EP3398725B1 - Oscillating driveable handheld tool and method for operating same - Google Patents

Oscillating driveable handheld tool and method for operating same Download PDF

Info

Publication number
EP3398725B1
EP3398725B1 EP18159962.2A EP18159962A EP3398725B1 EP 3398725 B1 EP3398725 B1 EP 3398725B1 EP 18159962 A EP18159962 A EP 18159962A EP 3398725 B1 EP3398725 B1 EP 3398725B1
Authority
EP
European Patent Office
Prior art keywords
vibration
drive
hand tool
sensor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18159962.2A
Other languages
German (de)
French (fr)
Other versions
EP3398725A1 (en
Inventor
Christof Kress
Ulf Rinckleb
Christoph Wohlfrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C&E Fein GmbH and Co
Original Assignee
C&E Fein GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C&E Fein GmbH and Co filed Critical C&E Fein GmbH and Co
Publication of EP3398725A1 publication Critical patent/EP3398725A1/en
Application granted granted Critical
Publication of EP3398725B1 publication Critical patent/EP3398725B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the invention relates to a hand tool that can be driven in an oscillating manner, having a drive for driving a tool in an oscillating manner, and having at least one vibration sensor for monitoring vibrations, the output signals of which are fed to a control unit.
  • Such a hand tool is from DE 10 2007 014 891 A1 known.
  • the accelerations occurring are to be determined by means of a measuring device for determining the vibration exposure of persons and after a predetermined limit value has been exceeded, the hand tool can be switched off if necessary.
  • the US 2012/0318545 A1 shows a hand tool according to the preamble of claim 1 and a method according to the preamble of claim 15 of the present invention, in which the speed or the current is reduced when the vibrations occurring become too great. However, this reduction can be bypassed by the user using a switch.
  • the invention is based on the object of specifying an oscillatingly drivable hand tool and a method for operating such a tool, the vibrations occurring during operation being monitored and when a predetermined value is exceeded Limit value is a limitation to reduce the level of vibration for a user to physiologically acceptable levels.
  • This object is achieved in the case of an oscillatingly drivable hand tool with a drive for oscillatingly driving a tool, with at least one vibration sensor for monitoring vibrations, the output signals of which are fed to a control unit, in that the control unit is designed to calculate a vibration characteristic from the output signals of the vibration sensor and then, when the vibration characteristic exceeds a maximum value, to switch off the drive and then to restart it automatically.
  • the object of the invention is achieved in this way.
  • careful monitoring ensures that the hand tool is not operated with excessive vibrations that exceed a physiologically safe limit value. Since the drive is automatically restarted after it has been switched off, the vibration limitation can be carried out unnoticed to a certain extent by the user.
  • control unit can be designed, for example, to switch off the drive after it has been switched off within a period of time which is in the range from 2 seconds to 0.2 seconds, preferably between 1.5 and 0.5 seconds, particularly preferably between 1.2 and 0.8 seconds is to start again, preferably in a soft start, preferably up to a preset oscillation frequency of up to 25000 1 / min.
  • the drive automatically restarts after such a short period of time, the restart can take place largely unnoticed by the user, especially if the start is soft, ie with increasing acceleration over time.
  • the sampling rate for determining the vibration characteristic is greater than the maximum oscillation frequency of the drive, with the ratio between the sampling rate and the maximum oscillation frequency preferably being greater than 2.
  • the drive is designed with a drive motor for generating a rotationally oscillating drive movement of a tool spindle, on which a tool can be fixed, about a fixed axis, with the drive movement of the tool spindle preferably having a small pivoting angle in the range of 0.5° up to 5° and preferably with a high oscillation frequency of up to 25000 rpm, and wherein the drive motor is preferably coupled to an oscillation gear to generate the rotationally oscillating drive movement.
  • the drive consists of a combination of a drive motor and an oscillating gear, which converts the rotary movement of the motor shaft of the drive motor into the desired rotationally oscillating drive movement of the tool spindle about its longitudinal axis.
  • drives are also conceivable in which the rotationally oscillating drive movement of the tool spindle is generated directly by a hydraulic motor, for example in the form of a vane motor, which is driven by a hydraulic generator with oscillating fluid energy, as is the case, for example, in WO 2015/071304 A1 is known.
  • the drive is designed as an assembly which is coupled to a housing of the hand tool via at least one preferably elastic damping element.
  • limiting the vibrations to a predetermined maximum value is particularly effective.
  • Hand tools in which the drive is arranged vibration-decoupled from the housing are known in principle, compare eg WO 2015/140029 A1 .
  • the vibration sensor is rigidly connected to the housing.
  • the vibration sensor is preferably accommodated on an electronic circuit board which is rigidly connected to the housing.
  • the vibration sensor is designed as an acceleration sensor that detects three mutually perpendicular sensor directions.
  • a conventional acceleration sensor can be used as the vibration sensor.
  • the vibration sensor is aligned in such a way that at least one sensor device is angularly offset, preferably by 45°, relative to a main direction of the vibrations.
  • This measure has the advantage that less expensive vibration sensors can be used, which are only designed for a lower maximum vibration. Due to the angular offset in relation to the main direction of vibration, the recorded vibration values are lower. If the sensor direction is aligned at 45° to the main vibration direction, only one value is recorded from the assigned axes, which corresponds to the actual acceleration divided by the square root of 2, so only about 0.7 times. Thus, less expensive vibration sensors can be used.
  • control device is designed to separately evaluate and preferably smooth and filter the output signals of the vibration sensor for the three sensor directions and to calculate a sum signal therefrom which is used as a vibration parameter.
  • control device is designed to first rectify and average the output signals of the vibration sensor before the vibration characteristic value is calculated therefrom.
  • control device is designed to form the square for each output signal of the vibration sensor relating to each sensor direction and to use the root of the sum of the squares, each directed with a factor, as the vibration parameter.
  • a modified vibration characteristic value is used which is dependent on an output power of the hand tool, preferably on the oscillation frequency and an input power of the drive motor.
  • a means for measuring the speed of the drive motor is preferably provided, with the control device also being designed to calculate a proportionality factor from the speed of the drive motor, with which the vibration parameter calculated from the output signals is weighted in order to obtain a speed-weighted vibration parameter which, when the maximum value is exceeded, the drive is switched off and then started, the proportionality factor preferably being less than 3, preferably less than 2.
  • a means for measuring the current consumption of the drive motor is also provided, preferably by measuring the phase current, with the control device being designed to calculate a speed-weighted current consumption of the drive motor, in which a proportionality factor derived from the speed is used, which is preferably between 1.2 and 2.7, preferably between 1.5 and 2.5, the speed-weighted current consumption being used as an additional switch-off criterion for the speed-weighted vibration characteristic value and a switch-off only taking place if both the speed-weighted vibration characteristic value exceeds a predetermined maximum value, and the speed-weighted current consumption of the drive motor exceeds a predetermined maximum value.
  • the predetermined maximum value for the vibration characteristic value or the speed-weighted vibration characteristic value is preferably at least 10 g (i.e. 10 times the acceleration due to gravity), preferably at least 12 g.
  • a speed-weighted vibration parameter is used, this can tend to be somewhat higher, for example in the range between 14 g and 16 g.
  • a perspective view of a hand tool according to the invention is shown, which is designed for the oscillating drive of a tool, for example in the form of a grinding, cutting or sawing tool.
  • the hand tool designated overall by the number 10, has a housing 12, the rear region 14 of which can be gripped by one hand in order to be able to hold the hand tool 10 in one hand in a comfortable manner.
  • An on/off switch 16 which is used to switch the hand tool 10 on and off, can be seen on the upper side of the housing.
  • a setting wheel 26 can be seen, which is used to set the oscillation frequency. This allows the oscillation frequency to be continuously adjusted between 0 and around 20,000 oscillations per minute.
  • a clamping lever 18 is accommodated at the top of the front region facing away from the handle region 14 and is used for quick clamping of a tool (not shown) at the outer end of a tool spindle 20 which protrudes at an angle from the front end of the hand tool 10 downwards.
  • the tool spindle 20 can their longitudinal axis 22 are driven in a rotationally oscillating manner, as indicated by a double arrow 24 .
  • the pivoting angle is relatively small (between approximately 0.5° and 5°), while the oscillation frequency, as already mentioned above, can be up to approximately 20,000 oscillations per minute.
  • FIG. 2 shows the detailed structure of the hand tool 10 after removal of the rear housing part 14 in the handle area 14.
  • a drive 28 is accommodated in the middle area of the hand tool 10, which is designed as a self-supporting structural unit and comprises a drive motor and an oscillating gear, as described below with reference to 4 is described in more detail.
  • an electronic circuit board 19 can be seen, on which the adjusting wheel 26 is accommodated, as well as a central control unit (not shown) and a vibration sensor 32.
  • the detailed structure of the hand tool 10 is from the Figures 3 and 4 apparent.
  • the drive 28 consists of the drive motor 34 and the oscillation gear 38 .
  • the motor shaft 36 of the drive motor 34 drives an oscillating fork of the oscillating gear 38 via an eccentric and thus converts a rotational movement of the motor shaft 36 into a rotationally oscillating drive movement of the tool spindle 20 about its longitudinal axis.
  • the drive 28 is designed together with the drive motor 34 and the oscillation gear 38 as a self-supporting structural unit which is coupled to the housing 12 via a number of elastic damping elements 40, 42, 44, 46.
  • Vibrations that emanate from the drive 28 or from the tool held on the tool spindle 20 are thus only transmitted to the handle area 14 of the housing 12 in a damped manner.
  • the central control unit 30, which comprises a microprocessor, and the vibration sensor 32 are accommodated on the electronic circuit board 19.
  • the vibration sensor 32 which can be designed as a piezo sensor, for example, is enlarged in figure 5 shown.
  • the vibration sensor 32 has three sensor axes x, y, z, which are arranged at right angles to one another in a Cartesian coordinate system.
  • the vibration sensor 32 is preferably mounted on the electronic circuit board 29 in such a way that the sensor axes x, y are arranged at an angle of 45° to the main direction v of the vibrations, i.e. angularly offset by 45° with respect to the longitudinal axis 48 of the hand tool 10.
  • FIG. 6 shows a flowchart (flow chart) from which the basic principle of the method according to the invention can be seen.
  • the acceleration in all three sensor axes v x , v y , v z is then measured at 64 by means of the vibration sensor 32 .
  • a resulting acceleration vector is determined at 66, which is then filtered at 68 in order to determine a vibration characteristic value vk therefrom.
  • the scanning rate with which the acceleration values v x , v y , v z are recorded at 64 is approximately 1.5 kHz and is approximately twice the maximum oscillation frequency of approximately 20,000 rpm, which corresponds to approximately 335 Hz.
  • a query is then made as to whether the time ⁇ t that has elapsed is greater than a predetermined time period of, for example, 1 s.
  • the further drive takes place in rated operation, which is indicated at 78 .
  • the speed is further increased at 72 (soft start/run-up) until the speed of the machine is regulated at 74 .
  • the vibrations can thus be limited electronically to a maximum permissible value, this being largely unnoticed by the user, since the subsequent restart takes place in a period of time which is less than 1 s.
  • FIG 7 shows the flow chart for the cyclical measurement and processing of the vibration characteristic value vk 6 inserted practically between 64 and 68.
  • the cyclical measurement and processing of the vibration characteristic value vk at 90 begins according to FIG 7 at 92 with the measurement of the acceleration values v x , v y , v z for the three sensor axes x, y, z.
  • the vibration characteristic value is calculated at 98 by preferably forming the sum of the values av x 2 + av y 2 + av z 2 and taking the root of this.
  • the measurement accuracy is highest when all sensor axes x, y, z are used.
  • a loop 100 loops back to the start at 92.
  • the sampling rate of the acceleration measurement is higher than the maximum vibration frequency.
  • the ratio is greater than 2:1.
  • FIG. 8 shows the cyclical determination of a modified vibration characteristic, at which it is switched off, which is illustrated by 102 .
  • the rotational speed n is first measured. This can be done using a separate speed sensor (not shown).
  • the drive motor is an EC motor is designed (electronically commutated motor)
  • the control system basically knows the frequency anyway, so that it may be possible to dispense with an additional speed sensor.
  • a speed-proportional vibration value vkn is determined. In the previously based on 7 The speed with a proportionality factor p1 that is less than 2 is included in the determined vibration characteristic value vk.
  • the power consumption of the drive motor 34 is also measured, which is done by measuring the current phase current I.
  • phase current switch-off value that is proportional to the speed is then determined from this, the speed preferably being included with a proportionality factor p2 between 1.5 and 2.5.
  • a shutdown of the drive occurs when the speed-weighted vibration characteristic value vkn is greater than the specified maximum value vkn max and the speed-weighted current consumption I n is also greater than the maximum specified current consumption I max .
  • phase current switch-off value I max is preferably determined from a look-up table.
  • the maximum value for the speed-weighted vibration characteristic vkn max is preferably determined from a look-up table.
  • the switch-off value vkn max is preferably somewhat larger than in the case of the simplified method according to FIG 6 .
  • the switch-off value vkn max is preferably in the range from 14 g to 16 g.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

Die Erfindung betrifft ein oszillierend antreibbares Handwerkzeug, mit einem Antrieb zum oszillierenden Antrieb eines Werkzeugs, und mit mindestens einem Vibrationssensor zur Überwachung von Vibrationen, dessen Ausgangssignale einer Steuereinheit zugeführt sind.The invention relates to a hand tool that can be driven in an oscillating manner, having a drive for driving a tool in an oscillating manner, and having at least one vibration sensor for monitoring vibrations, the output signals of which are fed to a control unit.

Ein derartiges Handwerkzeug ist aus der DE 10 2007 014 891 A1 bekannt.Such a hand tool is from DE 10 2007 014 891 A1 known.

Hierbei sollen mittels zur Ermittlung der Vibrationsbelastung von Personen mittels einer Messeinrichtung die auftretenden Beschleunigungen ermittelt werden und nach Überschreiten eines vorgegebenen Grenzwertes gegebenenfalls eine Abschaltung des Handwerkzeugs durchgeführt werden.In this case, the accelerations occurring are to be determined by means of a measuring device for determining the vibration exposure of persons and after a predetermined limit value has been exceeded, the hand tool can be switched off if necessary.

Allerdings erfolgt dies im Wesentlichen, indem die Vibrationen über eine längere Betriebsdauer des Werkzeugs erfasst und aufsummiert werden, und dann, wenn ein zeitgewichteter vorgegebener Grenzwert erreicht wird, eine Abschaltung durchgeführt wird.However, it essentially does this by sensing and summing the vibrations over an extended period of tool operation, and then shutting down when a time-weighted predetermined limit is reached.

Es ist hierbei nicht vorgesehen, während des laufenden Betriebs eine Abschaltung vorzunehmen, wenn ein bestimmter Grenzwert für Vibrationen überschritten wird. Gemäß der WO 2015/197753 A1 ist es ferner bekannt, bei einer Handwerkzeugmaschine in Form eines Bohrhammers einen Sensor zur Erfassung von Vibrationswerten zu verwenden, um bei Überschreiten eines vorgegebenen Grenzwertes die Ausgangsleistung des Handwerkzeugs zu reduzieren.It is not intended to switch off during operation if a certain limit value for vibrations is exceeded. According to the WO 2015/197753 A1 it is also known to use a sensor for detecting vibration values in a hand-held power tool in the form of a hammer drill in order to reduce the output power of the hand-held tool when a predetermined limit value is exceeded.

Aus der WO 2014/072044 A2 und der WO 2016/127936 A1 ist es außerdem bekannt, die Maschine nach Erreichen einer kumulieren Vibrationsbelastung, auszuschalten, um den Nutzer vor einer übermäßigen Vibrationsbelastung zu schützen.From the WO 2014/072044 A2 and the WO 2016/127936 A1 it is also known to switch off the machine after a cumulative vibration load has been reached in order to protect the user from excessive vibration load.

Die US 2012/0318545 A1 zeigt ein Handwerkzeug gemäß dem Oberbegriff des Anspruchs 1 und ein Verfahren gemäß dem Oberbegriff des Anspruchs 15 der vorliegenden Erfindung, bei dem die Drehzahl oder der Strom reduziert wird, wenn die auftretenden Vibrationen zu groß werden. Diese Reduzierung kann durch den Nutzer jedoch mittels eines Schalters überbrückt werden.the US 2012/0318545 A1 shows a hand tool according to the preamble of claim 1 and a method according to the preamble of claim 15 of the present invention, in which the speed or the current is reduced when the vibrations occurring become too great. However, this reduction can be bypassed by the user using a switch.

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein oszillierend antreibbares Handwerkzeug und ein Verfahren zum Betreiben eines solchen anzugeben, wobei eine Überwachung der im Betrieb auftretenden Vibrationen durchgeführt wird und bei Überschreiten eines vorgegebenen Grenzwertes eine Begrenzung erfolgt, um das Ausmaß der Vibrationen für einen Benutzer auf physiologisch zulässige Werte zu reduzieren.Against this background, the invention is based on the object of specifying an oscillatingly drivable hand tool and a method for operating such a tool, the vibrations occurring during operation being monitored and when a predetermined value is exceeded Limit value is a limitation to reduce the level of vibration for a user to physiologically acceptable levels.

Diese Aufgabe wird bei einem oszillierend antreibbaren Handwerkzeug mit einem Antrieb zum oszillierenden Antrieb eines Werkzeugs, mit mindestens einem Vibrationssensor zur Überwachung von Vibrationen, dessen Ausgangssignale einer Steuereinheit zugeführt sind, dadurch gelöst, dass die Steuereinheit dazu ausgebildet ist, aus den Ausgangssignalen des Vibrationssensors einen Vibrationskennwert abzuleiten und dann, wenn der Vibrationskennwert einen Maximalwert überschreitet, den Antrieb auszuschalten und anschließend automatisch erneut zu starten.This object is achieved in the case of an oscillatingly drivable hand tool with a drive for oscillatingly driving a tool, with at least one vibration sensor for monitoring vibrations, the output signals of which are fed to a control unit, in that the control unit is designed to calculate a vibration characteristic from the output signals of the vibration sensor and then, when the vibration characteristic exceeds a maximum value, to switch off the drive and then to restart it automatically.

Hinsichtlich des Verfahrens wird die Aufgabe der Erfindung ferner durch ein Verfahren zum Betreiben eines oszillierend antriebbaren Handwerkzeugs mit den folgenden Schritten gelöst:

  • Starten eines oszillierenden Antriebs;
  • zyklische Messung der Beschleunigung in drei Raumrichtungen;
  • Berechnen eines Vibrationskennwertes aus den Beschleunigungswerten in drei Raumrichtungen;
  • Anhalten des Antriebs, sofern der Vibrationskennwert einen vorgegebenen Maximalwert überschreitet; und
  • erneutes Starten des oszillierenden Antriebs nach Ablauf einer vorgegebenen Zeit.
With regard to the method, the object of the invention is also achieved by a method for operating a hand tool that can be driven in an oscillating manner with the following steps:
  • starting an oscillating drive;
  • cyclic measurement of acceleration in three spatial directions;
  • calculating a vibration characteristic from the acceleration values in three spatial directions;
  • Stopping the drive if the vibration characteristic exceeds a predetermined maximum value; and
  • restarting the oscillating drive after a specified time has elapsed.

Die Aufgabe der Erfindung wird auf diese Weise gelöst.The object of the invention is achieved in this way.

Erfindungsgemäß ist eine sorgfältige Überwachung gewährleistet, dass das Handwerkzeug nicht mit zu starken Vibrationen betrieben wird, die einen physiologisch unbedenklichen Grenzwert überschreiten. Da der Antrieb nach dem Ausschalten automatisch erneut gestartet wird, kann die Begrenzung der Vibrationen in einem gewissen Maß für den Benutzer unmerklich erfolgen.According to the invention, careful monitoring ensures that the hand tool is not operated with excessive vibrations that exceed a physiologically safe limit value. Since the drive is automatically restarted after it has been switched off, the vibration limitation can be carried out unnoticed to a certain extent by the user.

Hierzu kann die Steuereinheit etwa dazu ausgebildet sein, den Antrieb nach einer Abschaltung innerhalb einer Zeitspanne, die im Bereich von 2 Sekunden bis 0,2 Sekunden liegt, vorzugsweise zwischen 1,5 und 0,5 Sekunden liegt, besonders bevorzugt zwischen 1,2 und 0,8 Sekunden liegt, wieder zu starten, vorzugsweise im Sanftanlauf, vorzugsweise bis auf eine voreingestellte Oszillationsfrequenz von bis zu 25000 1/min.For this purpose, the control unit can be designed, for example, to switch off the drive after it has been switched off within a period of time which is in the range from 2 seconds to 0.2 seconds, preferably between 1.5 and 0.5 seconds, particularly preferably between 1.2 and 0.8 seconds is to start again, preferably in a soft start, preferably up to a preset oscillation frequency of up to 25000 1 / min.

Wenn der automatische Neustart des Antriebs nach einer so kurzen Zeitdauer erfolgt, kann der erneute Anlauf weitgehend unbemerkt für den Benutzer erfolgen, insbesondere wenn der Anlauf im Sanftanlauf erfolgt, d.h. mit im Zeitablauf zunehmender Beschleunigung.If the drive automatically restarts after such a short period of time, the restart can take place largely unnoticed by the user, especially if the start is soft, ie with increasing acceleration over time.

In vorteilhafter Weiterbildung der Erfindung ist die Abtastrate zur Ermittlung des Vibrationskennwerts größer als die maximale Oszillationsfrequenz des Antriebs, wobei das Verhältnis zwischen der Abtastrate und der maximalen Oszillationsfrequenz vorzugsweise größer als 2 ist.In an advantageous development of the invention, the sampling rate for determining the vibration characteristic is greater than the maximum oscillation frequency of the drive, with the ratio between the sampling rate and the maximum oscillation frequency preferably being greater than 2.

Auf diese Weise ist eine ausreichend häufige Abtastung zur Ermittlung des Vibrationskennwerts gewährleistet, um auch bei unterschiedlich großen maximalen Oszillationsfrequenzen die Erfassung des Vibrationskennwertes sicherzustellen.In this way, sufficiently frequent sampling for determining the vibration characteristic value is ensured in order to ensure the detection of the vibration characteristic value even with different maximum oscillation frequencies.

Gemäß einem weiteren Merkmal der Erfindung ist der Antrieb mit einem Antriebsmotor zur Erzeugung einer drehoszillierenden Antriebsbewegung einer Werkzeugspindel, an der ein Werkzeug festlegbar ist, um eine feste Achse ausgebildet, wobei die Antriebsbewegung der Werkzeugspindel vorzugsweise mit einem geringen Verschwenkwinkel im Bereich von 0,5° bis 5° und vorzugsweise mit einer hohen Oszillationsfrequenz von bis zu 25000 1/min erfolgt, und wobei der Antriebsmotor zur Erzeugung der drehoszillierenden Antriebsbewegung vorzugsweise mit einem Oszillationsgetriebe gekoppelt ist.According to a further feature of the invention, the drive is designed with a drive motor for generating a rotationally oscillating drive movement of a tool spindle, on which a tool can be fixed, about a fixed axis, with the drive movement of the tool spindle preferably having a small pivoting angle in the range of 0.5° up to 5° and preferably with a high oscillation frequency of up to 25000 rpm, and wherein the drive motor is preferably coupled to an oscillation gear to generate the rotationally oscillating drive movement.

Üblicherweise besteht der Antrieb aus einer Kombination eines Antriebsmotors und eines Oszillationsgetriebes, das die Drehbewegung der Motorwelle des Antriebsmotors in die gewünschte drehoszillierende Antriebsbewegung der Werkzeugspindel um ihre Längsachse umsetzt. Grundsätzlich sind jedoch auch Antriebe denkbar, bei welchen die drehoszillierende Antriebsbewegung der Werkzeugspindel unmittelbar von einem Hydraulikmotor, etwa in Form eine Drehflügelmotors erzeugt wird, der von einem Hydraulikgenerator mit oszillierender Fluidenergie angetrieben wird, wie dies beispielsweise aus der WO 2015/071304 A1 bekannt ist.Usually, the drive consists of a combination of a drive motor and an oscillating gear, which converts the rotary movement of the motor shaft of the drive motor into the desired rotationally oscillating drive movement of the tool spindle about its longitudinal axis. In principle, however, drives are also conceivable in which the rotationally oscillating drive movement of the tool spindle is generated directly by a hydraulic motor, for example in the form of a vane motor, which is driven by a hydraulic generator with oscillating fluid energy, as is the case, for example, in WO 2015/071304 A1 is known.

Gemäß einer weiteren Ausgestaltung der Erfindung ist der Antrieb als Baugruppe ausgebildet, die mit einem Gehäuse des Handwerkzeugs über mindestens ein vorzugsweise elastisches Dämpfungselement gekoppelt ist.According to a further embodiment of the invention, the drive is designed as an assembly which is coupled to a housing of the hand tool via at least one preferably elastic damping element.

Bei einer derartigen Ausgestaltung ist die Begrenzung der Vibrationen auf einen vorgegebenen Maximalwert besonders wirksam. Handwerkzeuge, bei denen der Antrieb vibrationsentkoppelt vom Gehäuse angeordnet ist, sind grundsätzlich bekannt, vergleiche z.B. WO 2015/140029 A1 .With such an embodiment, limiting the vibrations to a predetermined maximum value is particularly effective. Hand tools in which the drive is arranged vibration-decoupled from the housing are known in principle, compare eg WO 2015/140029 A1 .

Gemäß einer weiteren Ausgestaltung der Erfindung ist der Vibrationssensor mit dem Gehäuse starr verbunden.According to a further embodiment of the invention, the vibration sensor is rigidly connected to the housing.

Auf diese Weise können die Vibrationen unmittelbar erfasst werden, selbst wenn der Antrieb mittels elastischer Dämpfungselemente vibrationsmäßig entkoppelt mit dem Gehäuse verbunden ist.In this way, the vibrations can be detected directly, even if the drive is connected to the housing in a vibration-decoupled manner by means of elastic damping elements.

Vorzugsweise ist der Vibrationssensor auf einer Elektronikplatine aufgenommen, die mit dem Gehäuse starr verbunden ist.The vibration sensor is preferably accommodated on an electronic circuit board which is rigidly connected to the housing.

Weiter bevorzugt ist der Vibrationssensor als Beschleunigungssensor ausgebildet, der drei zueinander senkrechte Sensorrichtungen erfasst.More preferably, the vibration sensor is designed as an acceleration sensor that detects three mutually perpendicular sensor directions.

Auf diese Weise kann als Vibrationssensor ein herkömmlicher Beschleunigungssensor verwendet werden.In this way, a conventional acceleration sensor can be used as the vibration sensor.

Gemäß einer weiteren Ausgestaltung der Erfindung ist der Vibrationssensor so ausgerichtet, dass zumindest eine Sensoreinrichtung winkelmäßig versetzt, vorzugsweise um 45°, gegenüber einer Hauptrichtung der Vibrationen angeordnet ist.According to a further embodiment of the invention, the vibration sensor is aligned in such a way that at least one sensor device is angularly offset, preferably by 45°, relative to a main direction of the vibrations.

Diese Maßnahme hat den Vorteil, dass preisgünstigere Vibrationssensoren verwendet werden können, die nur für eine geringere maximale Vibration ausgelegt sind. Wegen der winkelmäßig versetzten Anordnung gegenüber der Hauptvibrationsrichtung sind die erfassten Vibrationswerte geringer. Ist die Sensorrichtung um 45° zur Hauptvibrationsrichtung ausgerichtet, so wird von den zugeordneten Achsen jeweils nur ein Wert erfasst, der der tatsächlichen Beschleunigung dividiert durch Wurzel 2 entspricht, also etwa nur das 0,7-fache. Somit können kostengünstigere Vibrationssensoren verwendet werden.This measure has the advantage that less expensive vibration sensors can be used, which are only designed for a lower maximum vibration. Due to the angular offset in relation to the main direction of vibration, the recorded vibration values are lower. If the sensor direction is aligned at 45° to the main vibration direction, only one value is recorded from the assigned axes, which corresponds to the actual acceleration divided by the square root of 2, so only about 0.7 times. Thus, less expensive vibration sensors can be used.

Gemäß einer weiteren Ausgestaltung der Erfindung ist die Steuereinrichtung dazu ausgebildet, die Ausgangssignale des Vibrationssensors für die drei Sensorrichtungen gesondert auszuwerten und vorzugsweise zu glätten und filtern und daraus ein Summensignal zu berechnen, das als Vibrationskennwert verwendet wird.According to a further embodiment of the invention, the control device is designed to separately evaluate and preferably smooth and filter the output signals of the vibration sensor for the three sensor directions and to calculate a sum signal therefrom which is used as a vibration parameter.

Eine derartige Auswertemethode ist besonders präzise, da alle Sensorrichtungen genutzt werden.Such an evaluation method is particularly precise since all sensor directions are used.

Gemäß einer weiteren Ausgestaltung der Erfindung ist die Steuereinrichtung dazu ausgebildet, die Ausgangssignale des Vibrationssensors zunächst gleichzurichten und zu mitteln, bevor daraus der Vibrationskennwert berechnet wird.According to a further embodiment of the invention, the control device is designed to first rectify and average the output signals of the vibration sensor before the vibration characteristic value is calculated therefrom.

Hierdurch ergibt sich eine besonders zuverlässige Ermittlung des Vibrationskennwerts.This results in a particularly reliable determination of the vibration characteristic.

Gemäß einer weiteren Ausgestaltung der Erfindung ist die Steuereinrichtung dazu ausgebildet, für jedes Ausgangssignal des Vibrationssensors betreffend jede Sensorrichtung das Quadrat zu bilden und als Vibrationskennwert die Wurzel aus der Summe der jeweils mit einem Faktor gerichteten Quadrat dazu verwenden.According to a further embodiment of the invention, the control device is designed to form the square for each output signal of the vibration sensor relating to each sensor direction and to use the root of the sum of the squares, each directed with a factor, as the vibration parameter.

Da die Vibration mit der Beschleunigung einhergeht und die Beschleunigung proportional zum Quadrat der vom Vibrationssensor erfassten Geschwindigkeitswerte ist, ergibt sich durch eine derartige Auswertung eine besonders korrekte Annäherung an die tatsächlichen Verhältnisse bei Vibrationen.Since the vibration is accompanied by the acceleration and the acceleration is proportional to the square of the speed values detected by the vibration sensor, such an evaluation results in a particularly correct approximation of the actual conditions in the case of vibrations.

Gemäß einer weiteren Ausgestaltung der Erfindung wird ein modifizierter Vibrationskennwert verwendet, der von einer Ausgangsleistung des Handwerkzeugs abhängig ist, vorzugsweise von der Oszillationsfrequenz und einer Aufnahmeleistung des Antriebsmotors abhängig ist.According to a further embodiment of the invention, a modified vibration characteristic value is used which is dependent on an output power of the hand tool, preferably on the oscillation frequency and an input power of the drive motor.

Auf diese Weise kann der physiologische Zusammenhang ausgenutzt werden, dass bei niedrigeren Oszillationsfrequenzen größere Beschleunigungen als bei höheren Oszillationsfrequenzen erträglich sind. Entsprechendes gilt für eine erhöhte Ausgangsleistung, d.h. je höher die Ausgangsleistung bzw. Leistungsaufnahme des Antriebs, desto geringer sind die zulässigen Vibrationsgrenzwerte.In this way, the physiological relationship can be exploited that larger accelerations are tolerable at lower oscillation frequencies than at higher oscillation frequencies. The same applies to an increased output power, i.e. the higher the output power or power consumption of the drive, the lower the permissible vibration limit values.

Hierzu ist vorzugsweise ein Mittel zur Messung der Drehzahl des Antriebsmotors vorgesehen, wobei die Steuereinrichtung ferner dazu ausgebildet ist, aus der Drehzahl des Antriebsmotors einen Proportionalitätsfaktor zu berechnen, mit dem der aus den Ausgangssignalen berechnete Vibrationskennwert gewichtet wird, um einen drehzahlgewichteten Vibrationskennwert zu erhalten, bei welchem bei Überschreiten des Maximalwerts die Abschaltung und das anschließende Starten des Antriebs erfolgt, wobei der Proportionalitätsfaktor vorzugsweise kleiner als 3, bevorzugt kleiner als 2 ist.For this purpose, a means for measuring the speed of the drive motor is preferably provided, with the control device also being designed to calculate a proportionality factor from the speed of the drive motor, with which the vibration parameter calculated from the output signals is weighted in order to obtain a speed-weighted vibration parameter which, when the maximum value is exceeded, the drive is switched off and then started, the proportionality factor preferably being less than 3, preferably less than 2.

Auf diese Weise kann ein umgekehrt proportionaler Zusammenhang zwischen der Drehzahl des Antriebsmotors und den zulässigen maximalen Vibrationswert verwendet werden.In this way, an inversely proportional relationship between the speed of the drive motor and the permissible maximum vibration value can be used.

In zusätzlicher Weiterbildung dieser Ausführung ist ferner ein Mittel zur Messung der Stromaufnahme des Antriebsmotors vorgesehen, vorzugsweise durch Messung des Phasenstroms, wobei die Steuereinrichtung dazu ausgebildet ist, eine drehzahlgewichtete Stromaufnahme des Antriebsmotors zu berechnen, bei welcher ein von der Drehzahl abgeleiteter Proportionalitätsfaktor verwendet wird, der vorzugsweise zwischen 1,2 und 2,7 liegt, bevorzugt zwischen 1,5 und 2,5, wobei die drehzahlgewichtete Stromaufnahme als zusätzliches Abschaltkriterium zum drehzahlgewichteten Vibrationskennwert verwendet wird und eine Abschaltung nur dann erfolgt, wenn sowohl der drehzahlgewichtete Vibrationskennwert einen vorbestimmten Maximalwert überschreitet, als auch die drehzahlgewichtete Stromaufnahme des Antriebsmotors einen vorbestimmten Maximalwert überschreitet.In an additional development of this embodiment, a means for measuring the current consumption of the drive motor is also provided, preferably by measuring the phase current, with the control device being designed to calculate a speed-weighted current consumption of the drive motor, in which a proportionality factor derived from the speed is used, which is preferably between 1.2 and 2.7, preferably between 1.5 and 2.5, the speed-weighted current consumption being used as an additional switch-off criterion for the speed-weighted vibration characteristic value and a switch-off only taking place if both the speed-weighted vibration characteristic value exceeds a predetermined maximum value, and the speed-weighted current consumption of the drive motor exceeds a predetermined maximum value.

Auf diese Weise können sowohl eine Abhängigkeit der maximal zulässigen Vibration von der Drehzahl als auch von der Ausgangsleistung des Handwerkzeugs verwendet werden.In this way, both a dependence of the maximum permissible vibration on the rotational speed and on the power output of the hand tool can be used.

Der vorgegebene Maximalwert für den Vibrationskennwert oder den drehzahlgewichteten Vibrationskennwert liegt vorzugsweise bei mindestens 10 g (d.h. 10-fache Erdbeschleunigung) vorzugsweise bei mindestens 12 g.The predetermined maximum value for the vibration characteristic value or the speed-weighted vibration characteristic value is preferably at least 10 g (i.e. 10 times the acceleration due to gravity), preferably at least 12 g.

Sofern ein drehzahlgewichteter Vibrationskennwert verwendet wird, so kann dieser tendenziell etwas höher liegen, etwa im Bereich zwischen 14 g und 16 g.If a speed-weighted vibration parameter is used, this can tend to be somewhat higher, for example in the range between 14 g and 16 g.

Es versteht sich, dass die vorstehend im Zusammenhang mit dem Handwerkzeug genannten Merkmale auch in Verbindung mit dem oben genannten Verfahren zum Betreiben eines oszillierend antreibbaren Handwerkzeugs verwendbar sind. Es versteht sich ferner, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.It goes without saying that the features mentioned above in connection with the hand tool can also be used in connection with the above-mentioned method for operating a hand tool that can be driven in an oscillating manner. It is also understood that the features of the invention mentioned above and those yet to be explained below can be used not only in the respectively specified combination but also in other combinations or on their own without departing from the scope of the invention.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:

Fig. 1
eine perspektivische Darstellung eines erfindungsgemäßen Handwerkzeugs;
Fig. 2
eine Darstellung des Handwerkzeugs gemäß Fig. 1 nach Abnahme eines Teils des das Handwerkzeug umschließenden Gehäuses;
Fig. 3
eine Seitenansicht des Handwerkzeugs gemäß Fig. 1;
Fig. 4
einen Schnitt durch das Handwerkzeug gemäß Fig. 3 längs der Linie IV-IV;
Fig. 5
eine perspektivische Ansicht des Vibrationssensors in vergrößerter Darstellung;
Fig. 6
ein Ablaufdiagramm (Flow-Chart), das den grundsätzlichen Aufbau des Verfahrens zum Erfassen der Vibrationen mittels des Vibrationssensors und zur Berechnung des Vibrationskennwertes nebst Abschalten und Wiederanfahren im Falle einer Überschreitung des Grenzwertes zeigt;
Fig. 7
ein Ablaufdiagramm, das die Berechnung des Vibrationskennwertes aus den einzelnen Beschleunigungswerten im Detail erläutert; und
Fig. 8
ein Ablaufdiagramm für eine alternative Ausführung der Erfindung, bei welcher ein modifizierter Vibrationskennwert ermittelt und zur Abschaltung verwendet wird.
Further features and advantages of the invention result from the following description of preferred exemplary embodiments with reference to the drawing. Show it:
1
a perspective view of a hand tool according to the invention;
2
a representation of the hand tool according to FIG 1 after removing part of the housing enclosing the hand tool;
3
a side view of the hand tool according to FIG 1 ;
4
according to a section through the hand tool 3 along line IV-IV;
figure 5
a perspective view of the vibration sensor in an enlarged view;
6
a flow chart showing the basic structure of the method for detecting the vibrations by means of the vibration sensor and for calculating the vibration characteristic value together with switching off and restarting if the limit value is exceeded;
Figure 7
a flowchart that explains in detail the calculation of the vibration characteristic value from the individual acceleration values; and
8
a flowchart for an alternative embodiment of the invention, in which a modified vibration characteristic is determined and used for shutdown.

In Fig. 1 ist eine perspektivische Ansicht eines erfindungsgemäßen Handwerkzeugs dargestellt, das zum oszillierenden Antrieb eines Werkzeugs, etwa in Form eines Schleif-Schneid- oder Sägewerkzeugs ausgebildet ist.In 1 a perspective view of a hand tool according to the invention is shown, which is designed for the oscillating drive of a tool, for example in the form of a grinding, cutting or sawing tool.

Das insgesamt mit der Ziffer 10 bezeichnete Handwerkzeug weist ein Gehäuse 12 auf, dessen hinterer Bereich 14 von einer Hand umgriffen werden kann, um das Handwerkzeug 10 auf bequeme Weise in einer Hand halten zu können. An der Oberseite des Gehäuses ist ein Ein-/Ausschalter 16 erkennbar, der zum Ein- bzw. Ausschalten des Handwerkzeugs 10 dient. An der linken Längsseite des Griffbereichs 14 ist ein Stellrad 26 erkennbar, das zum Einstellen der Oszillationsfrequenz dient. Damit kann die Oszillationsfrequenz stufenlos zwischen 0 und etwa 20.000 Oszillationen pro Minute eingestellt werden.The hand tool, designated overall by the number 10, has a housing 12, the rear region 14 of which can be gripped by one hand in order to be able to hold the hand tool 10 in one hand in a comfortable manner. An on/off switch 16, which is used to switch the hand tool 10 on and off, can be seen on the upper side of the housing. On the left longitudinal side of the handle area 14, a setting wheel 26 can be seen, which is used to set the oscillation frequency. This allows the oscillation frequency to be continuously adjusted between 0 and around 20,000 oscillations per minute.

Am dem Griffbereich 14 abgewandten vorderen Bereich ist oben ein Spannhebel 18 aufgenommen, der zum Schnellspannen eines Werkzeugs (nicht dargestellt) am äußeren Ende einer Werkzeugspindel 20 dient, die winklig aus dem vorderen Ende des Handwerkzeugs 10 nach unten hervorsteht. Die Werkzeugspindel 20 kann um ihre Längsachse 22 drehoszillierend angetrieben werden, wie durch einen Doppelpfeil 24 angedeutet ist. Der Verschwenkwinkel ist hierbei relativ gering (zwischen etwa 0,5° und 5°), während die Oszillationsfrequenz, wie vorstehend bereits erwähnt, bis zu etwa 20.000 Oszillationen pro Minute betragen kann.A clamping lever 18 is accommodated at the top of the front region facing away from the handle region 14 and is used for quick clamping of a tool (not shown) at the outer end of a tool spindle 20 which protrudes at an angle from the front end of the hand tool 10 downwards. The tool spindle 20 can their longitudinal axis 22 are driven in a rotationally oscillating manner, as indicated by a double arrow 24 . In this case, the pivoting angle is relatively small (between approximately 0.5° and 5°), while the oscillation frequency, as already mentioned above, can be up to approximately 20,000 oscillations per minute.

Fig. 2 zeigt den näheren Aufbau des Handwerkzeugs 10 nach Abnahme des hinteren Gehäuseteils 14 im Griffbereich 14. Im mittleren Bereich des Handwerkzeugs 10 ist ein Antrieb 28 aufgenommen, der als selbsttragende Baueinheit ausgebildet ist und einen Antriebsmotor und ein Oszillationsgetriebe umfasst, wie nachfolgend noch anhand von Fig. 4 näher beschrieben wird. 2 shows the detailed structure of the hand tool 10 after removal of the rear housing part 14 in the handle area 14. A drive 28 is accommodated in the middle area of the hand tool 10, which is designed as a self-supporting structural unit and comprises a drive motor and an oscillating gear, as described below with reference to 4 is described in more detail.

Im hinteren, der Werkzeugspindel 20 angewandten Bereich ist eine Elektronikplatine 19 erkennbar, auf der das Stellrad 26 aufgenommen ist, sowie eine zentrale Steuereinheit (nicht dargestellt) und ein Vibrationssensor 32.In the rear area used by the tool spindle 20, an electronic circuit board 19 can be seen, on which the adjusting wheel 26 is accommodated, as well as a central control unit (not shown) and a vibration sensor 32.

Der nähere Aufbau des Handwerkzeugs 10 ist aus den Figuren 3 und 4 ersichtlich.The detailed structure of the hand tool 10 is from the Figures 3 and 4 apparent.

Aus Fig. 4 ist zu ersehen, dass der Antrieb 28 aus dem Antriebsmotor 34 und dem Oszillationsgetriebe 38 besteht. Die Motorwelle 36 des Antriebsmotors 34 treibt hierbei über einen Exzenter eine Oszillationsgabel des Oszillationsgetriebes 38 an und setzt somit eine Drehbewegung der Motorwelle 36 in eine drehoszillierende Antriebsbewegung der Werkzeugspindel 20 um ihre Längsachse um.Out of 4 it can be seen that the drive 28 consists of the drive motor 34 and the oscillation gear 38 . The motor shaft 36 of the drive motor 34 drives an oscillating fork of the oscillating gear 38 via an eccentric and thus converts a rotational movement of the motor shaft 36 into a rotationally oscillating drive movement of the tool spindle 20 about its longitudinal axis.

Der Antrieb 28 ist mit dem Antriebsmotor 34 und dem Oszillationsgetriebe 38 zusammen als selbsttragende Baueinheit ausgebildet, die über mehrere elastische Dämpfungselemente 40, 42, 44, 46 mit dem Gehäuse 12 gekoppelt ist.The drive 28 is designed together with the drive motor 34 and the oscillation gear 38 as a self-supporting structural unit which is coupled to the housing 12 via a number of elastic damping elements 40, 42, 44, 46.

Vibrationen, die vom Antrieb 28 bzw. vom an der Werkzeugspindel 20 aufgenommenen Werkzeug ausgehen, werden somit nur gedämpft auf den Griffbereich 14 des Gehäuses 12 übertragen.Vibrations that emanate from the drive 28 or from the tool held on the tool spindle 20 are thus only transmitted to the handle area 14 of the housing 12 in a damped manner.

In Fig. 4 ist ferner noch die Längsachse des Handwerkzeugs 10 erkennbar, die mit 48 bezeichnet ist, sowie die Hauptrichtung der Vibrationen v, die senkrecht zur Längsachse 48 steht.In 4 Furthermore, the longitudinal axis of the hand tool 10, which is denoted by 48, and the main direction of the vibrations v, which is perpendicular to the longitudinal axis 48, can also be seen.

Auf der Elektronikplatine 19 ist die zentrale Steuereinheit 30 aufgenommen, die einen Mikroprozessor umfasst, sowie der Vibrationssensor 32.The central control unit 30, which comprises a microprocessor, and the vibration sensor 32 are accommodated on the electronic circuit board 19.

Der Vibrationssensor 32, der beispielsweise als Piezosensor ausgebildet sein kann, ist vergrößert in Fig. 5 dargestellt. Der Vibrationssensor 32 weist drei Sensorachsen x, y, z auf, die rechtwinklig zueinander in einem kartesischen Koordinatensystem angeordnet sind. Vorzugsweise ist der Vibrationssensor 32 derart auf der Elektronikplatine 29 montiert, dass die Sensorachsen x, y im Winkel vom 45° zur Hauptrichtung v der Vibrationen angeordnet sind, also um 45° gegenüber der Längsachse 48 des Handwerkzeugs 10 winkelmäßig versetzt sind.The vibration sensor 32, which can be designed as a piezo sensor, for example, is enlarged in figure 5 shown. The vibration sensor 32 has three sensor axes x, y, z, which are arranged at right angles to one another in a Cartesian coordinate system. The vibration sensor 32 is preferably mounted on the electronic circuit board 29 in such a way that the sensor axes x, y are arranged at an angle of 45° to the main direction v of the vibrations, i.e. angularly offset by 45° with respect to the longitudinal axis 48 of the hand tool 10.

Dies hat zur Folge, dass die in der Hauptrichtung v auftretenden Vibrationen nur abgeschwächt von den Sensorachsen x, y erfasst werden, nämlich um einen Faktor Wurzel 2 reduziert. Somit kann ein relativ preisgünstiger Vibrationssensor 32 verwendet werden, der nicht für sehr hohe Beschleunigungsgrenzwerte ausgelegt sein muss.The consequence of this is that the vibrations occurring in the main direction v are only detected in a weakened manner by the sensor axes x, y, namely reduced by a factor square root of 2. A relatively inexpensive vibration sensor 32 can thus be used which does not have to be designed for very high acceleration limit values.

Das erfindungsgemäß verwendete Verfahren, um mittels des Vibrationssensors 32 gemessene Vibrationen des Handwerkzeugs 10 zu erfassen und um die Vibration des Handwerkzeugs 10 auf ein maximal zulässiges Maß zu begrenzen, wird nachfolgend anhand der Figuren 6 bis 8 näher erläutert.The method used according to the invention, to detect vibrations of the hand tool 10 measured by the vibration sensor 32 and to limit the vibration of the hand tool 10 to a maximum permissible level, is described below with reference to FIG Figures 6 to 8 explained in more detail.

Fig. 6 zeigt ein Ablaufdiagramm (Flow-Chart), aus dem das Grundprinzip des erfindungsgemäßen Verfahrens zu ersehen ist. 6 shows a flowchart (flow chart) from which the basic principle of the method according to the invention can be seen.

Nach dem Start bei 60 wird der Timer bei 62 auf 0 gesetzt (t = 0).After starting at 60, the timer is set to 0 at 62 (t=0).

Anschließend wird bei 64 mittels des Vibrationssensors 32 die Beschleunigung in allen drei Sensorachsen vx, vy, vz gemessen.The acceleration in all three sensor axes v x , v y , v z is then measured at 64 by means of the vibration sensor 32 .

Hieraus wird bei 66 ein resultierender Beschleunigungsvektor ermittelt, der anschließend bei 68 gefiltert wird, um hieraus einen Vibrationskennwert vk zu ermitteln.From this, a resulting acceleration vector is determined at 66, which is then filtered at 68 in order to determine a vibration characteristic value vk therefrom.

Die Tastrate, mit der die Beschleunigungswerte vx, vy, vz bei 64 aufgenommen werden, beträgt etwa 1,5 kHz und ist etwa doppelt so groß wie die maximale Oszillationsfrequenz von etwa 20.000 1/min, was ca. 335 Hz entspricht.The scanning rate with which the acceleration values v x , v y , v z are recorded at 64 is approximately 1.5 kHz and is approximately twice the maximum oscillation frequency of approximately 20,000 rpm, which corresponds to approximately 335 Hz.

Bei 70 wird anschließend abgefragt, ob die abgelaufene Zeit Δt größer als eine vorgegebene Zeitspanne von zum Beispiel 1 s ist.At 70, a query is then made as to whether the time Δt that has elapsed is greater than a predetermined time period of, for example, 1 s.

Ist dies der Fall (y) so erfolgt der weitere Antrieb im Nennbetrieb, was bei 78 angedeutet ist. Bei der anschließenden Abfrage 80 wird geprüft, ob der bei 68 ermittelte Vibrationskennwert vk größer als der Maximalwert vkmax ist. Hierbei kann es sich beispielsweise um 12,8 g (g = Erdbeschleunigung = 9,81 m/s2) handeln. Ist dies der Fall (y), so erfolgt eine Rückschleife 82 zurück zur Initialisierung bei 62. Ist dies nicht der Fall (n), so geht es weiter bei 74, d.h. mit einer Drehzahlregelung auf eine mittels des Stellrades 26 eingestellte Drehzahl bzw. Oszillationsfrequenz. Von dort aus erfolgt eine Rückschleife 76 zurück zur Erfassung der Beschleunigungswerte bei 64.If this is the case (y), the further drive takes place in rated operation, which is indicated at 78 . In the subsequent query 80, it is checked whether the vibration characteristic value vk determined at 68 is greater than the maximum value vk max . This can be, for example, 12.8 g (g=gravitational acceleration=9.81 m/s 2 ). If this is the case (y), then there is a return loop 82 back to the initialization at 62. If this is not the case (n), the process continues at 74, ie with a speed control to a speed or oscillation frequency set by means of the adjusting wheel 26 . From there, there is a loopback 76 back to the acquisition of the acceleration values at 64.

Ist bei der Abfrage 70 die abgelaufene Zeit Δt kleiner als 1 s (n) so wird die Drehzahl bei 72 weiter gesteigert (Softstart/Hochlauf), bis die Maschine bei 74 in ihrer Drehzahl geregelt wird.If the elapsed time Δt in query 70 is less than 1 s (n), the speed is further increased at 72 (soft start/run-up) until the speed of the machine is regulated at 74 .

Aus Fig. 6 ist zu ersehen, dass dann, wenn der berechnete Vibrationskennwert vk größer als der vorgegebene maximale Vibrationskennwert vkmax ist, der Antrieb angehalten wird und die Maschine wieder neu hochgefahren wird.Out of 6 it can be seen that when the calculated vibration characteristic vk is greater than the predetermined maximum vibration characteristic vk max , the drive is stopped and the machine is restarted.

Somit kann eine Begrenzung der Vibrationen auf einen maximal zulässigen Wert elektronisch erfolgen, wobei dies für den Benutzer weitgehend unbemerkt ist, da das anschließende Wiederanfahren in einer Zeitdauer erfolgt, die kleiner als 1 s ist.The vibrations can thus be limited electronically to a maximum permissible value, this being largely unnoticed by the user, since the subsequent restart takes place in a period of time which is less than 1 s.

Fig. 7 zeigt das Ablaufdiagramm zur zyklischen Messung und Verarbeitung des Vibrationskennwertes vk. Dieses wird bei Fig. 6 praktisch zwischen 64 und 68 eingefügt. Die zyklische Messung und Verarbeitung des Vibrationskennwertes vk bei 90 beginnt gemäß Fig. 7 bei 92 mit der Messung der Beschleunigungswerte vx, vy, vz für die drei Sensorachsen x, y, z. 7 shows the flow chart for the cyclical measurement and processing of the vibration characteristic value vk 6 inserted practically between 64 and 68. The cyclical measurement and processing of the vibration characteristic value vk at 90 begins according to FIG 7 at 92 with the measurement of the acceleration values v x , v y , v z for the three sensor axes x, y, z.

Anschließend werden bei 94 die Quadrate der Messwerte vx 2, vy 2, vz 2 ermittelt. Diese werden anschließend bei 96 für die einzelnen Sensorachsen gefiltert, so dass sich die Werte avx 2, avy 2 avz 2 ergeben. Bei 98 wird hieraus der Vibrationskennwert berechnet, indem vorzugsweise die Summe der Werte avx 2 + avy 2 + avz 2 gebildet wird und hieraus die Wurzel gezogen wird. Grundsätzlich könnten natürlich auch nur eine einzelne Achse oder zwei Achsen verwendet werden. Die Messgenauigkeit ist jedoch am höchsten, wenn sämtliche Sensorachsen x, y, z verwendet werden.Then at 94 the squares of the measured values v x 2 , v y 2 , v z 2 are determined. These are then filtered at 96 for the individual sensor axes, resulting in the values av x 2 , av y 2 av z 2 . From this, the vibration characteristic value is calculated at 98 by preferably forming the sum of the values av x 2 + av y 2 + av z 2 and taking the root of this. In principle, of course, only a single axle or two axles could also be used. However, the measurement accuracy is highest when all sensor axes x, y, z are used.

Nach der Berechnung bei 98 geht eine Schleife 100 zurück zum Beginn bei 92.After the calculation at 98, a loop 100 loops back to the start at 92.

Wie vorstehend bereits erwähnt, ist die Abtastrate der Beschleunigungsmessung höher als die maximale Schwingungsfrequenz. Das Verhältnis ist größer als 2:1.As already mentioned above, the sampling rate of the acceleration measurement is higher than the maximum vibration frequency. The ratio is greater than 2:1.

Eine Abwandlung des zuvor beschriebenen Verfahrens wird im Folgenden anhand von Fig. 8 erläutert.A modification of the method described above is described below with reference to 8 explained.

Fig. 8 zeigt die zyklische Bestimmung eines modifizierten Vibrationskennwertes, bei welchem abgeschaltet wird, was mit 102 verdeutlicht ist. Bei 104 wird zunächst die Drehzahl n gemessen. Dies kann mittels eines gesonderten Drehzahlsensors erfolgen (nicht dargestellt). Da der Antriebsmotor jedoch als EC-Motor ausgebildet ist (elektronisch kommutierter Motor) ist der Steuerung grundsätzlich ohnehin die Frequenz bekannt, so dass ggf. auf einen zusätzlichen Drehzahlsensor verzichtet werden kann. 8 shows the cyclical determination of a modified vibration characteristic, at which it is switched off, which is illustrated by 102 . At 104, the rotational speed n is first measured. This can be done using a separate speed sensor (not shown). However, since the drive motor is an EC motor is designed (electronically commutated motor), the control system basically knows the frequency anyway, so that it may be possible to dispense with an additional speed sensor.

Bei 106 wird ein drehzahlproportionaler Vibrationskennwert vkn ermittelt. In den zuvor anhand von Fig. 7 ermittelten Vibrationskennwert vk geht hierbei die Drehzahl mit einem Proportionalitätsfaktor p1 ein, der kleiner als 2 ist.At 106, a speed-proportional vibration value vkn is determined. In the previously based on 7 The speed with a proportionality factor p1 that is less than 2 is included in the determined vibration characteristic value vk.

Bei 108 wird zusätzlich die Stromaufnahme des Antriebsmotors 34 gemessen, was durch Messung des aktuellen Phasenstroms I erfolgt.At 108, the power consumption of the drive motor 34 is also measured, which is done by measuring the current phase current I.

Bei 110 wird anschließend daraus ein drehzahlproportionaler Phasenstrom-Abschaltwert ermittelt, wobei die Drehzahl vorzugsweise mit einem Proportionalitätsfaktor p2 zwischen 1,5 und 2,5 eingeht.At 110, a phase current switch-off value that is proportional to the speed is then determined from this, the speed preferably being included with a proportionality factor p2 between 1.5 and 2.5.

Eine Abschaltung des Antriebs (vgl. Fig. 6, Abfrage 80) erfolgt dann, wenn der drehzahlgewichtete Vibrationskennwert vkn größer als der vorgegebene Maximalwert vknmax ist und zusätzlich die drehzahlgewichtete Stromaufnahme In größer als die maximal vorgegebene Stromaufnahme Imax ist.A shutdown of the drive (cf. 6 , query 80) occurs when the speed-weighted vibration characteristic value vkn is greater than the specified maximum value vkn max and the speed-weighted current consumption I n is also greater than the maximum specified current consumption I max .

Dabei wird der Phasenstromabschaltwert Imax vorzugsweise aus einer Look-up-Tabelle ermittelt.In this case, the phase current switch-off value I max is preferably determined from a look-up table.

Auch der Maximalwert für den drehzahlgewichteten Vibrationskennwert vknmax wird vorzugsweise aus einer Look-up-Tabelle ermittelt.The maximum value for the speed-weighted vibration characteristic vkn max is preferably determined from a look-up table.

Der Abschaltwert vknmax ist vorzugsweise etwas größer als im Falle des vereinfachten Verfahrens gemäß Fig. 6. In Folge der Drehzahlgewichtung liegt der Abschaltwert vknmax vorzugsweise im Bereich von 14 g bis 16 g.The switch-off value vkn max is preferably somewhat larger than in the case of the simplified method according to FIG 6 . As a result of the speed weighting, the switch-off value vkn max is preferably in the range from 14 g to 16 g.

Claims (15)

  1. Oscillating drivable hand tool, with a drive (28) for oscillating driving a tool, with at least one vibration sensor (32) for monitoring vibrations, whose output signals (vx, vy, vz) are fed to a control unit (30) that is adapted to derive a vibration characteristic value (vk) from the output signals (vx, vy, vz) of the vibration sensor (32) and then, when the vibration characteristic value (vk) exceeds a maximum value (vkmax), to switch off the drive (28), characterized in that the control unit (30) is adapted to subsequently automatically restart the drive (28).
  2. Hand tool according to claim 1, characterized in that the sampling rate (fT) for determining the vibration characteristic value (vk) is higher than the maximum oscillation frequency (fmax) of the drive (28), wherein the ratio between the sampling rate and the maximum oscillation frequency (fT/fmax) is preferably greater than 2.
  3. Hand tool according to claim 1 or 2, characterized in that the control unit (30) is adapted to restart the drive (30) after a shutdown within a period Δt, which is in the range of 2 seconds to 0.2 seconds, preferably between 1.5 seconds and 0.5 seconds, more preferably between 1.2 seconds and 0.8 seconds, preferably with a soft start, preferably to a preset oscillation frequency of up to 25.000 rpm.
  4. Hand tool according to one of the preceding claims, characterized in that the drive (28) with a drive motor (34) is formed about a fixed axis (22) for generating a rotationally oscillating drive movement of a tool spindle (20), on which a tool is fixable, wherein the drive movement of the tool spindle (20) preferably occurs with a small pivoting angle in the range of 0.5 ° to 5 ° and preferably with a high oscillation frequency of up to 25.000 rpm, and wherein the drive motor (34) to generate the rotationally oscillating drive movement is preferably coupled to an oscillating gear (38).
  5. Hand tool according to claim 4, characterized in that the drive (28) is adapted as an assembly which is coupled to a housing (12) of the hand tool (10) via at least one preferably elastic damping element (40, 42,44, 46).
  6. Hand tool according to claim 4 or 5, characterized in that the vibration sensor (32) is rigidly connected to the housing (12), wherein the vibration sensor (32) preferably is accommodated on an electronic circuit board (30) which is rigidly connected to the housing (12).
  7. Hand tool according to one of the preceding claims, characterized in that the vibration sensor (32) is adapted as an acceleration sensor which detects three mutually perpendicular sensor directions (x, y, z).
  8. Hand tool according to claim 7, characterized in that the vibration sensor (32) is aligned such that at least one sensor direction (x, y) is angularly offset, preferably by 45°, relative to a main direction (v) of the vibrations.
  9. Hand tool according to claim 7 or 8, characterized in that the control unit (30) is adapted to evaluate the three output signals of the vibration sensor for the sensor directions (x, y, z) separately and preferably to smooth and to filter, and to calculate therefrom a sum signal which is used as the vibration parameter (vk), wherein the control unit (30) is preferably adapted to calculate the sum signal from the output signals (vx, vy, vz) for all three sensor directions (x, y, z) of the vibration sensor (32).
  10. Hand tool according to one of the preceding claims, characterized in that the control unit (30) is adapted to initially rectify and average the output signals (v, y, v) of the vibration sensor (32) before the vibration characteristic value (vk) is calculated therefrom.
  11. Hand tool according to claim 7, 8, 9 or 10, characterized in that the control unit (30) is adapted to, for each output signal (vx, vy, vz) of the vibration sensor (32) relating to each sensor direction (x, y, z), form the square and to use the root of the sum of the squares (avx 2 + avy 2 + avz 2)1/2, each weighted with a factor, as the vibration parameter (vk).
  12. Hand tool according to one of the preceding claims, characterized in that a modified vibration characteristic value is used which is dependent on an output power of the hand tool (10), preferably on the oscillation frequency (fmax) and a power consumption (P) of the drive motor (34).
  13. Hand tool according to claim 12, characterized in that a means for measuring the speed (n) of the drive motor (34) is provided, and that the control unit (30) is adapted to calculate a proportionality factor (p1) with which the vibration characteristic value calculated from the output signals (vx, vy, vz) is weighted in order to obtain a speed-weighted vibration characteristic value (vkn) at which, if the maximum value (vknmax) is exceeded, the drive is switched off and then started (28), wherein the proportionality factor (p1) is preferably less than three, preferably less than two.
  14. Hand tool according to claim 12 or 13, characterized in that a means for measuring the speed (n) of the drive motor (34) is provided, in that a means for measuring the current consumption of the drive motor (34), preferably by measuring the phase current (I), is provided, and that the control unit (30) is adapted to calculate a speed-weighted current consumption (In) of the drive motor (34), in which a proportionality factor (p2) derived from the speed (n) is used, which is preferably between 1.2 and 2.7, preferably between 1.5 and 2.5, with the speed-weighted current consumption (In) is used as an additional switch-off criterion for the speed-weighted vibration parameter (vkn) and a switch-off only occurs if both the speed-weighted vibration parameter (vkn) exceeds a predetermined maximum value (vknmax), and the speed-weighted current consumption (In) of the drive motor exceeds a predetermined limit value (Imax), wherein preferably the specified maximum value (vkmax) for the vibration characteristic or the speed-weighted vibration characteristic (vknmax) is at least 10 g, preferably between 14 g and 16 g.
  15. Method for operating an oscillating drivable hand tool, with the following steps:
    - starting an oscillating drive (28);
    - cyclic measuring of acceleration (vx, vy, vz) in three spatial directions;
    - calculating a vibration characteristic value (vk) from the acceleration values (vx, vy, vz) in the three spatial directions (x, y, z); and
    - stopping the drive if the vibration characteristic value (vk) exceeds a specified limit value (vkmax);
    characterized in that
    - automatic restarting of the oscillating drive (28) before a predetermined time (Δt<t1).
EP18159962.2A 2017-04-07 2018-03-05 Oscillating driveable handheld tool and method for operating same Active EP3398725B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017107485.6A DE102017107485A1 (en) 2017-04-07 2017-04-07 Oscillably drivable hand tool and method for operating such

Publications (2)

Publication Number Publication Date
EP3398725A1 EP3398725A1 (en) 2018-11-07
EP3398725B1 true EP3398725B1 (en) 2022-09-07

Family

ID=61563297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18159962.2A Active EP3398725B1 (en) 2017-04-07 2018-03-05 Oscillating driveable handheld tool and method for operating same

Country Status (2)

Country Link
EP (1) EP3398725B1 (en)
DE (1) DE102017107485A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208078A1 (en) * 2019-06-04 2020-12-10 Robert Bosch Gmbh Reciprocating saw and method for operating a reciprocating saw

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819050A1 (en) * 1988-06-04 1989-12-14 Bosch Gmbh Robert SAFETY CIRCUIT FOR ELECTRIC HAND TOOLS
DE10303006B4 (en) * 2003-01-27 2019-01-03 Hilti Aktiengesellschaft Hand-held implement
DE102004046000B4 (en) * 2004-09-17 2016-07-21 C. & E. Fein Gmbh Power tool with a position and orientation system
DE102007014891A1 (en) 2007-03-26 2008-10-02 Robert Bosch Gmbh Vibration dosimeter for determining the vibration load
DE102010032335A1 (en) * 2010-07-20 2012-01-26 C. & E. Fein Gmbh hand tool
DE102011104901B4 (en) * 2011-06-16 2018-04-12 C. & E. Fein Gmbh Powered hand tool machine
DE102012021838A1 (en) * 2012-11-08 2014-05-08 Bomag Gmbh Method for monitoring a vibration load
DE102013112455A1 (en) 2013-11-13 2015-05-13 C. & E. Fein Gmbh Oscillating drivable machine tool
DE102014103856A1 (en) 2014-03-20 2015-09-24 C. & E. Fein Gmbh Hand tool with an outer housing and an inner housing
EP2960021A1 (en) 2014-06-27 2015-12-30 HILTI Aktiengesellschaft Handheld machine tool and control method
WO2016127936A1 (en) * 2015-02-10 2016-08-18 苏州宝时得电动工具有限公司 Wearable device and system

Also Published As

Publication number Publication date
EP3398725A1 (en) 2018-11-07
DE102017107485A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
DE102004046000B4 (en) Power tool with a position and orientation system
DE102011104901B4 (en) Powered hand tool machine
EP2627826B1 (en) Method for determinig the rigidity and/or the damping of the region of a solidity
DE102013200602B4 (en) Power tool with improved usability
DE102010040718A1 (en) Vibration suppressing device
EP1945410B1 (en) Portable power tool
DE602005002183T2 (en) Rotary impact tool
DE102017117699A1 (en) An electric power tool and method for detecting a rebound of an electric power tool from a workpiece
EP3113911B1 (en) Adaptive power indicator
DE112012006280T5 (en) power tool
EP3022027B1 (en) Method for controlling a machine tool
DE102017216697A1 (en) Machine tool device for controlling and / or regulating at least one machine tool function of a machine tool
DE112017005671B4 (en) ELECTRIC MOTOR-DRIVEN TOOL AND CONTROL DEVICE AND CONTROL CIRCUIT THEREFOR
EP3536461A1 (en) Method for type-dependent operation of an electrical drive unit and system
EP3398725B1 (en) Oscillating driveable handheld tool and method for operating same
DE102010042542B4 (en) Processing device for kneading dough
DE60210771T2 (en) METHOD AND DEVICE FOR TESTING THE MACHINING PROCESS OF A MACHINE TOOL
EP1989025A1 (en) Portable power tool
WO2009138276A1 (en) Operating method for a power tool, especially a hand-held power tool
EP3990216A1 (en) Method for detecting a slip clutch trigger event, and machine tool
WO2021018539A1 (en) Method for detecting work progress of a handheld power tool
DE102019211305A1 (en) Method for operating a hand machine tool
DE60103956T2 (en) impact drill
EP3618266A1 (en) Determining the rotational speed of a rotor on by vibration analysis
EP3613290B1 (en) Dough kneading machine and method for operating a dough kneading machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210615

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

INTG Intention to grant announced

Effective date: 20210105

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20220105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1516648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018010560

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018010560

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 6

26N No opposition filed

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 7

Ref country code: GB

Payment date: 20240322

Year of fee payment: 7