layer.

Mittels dieses Verfahrens lassen sich kohärente Phosphatierungsschichten herstellen, welche mit einer ausreichenden Schmiermittelmenge versehen sind und auch im Rahmen einer mechanischen Nachbehandlung keines weiteren Schmiermittelzusatzes bedürfen. Dieses Verfahren lässt sich zudem mit hohen Stromdichten betreiben, sodass hohe Abscheidungsgeschwindigkeiten und somit hohe Schichtdicken bei kurzen Prozesszeiten erreichbar sind. Das Verfahren lässt sich einfach mit den gängigen Phosphatierungs-Vorbehandlungsschritten wie alkalische Reinigung mit oder ohne Tensid und mit oder ohne Zwischenspülung kombinieren.By means of this process, coherent phosphating layers can be produced which are provided with a sufficient amount of lubricant and do not require any additional lubricant additive in the context of mechanical aftertreatment. This process can also be operated with high current densities, so that high deposition speeds and thus high layer thicknesses can be achieved with short process times. The process can be easily combined with the common phosphating pre-treatment steps such as alkaline cleaning with or without surfactant and with or without intermediate rinsing.

Das Verfahren ist vorzugweise ein Tauchverfahren die Badzusammensetzung kann des Weiteren Beschleuniger wie Harnstoff, Nitrate, Chlorate, Bromate, Wasserstoffperoxid, Ozon, organische Nitrokörper, Peroxyverbindungen, Hydroxylamin, Nitrit-Nitrat, Nitrat-Perborat oder Gemische davon aufweisen. Vorzugweise handelt es sich bei der Beschichtungslösung um eine Emulsion mit Emulsionströpfchen im sub-Micronbereich. Die Zinkphosphat-Lösung kann über Säuren auf einen sauren pH-Wertebereich eingestellt sein. Als mögliche Nachbehandlungen kommen beispielsweise Spülen mit demin. Wasser oder Nachpassivierung durch Chromsäure, Chromsäure/Phosphorsäurelösung oder eine organische Nachpassivierung mit Poly(vinylphenol) in Frage.The process is preferably an immersion process, the bath composition can furthermore have accelerators such as urea, nitrates, chlorates, bromates, hydrogen peroxide, ozone, organic nitro bodies, peroxy compounds, hydroxylamine, nitrite nitrate, nitrate perborate or mixtures thereof. The coating solution is preferably an emulsion with emulsion droplets in the sub-micron range. The zinc phosphate solution can be adjusted to an acidic pH range using acids. Rinsing with demin, for example, are possible follow-up treatments. Water or post-passivation with chromic acid, chromic acid / phosphoric acid solution or organic post-passivation with poly (vinylphenol).

Bevorzugte Badparameter können sich ergeben zu: - Temperatur ≥ 20 und ≤ 70°C - pH-Wert ≥ 0,5 und ≤ 2,5 - Zn-Konzentration ≥ 10 und ≤ 70 g/L - Phosphat-Konzentration ≥ 35 und ≤ 70 g/L - Schmierstoffpartikelkonzentration ≥ 2 und ≤ 25 g/L - Hydrokolloidkonzentration ≥ 0,01und ≤ 5 g/L - Netzmittelkonzentration ≥ 0,5und ≤ 5 g/L - Stromdichte ≥ 10 und ≤ 20 A/dm2 - Kontaktzeit ≥ 1 und ≤ 15 sec Preferred bath parameters can result from: - temperature ≥ 20 and ≤ 70 ° C - PH value ≥ 0.5 and ≤ 2.5 - Zn concentration ≥ 10 and ≤ 70 g / L - phosphate concentration ≥ 35 and ≤ 70 g / L - lubricant particle concentration ≥ 2 and ≤ 25 g / L - hydrocolloid concentration ≥ 0.01 and ≤ 5 g / L - wetting agent concentration ≥ 0.5 and ≤ 5 g / L - current density ≥ 10 and ≤ 20 A / dm 2 - contact time ≥ 1 and ≤ 15 sec

In einer bevorzugten Ausgestaltung des Verfahrens kann die stabilisierte Festschmierstoffpartikel aufweisende Phosphatierungsschicht auf einem Werkstück abgeschieden werden, welches an der Oberfläche eine Phosphatierungsschicht mit den Elementen ZnXP aufweist, wobei X ausgesucht ist aus der Gruppe umfassend Fe, Ni, Ca, Mn. Die Abscheidung weiterer Metalle aus oben genannter Gruppe kann zu einer zusätzlichen mechanischen Stabilisierung der Phosphatierungsschicht beitragen. Derart kann der Schmiermittelanteil erhöht werden, sodass sich besonders effektiv, selbstschmierende Werkstücke erhalten lassen.In a preferred embodiment of the method, the stabilized phosphating layer containing solid lubricant particles can be deposited on a workpiece which has a phosphating layer with the elements ZnXP on the surface, X being selected from the group comprising Fe, Ni, Ca, Mn. The deposition of further metals from the group mentioned above can contribute to an additional mechanical stabilization of the phosphating layer. In this way, the proportion of lubricant can be increased so that particularly effective, self-lubricating workpieces can be obtained.

In einer zusätzlichen Charakteristik kann die stromführende Kontaktzeit eines Oberflächenelementes des Werkstückes mit der wässrigen Elektrolytlösung größer oder gleich 1 Sekunde und kleiner oder gleich 100 Sekunden betragen. Das erfindungsgemäße Verfahren ist insbesondere dazu geeignet, innerhalb kurzer Prozesszeiten eine ausreichend dicke Phosphatierungsschicht auf einem Metallwerkstück abscheiden zu können. Aus diesem Grund kann die stromführende Kontaktzeit, also die Zeit in der das Werkstück in das Bad eintaucht und das Werkstück mit Strom durchflossen wird, sehr kurz gehalten werden. Dies ist insbesondere für Drähte und Bänder wichtig, welche mit hohen Geschwindigkeiten durch die Beschichtungsbäder gezogen werden. Ausdrücklich wird von dieser Zeitspanne nicht die Zeit mit umfasst, auf welcher sich noch Bestandteile des Bades auf der Oberfläche des Werkstücks befinden, aber keine eigentliche Beschichtung (Ablagerung) mehr erfolgt.In an additional characteristic, the current-carrying contact time of a surface element of the workpiece with the aqueous electrolyte solution can be greater than or equal to 1 second and less than or equal to 100 seconds. The method according to the invention is particularly suitable for being able to deposit a sufficiently thick phosphating layer on a metal workpiece within short process times. For this reason, the live contact time, i.e. the time in which the workpiece is immersed in the bath and the workpiece is flowed through, can be kept very short. This is particularly important for wires and tapes which are drawn through the coating baths at high speeds. This time period expressly does not include the time during which components of the bath are still on the surface of the workpiece, but no actual coating (deposit) takes place.

Innerhalb eines weiteren Verfahrensaspektes kann das Flächengewicht der abgeschiedenen, stabilisierte Festschmierstoffpartikel aufweisenden Phosphatierungsschicht bestimmt nach DIN EN ISO 3892 größer oder gleich 0,5 g/m2 und kleiner oder gleich 10 g/m2 betragen. Neben den schon oben erwähnten Vorteilen kann der Einbau stabilisierter Festschmierstoffpartikel dazu führen, dass sich im Vergleich zu den üblichen Phosphatierungsverfahren deutlich geringere Flächengewichte erhalten lassen. Auf diese Art und Weise lassen sich beispielsweise auch Kosten für den Einsatz an Beschichtungsmetallen einsparen. Diese Flächengewichte liefern hinreichend kohärente und fest anhaftende Schichten, welche erst nach deutlicher mechanischer Belastung partiell zerstört werden können und als Folge davon den Schmierstoff freigeben. Bevorzugt kann das Flächengewicht zudem größer oder gleich 0,75 g/m2 und kleiner oder gleich 8 g/m2 und des Weiteren bevorzugt größer oder gleich 1,0 g/m2 und kleiner oder gleich 5,0 g/m2 betragen.Within a further aspect of the method, the weight per unit area of the deposited, stabilized solid lubricant particles containing phosphating layer, determined according to DIN EN ISO 3892, can be greater than or equal to 0.5 g / m 2 and less than or equal to 10 g / m 2 . In addition to the advantages already mentioned above, the incorporation of stabilized solid lubricant particles can lead to significantly lower surface weights compared to the usual phosphating processes. In this way, for example, costs for the use of coating metals can also be saved. These weights per unit area provide sufficiently coherent and firmly adhering layers, which can only be partially destroyed after significant mechanical stress and, as a result, release the lubricant. Preferably, the weight per unit area can also be greater than or equal to 0.75 g / m 2 and less than or equal to 8 g / m 2 and furthermore preferably greater than or equal to 1.0 g / m 2 and less than or equal to 5.0 g / m 2 .

In einem weiteren, bevorzugten Aspekt kann die wässrige Elektrolytlösung zusätzlich ein anionisches, kationisches, amphoteres oder nicht-ionogenes Netzmittel in einer Konzentration von größer oder gleich 0,1 und kleiner oder gleich 10 g/l aufweisen. Der Zusatz dieser Menge an Netzmittel kann dazu führen, dass die stabilisierten Festschmierstoffpartikel sich homogener in der Badlösung verteilen und insgesamt ein homogener Auftrag auf das metallische Werkstück erreicht wird. Des Weiteren können die Netzmittel dazu beitragen, dass die Beschichtungsgeschwindigkeit erhöht wird. Dies kann zu einer Reduktion der gesamten Prozesszeiten beitragen.
In einer weiteren Ausgestaltung des Verfahrens kann die Phosphatierlösung ein Verhältnis von freier Säure zur Gesamtsäure (FSV, Freie Säure Verhältnis) von ≥ 2,5 und ≤ 10 und weiter bevorzugt von ≥ 5,0 und ≤ 8,0 aufweisen. Dieses Verhältnis scheint zu einer besonders effektiven Stabilisierung der Festschmierstoffpartikel durch die Hydrokolloide zu führen. Ohne durch die Theorie gebunden zu sein, kann durch dieses Verhältnis das Zeta-Potential sowohl der Festschmierstoffpartikel wie auch der Hydrokolloide derart modifiziert werden, dass sich sowohl eine besonders gute Stabilisierung der Partikel in der Lösung als auch ein besonders effektiver Einbau der stabilisierten Partikel in die Phosphatierungsschicht ergibt. Die maßanalytische Bestimmung des oben genannten Verhältnisses ist dem Fachmann bekannt.
In a further, preferred aspect, the aqueous electrolyte solution can additionally contain an anionic, cationic, amphoteric or non-ionic wetting agent in one concentration of greater than or equal to 0.1 and less than or equal to 10 g / l. The addition of this amount of wetting agent can lead to the stabilized solid lubricant particles being distributed more homogeneously in the bath solution and overall a homogeneous application to the metallic workpiece is achieved. Furthermore, the wetting agents can contribute to increasing the coating speed. This can contribute to a reduction in the overall process times.
In a further embodiment of the method, the phosphating solution can have a ratio of free acid to total acid (FSV, free acid ratio) of 2.5 and 10 and more preferably of 5.0 and 8 8.0. This ratio seems to lead to a particularly effective stabilization of the solid lubricant particles by the hydrocolloids. Without being bound by theory, the zeta potential of both the solid lubricant particles and the hydrocolloids can be modified by this ratio in such a way that both particularly good stabilization of the particles in the solution and particularly effective incorporation of the stabilized particles into the Phosphating layer results. The person skilled in the art is familiar with the dimensional analytical determination of the above-mentioned ratio.

Weiterhin im erfindungssinne sind metallische, beschichtete Werkstücke, mindestens umfassend eine selbstschmierende Phosphatierungsschicht aufweisend durch Hydrokolloide stabilisierte Festschmierstoffpartikeln.Also within the meaning of the invention are metallic, coated workpieces, at least comprising a self-lubricating phosphating layer having solid lubricant particles stabilized by hydrocolloids.

In einer weiteren Ausgestaltung des Verfahrens kann dieses auch zur Behandlung von ziehgeschälten Werkstücken, insbesondere ziehgeschälten Drähten eingesetzt werden. Dabei kann es insbesondere vorgesehen sein, dass die ziehgeschälte Oberfläche des Werkstücks elektrochemische, z.B. durch Beizen, oder mechanisch, z.B. durch Strahlen, Bürsten oder Schleifen, aktiviert wird, bevor eine erfindungsgemäße Beschichtung erfolgt.In a further embodiment of the method, it can also be used for treating draw-peeled workpieces, in particular draw-peeled wires. It can in particular be provided that the draw-peeled surface of the workpiece is electrochemical, e.g. by pickling, or mechanically, e.g. by blasting, brushing or grinding, is activated before a coating according to the invention takes place.

Hinsichtlich weiterer Vorteile und Merkmale des vorbeschriebenen Verfahrens wird hiermit explizit auf die Erläuterungen im Zusammenhang mit den erfindungsgemäßen Systems verwiesen. Auch sollen erfindungsgemäße Merkmale und Vorteile der erfindungsgemäßen Schichten auch für das erfindungsgemäße Verfahren anwendbar sein und als offenbart gelten und umgekehrt.With regard to further advantages and features of the method described above, explicit reference is hereby made to the explanations in connection with the system according to the invention. Features according to the invention and advantages of the layers according to the invention should also be applicable to the method according to the invention and should be considered disclosed and vice versa.

Beispiele:Examples: Beispiel 1:Example 1:

Es wird ein phosphatierter Kaltstauchdraht hergestellt, wobei ein Stahldraht mit einem Durchmesser von 10 mm für ca. 10 Sekunden durch eine Phosphatierlösung folgender Zusammensetzung Zink: 40 g/L Phosphat: 40 g/L Säureverhältnis freie Säure-Gesamtsäure: 7,5 pH-Wert: 1,2 Gelatine 0,2 g/L (Hydrokolloid) Netzmittel (BASF Crafol AP 261) 0,2 g/L Molybdändisulfid Partikel (5 µm) 6,0 g/L gezogen wird. Die Temperatur des Bades beträgt ca. 55 °C und die Stärke des Gleichstromes liegt bei ca. 12 A/dm2. Es wird eine Phosphatierungsschicht mit einer mittleren Dicke von 4-8 g/m2 abgeschieden, welche eingelagerte Molybdänsulfid-Partikel aufweist. Der phosphatierte Kaltstauchdraht wird mit Wasser gespült und anschließend mit einer Geschwindigkeit von 0,06 m/sec in einem Schritt auf einen Durchmesser von 7 mm gezogen. Das Ziehen erfolgt ohne Zusatz eines weiteren Schmiermittels. Der Draht lässt sich bei konstantem Enddurchmesser ohne Probleme ziehen und es kommt zu keinem Reißen des Drahtes oder sonstigen Qualitätseinbußen.A phosphated cold heading wire is produced, a steel wire with a diameter of 10 mm being coated with a phosphating solution of the following composition for about 10 seconds Zinc: 40 g / L Phosphate: 40 g / L Acid ratio of free acid to total acid: 7.5 PH value: 1.2 gelatin 0.2 g / L (hydrocolloid) Wetting agent (BASF Crafol AP 261) 0.2 g / L Molybdenum disulfide particles (5 µm) 6.0 g / L is pulled. The temperature of the bath is approx. 55 ° C and the strength of the direct current is approx. 12 A / dm 2 . A phosphating layer with an average thickness of 4-8 g / m 2 is deposited, which has embedded molybdenum sulfide particles. The phosphated cold heading wire is rinsed with water and then drawn in one step to a diameter of 7 mm at a speed of 0.06 m / sec. Pulling takes place without the addition of any other lubricant. The wire can be adjusted with a constant final diameter pull without problems and there is no breakage of the wire or any other loss of quality.

Beispiel 2Example 2

Es wird ein phosphatierter Kaltstauchdraht hergestellt, wobei ein Kaltstauchdraht mit einem Durchmesser von 10 mm für ca. 2 Sekunden durch eine Phosphatierlösung folgender Zusammensetzung: Zink: 45 g/L Phosphat: 40 g/L Säureverhältnis freie Säure-Gesamtsäure: 6,5 pH-Wert: 1,2 Polyethylenimin G 35 BASF 0,1 g/L (Hydrokolloid) Netzmittel (BASF Lutensol ON 110) 0,5 g/L Bornitrid Partikel 1 µm (Hebofill 410) 5,5 g/L gezogen wird. Die übrigen Badparameter entsprechen denen des Beispiels 1. Es wird eine Phosphatierungsschicht mit einer mittleren Dicke von 6 g/m2 abgeschieden, welche eingelagerte Bornitrid-Partikel aufweist. Der phosphatierte Kaltstauchdraht wird mit Wasser gespült und anschließend in einem Schritt auf einen Durchmesser von 7 mm gezogen. Das Ziehen erfolgt ohne Zusatz eines weiteren Schmiermittels. Der Draht lässt sich bei konstantem Enddurchmesser ohne Probleme ziehen und es kommt zu keinem Reißen des Drahtes oder sonstigen Qualitätseinbußen.A phosphated cold heading wire is produced, a cold heading wire with a diameter of 10 mm for approx. 2 seconds through a phosphating solution of the following composition: Zinc: 45 g / L Phosphate: 40 g / L Acid ratio of free acid to total acid: 6.5 PH value: 1.2 Polyethyleneimine G 35 BASF 0.1 g / L (hydrocolloid) Wetting agent (BASF Lutensol ON 110) 0.5 g / L Boron nitride particles 1 µm (Hebofill 410) 5.5 g / L is pulled. The other bath parameters correspond to those of Example 1. A phosphating layer with an average thickness of 6 g / m 2 is deposited which has embedded boron nitride particles. The phosphated cold heading wire is rinsed with water and then drawn in one step to a diameter of 7 mm. Pulling takes place without the addition of any other lubricant. The wire can be drawn with a constant final diameter without problems and there is no tearing of the wire or any other loss of quality.

Claims (11)

  1. Method for producing a phosphating layer comprising stabilized solid lubricant particles, at least comprising the steps of:
    a) providing a metallic workpiece;
    b) immersing the metallic workpiece in an aqueous electrolyte solution comprising at least zinc, phosphate ions, solid lubricant particles and hydrocolloids, wherein the hydrocolloids being selected from the group consisting of polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, collagen, gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate, amidopectins and their copolymers and/or mixtures thereof, and wherein the solid lubricant particles consist of or include substances which are selected from the group consisting of metal and ammonium salts of saturated fatty acids, MoS2, h-BN, WS2, graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS, PET, PUR, clay, talc, TiO2, mullite, CuS, PbS, Bi2S3, CdS or mixtures thereof;
    c) passing an electrical current through the metallic workpiece for depositing a phosphating layer on the workpiece; and
    d) optionally aftertreating the electrolytically deposited phosphating layer.
  2. Method according to claim 1, wherein the phosphating layer comprising stabilized solid lubricant particles is deposited on a workpiece which comprises a further phosphating layer with the elements ZnXP on the surface, wherein X being selected from the group consisting of Fe, Ni, Ca, Mn.
  3. Method according to claim 1 or 2, wherein the current-carrying contact time of a surface element of the workpiece with the aqueous electrolyte solution is greater than or equal to 1 second and less than or equal to 100 seconds.
  4. Method according to any one of claims 1 to 3, wherein the basis weight of the deposited phosphating layer comprising stabilized solid lubricant particles, determined according to DIN EN ISO 3892, is greater than or equal to 0.5 g/m2 and less than or equal to 10 g/m2.
  5. Method according to any one of claims 1 to 4, wherein the aqueous electrolyte solution additionally comprises an anionic, cationic, amphoteric or nonionic wetting agent in a concentration of greater than or equal to 0.1 and less than or equal to 10 g/l.
  6. Method according to any one of claims 1 to 5, wherein the metallic workpiece is made of a low-alloy steel, a stainless steel, iron, aluminum, titanium, copper, nickel, alloys comprising iron, aluminum, titanium, copper or nickel, or hot-dip galvanized materials.
  7. Method according to any one of claims 1 to 6, wherein the workpiece is a workpiece produced by means of draw-peeling.
  8. Method according to claim 7, wherein the surface of the workpiece is pretreated mechanically or electrochemically, in particular activated prior to being immersed in the coating bath.
  9. Electrolytically deposited phosphating layer obtained by a method according to any one of claims 1 to 8, at least comprising the elements zinc and phosphorus on a metallic workpiece, characterized in that the phosphating layer comprises solid lubricant particles stabilized by hydrocolloids, wherein the stabilized solid lubricant particles are at least partially embedded in the phosphating layer, wherein the hydrocolloids being selected from the group consisting of polyamines, polyimines and their quaternary salts, polyvinylpyrrolidones, polyvinylpyridines, collagen, gelatin, chitosan hydrolyzate, keratin hydrolyzate, casein hydrolyzate, amidopectins and their copolymers and/or mixtures thereof, and the solid lubricant particles consist of or include substances which are selected from the group consisting of metal and ammonium salts of saturated fatty acids, MoS2, h-BN, WS2, graphite, oxidized and fluorinated graphite, PTFE, nylon, PE, PP, PVC, PS, PET, PUR, clay, talc, TiO2, mullite, CuS, PbS, Bi2S3, CdS or mixtures thereof.
  10. Phosphating layer according to claim 9, wherein the hydrocolloid is gelatin with a molecular weight greater than or equal to 1000 Da and less than or equal to 100000 Da.
  11. Phosphating layer according to claim 9 or 10, wherein the solid lubricant particles consist of MoS2 and have a platelet-shaped geometry.
EP17700126.0A 2016-01-08 2017-01-06 Self-lubricating electrolytically deposited phosphate coating Active EP3400323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17700126T PL3400323T3 (en) 2016-01-08 2017-01-06 Self-lubricating electrolytically deposited phosphate coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016100245.3A DE102016100245A1 (en) 2016-01-08 2016-01-08 Self-lubricating electrodeposited phosphating coating
PCT/EP2017/050240 WO2017118716A2 (en) 2016-01-08 2017-01-06 Self-lubricating electrolytically deposited phosphate coating

Publications (2)

Publication Number Publication Date
EP3400323A2 EP3400323A2 (en) 2018-11-14
EP3400323B1 true EP3400323B1 (en) 2020-08-19

Family

ID=57755321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700126.0A Active EP3400323B1 (en) 2016-01-08 2017-01-06 Self-lubricating electrolytically deposited phosphate coating

Country Status (7)

Country Link
US (1) US11078592B2 (en)
EP (1) EP3400323B1 (en)
KR (1) KR102144494B1 (en)
DE (1) DE102016100245A1 (en)
PL (1) PL3400323T3 (en)
RU (1) RU2702521C1 (en)
WO (1) WO2017118716A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135137B (en) * 2018-08-09 2020-01-10 燕山大学 Preparation method of graphene-nickel-phosphorus-polytetrafluoroethylene composite material
CN109021472B (en) * 2018-08-09 2019-11-05 燕山大学 Molybdenum disulfide-graphite oxide-nickel phosphorus-ptfe composite preparation method
CN112210806B (en) * 2020-08-13 2021-10-08 法尔胜泓昇集团有限公司 Anti-corrosion steel wire with molybdenum disulfide coating and preparation process thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525651A (en) * 1966-12-01 1970-08-25 Kenneth A Smith Coating of metals
DE1644927B1 (en) 1967-10-21 1971-05-19 Mahle Kg Process for the production of particles containing dry lubricants intended for incorporation in electroplated layers
US4198331A (en) * 1978-08-28 1980-04-15 Ppg Industries, Inc. Resinous coating compositions curable by Michael adduct exchange
CA1235664A (en) 1984-06-27 1988-04-26 Hendrikus A.B. Van Meegen Piston-operated machine
CH667108A5 (en) 1985-04-22 1988-09-15 Fluehmann Ag Werner GALVANIC BATHROOM FOR THE COMBINED DEPOSITION OF METAL AND A PERMANENTLY LUBRICATING SOLID LUBRICANT.
DK173338B1 (en) 1996-08-29 2000-07-31 Danfoss As Process for electrochemical phosphating of metal surfaces, especially of stainless steel, with CaZnPO4 by cold flow of metal
JPH10147886A (en) * 1996-11-15 1998-06-02 Asahi Glass Co Ltd Conductive film forming coating solution, conductive film and its production
JP3479609B2 (en) * 1999-03-02 2003-12-15 日本パーカライジング株式会社 Sludge-free zinc phosphate treatment liquid and zinc phosphate treatment method
JP2002012983A (en) * 2000-06-29 2002-01-15 Nkk Corp Steel sheet coated with composite phosphate film superior in corrosion resistance, lubricity, and coating material adhesiveness
DE10348251A1 (en) 2003-10-16 2005-05-12 Bosch Gmbh Robert Electrolytic process for phosphating metal surfaces and phosphated metal layer
DE102005023023B4 (en) * 2005-05-19 2017-02-09 Chemetall Gmbh Method of preparing metallic workpieces for cold forming, process coated workpieces and their use
JP4419968B2 (en) * 2005-07-15 2010-02-24 株式会社デンソー Electrolytic phosphate chemical treatment method and warm or hot forging method
DE102006035974A1 (en) 2006-08-02 2008-02-07 Robert Bosch Gmbh Process for phosphating a metal layer
DE102008006147A1 (en) * 2008-01-26 2009-09-10 Gelita Ag Cleaning system for metallic and ceramic surfaces
US7951600B2 (en) * 2008-11-07 2011-05-31 Xtalic Corporation Electrodeposition baths, systems and methods
DE102010022039B3 (en) * 2010-05-25 2011-07-14 Siemens Aktiengesellschaft, 80333 Component with a sliding surface for the storage of another component and method for producing a sliding layer
TR201101163A2 (en) * 2011-02-08 2011-10-21 Bortek Bor Teknoloji̇leri̇ Ve Mekatroni̇k Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Method of improving the properties of phosphate coating.
KR101858143B1 (en) * 2011-12-23 2018-05-16 두산공작기계 주식회사 Sliding matrials comprising solid lubricants with non­spherical shape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017118716A3 (en) 2017-09-14
RU2702521C1 (en) 2019-10-08
KR102144494B1 (en) 2020-08-14
KR20180099837A (en) 2018-09-05
WO2017118716A2 (en) 2017-07-13
US20190112724A1 (en) 2019-04-18
EP3400323A2 (en) 2018-11-14
DE102016100245A1 (en) 2017-07-13
PL3400323T3 (en) 2021-04-06
US11078592B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
DE102005023023B4 (en) Method of preparing metallic workpieces for cold forming, process coated workpieces and their use
EP3400323B1 (en) Self-lubricating electrolytically deposited phosphate coating
DE102016205815A1 (en) Process for nickel-free phosphating of metallic surfaces
DE102005059314A1 (en) Process and product for the corrosion protection treatment of metal surfaces, in particular of steel surfaces
EP2817434A1 (en) Pretreating zinc surfaces prior to a passivating process
DE102012202787A1 (en) Method for painting a workpiece
EP2215285B1 (en) Zirconium phosphating of metal components, in particular iron
EP0288853B1 (en) Process for the preparation of work pieces from titanium or titanium alloys
EP4083251A1 (en) Method, installation and use of same in discontinuous galvanizing of pieces
WO2004101850A1 (en) Pre-treatment of metal surfaces prior to painting
DE1965586C3 (en) Steel sheets which, following shaping, are provided with a coating, in particular an enamel layer, method for their production and use of the steel sheets
EP2328835A1 (en) Method for producing titanium (iv) phosphate
WO2016193004A1 (en) Conditioning prior to a conversion treatment of metal surfaces
DE102011115802A1 (en) Process for the corrosion protection treatment of a workpiece made of an aluminum material, in particular of an aluminum wrought alloy
DE10309888B4 (en) Machining fluid for surface treatment of aluminum or an aluminum alloy and corresponding surface treatment method
DE19639597C2 (en) Process for the phosphating of running strips made of cold or hot rolled steel in high-speed conveyor systems
EP3626864B1 (en) Method for removing a hard material coating
EP3303652B1 (en) Pre-rinse containing a quaternary amine for conditioning prior to a conversion treatment
DE102006035974A1 (en) Process for phosphating a metal layer
DE19905479A1 (en) Process for the phosphatisation of zinc or aluminum surfaces
WO1997020085A1 (en) Method of phosphating metal surfaces
DE3637944A1 (en) CHEMICAL CONVERTER FILM BASED ON ZINC PHOSPHATE AND METHOD FOR THE PRODUCTION THEREOF
WO2019115301A1 (en) Anti-corrosion coating for metallic substrates
DE10060127A1 (en) Electrolytic iron deposition bath used for forming iron layers in the automobile industry, in microsystems and in circuit board manufacture contains iron alkane sulfonate as an iron ion source, an acid former and a solvent

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180606

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006805

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1304040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006805

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

26N No opposition filed

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 7

Ref country code: CH

Payment date: 20230111

Year of fee payment: 7

Ref country code: AT

Payment date: 20230120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230105

Year of fee payment: 7

Ref country code: SE

Payment date: 20230119

Year of fee payment: 7

Ref country code: PL

Payment date: 20230105

Year of fee payment: 7

Ref country code: IT

Payment date: 20230120

Year of fee payment: 7

Ref country code: GB

Payment date: 20230119

Year of fee payment: 7

Ref country code: DE

Payment date: 20220628

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20231228

Year of fee payment: 8