EP3399239B1 - Haushaltsgerät mit einer bedienvorrichtung mit einer absolutpositionsbestimmung eines bedienelements im raum - Google Patents
Haushaltsgerät mit einer bedienvorrichtung mit einer absolutpositionsbestimmung eines bedienelements im raum Download PDFInfo
- Publication number
- EP3399239B1 EP3399239B1 EP18169630.3A EP18169630A EP3399239B1 EP 3399239 B1 EP3399239 B1 EP 3399239B1 EP 18169630 A EP18169630 A EP 18169630A EP 3399239 B1 EP3399239 B1 EP 3399239B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control element
- operating element
- household appliance
- operating
- acceleration sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001133 acceleration Effects 0.000 claims description 94
- 230000006870 function Effects 0.000 claims description 19
- 238000011156 evaluation Methods 0.000 claims description 18
- 238000005286 illumination Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 11
- 238000010411 cooking Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/08—Arrangement or mounting of control or safety devices
- F24C7/082—Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/30—User interface
- G08C2201/32—Remote control based on movements, attitude of remote control device
Definitions
- the invention relates to a household appliance with an operating device with an operating element receptacle and with a separate operating element which can be placed on and detachably positioned on the operating element receptacle.
- the operating device also has at least one static acceleration sensor which is arranged in the operating element.
- the plate-shaped operating unit has an acceleration sensor. Depending on its information, a relative reference position and also relative movements of the operating unit to the household appliance can be determined.
- the control unit is placed horizontally on the household appliance or on an adjacent worktop.
- the operating device has an operating unit which is designed as a rotary control. This operating unit can be detachably removed from an operating element receptacle in a non-destructive manner and put back on again.
- An operating condition of the electrical device can only be set by specific actuation of the control unit when it is attached.
- Acceleration sensors which are designed to detect a rotary movement or a sliding movement, can be arranged in the operating unit. The acceleration sensors there are therefore only designed to detect a specific dynamic type of movement in the direction of rotation, so that only angular accelerations are recorded. They are not static acceleration sensors that record the accelerations in spatial directions and thus axially.
- the object of the present invention is to design an operating device of a household appliance with an acceleration sensor in such a way that the operating functionality of the operating device is improved on the basis of the information from the acceleration sensor.
- the operating device has an operating element receptacle and a separate operating element.
- the operating element is designed in such a way that it can be placed on and removed from the operating element receptacle. In particular when the operating element is placed on the operating element receptacle, operating conditions of the domestic appliance can then be set by specifically actuating the operating element.
- the operating device has at least one static acceleration sensor which is arranged in the operating element.
- the operating element is designed as a flat body and is arranged vertically oriented in space with a plane in which the flat body extends.
- a vertical arrangement also includes a deviation from the mathematically unambiguous vertical, in particular within a tolerance angle, which thus also includes an essentially vertical arrangement, and in particular can have up to +/- 10 °.
- the operating device also has an evaluation unit which, when the operating element is placed on the operating element receptacle, is designed to determine an absolute position of the operating element in space as a function of the axial acceleration values of the acceleration sensor occurring in the spatial directions. With such a configuration of an operating device, this specific orientation of the operating element in operative connection with the information from the acceleration sensor allows this absolute position of the operating element to be determined and thus a position can be determined independently of the control element holder. The operating variability can be increased by such an absolute position determination, which is now made possible, of such a specifically oriented operating element.
- this absolute position can thus be determined, in particular in each specific position of the operating element, independently of the position of the operating element for receiving the operating element.
- This specific information on how the control element is oriented in the room itself and independently of other components of the control device results in a wide variety of additional control functions and options for setting and / or then displaying the operating conditions.
- a reference coordinate system in particular a three-dimensional reference coordinate system with spatial directions perpendicular to one another, is defined.
- the acceleration of the operating element is then recorded in relation to this reference coordinate system.
- an individual and predeterminable definition for acceleration values in the respective three spatial directions is preferably formed.
- the acceleration sensor can also be calibrated.
- the operator control element when the operator control element is placed on the operator control element receptacle, the operator control element has a contact position and the absolute position is determined in this contact position.
- Such a position is usually the one when the operating element is placed back onto the operating element receptacle is assumed, different from that position which the control element had when it was removed from the control element receptacle.
- the evaluation unit is designed to determine a local assignment of an operating element area of the operating element to an area of the operating element receptacle as a function of the detected absolute position of the operating element viewed in the direction around a longitudinal axis of the operating element.
- optical representations are to be linked between the operating element and the operating element receptacle and, as it were, locally assigned optical displays are to take place between the operating element and the operating element receptacle.
- This can be the case, for example, when an optical display is provided at a specific local point on the operating element receptacle and a corresponding further optical display is to be provided on the operating element immediately adjacent.
- the above-mentioned advantageous embodiment is very helpful.
- the absolute position of the control element recognizes which control element area of the control element has to be activated for visual display in order to be assigned locally corresponding to the visual display on the control element mount.
- the operating element has at least two touch-sensitive buttons on an upper side, different functions can be assigned to them depending on the local assignment of the operating element to an area of the operating element receptacle.
- the touch-sensitive button which is closest to a defined area of the control element holder can be assigned a specific function, such as the activation of a timer. The time value can then be set, for example, by rotating the control element.
- the touch-sensitive keys can be capacitive, optical or piezoelectric.
- the buttons can respond when touched with a finger or when the finger is approaching.
- the keys are preferably arranged concentrically to the longitudinal axis of the operating element and they are equidistant from one another. In order to enable a key to be assigned as precisely as possible to a defined area of the operating element receptacle, at least 4 touch-sensitive keys are preferably arranged on the upper side of the operating element facing a user.
- that operating element area can be illuminated by the light emitting device of the operating device which is at the same azimuth position in the direction of rotation around the longitudinal axis as an area of the operating element receptacle designed for illumination.
- a specific segment of the operating element can be illuminated as an operating element area which is located in the same rotational position around the longitudinal axis as an area of the operating element receptacle when viewed around this longitudinal axis of the operating element.
- the acceleration sensor is a 3-axis acceleration sensor and thus a 3D acceleration sensor.
- the detection of the absolute position can be recognized particularly precisely in space.
- the operating device has a wireless energy supply for the acceleration sensor. This is particularly advantageous when an energy supply unit of the operating device is arranged externally to the operating element.
- an energy supply unit for supplying energy to the acceleration sensor is arranged in the operating element itself.
- the operating element is thus in particular supplied with voltage, this energy supply being effected inductively, for example via an air transformer, or capacitively. It is also possible to supply energy via an energy supply unit designed as a rechargeable battery, which is located in the control element itself, or via an additional environmental sensor in the control element, which is designed to supply the electronics in the control element through so-called "energy harvesting".
- an energy supply unit designed as a rechargeable battery, which is located in the control element itself, or via an additional environmental sensor in the control element, which is designed to supply the electronics in the control element through so-called "energy harvesting".
- the operating element preferably has at least one holding magnet, which is designed to generate a magnetic holding force when the operating element is placed on the operating element receptacle.
- a magnetic interaction then occurs between the holding magnet in the operating element and an operating element external magnet, which can be a holding magnet of the operating element receptacle.
- the acceleration sensor of the operating unit is preferably arranged on a circuit board in the operating element, in particular arranged flat on it. As soon as this acceleration sensor is supplied with energy, it is designed to detect acceleration values which change depending on the position of the operating element.
- the placement of the operating element on the operating element receptacle can also be detected by this acceleration sensor.
- the absolute position of the control element in space can be determined in particular via trigonometric functions.
- acceleration values in the three spatial directions result in a resulting acceleration reference value.
- the sum of the squares of the acceleration values in the three spatial directions is equal to the square of this acceleration reference value.
- the acceleration sensor supplies these acceleration components or these acceleration values in particular in the three spatial directions, these acceleration values then being evaluated by the evaluation unit.
- the evaluation unit can be a unit separate from the acceleration sensor, but it can also be part of the acceleration sensor.
- This formula 1 is an example of a coordinate system in which the control element extends as a flat body in the xy plane and the z direction is oriented perpendicular to it.
- the coordinate system can also be spanned otherwise, in which case the formula changes accordingly.
- the absolute position is thus determined relative to a reference position, this reference position being in particular a spatial direction, in particular a spatial direction of these three spatial directions of the referenced coordinate system that are perpendicular to one another.
- acceleration values in the respective spatial directions are specified as components of an acceleration reference value.
- formula 1 makes it possible to identify in which quadrant the operating element or the acceleration sensor is located, depending on a positive or negative value of this contact angle ⁇ . Due to the algebraic signs of the partial accelerations, the absolute angles can be clearly determined when positioning or placing the control element.
- the evaluation unit is designed in such a way that, depending on a desired angular resolution, a table is stored in a memory unit when it is placed, in which the respective angles are stored with the corresponding accelerations of the individual spatial directions. Since an acceleration sensor, as provided here, can detect even the smallest changes in acceleration and the resulting smallest vibrations on the absolute touchdown angle, it is advantageous to determine the measured values, which can be done, for example, via a sliding mean value formation.
- an angular position of the operating element relative to the reference position is determined as an absolute position.
- the angular position is determined as an angle which is functionally dependent on proportional acceleration values in all three spatial directions, the proportional acceleration values each being related to a maximum reference acceleration value or an acceleration reference value, as has already been explained above. This creates the possibility of determining the absolute position in a particularly precise and quick manner.
- the evaluation unit is designed as a function of acceleration values of the acceleration sensor for evaluating a tapping operation of the operating element and / or a tilting movement of the operating element relative to a longitudinal axis of the operating element.
- the operating device has an evaluation unit which, when the operating element is placed on the operating element receptacle, is dependent on acceleration values of the acceleration sensor for determining or evaluating or recognizing a tapping operation of the operating element and / or a longitudinal axis of the operating element occurring tilting movement of the operating element is formed.
- the operating element has at least two different contact points on an upper side, whereby an individual first number of different types of tilting movements, in particular a tilting movement and a rolling movement, can be initiated by operating the operating element at the first contact point, and by operating the operating element on the second contact point, an individual second number of a type of tilting movement that is different from the first number, in particular only one rolling movement, can be initiated.
- the evaluation unit is also designed to recognize, as a function of the acceleration values of the acceleration sensor generated in the spatial directions during the actuations at the contact points, at which of the contact points an actuation has taken place.
- a determination of a tilt angle and a roll angle is also made possible here as a function of trigonometric functions.
- a tilt angle and a roll angle is also made possible here as a function of trigonometric functions.
- the control element extends with its particularly intended design as a flat body, in particular as a flat cylinder, in a plane that is spanned by the two spatial directions around which the roll angle and the pitch angle can be determined, here the x-axis and the y-axis.
- the coordinate system can be spanned differently, which means that formulas 2 and 3 also change accordingly.
- at least one contact point is thus arranged on one of these two spatial directions or along these spatial directions, so that when this contact point is actuated, only one type of tilting movement results from only one of the two movements, namely a rolling movement or a nodding movement.
- Another contact point is not formed directly along such a spatial direction, but lies in between, so that when this further contact point is actuated, these at least two different types of tilting movement, namely a rolling movement and a nodding movement or a tilting movement, result.
- the operating device also has a detection unit which is designed to detect a rotary movement of the operating element about the axis which is perpendicular to the plane in which the operating element extends substantially.
- a detection unit which is designed to detect a rotary movement of the operating element about the axis which is perpendicular to the plane in which the operating element extends substantially.
- This can in particular be an optically operating detection unit.
- Fig. 1 an embodiment of a household appliance is shown in a schematic representation, which is designed here as a cooking appliance.
- this is an oven 1.
- the cooking device can, however, also be, for example, a microwave cooking device or a steam cooking device.
- the household appliance 1 has a housing 2 in which a receiving space for preparing food is formed and which in this regard is a cooking space.
- the cooking space can be closed by a front door (not shown in detail).
- the household appliance 1 also has an operating device 3 with which operating conditions of the household appliance 1 can be set.
- the operating device 3 has an operating element receptacle 4.
- the operating device 3 also has an operating element 5 that is separate from the operating element receptacle 4.
- the operating element 5 can be placed on the operating element receptacle 4 in a non-destructive and detachable manner and can be removed again and can thus be repetitively positioned thereon and removed again.
- Operating conditions of the household appliance 1 can only be set by actuating the operating element 5 when the operating element 5 is in the placed state on the operating element receptacle 4.
- the operating device 3 also has a display unit 6 on which optical information can be displayed electronically.
- the operating element receptacle 4 has several areas which are designed for the corresponding optical display.
- An example is in Fig. 1 such a region 7 of the operating element receptacle 4 is shown symbolically. This is embodied in a specific local position on the control element receptacle 4.
- the operating element 5 is also designed with operating element areas that can be illuminated by a light emitting device of the operating element. As an example, operating element areas 8a and 8b are shown here, which can be illuminated individually by this light emitting device of operating element 5.
- the operating element 5 also has at least one internal acceleration sensor 9, which is a static acceleration sensor. This means that it does not detect angular accelerations, but rather acceleration values in the spatial directions.
- the operating device 3 has an evaluation unit 10. This can be formed externally to the control element 5. However, it can also be formed internally of the operating element 5, in particular it can also be part of the acceleration sensor 9.
- the operating element 5 is preferably a flat body.
- it can be designed like a disk or as a flat cylinder.
- An angular plate-like configuration in this regard can also be provided.
- the operating element 5 is in particular oriented vertically, which also includes a substantially vertical orientation. This means that it is oriented vertically with the plane in which the flat body extends. This means that the operating element 5 with its plane in which it extends is spanned in the xy plane.
- a longitudinal axis A of the operating element 5 is oriented horizontally here and in particular in the depth direction (z-direction) of the household appliance 1.
- the operating element 5 has an internal holding magnet.
- This holding magnet enables a magnetic interaction with a further holding magnet external to the operating element.
- This additional holding magnet external to the operating element is in particular part of the operating element receptacle 4.
- the holding of the operating element 5 on the operating element receptacle 4 in the state arranged thereon is thus preferably formed by magnetic holding forces generated by the magnetic interaction between the aforementioned holding magnets.
- the evaluation unit 10 is designed to determine an absolute position of the operating element 5 in space as a function of at least one acceleration value of the acceleration sensor 9 when the operating element 5 is placed on the operating element receptacle 4.
- control element 5 when the control element 5 is placed on the control element receptacle 4, the control element 5 is placed in a placement position, the absolute position of the control element 5 in space being determinable in this placement position.
- This absolute position of the operating element 9 in space can be determined by the acceleration values that occur when touching down.
- the evaluation unit 10 is designed, depending on the detected absolute position of the operating element five, viewed in the direction around the longitudinal axis A of the operating element 5, a local assignment of an operating element area 8a, 8b of the operating element 5 to an area 7 of the control element holder 4 to be determined. This means that especially when two corresponding and locally adjacent to each other to be illuminated areas of the control element 5 on the one hand and the control element receptacle 4 on the other hand are desired, depending on the absolute position of the control element 5, for example, the locally assigned control element area 8a directly adjacent to the area 7 for optical display is illuminated.
- the configuration of the operating device 3 makes it possible to determine which operating element area 8a, 8b needs to be illuminated on the basis of this specific absolute position of the operating element 5 and the knowledge of the area 7 illuminated, in particular with regard to the azimuth position and with regard to the azimuth position at which an operating element area 8a, 8b must be illuminated in order to enable the locally corresponding, adjacent lighting of these areas 7, 8a, 8b, as shown in FIG Fig. 1 is shown.
- the light emitting device can have one or more light sources, for example light-emitting diodes, which are arranged in the direction of rotation around the axis A and thus in the azimuthal direction in this regard.
- control element area 8 can be illuminated by the light emitting device which is at the same azimuth position in the direction of rotation around the longitudinal axis A as an area 7 of the control element receptacle 4 designed for illumination.
- the acceleration sensor 9 is a 3-axis acceleration sensor.
- Fig. 2 the control element 5 is shown in the open state in a top view, which means that it is possible to look into the interior 11.
- a circuit board 12 is arranged, on which the acceleration sensor 9 is arranged.
- Further electronics in particular are arranged on this circuit board 12. This can be designed, for example, to operate the light sources of the light emitting device. However, it can also be the electronics of the evaluation unit 10, for example.
- the electronics can also have a power supply unit 20.
- Fig. 3 the operating element 5 is shown in a schematic representation with a view of an upper side 13.
- Fig. 3 the control element 5 is shown in the closed state.
- the operating element 5 can be designed in one piece, which means that it can only be moved as a whole relative to the operating element receptacle 4.
- the operating element 5 can, however, also be designed in several parts with respect to its housing, to the effect that the two parts can be moved relative to one another.
- a first part can then be held on the operating element receptacle 4 in the arranged state, for example by the magnetic holding force already explained above.
- the second part of the control element in particular the second part of a housing of the control element 5, in particular a cover, can then be relative to this first part, in particular a first part of the Housing to be moved, in particular rotated.
- the operating conditions of the household appliance 1 can then be set.
- a schematic representation of the operating element 5 is shown in an exemplary reference coordinate system.
- the reference coordinate system is spanned here by three spatial directions perpendicular to one another, namely the x direction, the y direction and the z direction. If, for example, the operating element 5 is placed in a placement position on the operating element receptacle 4, as shown in FIG Fig. 4 is shown, the absolute position of the operating element 5 is recognized here. This to the effect that the acceleration values of the acceleration sensor 9 recognize the corresponding position on the basis of the acceleration values in the three spatial directions.
- the absolute position is specified here in relation to a reference position, which is the horizontal here and is thus the y-direction.
- the acceleration components or acceleration values in the three spatial directions always specified as a function of the acceleration due to gravity then enable the absolute position of the operating element 5 to be determined.
- the sum of the squares of the acceleration value components A x , A y and A z corresponds to the square of a reference acceleration value, for example 1g.
- FIGS. 5 to 7 further schematic representations are shown in which the operating element 5 in FIG Fig. 4 different absolute positions in space and is thus arranged in this defined coordinate system.
- a rotary movement of the operating element 5 about the longitudinal axis A and thus also a dynamic movement can be recorded absolutely on the basis of the acceleration values.
- This can be detected with a further detection unit of the operating device 3.
- This detection unit can preferably be designed for optical detection, for example by infrared.
- a tap actuation of the operating element 5 and / or a tilting movement of the operating element 5 can be determined as a function of axial acceleration values of the acceleration sensor 9.
- An example of this is in Fig. 8 a representation of a control element 5 is shown. With regard to the example already explained in Fig. 3 It can be provided here that several separate contact points 14, 15, 16, 17, 18 and 19 are formed by way of example. These lie in the azimuthal direction around the longitudinal axis A at specific azimuth positions. For example, in Fig. 8 the contact point 14 is shown, which is formed along the longitudinal spatial direction.
- this contact point 14 is tapped or acted with such a force that the operating element 5 moves downwards or tilts downwards with a specific tilting movement, namely with a nodding movement around the y-spatial direction, the operating element 5 only performs a single one here Type of tilting movement, namely this tilting movement.
- FIG. 8 Another contact point 19 drawn in, which can be a second contact point, tapped or acted on with such force from above that the operating element 5 tilts downwards and is tilted relative to the longitudinal axis A and thus to the longitudinal axis A, the acceleration sensor 9 performs a tilting movement or nodding movement around the y-spatial direction and a rolling movement around the x-spatial direction.
- this further contact point 19 which is not arranged along the x spatial direction and not along the y spatial direction, is touched, a movement is carried out that includes at least two different types of tilting movement, namely this tilting movement and this rolling movement.
- the evaluation unit 10 can in turn evaluate these different acceleration values in the respective spatial directions when the contact point 14 is actuated or when the contact point 19 is actuated, and the contact point actually touched can also be recognized. As a result, the operating condition of the household appliance 1 associated with this actuation of the contact point which then takes place can be selected and / or set.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Control Devices (AREA)
- Switches With Compound Operations (AREA)
Description
- Die Erfindung betrifft ein Haushaltsgerät, mit einer Bedienvorrichtung mit einer Bedienelementaufnahme und mit einem dazu separaten Bedienelement, welches auf die Bedienelementaufnahme aufsetzbar und abnehmbar positionierbar ist. Die Bedienvorrichtung weist darüber hinaus zumindest einen statischen Beschleunigungssensor auf, der im Bedienelement angeordnet ist.
- Aus der
EP 2 983 149 A1 ist eine Bedieneinheit für ein Haushaltsgerät bekannt. Die plattenförmige Bedieneinheit weist einen Beschleunigungssensor auf. Abhängig von dessen Informationen kann eine Relativreferenzlage als auch Relativbewegungen der Bedieneinheit zum Haushaltsgerät bestimmt werden. Die Bedieneinheit ist horizontal auf dem Haushaltsgerät oder auf einer benachbarten Arbeitsplatte aufgelegt. - Aus der
EP 2 251 762 A2 ist eine Bedienvorrichtung für ein Elektrogerät bekannt. Die Bedienvorrichtung weist eine Bedieneinheit auf, die als Drehregler ausgebildet ist. Diese Bedieneinheit kann zerstörungsfrei lösbar von einer Bedienelementaufnahme abgenommen werden und wieder aufgesetzt werden. Nur im aufgesetzten Zustand kann durch spezifische Betätigung der Bedieneinheit eine Betriebsbedingung des Elektrogeräts eingestellt werden. In der Bedieneinheit können Beschleunigungssensoren angeordnet sein, die zur Erkennung einer Drehbewegung oder einer Schiebebewegung ausgebildet sind. Die dortigen Beschleunigungssensoren sind somit nur zur Detektion einer spezifischen dynamischen Bewegungsart in Drehrichtung ausgebildet, so dass nur Winkelbeschleunigungen erfasst werden. Sie sind keine statischen Beschleunigungssensoren, die in die Raumrichtungen und somit axial die Beschleunigungen erfassen. - Gerade bei diesen separaten Bedienelementen, die zerstörungsfrei lösbar auf eine Bedienelementaufnahme aufgesetzt werden können, besteht das Problem darin, dass nur diese dynamischen Bewegungen erkannt werden können. Anderweitige Bewegungen oder Positionen können dort mit den vorhandenen Mitteln nicht detektiert werden. Dies führt unter anderem dazu, dass beim Aufsetzen der dortigen Bedieneinheit auf die Bedienelementaufnahme keinerlei Information vorhanden ist, wie diese Bedieneinheit orientiert ist. Dadurch ist die grundsätzliche Bedienvariabilität dieser dortigen Bedienvorrichtungen eingeschränkt.
- Es ist Aufgabe der vorliegenden Erfindung, eine Bedienvorrichtung eines Haushaltsgeräts mit einem Beschleunigungssensor derart zu gestalten, dass aufgrund der Informationen des Beschleunigungssensors die Bedienfunktionalität der Bedienvorrichtung verbessert ist.
- Diese Aufgabe wird durch ein Haushaltsgerät gemäß den unabhängigen Ansprüchen gelöst.
- Ein Aspekt der Erfindung betrifft ein Haushaltsgerät mit einer Bedienvorrichtung. Die Bedienvorrichtung weist eine Bedienelementaufnahme und ein dazu separates Bedienelement auf. Das Bedienelement ist derart ausgebildet, dass es auf die Bedienelementaufnahme aufsetzbar und abnehmbar positionierbar ist. Insbesondere im auf die Bedienelementaufnahme aufgesetzten Zustand kann durch spezifisches Betätigen des Bedienelements dann ein Einstellen von Betriebsbedingungen des Haushaltsgeräts durchgeführt werden. Die Bedienvorrichtung weist zumindest einen statischen Beschleunigungssensor auf, der im Bedienelement angeordnet ist. Das Bedienelement ist als Flachkörper ausgebildet und mit einer Ebene, in der sich der Flachkörper erstreckt, vertikal im Raum orientiert angeordnet. Mit einer vertikalen Anordnung ist auch ein Abweichen von der mathematisch eindeutigen Vertikalen umfasst, insbesondere innerhalb eines Toleranzwinkels, der somit auch ein im Wesentliche vertikales Anordnen umfasst, und insbesondere bis zu +/- 10° aufweisen kann. Die Bedienvorrichtung weist darüber hinaus eine Auswerteeinheit auf, die im auf der Bedienelementaufnahme aufgesetzten Zustand des Bedienelements zur Bestimmung einer Absolutposition des Bedienelements im Raum abhängig von den axialen und somit in den Raumrichtungen auftretenden Beschleunigungswerten des Beschleunigungssensors ausgebildet ist. Durch eine derartige Ausgestaltung einer Bedienvorrichtung kann durch diese spezifische Orientierung des Bedienelements in Wirkverbindung mit den Informationen des Beschleunigungssensors diese Absolutposition des Bedienelements bestimmt werden und somit eine Position unabhängig zur Bedienelementaufnahme bestimmt werden. Durch eine derartige nunmehr ermöglichte Absolutpositionsbestimmung eines derartig spezifisch orientierten Bedienelements kann die Bedienvariabilität erhöht werden. Denn es ist somit insbesondere in jeder spezifischen Stellung des Bedienelements diese Absolutposition unabhängig von der Position des Bedienelements zur Bedienelementaufnahme bestimmbar. Durch diese konkrete Information, wie das Bedienelement im Raum selbst und unabhängig von anderen Komponenten der Bedienvorrichtung orientiert ist, ergeben sich vielfältige zusätzliche weitere Bedienfunktionalitäten und Möglichkeiten, die Betriebsbedingungen einzustellen und/oder dann auch anzuzeigen.
- Es ist vorgesehen, dass zur Bestimmung dieser Absolutposition ein Referenzkoordinatensystem, insbesondere ein dreidimensionales Referenzkoordinatensystem mit senkrecht aufeinander stehenden Raumrichtungen definiert ist. In Bezug zu diesem Referenzkoordinatensystem wird dann die Beschleunigung des Bedienelements erfasst. In jeder Stellung dieses Bedienelements relativ im Koordinatensystem ist eine individuelle und vorgebbare Definition für Beschleunigungswerte in den jeweiligen drei Raumrichtungen vorzugsweise ausgebildet. Durch eine derartige Ausgestaltung kann dann die jeweilige individuelle Absolutposition des Bedienelements einfach bestimmt werden.
- Bei einer Abweichung von der strikten Vertikalität kann auch eine Kalibrierung des Beschleunigungssensors erfolgen.
- Es ist vorgesehen, dass beim Aufsetzen des Bedienelements auf die Bedienelementaufnahme das Bedienelement eine Aufsetzposition aufweist und in dieser Aufsetzposition die Absolutposition bestimmt wird. Dies ist eine weitere sehr vorteilhafte Ausführung, dass somit gerade bei diesen spezifischen Bedienvorrichtungen mit abnehmbaren und wieder aufsetzbaren Bedienelementen stets die eingangs geschilderte Situation auftritt. Ist ein Bedienelement nämlich einmal von der Bedienelementaufnahme abgenommen, kann es in beliebiger anderer Art und Weise und somit insbesondere mit beliebiger Orientierung um eine Längsachse des Bedienelements wieder auf die Bedienelementaufnahme aufgesetzt werden. Üblicherweise ist eine derartige Position, die bei einem Wiederaufsetzen des Bedienelements auf die Bedienelementaufnahme eingenommen wird, unterschiedlich zu derjenigen Position, die das Bedienelement bei der vorhergehenden Abnahme von der Bedienelementaufnahme aufgewiesen hat. Durch die Möglichkeit der Absolutpositionsbestimmung auch bereits dann, wenn das Bedienelement die Aufsetzposition eingenommen hat, kann im Nachgang und somit für die weitere Betätigung des Bedienelements jeweils eine sichere und unverzügliche sowie genaue Zuordnung zu anderen Positionen der Bedienvorrichtung und somit zu anderen Komponenten der Bedienvorrichtung ermöglicht werden. Auch dadurch lassen sich dann sehr genaue und daraus resultierende weitere Variabilitäten zur Bedienung der Bedienvorrichtung erreichen.
- Vorzugsweise ist vorgesehen, dass die Auswerteeinheit dazu ausgebildet ist, abhängig von der erkannten Absolutposition des Bedienelements in Richtung um eine Längsachse des Bedienelements betrachtet eine örtliche Zuordnung von einem Bedienelementbereich des Bedienelements zu einem Bereich der Bedienelementaufnahme zu bestimmen. Dies ist eine weitere sehr vorteilhafte Ausführung, da somit auch bei unterschiedlichsten individuellen Absolutpositionen, die insbesondere beim jeweiligen Aufsetzen eines Bedienelements auf die Bedienelementaufnahme auftreten können, stets eine genaue Zuordnung zu örtlichen Spezifikationen von Bereichen der Bedienelementaufnahme gegeben ist. Damit kann auch einfach eine funktionelle Zuordnung zwischen den jeweiligen Bereichen örtlich sicher erfolgen. Vorteilhaft ist dies insbesondere dann, wenn beispielsweise optische Darstellungen zwischen dem Bedienelement und der Bedienelementaufnahme verknüpft werden sollen und quasi in dem Zusammenhang örtlich zugeordnete optische Anzeigen zwischen dem Bedienelement und der Bedienelementaufnahme erfolgen sollen. Dies kann beispielsweise dann der Fall sein, wenn auf der Bedienelementaufnahme an spezifischer örtlicher Stelle eine optische Anzeige erfolgt und unmittelbar benachbart eine entsprechende weitere optische Anzeige an dem Bedienelement erfolgen soll. Um hier eine örtliche und somit lokale Nähe zwischen diesen optischen Anzeigen erreichen zu können, ist die oben genannte vorteilhafte Ausgestaltung sehr hilfreich. Denn unabhängig davon, wie das Bedienelement relativ zur Bedienelementaufnahme auf dieser Bedienelementaufnahme aufgesetzt wird, wird durch die Absolutposition des Bedienelements erkannt, welcher Bedienelementbereich des Bedienelements zur optischen Anzeige aktiviert werden muss, um korrespondierend zur optischen Anzeige an der Bedienelementaufnahme örtlich zugeordnet zu sein.
- Besonders vorteilhaft ist dies dann, wenn auf der Bedienelementaufnahme ein Display ausgebildet ist, welches im aufgesetzten Zustand des Bedienelements auf der Bedienelementaufnahme unmittelbar benachbart zum Bedienelement optische Informationen anzeigt.
- Weist das Bedienelement an einer Oberseite mindestens zwei berührsensitive Tasten auf, können diesen in Abhängigkeit von der örtlichen Zuordnung des Bedienelements zu einem Bereich der Bedienelementaufnahme unterschiedliche Funktionen zugewiesen werden. Somit kann unabhängig von einer Aufsetzposition oder einer Drehstellung des Bedienelements derjenigen berührsensitiven Taste, welche einem definierten Bereich der Bedienelementaufnahme am nächsten ist, eine bestimmte Funktion, wie z.B. die Aktivierung eines Timers, zugewiesen werden. Die Einstellung des Zeitwertes kann dann z.B. durch eine Drehbewegung des Bedienelements erfolgen. Die berührsensitiven Tasten können kapazitiv, optisch oder piezoelektrisch ausgebildet sein. Die Tasten können auf Berührung mit einem Finger, oder bereits bei Annäherung des Fingers ansprechen. Die Tasten sind bevorzugt konzentrisch zur Längsachse des Bedienelements angeordnet und sie weisen einen gleichen Abstand zueinander auf. Um eine möglichst genaue Zuordnung einer Taste zu einem definierten Bereich der Bedienelementaufnahme zu ermöglichen, sind bevorzugt mindestens 4 berührsensitive Tasten auf der einem Benutzer zugewandten Oberseite des Bedienelements angeordnet.
- Insbesondere ist vorgesehen, dass abhängig von der Absolutposition des Bedienelements derjenige Bedienelementbereich durch die Lichtabstrahleinrichtung der Bedienvorrichtung beleuchtbar ist, der in Umlaufrichtung um die Längsachse an gleicher Azimutposition ist, wie ein zur Beleuchtung ausgebildeter Bereich der Bedienelementaufnahme. So kann bei dieser Ausgestaltung ein spezifisches Segment des Bedienelements als Bedienelementbereich beleuchtet werden, der an gleicher Umlaufposition um die Längsachse sich befindet, als um diese Längsachse des Bedienelements betrachtet ein Bereich der Bedienelementaufnahme.
- Vorzugsweise ist vorgesehen, dass der Beschleunigungssensor ein 3-Achsen-Beschleunigungssensor und somit ein 3D-Beschleunigungssensor ist. Dadurch kann die Erfassung der Absolutposition besonders präzise im Raum erkannt werden.
- Vorzugsweise ist vorgesehen, dass die Bedienvorrichtung eine drahtlose Energieversorgung für den Beschleunigungssensor aufweist. Dies ist insbesondere dann vorteilhaft, wenn eine Energieversorgungseinheit der Bedienvorrichtung extern zum Bedienelement angeordnet ist.
- Es kann auch vorgesehen sein, dass eine Energieversorgungseinheit zum Energieversorgen des Beschleunigungssensors im Bedienelement selbst angeordnet ist.
- Das Bedienelement wird somit insbesondere mit Spannung versorgt, wobei diese Energieversorgung induktiv, beispielsweise über einen Lufttransformator, oder kapazitiv erfolgen. Es ist auch möglich, die Energieversorgung über eine als Akku ausgebildete Energieversorgungseinheit, die insbesondere im Bedienelement selbst angeordnet ist, durchzuführen oder über einen zusätzlichen Umgebungssensor im Bedienelement, welcher dazu ausgebildet ist, durch ein sogenanntes "Energy Harvesting" die Elektronik im Bedienelement zu versorgen.
- Vorzugsweise weist das Bedienelement zumindest einen Haltemagneten auf, welcher zum Erzeugen einer magnetischen Haltekraft im aufgesetzten Zustand des Bedienelements auf der Bedienelementaufnahme ausgebildet ist. Insbesondere tritt in diesem aufgesetzten Zustand dann eine magnetische Wechselwirkung zwischen dem Haltemagneten im Bedienelement und einem Bedienelement externen Magneten, der ein Haltemagnet der Bedienelementaufnahme sein kann, auf.
- Vorzugsweise ist der Beschleunigungssensor der Bedieneinheit auf einer Platine im Bedienelement angeordnet, insbesondere flach darauf angeordnet. Sobald dieser Beschleunigungssensor mit Energie versorgt ist, ist er zur Erfassung von Beschleunigungswerten ausgebildet, welche sich je nach Stellung des Bedienelements ändern.
- So kann auch das Aufsetzen des Bedienelements auf die Bedienelementaufnahme durch diesen Beschleunigungssensor erfasst werden. Mittels der Beschleunigung beim Positionieren beziehungsweise Aufsetzen des Bedienelements auf die Bedienelementaufnahme kann insbesondere über trigonometrische Funktionen die Absolutposition des Bedienelements im Raum bestimmt werden.
- Insbesondere ist auch ermöglicht, dass abhängig davon, auf welcher Seite der Beschleunigungssensor auf der Platine angeordnet ist, unterschiedliche Definitionen für die Beschleunigungswerte in den drei Raumrichtungen vorgegeben sind.
- In einer vorteilhaften Ausführung ist vorgesehen, dass als definierte Beziehung vorgegeben ist, dass die Beschleunigungswerte in den drei Raumrichtungen einen resultierenden Beschleunigungsreferenzwert ergeben. So kann beispielsweise vorgesehen sein, dass die Summe der Quadrate der Beschleunigungswerte in den drei Raumrichtungen gleich dem Quadrat dieses Beschleunigungsreferenzwerts ist.
- Insbesondere liefert der Beschleunigungssensor diese Beschleunigungsanteile beziehungsweise diese Beschleunigungswerte in insbesondere den drei Raumrichtungen, wobei diese Beschleunigungswerte dann durch die Auswerteeinheit ausgewertet werden.
- Die Auswerteeinheit kann eine zum Beschleunigungssensor separate Einheit sein, sie kann jedoch auch Bestandteil des Beschleunigungssensors sein.
-
- Diese Formel 1 ist beispielhaft für ein Koordinatensystem, in welchem das Bedienelement als Flachkörper sich in der x-y-Ebene erstreckt und die z-Richtung senkrecht dazu orientiert ist. Selbstverständlich kann das Koordinatensystem auch anderweitig aufgespannt sein, wobei sich dann die Formel entsprechend ändert.
- Insbesondere ist vorgesehen, dass die Absolutposition somit relativ zu einer Referenzlage bestimmt ist, wobei diese Referenzlage insbesondere eine Raumrichtung ist, insbesondere eine Raumrichtung dieser drei senkrecht aufeinander stehenden Raumrichtungen des referenzierten Koordinatensystems.
- Insbesondere werden die Beschleunigungswerte in den jeweiligen Raumrichtungen als Anteile von einem Beschleunigungsreferenzwert angegeben.
- Insbesondere durch die oben angegebene Formel 1 kann, bei spezifischer Koordinatensystemlage, abhängig von einem positiven oder negativen Wert dieses Aufsetzwinkels β erkannt werden, in welchem Quadranten das Bedienelement liegt bzw. sich der Beschleunigungssensor befindet. Aufgrund der Vorzeichen der Teilbeschleunigungen können die Absolutwinkel beim Positionieren beziehungsweise Aufsetzen des Bedienelements eindeutig bestimmt werden.
- Es ist auch möglich, dass die Auswerteeinheit derart ausgebildet ist, dass abhängig von einer gewünschten Winkelauflösung beim Aufsetzen in einer Speichereinheit eine Tabelle abgelegt ist, in welcher die jeweiligen Winkel mit den entsprechenden Beschleunigungen der einzelnen Raumrichtungen abgelegt sind. Da ein Beschleunigungssensor, wie er hier vorgesehen ist, bereits kleinste Beschleunigungsänderungen und sich dadurch ergebende kleinste Erschütterungen auf den absoluten Aufsetzwinkel erfassen kann, ist es vorteilhaft, die Messwerte zu ermitteln, wobei dies beispielsweise über eine gleitende Mittelwertbildung erfolgen kann.
- Insbesondere ist als eine Absolutposition eine Winkelstellung des Bedienelements relativ zu der Referenzlage bestimmt.
- Insbesondere ist die Winkelstellung als Winkel bestimmt, der funktionell von anteiligen Beschleunigungswerten in allen drei Raumrichtungen abhängig ist, wobei die anteiligen Beschleunigungswerte jeweils auf einen maximalen Referenz-Beschleunigungswert beziehungsweise auf einen Beschleunigungsreferenzwert bezogen sind, wie dies bereits oben dargelegt wurde. Darauf wird in besonders präziser und auch schneller Art und Weise die Möglichkeit geschaffen, die Absolutposition zu bestimmen.
- In einer weiteren Ausführungsform ist vorgesehen, dass die Auswerteeinheit abhängig von Beschleunigungswerten des Beschleunigungssensors zur Auswertung einer Antippbetätigung des Bedienelements und/oder einer zu einer Längsachse des Bedienelements erfolgenden Kippbewegung des Bedienelements ausgebildet ist. Es kann somit nicht nur eine grundsätzliche Absolutposition beim Aufsetzen des Bedienelements auf die Bedienelementaufnahme bestimmt werden, sondern es können in dem Zusammenhang dann auch ganz spezifische dynamische Bewegungsarten und zwar in die jeweiligen Achsenrichtungen bzw. Raumrichtungen anhand der Informationen des Beschleunigungssensors erkannt werden.
- In einer weiteren vorteilhaften Ausführung ist vorgesehen, dass die Bedienvorrichtung eine Auswerteeinheit aufweist, die im auf der Bedienelementaufnahme aufgesetzten Zustand des Bedienelements abhängig von Beschleunigungswerten des Beschleunigungssensors zur Bestimmung beziehungsweise zur Auswertung beziehungsweise zum Erkennen einer Antippbetätigung des Bedienelements und/oder einer zu einer Längsachse des Bedienelements erfolgenden Kippbewegung des Bedienelements ausgebildet ist.
- Insbesondere ist vorgesehen, dass das Bedienelement an einer Oberseite zumindest zwei verschiedene Berührstellen aufweist, wobei durch Betätigen des Bedienelements an der ersten Berührstelle eine damit individuelle erste Anzahl von verschiedenen Kippbewegungsarten, insbesondere eine Neigebewegung und eine Rollbewegung, initiierbar ist und durch Betätigen des Bedienelements an der zweiten Berührstelle eine damit individuelle zweite und von der ersten Anzahl unterschiedliche Anzahl einer Kippbewegungsart, insbesondere nur eine Rollbewegung, initiierbar ist. Die Auswerteeinheit ist darüber hinaus dazu ausgebildet, abhängig von den jeweils bei den Betätigungen an den Berührstellen, in die Raumrichtungen erzeugten Beschleunigungswerten des Beschleunigungssensors zu erkennen, an welcher der Berührstellen eine Betätigung erfolgt ist.
- Insbesondere ist auch hier abhängig von trigonometrischen Funktionen eine Bestimmung eines Neigewinkels und eines Rollwinkels ermöglicht. Auch hier ist somit zu jeweils zwei verschiedenen Referenzlagen, die durch zwei aufeinander stehende, senkrecht zueinander orientierte Raumrichtungen jeweils definiert sind, diese dann jeweilige Absolutposition bei einer derartigen individuellen Kippbewegung bestimmbar.
-
-
- Das Bedienelement erstreckt sich mit seiner insbesondere vorgesehenen Ausgestaltung als Flachkörper, insbesondere als Flachzylinder, in einer Ebene, die durch die beiden Raumrichtungen aufgespannt sind, um die sich der Rollwinkel und der Nickwinkel bestimmen lassen, hier die x-Achse und die y-Achse. Auch hier kann das Koordinatensystem anderweitig aufgespannt sein, wodurch sich dann auch die Formeln 2 und 3 entsprechend ändern. Insbesondere ist somit zumindest eine Berührstelle auf einer dieser beiden Raumrichtungen beziehungsweise entlang dieser Raumrichtungen angeordnet, sodass sich dann beim Betätigen dieser Berührstelle nur eine Kippbewegungsart gemäß von nur einem der beiden Bewegungen, nämlich einer Rollbewegung oder einer Nickbewegung ergibt. Eine weitere Berührstelle ist nicht direkt entlang einer derartigen Raumrichtung ausgebildet, sondern dazwischen liegend, sodass sich bei dem Betätigen dieser weiteren Berührstelle diese zumindest zwei verschiedenen Kippbewegungsarten, nämlich eine Rollbewegung und eine Nickbewegung beziehungsweise eine Neigebewegung ergeben.
- Insbesondere weist die Bedienvorrichtung auch eine Erfassungseinheit auf, die zur Erfassung einer Drehbewegung des Bedienelements um die Achse, die senkrecht zu der Ebene steht, in welcher sich das Bedienelement wesentlich erstreckt, ausgebildet ist. Dies kann insbesondere eine optisch arbeitende Erfassungseinheit sein.
- Mit Angaben "oben", "unten", "vorne", "hinten, "horizontal", "vertikal", "Tiefenrichtung", "Breitenrichtung", "Höhenrichtung" etc. sind die bei bestimmungsgemäßen Gebrauch und bestimmungsgemäßem Anordnen der Bedienvorrichtung bzw. des Gargeräts und bei einem dann insbesondere vor der Bedienvorrichtung bzw. dem Gargerät stehenden und in Richtung der Bedienvorrichtung bzw. des Gargeräts blickenden Beobachter gegebenen Positionen und Orientierungen angegeben.
- Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figurenbeschreibung.
- Ausführungsbeispiele der Erfindung werden nachfolgend anhand schematischer Zeichnungen näher erläutert. Es zeigen:
- Fig. 1
- eine perspektivische Darstellung eines Ausführungsbeispiels eines Haushaltsgeräts;
- Fig. 2
- eine Ansicht von oben auf das Innere eines Bedienelements eines Ausführungsbeispiels einer Bedienvorrichtung;
- Fig. 3
- eine Draufsicht auf ein Bedienelement eines Ausführungsbeispiels einer Bedienvorrichtung;
- Fig. 4-7
- vereinfachte Darstellungen des Bedienelements in unterschiedlichen Absolutpositionen im Raum bezogen auf ein Koordinatensystem; und
- Fig. 8
- eine weitere Darstellung eines Bedienelements in spezifischer Position in einem Koordinatensystem.
- In den Figuren werden gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
- In
Fig. 1 ist in einer schematischen Darstellung ein Ausführungsbeispiel eines Haushaltsgeräts gezeigt, welches hier als Gargerät ausgebildet ist. Dieses ist im Ausführungsbeispiel ein Backofen 1. Das Gargerät kann jedoch auch beispielsweise ein Mikrowellengargerät oder ein Dampfgargerät sein. Das Haushaltsgerät 1 weist ein Gehäuse 2 auf, in dem ein Aufnahmeraum zum Zubereiten von Lebensmitteln ausgebildet ist und welcher diesbezüglich ein Garraum ist. Der Garraum ist durch eine nicht näher bezeichnete frontseitige Tür verschließbar. - Das Haushaltsgerät 1 weist darüber hinaus eine Bedienvorrichtung 3 auf, mit welcher Betriebsbedingungen des Haushaltsgeräts 1 einstellbar sind. Die Bedienvorrichtung 3 weist eine Bedienelementaufnahme 4 auf. Die Bedienvorrichtung 3 weist darüber hinaus ein zur Bedienelementaufnahme 4 separates Bedienelement 5 auf. Das Bedienelement 5 ist auf die Bedienelementaufnahme 4 zerstörungsfrei lösbar aufsetzbar und wieder abnehmbar und kann somit wiederholbar darauf positioniert werden und wieder abgenommen werden. Nur im aufgesetzten Zustand des Bedienelements 5 auf die Bedienelementaufnahme 4 können Betriebsbedingungen des Haushaltsgeräts 1 durch Betätigen des Bedienelements 5 eingestellt werden. Die Bedienvorrichtung 3 weist darüber hinaus eine Anzeigeeinheit 6 auf, auf welcher optische Informationen elektronisch angezeigt werden können. Die Bedienelementaufnahme 4 weist dazu mehrere Bereiche auf, die zur entsprechenden optischen Anzeige ausgebildet sind. Beispielhaft ist in
Fig. 1 ein derartiger Bereich 7 der Bedienelementaufnahme 4 symbolhaft dargestellt. Dieser ist in spezifischer örtlicher Lage an der Bedienelementaufnahme 4 ausgebildet. Darüber hinaus ist auch das Bedienelement 5 mit Bedienelementbereichen ausgebildet, die durch eine Lichtabstrahleinrichtung des Bedienelements beleuchtbar sind. Beispielhaft sind hier Bedienelementbereiche 8a und 8b dargestellt, die durch diese Lichtabstrahleinrichtung des Bedienelements 5 individuell beleuchtet werden können. - Das Bedienelement 5 weist darüber hinaus zumindest einen internen Beschleunigungssensor 9 auf, der ein statischer Beschleunigungssensor ist. Dies bedeutet, dass er keine Winkelbeschleunigungen erfasst, sondern Beschleunigungswerte in die Raumrichtungen erfasst.
- Darüber hinaus weist die Bedienvorrichtung 3 eine Auswerteeinheit 10 auf. Diese kann extern zum Bedienelement 5 ausgebildet sein. Sie kann jedoch auch intern des Bedienelements 5 ausgebildet sein, insbesondere auch Bestandteil des Beschleunigungssensors 9 sein.
- Wie bereits in
Fig. 1 zu erkennen ist, ist das Bedienelement 5 vorzugsweise ein Flachkörper. Er kann diesbezüglich diskusartig oder als Flachzylinder ausgebildet sein. Auch eine diesbezügliche eckige plattenartige Ausgestaltung kann vorgesehen sein. - In der Ausführung gemäß
Fig. 1 ist das Bedienelement 5 insbesondere vertikal orientiert, wodurch auch eine im Wesentlichen vertikale Orientierung umfasst ist. Dies bedeutet, dass es mit der Ebene, in der sich der Flachkörper erstreckt, vertikal orientiert ist. Dies bedeutet, dass das Bedienelement 5 mit seiner Ebene, in der es sich erstreckt, in der x-y-Ebene aufgespannt ist. Eine Längsachse A des Bedienelements 5 ist hier horizontal und insbesondere in Tiefenrichtung (z-Richtung) des Haushaltsgeräts 1 orientiert. - Es ist insbesondere vorgesehen, dass das Bedienelement 5 einen internen Haltemagneten aufweist. Mit diesem Haltemagneten ist eine magnetische Wechselwirkung mit einem Bedienelementexternen weiteren Haltemagneten ermöglicht. Dieser Bedienelementexterne weitere Haltemagnet ist insbesondere Bestandteil der Bedienelementaufnahme 4. Das Halten des Bedienelements 5 an der Bedienelementaufnahme 4 im daran angeordneten Zustand wird somit vorzugsweise durch magnetische Haltekräfte, die durch die magnetische Wechselwirkung zwischen den genannten Haltemagneten erzeugt ist, gebildet.
- Die Auswerteeinheit 10 ist dazu ausgebildet, im auf der Bedienelementaufnahme 4 aufgesetzten Zustand des Bedienelements 5 eine Absolutposition des Bedienelements 5 im Raum abhängig von zumindest einem Beschleunigungswert des Beschleunigungssensors 9 zu bestimmen.
- Insbesondere ist beim Aufsetzen des Bedienelements 5 auf die Bedienelementaufnahme 4 das Bedienelement 5 mit einer Aufsetzposition aufgesetzt, wobei in dieser Aufsetzposition die Absolutposition des Bedienelements 5 im Raum bestimmbar ist. Durch die beim Aufsetzen auftretenden Beschleunigungswerte kann diese Absolutposition des Bedienelements 9 im Raum bestimmt werden.
- Darüber hinaus ist es dadurch dann auch ermöglicht, dass die Auswerteeinheit 10 dazu ausgebildet ist, abhängig von der erkannten Absolutposition des Bedienelements fünf in Richtung um die Längsachse A des Bedienelements 5 betrachtet eine örtliche Zuordnung von einem Bedienelementbereich 8a, 8b des Bedienelements 5 zu einem Bereich 7 der Bedienelementaufnahme 4 zu bestimmen. Dies bedeutet, dass insbesondere dann, wenn zwei korrespondierende und örtlich benachbart zueinander zu beleuchtende Bereiche des Bedienelements 5 einerseits und der Bedienelementaufnahme 4 andererseits gewünscht sind, abhängig von der Absolutposition des Bedienelements 5 dann der beispielsweise dem Bereich 7 direkt benachbarte und lokal zugeordnete Bedienelementbereich 8a zur optischen Anzeige beleuchtet wird. Es erfolgt somit nicht eine vollständige Beleuchtung, beispielsweise durch einen umlaufenden Ring um die Längsachse A am Bedienelement 5, sondern nur in einem lokal zugeordnete und in Umlaufrichtung um die Längsachse A nur segmentierter Bedienelementbereich 8a, der entsprechend beleuchtet wird. Es ist also daher möglich, dass nicht ein vorher bereits festgelegter Bereich des Bedienelements 5 beleuchtet wird, wenn der funktionell zugeordnete Bereich 7 beleuchtet wird, was dazu führen könnte, dass in azimutaler Richtung um die Längsachse A das Beleuchten eines Bedienelementbereichs des Bedienelements 5 an einer anderen lokalen Stelle als an der Azimutposition des Bereichs 7 erfolgt. Vielmehr wird durch die Ausgestaltung der Bedienvorrichtung 3 gemäß dem genannten Aspekt der Erfindung ermöglicht, dass auf Basis dieser bestimmten Absolutposition des Bedienelements 5 und der Kenntnis des insbesondere bezüglich der Azimutposition beleuchteten Bereich 7 dann auch bestimmt werden kann, welcher Bedienelementbereich 8a, 8b beleuchtet werden muss und diesbezüglich an welcher Azimutlage ein Bedienelementbereich 8a, 8b beleuchtet werden muss, um die lokale korrespondierende benachbarte Beleuchtung dieser Bereiche 7, 8a, 8b zu ermöglichen, wie dies in
Fig. 1 dargestellt ist. - Die Lichtabstrahleinrichtung kann ein oder mehrere Lichtquellen, beispielsweise Leuchtdioden aufweisen, die in Umlaufrichtung um die Achse A und somit in diesbezüglicher azimutaler Richtung angeordnet sind.
- Abhängig von der bestimmten Absolutposition des Bedienelements 5 kann somit jeweils derjenige Bedienelementbereich 8 durch die Lichtabstrahleinrichtung beleuchtet werden, der in Umlaufrichtung um die Längsachse A an gleicher Azimutposition ist, wie ein zur Beleuchtung ausgebildeter Bereich 7 der Bedienelementaufnahme 4.
- Insbesondere ist der Beschleunigungssensor 9 ein 3-Achsen-Beschleunigungssensor.
- In
Fig. 2 ist in einer Draufsicht das Bedienelement 5 in geöffnetem Zustand gezeigt, was bedeutet, dass in das Innere 11 geblickt werden kann. In diesem Inneren 11 des Bedienelements 5 ist eine Platine 12 angeordnet, auf welcher der Beschleunigungssensor 9 angeordnet ist. Auf dieser Platine 12 ist insbesondere noch weitere Elektronik angeordnet. Diese kann beispielsweise zum Betreiben der Lichtquellen der Lichtabstrahleinrichtung ausgebildet sein. Sie kann jedoch auch beispielsweise die Elektronik der Auswerteeinheit 10 sein. Die Elektronik kann auch eine Energieversorgungseinheit 20 aufweisen. - In
Fig. 3 ist in einer schematischen Darstellung das Bedienelement 5 mit Blick auf eine Oberseite 13 gezeigt. InFig. 3 ist das Bedienelement 5 im geschlossenen Zustand gezeigt. - Grundsätzlich kann das Bedienelement 5 einstückig ausgebildet sein, was bedeutet, dass es nur als Gesamtes relativ zur Bedienelementaufnahme 4 bewegt werden kann. Das Bedienelement 5 kann jedoch bezüglich seinem Gehäuse auch mehrteilig ausgebildet sein und zwar dahingehend, dass die beiden Teile zueinander relativ bewegbar sind. Bei einer derartigen Ausgestaltung kann dann ein erstes Teil im angeordneten Zustand auf der Bedienelementaufnahme 4 an diesem gehalten sein, beispielsweise durch die bereits oben erläuterte magnetische Haltekraft. Das zweite Teil des Bedienelements, insbesondere das zweite Teil eines Gehäuses des Bedienelements 5, insbesondere ein Deckel, kann dann relativ zu diesem ersten Teil, insbesondere einem ersten Teil des Gehäuses, bewegt werden, insbesondere gedreht werden. Dadurch kann dann eine Einstellung von Betriebsbedingungen des Haushaltsgeräts 1 erfolgen.
- In
Fig. 4 ist ein einer schematischen Darstellung das Bedienelement 5 in einem beispielhaften Referenz-Koordinatensystem gezeigt. Das Referenz-Koordinatensystem ist hier durch drei senkrecht aufeinander stehende Raumrichtungen, nämlich die x-Richtung, die y-Richtung und die z-Richtung aufgespannt. Ist beispielsweise das Bedienelement 5 in einer Aufsetzposition an der Bedienelementaufnahme 4 aufgesetzt, wie sie inFig. 4 gezeigt ist, wird hier die Absolutposition des Bedienelements 5 erkannt. Dies dahingehend, dass die Beschleunigungswerte des Beschleunigungssensors 9 die entsprechende Lage anhand der Beschleunigungswerte in den drei Raumrichtungen erkennen. Insbesondere ist hier die Absolutposition in Bezug zu einer Referenzlage, die hier die Horizontale ist und somit die y-Richtung ist, angegeben. - Die immer in Abhängigkeit von der Erdbeschleunigung angegebenen Beschleunigungsanteile beziehungsweise Beschleunigungswerte in den drei Raumrichtungen ermöglichen dann die Bestimmung der Absolutposition des Bedienelements 5.
- Insbesondere ist vorgesehen, dass die Summe der Quadrate der Beschleunigungswertanteile Ax, Ay und Az dem Quadrat eines Referenz-Beschleunigungswerts, beispielsweise 1g, entspricht.
- In den
Fig. 5 bis Fig. 7 sind weitere schematische Darstellungen gezeigt, bei denen das Bedienelement 5 in zuFig. 4 unterschiedlichen Absolutpositionen im Raum und somit in diesem definierten Koordinatensystem angeordnet ist. - Es sind in den
Fig. 4 bis Fig. 7 jeweils um 90° versetzte Positionen zueinander dargestellt. Selbstverständlich ist jede dazwischen liegende weitere Position des Bedienelements 5 ebenfalls als Absolutposition bestimmbar. - Durch die sich in
Fig. 5 bis Fig. 7 ergebenden, unterschiedlichen Beschleunigungswerte in den Raumrichtungen kann sich dann auch wieder die genaue definierte Absolutposition bestimmen lassen. Dies kann auch in Bezug zu der Referenzlage, hier die y-Richtung, erfolgen. Es kann ein Winkel β gemäß Formel 1 bestimmt werden. - Neben dieser Absolutposition kann anhand der Beschleunigungswerte auch eine Drehbewegung des Bedienelements 5 um die Längsachse A und somit auch eine dynamische Bewegung absolut erfasst werden. Dies kann mit einer weiteren Erfassungseinheit der Bedienvorrichtung 3 erfasst werden. Diese Erfassungseinheit kann vorzugsweise zur optischen Erfassung, beispielsweise durch Infrarot, ausgebildet sein.
- Es ist auch möglich, dass zusätzlich oder anstatt dazu eine Antippbetätigung des Bedienelements 5 und/oder eine Kippbewegung des Bedienelements 5 abhängig von axialen Beschleunigungswerten des Beschleunigungssensors 9 bestimmbar ist. Beispielhaft ist hierzu in
Fig. 8 eine Darstellung eines Bedienelements 5 gezeigt. Im Hinblick auf das bereits erläuterte Beispiel inFig. 3 kann hier vorgesehen sein, dass mehrere separate Berührstellen 14, 15, 16, 17, 18 und 19 beispielhaft ausgebildet sind. Diese liegen in azimutaler Richtung um die Längsachse A an spezifischen Azimutpositionen. So ist beispielsweise inFig. 8 die Berührstelle 14 eingezeichnet, die entlang der Längs-Raumrichtung ausgebildet ist. Wird nun auf diese Berührstelle 14 getippt oder mit einer derartigen Kraft eingewirkt, dass sich das Bedienelement 5 mit einer spezifischen Kippbewegung, nämlich mit einer Nickbewegung um die y-Raumrichtung nach unten bewegt beziehungsweise nach unten kippt, so vollzieht das Bedienelement 5 hier nur eine einzige Kippbewegungsart, nämlich diese Neigebewegung. - Wird andererseits auf die ebenfalls beispielhaft in
Fig. 8 eingezeichnete weitere Berührstelle 19, die eine zweite Berührstelle sein kann, angetippt oder mit derartiger Kraft von oben eingewirkt, dass das Bedienelement 5 nach unten kippt und zwar bezogen auf die Längsachse A und somit zur Längsachse A verkippt wird, so vollzieht der Beschleunigungssensor 9 eine Neigebewegung bzw. Nickbewegung um die y-Raumrichtung und eine Rollbewegung um die x-Raumrichtung. Dadurch wird beim Berühren dieser weiteren Berührstelle 19, die nicht entlang der x-Raumrichtung und nicht entlang der y-Raumrichtung angeordnet ist, eine Bewegung vollzogen, die zumindest zwei unterschiedliche Kippbewegungsarten beinhaltet, nämlich diese Neigebewegung und diese Rollbewegung. - Durch die Auswerteeinheit 10 können auch hier wiederum diese dann beim Betätigen der Berührstelle 14 oder beim Betätigen der Berührstelle 19 auftretenden unterschiedlichen Beschleunigungswerte in den jeweiligen Raumrichtungen ausgewertet werden und auch die tatsächlich berührte Berührstelle erkannt werden. Dadurch kann die mit dieser dann erfolgenden Betätigung der Berührstelle einhergehende Betriebsbedingung des Haushaltsgeräts 1 ausgewählt und/oder eingestellt werden.
-
- 1
- Haushaltsgerät
- 2
- Gehäuse
- 3
- Bedienvorrichtung
- 4
- Bedienelementaufnahme
- 5
- Bedienelement
- 6
- Anzeigeeinheit
- 7
- Bereich
- 8a, 8b
- Bedienelementbereiche
- 9
- Beschleunigungssensor
- 10
- Auswerteeinheit
- 11
- Innere
- 12
- Platine
- 13
- Oberseite
- 14
- Berührstelle
- 15
- Berührstelle
- 16
- Berührstelle
- 17
- Berührstelle
- 18
- Berührstelle
- 19
- Berührstelle
- 20
- Energieversorgungseinheit
- A
- Längsachse
Claims (13)
- Haushaltsgerät (1) mit einer Bedienvorrichtung (3) mit einer Bedienelementaufnahme (4) und mit einem dazu separaten Bedienelement (5), welches auf die Bedienelementaufnahme (4) aufsetzbar und abnehmbar positionierbar ist und mit welchem durch spezifisches Betätigen im auf die Bedienelementaufnahme (4) aufgesetzten Zustand Betriebsbedingungen des Haushaltsgeräts (1) einstellbar sind, und mit zumindest einem Beschleunigungssensor (9), der im Bedienelement (5) angeordnet ist, wobei das Bedienelement (5) als Flachkörper ausgebildet ist, dadurch gekennzeichnet, dass das Bedienelement (5) im auf die Bedienelementaufnahme (4) aufgesetzten Zustand mit einer Ebene, in der sich der Flachkörper mit seinen größeren Ausmaßen erstreckt, vertikal im Raum orientiert angeordnet ist, beim Aufsetzen des Bedienelements (5) auf die Bedienelementaufnahme (4) das Bedienelement (5) eine Aufsetzposition aufweist, und in der Aufsetzposition die Absolutposition bestimmt wird, und die Bedienvorrichtung (3) eine Auswerteeinheit (10) aufweist, die im auf der Bedienelementaufnahme (4) aufgesetzten Zustand des Bedienelements (5) und somit in der Aufsetzposition zur Bestimmung einer von der Position des Bedienelements (5) zur Bedienelementaufnahme (4) unabhängigen Absolutposition des Bedienelements (5) im Raum (x, y, z) abhängig von Beschleunigungswerten des Beschleunigungssensors (9) ausgebildet ist, wobei zur Bestimmung dieser Absolutposition ein Referenzkoordinatensystem mit senkrecht aufeinander stehenden Raumrichtungen (x, y, z) definiert ist.
- Haushaltsgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerteeinheit (10) dazu ausgebildet ist, abhängig von der erkannten Absolutposition des Bedienelements (5) in Richtung um eine Längsachse (A) des Bedienelements (5) betrachtet eine örtliche Zuordnung von einem Bedienelementbereich (8) des Bedienelements (5) zu einem Bereich (7) der Bedienelementaufnahme (4) zu bestimmen.
- Haushaltsgerät (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Bedienelement (5) an einer Oberseite (13) mindestens zwei berührsensitive Tasten aufweist, denen in Abhängigkeit von der örtlichen Zuordnung unterschiedliche Funktionen zuweisbar sind.
- Haushaltsgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bedienelement (5) eine Lichtabstrahleinrichtung aufweist, mit welcher ein erster Bedienelementbereich (8a) beleuchtbar ist und mit welcher zumindest ein dazu unterschiedlicher zweite Bedienelementbereich (8b) unabhängig von der Beleuchtung des ersten Bedienelementbereichs (8a) beleuchtbar ist.
- Haushaltsgerät (1) nach Anspruch 2 und 4, dadurch gekennzeichnet, dass abhängig von der Absolutposition derjenige Bedienelementbereich (8a, 8b) durch die Lichtabstrahleinrichtung beleuchtbar ist, der in Umlaufrichtung um die Längsachse (A) an gleicher Azimutposition ist, wie ein zur Beleuchtung ausgebildeter Bereich (7) der Bedienelementaufnahme (4).
- Haushaltsgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Beschleunigungssensor (9) ein 3-Achsen-Beschleunigungssensor ist.
- Haushaltsgerät (1) nach der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bedienvorrichtung (3) eine drahtlose Energieversorgung für den Beschleunigungssensor (9) aufweist.
- Haushaltsgerät (1) nach Anspruch 7, dadurch gekennzeichnet, dass eine Energieversorgungseinheit zum Energieversorgen des Beschleunigungssensors (9) Bedienelementextern angeordnet ist.
- Haushaltsgerät (1) nach Anspruch 7, dadurch gekennzeichnet, dass eine Energieversorgungseinheit (20) zum Energieversorgen des Beschleunigungssensors (9) im Bedienelement (5) angeordnet ist.
- Haushaltsgerät (1) nach einem der vorehrgehenden Ansprüche, dadurch gekennzeichnet, dass die Absolutposition relativ zu einer Referenzlage bestimmt ist, insbesondere relativ zu einer Raumrichtung.
- Haushaltsgerät (1) nach Anspruch 10, dadurch gekennzeichnet, dass eine Absolutposition als eine Winkelstellung des Bedienelements (5) relativ zu der Referenzlage bestimmt ist.
- Haushaltsgerät (1) nach Anspruch 11, dadurch gekennzeichnet, dass die Winkelstellung als Winkel bestimmt ist, der funktionell von anteiligen Beschleunigungswerten in allen drei Raumrichtungen (x, y, z) abhängig ist, wobei die anteiligen Beschleunigungswerte jeweils auf einen maximalen Referenz-Beschleunigungswert bezogen sind.
- Haushaltsgerät (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerteeinheit (10) abhängig von Beschleunigungswerten des Beschleunigungssensors (9) zur Auswertung einer Antippbetätigung des Bedienelements (5) und/oder einer zu einer Längsachse (A) des Bedienelements (5) Kippbewegung des Bedienelements (5) ausgebildet ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017207385.3A DE102017207385A1 (de) | 2017-05-03 | 2017-05-03 | Bedienvorrichtung für ein Haushaltsgerät mit einer Absolutpositionsbestimmung eines Bedienelements im Raum, sowie Haushaltsgerät |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3399239A1 EP3399239A1 (de) | 2018-11-07 |
EP3399239B1 true EP3399239B1 (de) | 2021-08-11 |
Family
ID=62067555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18169630.3A Active EP3399239B1 (de) | 2017-05-03 | 2018-04-26 | Haushaltsgerät mit einer bedienvorrichtung mit einer absolutpositionsbestimmung eines bedienelements im raum |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3399239B1 (de) |
DE (1) | DE102017207385A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021122017A1 (en) * | 2019-12-19 | 2021-06-24 | BSH Hausgeräte GmbH | Control knob and method for controlling a household appliance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009022339A1 (de) | 2009-05-14 | 2010-11-18 | E.G.O. Elektro-Gerätebau GmbH | Bedienvorrichtung für ein Elektrogerät |
DE102014215778A1 (de) * | 2014-08-08 | 2016-02-11 | BSH Hausgeräte GmbH | Verfahren zum Betreiben eines Haushaltsgeräts mit einer haushaltsgeräteexternen Bedieneinheit sowie Haushaltsgerät |
-
2017
- 2017-05-03 DE DE102017207385.3A patent/DE102017207385A1/de not_active Withdrawn
-
2018
- 2018-04-26 EP EP18169630.3A patent/EP3399239B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3399239A1 (de) | 2018-11-07 |
DE102017207385A1 (de) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011083524B4 (de) | Dreh-/Drück-Bedienvorrichtung für ein Mensch-Maschine-Interface | |
EP1775650B1 (de) | Bedienvorrichtung für ein Elektrogerät | |
DE112017007920T5 (de) | Bedienungseingabevorrichtung | |
DE112017007916B4 (de) | Bedienungseingabevorrichtung | |
DE102008031963A1 (de) | Drehsteuer- bzw. Bedienknopfanordnung | |
WO2011116929A1 (de) | Eingabevorrichtung mit haptischer rückmeldung | |
WO2011138170A1 (de) | Tastkopf für ein koordinatenmessgerät zum bestimmen von raumkoordinaten an einem messobjekt | |
DE202018000111U1 (de) | Touchscreen-Bedienvorrichtung | |
DE102013212815A1 (de) | Bedienvorrichtung mit einem Bedienelement mit einem Haftelement an der Bedienelementunterseite sowie Haushaltsgerät mit einer derartigen Bedienvorrichtung | |
DE102013002830A1 (de) | Manuell bedienbare Eingabevorrichtung mit Code-Erfassung | |
EP2503431A2 (de) | Eingabevorrichtung mit haptischer Rückmeldung | |
DE102013225463A1 (de) | Bedienvorrichtung für ein elektrisches Gerät oder eine Anlage, insbesondere für eine Fahrzeugkomponente | |
EP3399239B1 (de) | Haushaltsgerät mit einer bedienvorrichtung mit einer absolutpositionsbestimmung eines bedienelements im raum | |
DE102004063975B4 (de) | Optoelektronische Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte | |
EP3309967A1 (de) | Kapazitive schalt-vorrichtung | |
DE102015116850A1 (de) | Überwachung eines sicherheitsrelevanten Parameters eines Koordinatenmessgeräts | |
DE102019115950A1 (de) | Drehsteller mit Drückfunktion durch verbesserte Drehlagerung | |
DE102013212814A1 (de) | Bedienvorrichtung mit einem Bedienelement mit Magnete gehaltene Kappe und Sockel sowie Haushaltsgerät mit einer derartigen Bedienvorrichtung | |
EP2534449A1 (de) | Verfahren zur positionsmessung | |
DE202015004771U1 (de) | Positionserfassungseinrichtung zum Erfassen einer Position eines Werkzeugs | |
DE102016109800B3 (de) | Kapazitive Näherungsanordnung für kollaborierende Roboter | |
DE102017009377A1 (de) | Bedienvorrichtung, insbesondere für ein elektronisches Haushaltsgerät | |
DE102014000789A1 (de) | Werkzeugmaschine mit Displayvorrichtung | |
DE102018202740A1 (de) | Bedienelement mit integriertem Gestenerkennungssensor, Bedienvorrichtung und Haushaltsgerät | |
DE102014116827A1 (de) | Doppelwellenencoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190507 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201015 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210329 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018006498 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1419757 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018006498 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220426 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220426 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220426 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1419757 Country of ref document: AT Kind code of ref document: T Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240430 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |