EP3393701B1 - Material obtained by compacting and densifying nickel, bronze and brass powders and method thereof - Google Patents
Material obtained by compacting and densifying nickel, bronze and brass powders and method thereof Download PDFInfo
- Publication number
- EP3393701B1 EP3393701B1 EP16801424.9A EP16801424A EP3393701B1 EP 3393701 B1 EP3393701 B1 EP 3393701B1 EP 16801424 A EP16801424 A EP 16801424A EP 3393701 B1 EP3393701 B1 EP 3393701B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- phase
- comprised
- powders
- bronze
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 71
- 239000000463 material Substances 0.000 title claims description 37
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 24
- 229910001369 Brass Inorganic materials 0.000 title claims description 16
- 239000010951 brass Substances 0.000 title claims description 16
- 229910000906 Bronze Inorganic materials 0.000 title claims description 15
- 239000010974 bronze Substances 0.000 title claims description 14
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims description 13
- 229910052759 nickel Inorganic materials 0.000 title claims description 13
- 238000000280 densification Methods 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 13
- 238000005056 compaction Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 238000004663 powder metallurgy Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 239000013067 intermediate product Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 15
- 239000002245 particle Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000011135 tin Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/08—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/002—Alloys based on nickel or cobalt with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B1/00—Driving mechanisms
- G04B1/10—Driving mechanisms with mainspring
- G04B1/14—Mainsprings; Bridles therefor
- G04B1/145—Composition and manufacture of the springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B13/00—Gearwork
- G04B13/02—Wheels; Pinions; Spindles; Pivots
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B31/00—Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
- G04B31/06—Manufacture or mounting processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
- B22F2009/0828—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/30—Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/15—Intermetallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a material and to its manufacturing process by powder metallurgy.
- One field of application targeted with this new material is that of mechanics and, more specifically, micromechanics. It is even more specifically suited for components with complex geometries with tight tolerances, as in watchmaking for example.
- the materials obtained by powder metallurgy have considerable technological importance and are used in a wide range of fields ranging from nuclear to biomedical.
- the present invention proposes to select the composition of the starting powders according to the desired properties on the final product and to adapt the parameters of the process to limit the interactions between the powders and thus to obtain the expected properties on the basis of the initial choice of the powders.
- the figure 1 represents the microstructure of a three-phase material obtained with the process according to the invention.
- the densification was carried out at a temperature close to 500°C on a compacted mixture of nickel, brass and bronze.
- the picture 2 shows this same microstructure after image processing to show the different phases.
- the figures 3 and 4 represent the microstructure of the same three-phase material when the densification is carried out at a temperature close to 700°C.
- the figures 5 and 6 represent, by way of comparison, the microstructures of materials of the prior art obtained by powder metallurgy.
- the white represents the heavy phase consisting mainly of tungsten.
- the black phase is the metallic binder phase composed essentially of a nickel, iron, copper, cobalt and molybdenum alloy.
- To the figure 6 it is a sintered cermet ( US 2004/0231459 ).
- Binder is the binder phase made of 347SS stainless steel.
- the ceramic phase is composed of TiC (titanium carbide).
- the last phase consists of M 7 C 3 precipitates where M contains chromium, iron and titanium.
- the present invention relates to a process for manufacturing a material by powder metallurgy and to the material resulting from the process as defined by the independent claims.
- the process is adapted so that the microstructure of the material is perfectly homogeneous throughout its volume and so that it is the most faithful image possible of the microstructure of the mixed powders and of their initial distribution in the mixture.
- the material resulting from the process can be a finished product or a semi-finished product requiring a subsequent machining step.
- the material is a metallic material obtained from a process comprising three stages.
- the first step consists of selecting several metal powders and dosing them when several powders are present.
- the number of starting powders, their compositions and their respective percentages depend on the physico-mechanical properties desired on the consolidated product.
- the powders are at least two in number in order to combine the properties specific to different compositions.
- Each powder is made up of particles with a particle size chosen to guarantee the quality of the material.
- their mean diameter dso is preferably chosen in a range between 1 and 100 ⁇ m.
- the metallic powders consist of three powders: a nickel powder, a bronze powder and a brass powder.
- the Cu, Sn and Cu, Zn percentages can also be modulated respectively.
- the Cu and Zn content can be 60 and 40% respectively and for bronze the Cu and Sn content can be 90 and 10% respectively.
- a second step the different powders are mixed.
- Mixing is carried out in a standard commercial dry mixer.
- the setting of the mixer and the duration of the mixing are chosen so that at the end of this stage, the mixture is perfectly homogeneous.
- the mixing time is greater than 12 hours to guarantee this homogeneity and less than 24 hours. It should be noted that in the presence of a single starting powder, the mixing step is optional.
- the homogeneous mixture is shaped, i.e. compacted and densified at a temperature below the melting temperature of the respective powders.
- Hot compaction and densification are carried out using impact compaction technology as described in the application. WO 2014/199090 .
- the mixed powders are placed in an imprint made in a die and the mixture is compacted using a punch. Then, the compacted mixture is densified hot by subjecting the punch to impacts.
- the pressure cooling step can be omitted.
- the process parameters are chosen to obtain a consolidated body with a relative density greater than or equal to 95% and better still greater than or equal to 98%, while limiting the interactions between the different powders.
- the objective is to produce a micro-weld between particles to consolidate the material without significantly altering the microstructure of the various powders present.
- the consolidation parameters are chosen to limit the degree of sintering to surface bond formation and not to volume bond formation as observed during actual sintering. Microstructurally, this intergranular bond results in the formation of bridges between particles. Limiting the interactions between particles makes it possible to maintain a distribution of the powders within the consolidated material close to that observed after mixing the powders.
- Compaction and densification by impacts of the mixture of powders thus makes it possible to weld the grains of the powders together while preserving a microstructure with high-energy interfaces between the different constituent phases.
- the material resulting from the process has the characteristics that the constituent elements of the different powders do not mix and that the morphology of the basic particles is preserved after compaction and densification.
- the morphology of the grains of the material obtained is an image of the morphology of the particles of the initial powder, which is advantageous for guaranteeing mechanical properties based on the initial choice of morphology. powder.
- the mixture of powders is at a temperature lower than the melting point of the powder with the lowest melting point during hot densification.
- the mixture is brought to this temperature for a time of between 3 and 30 minutes and, preferably, between 5 and 20 minutes. It can be brought to this temperature before introduction into the press or into the press.
- the time indicated above includes the heating time to reach the given temperature and the holding time at this temperature.
- the mixture is subjected to a number of impacts comprised between 1 and 50 with an energy level comprised between 500 and 2000J, this level being preferentially 10 to 30% higher than the energy level required during compaction.
- the product thus obtained has a relative density greater than or equal to 95% and preferably 98%, measured conventionally by Archimedean weighing.
- a metallurgical section reveals a very specific microstructure due to the material shaping process.
- the material comprises a number of phases corresponding to the initial number of powders with a distribution of the phases substantially the same as that of the powders within the starting mixture.
- Another very specific characteristic of this microstructure is that the surface energy of the phases thus consolidated is conserved at high levels.
- the native morphology of the powder particles remains almost totally preserved with an interface between phases of irregular shape, which is can also qualify as non-spherical.
- the consolidated phases thus retain a high specific surface.
- the figures 1 and 2 reveal the microstructure obtained starting from a mixture of three powders: nickel, bronze, brass as presented in table 1.
- the mixture was compacted and densified at a temperature close to 500°C.
- the microstructure has three distinct phases respectively consisting mainly of nickel, bronze and brass.
- the homogeneity of the microstructure obtained is that obtained after the step of mixing the three kinds of powder.
- the product thus obtained has a relative density greater than 95%.
- we observe at figures 3 and 4 this same homogeneity of microstructure with three distinct phases.
- an interdiffusion between the two couples nickel-bronze and bronze-brass is observed, the phase rich in nickel being surrounded by the phase rich in bronze. This interdiffusion makes it possible to increase the relative density to a value greater than or equal to 98%.
- Tables 1 and 2 Three metal powders listed in Tables 1 and 2 below were selected in step 1) of the process.
- the function of each powder is detailed in Table 1.
- the compositions and percentages of the different powders are detailed in Table 2.
- ⁇ u>Table 1 ⁇ /u> Selected powders Function and/or characteristic Pure nickel (Ni) metal powder Offering the consolidated and densified material a good welding behavior, in particular laser welding Brass alloy metal powder, with a nominal chemical composition of 60% copper (Cu) and 40% zinc (Zn). Offering good machinability Bronze alloy metal powder, with a nominal chemical composition of 90% copper (Cu) and 10% tin (Sn).
- Powder type Powder content (by weight) Particle size ( ⁇ m) (supplier data) Nominal chemical composition of the material (by weight) Neither Cu Zn sn Nickel powder (100% Ni)* 25% Fisher size: 25% 1.8-2.8 Brass powder (60% Cu, 40% Zn)** 65% d10: 2 48% 26% 1% d50: 6 d90: 20 Bronze powder (90% Cu, 10% Sn)*** 10% d10: 6 d50: 11 d90: 20 * Ni2800A powder from Eurotungsten ** SF-BS6040 10 ⁇ m powder from Nippon Atomized Metal Powders Corp. *** SF-BR9010 10 ⁇ m powder from Nippon Atomized Metal Powders Corp.
- the powders were mixed in a commercial mixer of the Turbula T10B type.
- the mixing speed is an average speed of the order of 200 revolutions per minute for 24 hours.
- the shaping was carried out using a high-speed, high-energy press from the manufacturer Hydropulsor.
- the shaping was carried out in two phases:
- the dosage of the powders in the cavity is done volumetrically with a given filling height.
- this filling height is 6 mm to arrive at a compacted thickness of approximately 2 mm.
- This parameter - filling height - can vary between 2 mm and 50 mm depending on the desired final thickness on the compacted solid.
- the quantity of powders thus dosed is compacted between the upper punch and the lower punch, surrounded by a matrix to form a washer of a given diameter.
- This compaction is made in the example with 25 impacts.
- the objective of this step is to obtain a sufficiently dense solid for subsequent hot densification. This compaction also serves to ensure that the solid thus compacted is strong enough for handling operations during hot densification.
- the relative density obtained at this stage is greater than 90%.
- the compacted washer is brought to a temperature close to 700° C. in an oven preheated to this temperature.
- the compacted puck is placed in the oven for at least 5 minutes and preferably 15 minutes.
- the washer thus heated is transported and placed in the cavity with a diameter slightly larger than the diameter of the washer.
- the duration of transportation of the preheated puck from the oven to the press, put in the die, is from 2 to 5 seconds.
- the preheated washer is then densified hot between the upper punch and the lower punch with 25 impacts. In the absence of heating means, a decrease in temperature is observed during densification by impact.
- the final thickness in the example of the densified washer is approximately 1.8 mm.
- the relative density of the puck is more than 98%.
- the microstructure is similar to that obtained with picture 3 .
- the solid obtained is a multi-phase material comprising phases having different functions.
- the solid thus obtained has a homogeneous microstructure throughout its volume. As a result, there is no internal stress gradient through the solid. This provides geometric stability to the machined part.
- Each phase of the solid obtained and, upstream, each powder is chosen to fulfill a specific function.
- One of the phases can be chosen to improve the weldability, for example, by laser. This function is fulfilled by the phase composed mainly of nickel in the example.
- Another phase can be chosen to facilitate hot densification without actual sintering.
- one of the phases of the solid consists essentially of bronze which has the lowest melting range of the three constituents.
- the third phase which is, again by way of example, the majority phase, is composed of the consolidated brass powder. This phase as well mixed with the other two makes it possible to guarantee better machinability by chip removal.
- the method according to the invention also has advantages. It is thus observed that the morphology of the grains within the material is an image of the morphology of the particles of the starting powder.
- the grain size playing an important role in the mechanical properties of the material, it is particularly advantageous to be able to predict the final properties on the basis of the choice of the morphology of the starting powder.
- the morphology of the base powder(s) is preserved while obtaining a product with high relative density, unlike the known sintering process where the consolidation at relative density values greater than or equal to 95, or even 98% is accompanied by a drastic change in morphology.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Description
La présente invention se rapporte à un matériau et à son procédé de fabrication par métallurgie des poudres. Un domaine d'application visé avec ce nouveau matériau est celui de la mécanique et, plus précisément, de la micromécanique. Il est encore plus spécifiquement adapté pour des composants ayant des géométries complexes avec des tolérances sévères, comme dans l'horlogerie par exemple.The present invention relates to a material and to its manufacturing process by powder metallurgy. One field of application targeted with this new material is that of mechanics and, more specifically, micromechanics. It is even more specifically suited for components with complex geometries with tight tolerances, as in watchmaking for example.
Les matériaux obtenus par métallurgie des poudres ont une importance technologique considérable et sont utilisés dans un large panel de domaines allant du nucléaire au biomédical.The materials obtained by powder metallurgy have considerable technological importance and are used in a wide range of fields ranging from nuclear to biomedical.
A titre d'exemple, on peut citer les documents
La présente invention propose de sélectionner la composition des poudres de départ en fonction des propriétés recherchées sur le produit final et d'adapter les paramètres du procédé pour limiter les interactions entre les poudres et ainsi obtenir les propriétés attendues sur base du choix initial des poudres.The present invention proposes to select the composition of the starting powders according to the desired properties on the final product and to adapt the parameters of the process to limit the interactions between the powders and thus to obtain the expected properties on the basis of the initial choice of the powders.
A cette fin, un matériau, une pièce comportant ce matériau, une utilisation de ce matériau et un procédé de fabrication de ce matériau selon les revendications annexés sont proposés.To this end, a material, a part comprising this material, a use of this material and a method of manufacturing this material according to the appended claims are proposed.
Les caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée ci-dessous faisant référence aux figures suivantes.The characteristics and advantages of the present invention will appear on reading the detailed description below with reference to the following figures.
La
Les
La présente invention se rapporte à un procédé de fabrication d'un matériau par métallurgie des poudres et au matériau issu du procédé tels que définit par les revendications indépendantes. Le procédé est adapté pour que la microstructure du matériau soit parfaitement homogène au travers de son volume et pour qu'elle soit une image la plus fidèle possible de la microstructure des poudres mélangées et de leur distribution initiale dans le mélange. Le matériau issu du procédé peut être un produit fini ou un demi-produit nécessitant une étape ultérieure d'usinage.The present invention relates to a process for manufacturing a material by powder metallurgy and to the material resulting from the process as defined by the independent claims. The process is adapted so that the microstructure of the material is perfectly homogeneous throughout its volume and so that it is the most faithful image possible of the microstructure of the mixed powders and of their initial distribution in the mixture. The material resulting from the process can be a finished product or a semi-finished product requiring a subsequent machining step.
Le matériau est un matériau métallique obtenu à partir d'un procédé comportant trois étapes.The material is a metallic material obtained from a process comprising three stages.
La première étape consiste à sélectionner plusieurs poudres métalliques et à les doser lorsque plusieurs poudres sont en présence. Le nombre de poudres de départ, leurs compositions et leurs pourcentages respectifs dépendent des propriétés physico-mécaniques désirées sur le produit consolidé. Préférentiellement, les poudres sont minimum au nombre de deux afin de combiner les propriétés propres à différentes compositions. Chaque poudre est formée de particules ayant une granulométrie choisie pour garantir la qualité du matériau. Bien que dépendant des propriétés visées, leur diamètre moyen dso est préférentiellement choisi dans une gamme comprise entre 1 et 100 µm.The first step consists of selecting several metal powders and dosing them when several powders are present. The number of starting powders, their compositions and their respective percentages depend on the physico-mechanical properties desired on the consolidated product. Preferably, the powders are at least two in number in order to combine the properties specific to different compositions. Each powder is made up of particles with a particle size chosen to guarantee the quality of the material. Although depending on the targeted properties, their mean diameter dso is preferably chosen in a range between 1 and 100 μm.
Les poudres métalliques sont constitués de trois poudres : une poudre de nickel, une poudre de bronze et une poudre de laiton. La proportion de poudre de bronze est comprise entre 2 et 20% en poids, la proportion de poudre de nickel est comprise entre 3 et 40% en poids, la proportion de poudre de laiton étant la proportion restante (= 100% - la somme des % de poudres de nickel et de bronze). Pour le bronze et le laiton, les pourcentages Cu, Sn et Cu, Zn peuvent être respectivement également modulés. Par exemple, pour le laiton, la teneur en Cu et Zn peut être respectivement de 60 et 40% et pour le bronze, la teneur en Cu et Sn peut être respectivement de 90 et 10%.The metallic powders consist of three powders: a nickel powder, a bronze powder and a brass powder. The proportion of bronze powder is between 2 and 20% by weight, the proportion of nickel powder is between 3 and 40% by weight, the proportion of brass powder being the remaining proportion (= 100% - the sum of % of nickel and bronze powders). For bronze and brass, the Cu, Sn and Cu, Zn percentages can also be modulated respectively. For example, for brass the Cu and Zn content can be 60 and 40% respectively and for bronze the Cu and Sn content can be 90 and 10% respectively.
Dans une deuxième étape, les différentes poudres sont mélangées. Le mélange s'effectue dans un mélangeur standard du commerce à sec. Le paramétrage du mélangeur et la durée du mélange sont choisis de manière à ce qu'à la fin de cette étape, le mélange soit parfaitement homogène. Généralement, le temps de mélange est supérieur à 12h pour garantir cette homogénéité et inférieur à 24h. Il est à noter qu'en présence d'une seule poudre de départ, l'étape de mélange est optionnelle.In a second step, the different powders are mixed. Mixing is carried out in a standard commercial dry mixer. The setting of the mixer and the duration of the mixing are chosen so that at the end of this stage, the mixture is perfectly homogeneous. Generally, the mixing time is greater than 12 hours to guarantee this homogeneity and less than 24 hours. It should be noted that in the presence of a single starting powder, the mixing step is optional.
Dans une troisième étape, le mélange homogène est mis en forme, c.à.d. compacté et densifié à une température inférieure à la température de fusion des poudres respectives. La compaction et densification à chaud s'effectuent à l'aide d'une technologie de compaction par impact comme décrite dans la demande
Les paramètres du procédé sont choisis pour obtenir un corps consolidé avec une densité relative supérieure ou égale 95% et mieux supérieure ou égale à 98%, tout en limitant les interactions entre les différentes poudres. L'objectif est de réaliser une microsoudure entre particules pour consolider la matière sans altérer notablement la microstructure des différentes poudres en présence. Plus précisément, les paramètres de consolidation sont choisis pour limiter le degré de frittage à une formation de liaison de surface et non à une formation de liaison de volume comme observé lors d'un frittage à proprement dit. Microstructurellement, cette liaison intergranulaire se traduit par la formation de ponts entre particules. Limiter les interactions entre particules permet de maintenir une répartition des poudres au sein du matériau consolidé proche de celle observée après mélange des poudres. La compaction et densification par impacts du mélange de poudres permet ainsi de souder les grains des poudres entre eux tout en préservant une microstructure avec des interfaces à haute énergie entre les différentes phases constitutives. En d'autres mots, le matériau issu du procédé a pour caractéristiques que les éléments constitutifs des différentes poudres ne se mélangent pas et que la morphologie des particules de base est conservée après compaction et densification. De même, en présence d'une seule poudre de départ, la morphologie des grains du matériau obtenu est une image de la morphologie des particules de la poudre initiale, ce qui est avantageux pour garantir des propriétés mécaniques sur base du choix initial de la morphologie de la poudre.The process parameters are chosen to obtain a consolidated body with a relative density greater than or equal to 95% and better still greater than or equal to 98%, while limiting the interactions between the different powders. The objective is to produce a micro-weld between particles to consolidate the material without significantly altering the microstructure of the various powders present. More precisely, the consolidation parameters are chosen to limit the degree of sintering to surface bond formation and not to volume bond formation as observed during actual sintering. Microstructurally, this intergranular bond results in the formation of bridges between particles. Limiting the interactions between particles makes it possible to maintain a distribution of the powders within the consolidated material close to that observed after mixing the powders. Compaction and densification by impacts of the mixture of powders thus makes it possible to weld the grains of the powders together while preserving a microstructure with high-energy interfaces between the different constituent phases. In other words, the material resulting from the process has the characteristics that the constituent elements of the different powders do not mix and that the morphology of the basic particles is preserved after compaction and densification. Similarly, in the presence of a single starting powder, the morphology of the grains of the material obtained is an image of the morphology of the particles of the initial powder, which is advantageous for guaranteeing mechanical properties based on the initial choice of morphology. powder.
Pour obtenir cette microstructure particulière, le mélange de poudres se trouve à une température inférieure à la température de fusion de la poudre de plus bas point de fusion lors de la densification à chaud. Le mélange est porté à cette température pendant un temps compris entre 3 et 30 minutes et, préférentiellement, entre 5 et 20 minutes. Il peut être porté à cette température avant introduction dans la presse ou dans la presse. Le temps indiqué ci-dessus inclut le temps de chauffage pour arriver à la température donnée et le maintien à cette température. Lors de la densification, le mélange est soumis à un nombre d'impacts compris entre 1 et 50 avec un niveau d'énergie compris entre 500 et 2000J, ce niveau étant préférentiellement supérieur de 10 à 30% au niveau d'énergie requis lors de la compaction. Le produit ainsi obtenu a une densité relative supérieure ou égale à 95% et, de préférence, à 98%, mesurée de manière conventionnelle par pesée d'Archimède. Après cette étape de densification, une coupe métallurgique révèle une microstructure bien spécifique due au procédé de mise en forme du matériau. Le matériau comporte un nombre de phases correspondant au nombre de poudres initial avec une répartition des phases sensiblement la même que celle des poudres au sein du mélange de départ. Une autre caractéristique bien spécifique de cette microstructure est que l'énergie de surface des phases ainsi consolidée est conservée à des niveaux élevés. La morphologie native des particules de poudres reste presque totalement conservée avec une interface entre phases de forme irrégulière, qu'on peut également qualifier de non sphérique. Les phases consolidées conservent ainsi une surface spécifique élevée.To obtain this particular microstructure, the mixture of powders is at a temperature lower than the melting point of the powder with the lowest melting point during hot densification. The mixture is brought to this temperature for a time of between 3 and 30 minutes and, preferably, between 5 and 20 minutes. It can be brought to this temperature before introduction into the press or into the press. The time indicated above includes the heating time to reach the given temperature and the holding time at this temperature. During densification, the mixture is subjected to a number of impacts comprised between 1 and 50 with an energy level comprised between 500 and 2000J, this level being preferentially 10 to 30% higher than the energy level required during compaction. The product thus obtained has a relative density greater than or equal to 95% and preferably 98%, measured conventionally by Archimedean weighing. After this densification step, a metallurgical section reveals a very specific microstructure due to the material shaping process. The material comprises a number of phases corresponding to the initial number of powders with a distribution of the phases substantially the same as that of the powders within the starting mixture. Another very specific characteristic of this microstructure is that the surface energy of the phases thus consolidated is conserved at high levels. The native morphology of the powder particles remains almost totally preserved with an interface between phases of irregular shape, which is can also qualify as non-spherical. The consolidated phases thus retain a high specific surface.
A titre d'exemple, les
Par comparaison avec les matériaux obtenus par métallurgie des poudres dans les documents
Un exemple détaillé ci-dessous illustre le procédé selon l'invention.A detailed example below illustrates the process according to the invention.
Dans la première étape, les poudres ont été sélectionnées pour réaliser un matériau présentant un ensemble de propriétés :
- mise en forme facile du demi-produit par un procédé d'usinage par enlèvement de copeaux avec absence de bavure,
- stabilité dimensionnelle, pour éviter une déformation du matériau après l'opération d'usinage ;
- soudable, notamment par laser.
- easy shaping of the semi-finished product by a machining process by chip removal with no burr,
- dimensional stability, to avoid deformation of the material after the machining operation;
- weldable, in particular by laser.
Pour répondre à ces critères, trois poudres métalliques reprises dans les tableaux 1 et 2 ci-dessous ont été sélectionnées à l'étape 1) du procédé. La fonction de chaque poudre est détaillée au tableau 1. Les compositions et pourcentages des différentes poudres sont détaillés au tableau 2.
** Poudre SF-BS6040 10µm de Nippon Atomized Metal Powders Corp.
*** Poudre SF-BR9010 10µm de Nippon Atomized Metal Powders Corp.
** SF-BS6040 10µm powder from Nippon Atomized Metal Powders Corp.
*** SF-BR9010 10µm powder from Nippon Atomized Metal Powders Corp.
Dans la seconde étape, les poudres ont été mélangées dans un mélangeur du commerce de type Turbula T10B. La vitesse de mélange est une vitesse moyenne de l'ordre de 200 tours par minute pendant 24 heures.In the second step, the powders were mixed in a commercial mixer of the Turbula T10B type. The mixing speed is an average speed of the order of 200 revolutions per minute for 24 hours.
Dans la troisième étape, la mise en forme a été réalisée à l'aide d'une presse à haute vitesse et à haute énergie du fabriquant Hydropulsor. La mise en forme a été exécutée en deux phases :In the third step, the shaping was carried out using a high-speed, high-energy press from the manufacturer Hydropulsor. The shaping was carried out in two phases:
Le dosage des poudres dans l'empreinte se fait de manière volumétrique avec une hauteur de remplissage donnée. Dans l'exemple, cette hauteur de remplissage est de 6 mm pour arriver à une épaisseur compactée d'environ 2 mm. Ce paramètre - hauteur de remplissage - peut varier entre 2 mm et 50 mm en fonction de l'épaisseur finale désirée sur le solide compacté. La quantité de poudres ainsi dosée est compactée entre le poinçon du dessus et le poinçon du dessous, entourée d'une matrice pour former une rondelle d'un diamètre donné. Cette compaction est faite dans l'exemple avec 25 impacts. L'objectif de cette étape est d'obtenir un solide suffisamment dense pour la densification ultérieure à chaud. Cette compaction sert aussi à ce que le solide ainsi compacté soit suffisamment solide pour les opérations de manipulation lors de la densification à chaud. La densité relative obtenue à cette étape est supérieure à 90 %.The dosage of the powders in the cavity is done volumetrically with a given filling height. In the example, this filling height is 6 mm to arrive at a compacted thickness of approximately 2 mm. This parameter - filling height - can vary between 2 mm and 50 mm depending on the desired final thickness on the compacted solid. The quantity of powders thus dosed is compacted between the upper punch and the lower punch, surrounded by a matrix to form a washer of a given diameter. This compaction is made in the example with 25 impacts. The objective of this step is to obtain a sufficiently dense solid for subsequent hot densification. This compaction also serves to ensure that the solid thus compacted is strong enough for handling operations during hot densification. The relative density obtained at this stage is greater than 90%.
La rondelle compactée est portée à une température proche de 700°C dans un four préchauffé à cette température. La rondelle compactée est placée dans le four pendant au moins 5 minutes et, de préférence, 15 minutes. La rondelle ainsi chauffée est transportée et mise dans l'empreinte de diamètre légèrement plus grand que le diamètre de la rondelle. La durée du transport de la rondelle préchauffée du four à la presse, mise dans la matrice, est comprise entre 2 et 5 secondes. La rondelle préchauffée est ensuite densifiée à chaud entre le poinçon du dessus et le poinçon du dessous avec 25 impacts. En l'absence de moyens de chauffage, une diminution de la température est observée pendant la densification par impact. L'épaisseur finale dans l'exemple de la rondelle densifiée est d'environ 1.8 mm. La densité relative de la rondelle est supérieure à 98%. La microstructure est semblable à celle obtenue à la
Grâce à la compaction et densification à chaud comme décrit ci-dessus, le solide obtenu est un matériau multi-phasé comprenant des phases ayant des fonctions différentes. De plus, le solide ainsi obtenu présente une microstructure homogène dans tout son volume. De ce fait, il y a absence de gradient de contraintes internes à travers du solide. Ceci offre une stabilité géométrique à la pièce usinée.Thanks to hot compaction and densification as described above, the solid obtained is a multi-phase material comprising phases having different functions. In addition, the solid thus obtained has a homogeneous microstructure throughout its volume. As a result, there is no internal stress gradient through the solid. This provides geometric stability to the machined part.
Chaque phase du solide obtenu et, en amont, chaque poudre, est choisie pour remplir une fonction bien précise. Une des phases peut être choisie pour améliorer la soudabilité, par exemple, par laser. Cette fonction est remplie par la phase composée principalement de nickel dans l'exemple. Une autre phase peut être choisie pour faciliter la densification à chaud sans frittage à proprement dit. Dans l'exemple, une des phases du solide est constituée essentiellement de bronze qui a l'intervalle de fusion le plus faible des trois constituants. La troisième phase qui est, toujours à titre d'exemple, la phase majoritaire, est composée de la poudre de laiton consolidée. Cette phase ainsi mélangée aux deux autres permet de garantir une meilleure aptitude à l'usinage par enlèvement de copeaux.Each phase of the solid obtained and, upstream, each powder, is chosen to fulfill a specific function. One of the phases can be chosen to improve the weldability, for example, by laser. This function is fulfilled by the phase composed mainly of nickel in the example. Another phase can be chosen to facilitate hot densification without actual sintering. In the example, one of the phases of the solid consists essentially of bronze which has the lowest melting range of the three constituents. The third phase which is, again by way of example, the majority phase, is composed of the consolidated brass powder. This phase as well mixed with the other two makes it possible to guarantee better machinability by chip removal.
En présence d'une seule poudre de départ, le procédé selon l'invention présente également des avantages. On observe ainsi que la morphologie des grains au sein du matériau est une image de la morphologie des particules de la poudre de départ. La taille de grain jouant un rôle important dans les propriétés mécaniques du matériau, il est particulièrement avantageux de pouvoir prédire les propriétés finales sur base du choix de la morphologie de la poudre de départ.In the presence of a single starting powder, the method according to the invention also has advantages. It is thus observed that the morphology of the grains within the material is an image of the morphology of the particles of the starting powder. The grain size playing an important role in the mechanical properties of the material, it is particularly advantageous to be able to predict the final properties on the basis of the choice of the morphology of the starting powder.
Grâce au procédé selon l'invention, la morphologie de la ou des poudres de base est conservée tout en obtenant un produit à haute densité relative contrairement au procédé connu de frittage où la consolidation à des valeurs de densité relative supérieures ou égales à 95, voire 98% s'accompagne d'une modification drastique de la morphologie.Thanks to the process according to the invention, the morphology of the base powder(s) is preserved while obtaining a product with high relative density, unlike the known sintering process where the consolidation at relative density values greater than or equal to 95, or even 98% is accompanied by a drastic change in morphology.
Claims (10)
- A compacted and densified metal material consisting of three phases formed of an agglomerate of grains, the cohesion of the material being ensured by bridges formed between grains, said material having a relative density which is greater than or equal to 95% measured by Archimedean weighing, wherein the phases are separated by irregularly shaped interfaces and wherein the three phases comprise a first phase being composed of nickel, a second phase being composed of bronze and a third phase being composed of brass, and wherein the mass fraction of the first phase is comprised between 3 and 40%, the mass fraction of the second phase is comprised between 2 and 20% and the mass fraction of the third phase corresponds to the percentage remaining to make 100%.
- A part comprising the material according to claim 1.
- The part according to claim 2, being a timepiece component.
- A use of the material according to claim 1 in the field of micromechanics.
- A method for manufacturing a material by powder metallurgy comprising the following steps:- provision of three types of metal powders with grains having a non-regular random shape,- compaction of the three types of metal powders to form a compacted assembly in which the grains are linked together by entanglement of the respective valleys and peaks thereof and forms an intermediate product in the form of an agglomerate formed exclusively of the metal powder grains,- densification by impact of the agglomerate at a temperature lower than the melting temperature of the powder having the lowest melting temperature, the assembly being previously or during the densification brought to said temperature for a time period comprised between 3 and 30 minutes and, preferably, between 5 and 20 minutes,- the three types of powder comprising a first powder being composed of nickel, a second powder being composed of bronze and a third powder being composed of brass, and wherein the mass fraction of the first phase is comprised between 3 and 40%, the mass fraction of the second phase is comprised between 2 and 20% and the mass fraction of the third phase corresponds to the percentage remaining to make 100%.
- The method according to claim 5, comprising a step of mixing the powders before compacting.
- The method according to one of claims 5 to 6, wherein the Cu and Zn content of the brass powder in the third phase is respectively 60 and 40% and wherein the Cu and Sn content in the bronze powder in the second phase is respectively 90 and 10%.
- The method according to one of claims 5 to 7, wherein the densification by impact is performed at a temperature greater than or equal to 500°C.
- The method according to any one of claims 5 to 8, wherein the compaction is carried out under cold conditions.
- The method according to any one of claims 5 to 9, wherein the number of impacts during the densification is comprised between 1 and 50 with an energy comprised between 500 and 2000J.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15201640.8A EP3184211A1 (en) | 2015-12-21 | 2015-12-21 | Material obtained by compacting and densifying metal powder(s) |
PCT/EP2016/078201 WO2017108293A1 (en) | 2015-12-21 | 2016-11-18 | Material obtained by compacting and densifying metal powder(s) |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3393701A1 EP3393701A1 (en) | 2018-10-31 |
EP3393701B1 true EP3393701B1 (en) | 2022-05-11 |
Family
ID=55070732
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15201640.8A Withdrawn EP3184211A1 (en) | 2015-12-21 | 2015-12-21 | Material obtained by compacting and densifying metal powder(s) |
EP16801424.9A Active EP3393701B1 (en) | 2015-12-21 | 2016-11-18 | Material obtained by compacting and densifying nickel, bronze and brass powders and method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15201640.8A Withdrawn EP3184211A1 (en) | 2015-12-21 | 2015-12-21 | Material obtained by compacting and densifying metal powder(s) |
Country Status (5)
Country | Link |
---|---|
US (2) | US10987732B2 (en) |
EP (2) | EP3184211A1 (en) |
JP (1) | JP6793730B2 (en) |
CN (1) | CN108495730B (en) |
WO (1) | WO2017108293A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111057905B (en) * | 2020-01-13 | 2022-03-04 | 西安理工大学 | Method for preparing niobium-titanium alloy through powder metallurgy |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA972514A (en) * | 1971-08-10 | 1975-08-12 | Renzo Fedrigo | Method of and press for compacting materials in powder form for pieces to be sintered |
CH621577A5 (en) * | 1976-07-15 | 1981-02-13 | Straumann Inst Ag | |
US4270114A (en) * | 1980-04-07 | 1981-05-26 | Cannom David L | Energy transmission devices |
ES2049474T3 (en) * | 1989-04-07 | 1994-04-16 | Electrolux Ab | MANUFACTURE BY SINTERING DIMENSIONALLY PRECISE PARTS. |
KR950005290B1 (en) | 1992-08-06 | 1995-05-23 | 주식회사풍산 | Repeated sintering of tunsten based heavy alloys for improved impact toughness |
SE0004122D0 (en) * | 2000-11-09 | 2000-11-09 | Hoeganaes Ab | High density compacts and method for the preparation thereof |
US7074253B2 (en) | 2003-05-20 | 2006-07-11 | Exxonmobil Research And Engineering Company | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
JP2008038160A (en) * | 2006-08-01 | 2008-02-21 | Kobe Steel Ltd | Method for producing high density powder molded body |
WO2010080064A1 (en) * | 2009-01-12 | 2010-07-15 | Metec Powder Metal Ab | Multilevel parts from agglomerated spherical metal powder |
US9243475B2 (en) * | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
JP4906972B1 (en) * | 2011-04-27 | 2012-03-28 | 太陽誘電株式会社 | Magnetic material and coil component using the same |
KR101501067B1 (en) * | 2013-06-07 | 2015-03-17 | 한국생산기술연구원 | Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same |
FR3006936B1 (en) | 2013-06-12 | 2015-07-03 | Ct Tech Des Ind Mecaniques | PROCESS AND ASSEMBLY FOR PRODUCING A MECHANICAL PIECE BY SINKING A PULVERULENT MATERIAL |
JP6519100B2 (en) * | 2014-04-23 | 2019-05-29 | セイコーエプソン株式会社 | Sinter-forming method, liquid binder, and sinter-formed product |
CN104959609A (en) * | 2015-06-05 | 2015-10-07 | 东睦新材料集团股份有限公司 | Preparation method of copper-base powder metallurgy part |
US10639719B2 (en) * | 2016-09-28 | 2020-05-05 | General Electric Company | Grain boundary engineering for additive manufacturing |
US11118246B2 (en) * | 2017-08-28 | 2021-09-14 | Nippon Steel Corporation | Watch part |
-
2015
- 2015-12-21 EP EP15201640.8A patent/EP3184211A1/en not_active Withdrawn
-
2016
- 2016-11-18 JP JP2018532780A patent/JP6793730B2/en active Active
- 2016-11-18 US US16/064,314 patent/US10987732B2/en active Active
- 2016-11-18 WO PCT/EP2016/078201 patent/WO2017108293A1/en unknown
- 2016-11-18 EP EP16801424.9A patent/EP3393701B1/en active Active
- 2016-11-18 CN CN201680079730.2A patent/CN108495730B/en active Active
-
2021
- 2021-03-05 US US17/193,309 patent/US11759857B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11759857B2 (en) | 2023-09-19 |
WO2017108293A1 (en) | 2017-06-29 |
EP3393701A1 (en) | 2018-10-31 |
JP2019508576A (en) | 2019-03-28 |
US20210187608A1 (en) | 2021-06-24 |
CN108495730B (en) | 2021-06-15 |
US10987732B2 (en) | 2021-04-27 |
JP6793730B2 (en) | 2020-12-02 |
CN108495730A (en) | 2018-09-04 |
US20190009331A1 (en) | 2019-01-10 |
EP3184211A1 (en) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0930948B1 (en) | Composite wear part | |
EP3853391B1 (en) | Process for the manufacture of a component made from an al-alloy | |
EP1728586B1 (en) | Superalloy powder | |
EP0297001B1 (en) | Process for decreasing the range of values of the mechanical characteristics of tungsten-nickel-iron alloys | |
JP4769287B2 (en) | Bronze powder for powder metallurgy and method for producing the same | |
FR3077524A1 (en) | PROCESS FOR MANUFACTURING ALUMINUM ALLOY AND CHROME ALLOY | |
JP2860064B2 (en) | Method for producing Ti-Al alloy target material | |
WO2016192177A1 (en) | Hard alloy functionally graded material molding method | |
CN111334762A (en) | Powder metallurgy AlSnCu alloy target material and preparation method thereof | |
EP3393701B1 (en) | Material obtained by compacting and densifying nickel, bronze and brass powders and method thereof | |
EP3404122A1 (en) | Method for producing a metal matrix composite material by sla | |
TW201313363A (en) | Method for integrally forming a composite metal | |
JP4397425B1 (en) | Method for producing Ti particle-dispersed magnesium-based composite material | |
EP1702082A1 (en) | Method of producing diamond segments for cutting tools | |
CH711939B1 (en) | Material obtained by compaction and densification of metal powders. | |
FR2658183A1 (en) | COPPER MOLDED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME | |
EP0838288A1 (en) | Wear resistant composite cast pieces | |
FR2541151A1 (en) | PROCESS FOR CONSOLIDATING A METAL OR CERAMIC MASS | |
JPH0569894B2 (en) | ||
JPH03138304A (en) | Manufacture of porous sintered hard alloy | |
FR3066418A1 (en) | PROCESS FOR PRODUCING METALLIC MATRIX COMPOSITE MATERIAL BY INJECTION MOLDING | |
FR3108919A1 (en) | Part in a multilayer material with a composition gradient and its manufacturing process | |
JPS596339A (en) | Preparation of aluminum alloy | |
BE738054A (en) | Production of metallic powders | |
BE431463A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180723 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191104 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 31/06 20060101ALI20220201BHEP Ipc: C22C 30/02 20060101ALI20220201BHEP Ipc: C22C 30/06 20060101ALI20220201BHEP Ipc: C22C 1/04 20060101ALI20220201BHEP Ipc: B22F 9/08 20060101ALI20220201BHEP Ipc: G04B 31/00 20060101ALI20220201BHEP Ipc: G04B 17/06 20060101ALI20220201BHEP Ipc: G04B 15/14 20060101ALI20220201BHEP Ipc: G04B 13/02 20060101ALI20220201BHEP Ipc: G04B 1/14 20060101ALI20220201BHEP Ipc: C22C 19/03 20060101ALI20220201BHEP Ipc: C22C 19/00 20060101ALI20220201BHEP Ipc: C22C 9/04 20060101ALI20220201BHEP Ipc: C22C 9/02 20060101ALI20220201BHEP Ipc: B22F 5/08 20060101ALI20220201BHEP Ipc: B22F 3/16 20060101AFI20220201BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20220309 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1490957 Country of ref document: AT Kind code of ref document: T Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016072075 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220511 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1490957 Country of ref document: AT Kind code of ref document: T Effective date: 20220511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220912 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220811 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220812 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220811 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016072075 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
26N | No opposition filed |
Effective date: 20230214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231019 Year of fee payment: 8 Ref country code: DE Payment date: 20231019 Year of fee payment: 8 Ref country code: CH Payment date: 20231201 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220511 |