EP3393215A1 - Traitement de surface par plasmatron à arc électrique - Google Patents

Traitement de surface par plasmatron à arc électrique Download PDF

Info

Publication number
EP3393215A1
EP3393215A1 EP17167209.0A EP17167209A EP3393215A1 EP 3393215 A1 EP3393215 A1 EP 3393215A1 EP 17167209 A EP17167209 A EP 17167209A EP 3393215 A1 EP3393215 A1 EP 3393215A1
Authority
EP
European Patent Office
Prior art keywords
plasma
surface treatment
nozzle
jet
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17167209.0A
Other languages
German (de)
English (en)
Inventor
Andrey Senokosov
Evgenij Senokosov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP17167209.0A priority Critical patent/EP3393215A1/fr
Publication of EP3393215A1 publication Critical patent/EP3393215A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/341Arrangements for providing coaxial protecting fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles

Definitions

  • the present device relates to equipment and methods for the removal of scale, rust, oxide films, organic lubricants, various impurities and surface impregnations on the surface of metal products by means of arc discharges in vacuum.
  • the process can be used in iron and non-ferrous metallurgy plants, in the manufacture and processing of metal strip and strip, pipes, wide range rolled goods, wires, machinery, and any repair plant, in the petroleum and gas industry for the removal of resin - Paraffin deposits are used in pipes and equipment.
  • the ablation cleaning is a short-term effect of plasma plasma-generated cold plasma having a temperature of between 6,000 ° C and 20,000 ° C and an energy density of 10 11 W / m 2 on the surface to be cleaned.
  • Such a cleaning process takes place with a high cleaning performance. It is weather-independent and environmentally friendly because all molecules of the organic compounds dissociate completely or partially under the action of high-speed plasma flow within the stated temperature range. That is, these molecules break down into their constituents: C, O 2 , H 2 O, and other atoms. As a result of recombination (subsequent combustion) these form For their part, atoms excited the simplest safe combustion products, such as CO 2 and H 2 O, from composite carcinogenic molecules.
  • the existing jet generators for generating the cold plasma are not suitable for ablation-based surface cleaning methods due to their shortcomings.
  • Their major shortcomings are a small diameter and a short reach of the cold plasma jet flowing out of the nozzle. This is due to the high cooling rate of the plasma jet both the length and the diameter and thus is reflected in a high temperature gradient of the length and the diameter of the cold plasma jet after.
  • the plasma jet Since the plasma jet is the working part of a plasma tool, its small dimensions, 30 to 60 mm in length, retain the actual applicability of the plasma tool, reduce its performance, and require high scanning accuracy of the plasma jet on the surface during cleaning.
  • the size is important here in principle. So is z. B. the radial temperature gradient between 1000 and 2000 ° C / mm at a radius of 6 to 4 mm. Even the slightest error of ⁇ 0.5 mm in the plasma jet scan may cause fusion or burn through of the surface to be cleaned.
  • ZAO PETROPLASMA Pulplasma Company
  • the inventors of ZAO PETROPLASMA have developed two-chamber jet plasma crowns and created composite plasma-forming working bodies based on hydrocarbon liquids and gases. These make it possible to generate plasma jets with a particle velocity of up to 800 m / s, a temperature of between 3,000 ° C and 20,000 ° C and a length of up to 500 mm with a diameter of up to 40 mm.
  • plasma beams with a low temperature gradient of the beams of both their length and the diameter and with large dimensions are generated both in length and in diameter.
  • the composition of the plasma is environmentally friendly, which has been proven by numerous tests.
  • thermochemical processes in the plasma were realized with a two-chamber design. Thanks to these thermochemical processes, the jet plasma with its blurred boundaries has become “warmer” (due to the small temperature gradient, the beam diameter and the beam length after). As a result, the melting and burning of the surface to be cleaned are avoided. This greatly simplifies the equipment needed for scanning the surface of the workpieces to be treated by the plasma jet and lowers its price.
  • the combination of the arc heating of the plasma-forming, consisting of hydrocarbons working body with their dissociation and with the subsequent release of heat energy in the outflowing beam due to the chemical combustion reactions of the hydrocarbon atoms and molecules in their recombination causes the beam both in diameter and in the Length gets bigger.
  • the use of hydrocarbons as a plasma-forming body significantly affects the energy properties (efficiency) of the hydrocarbon plasma guns and does not give the required service life. This can be achieved by a very high rate of electrode removal to explain. Such rapid electrode removal is mainly due to the higher thermal conductivity and heat capacity of the hydrocarbon cold plasma ( AM Zalesskiy, Electric Interruption Arc, ML .: Gos.
  • the lowering of the mass-medium temperature of the plasma jet is achieved in that the cold plasma jet is mixed with the combustion products in the combustion chamber. Due to the chemical combustion energy, the combustion products can not be hotter than 3500 ° C, since it is not possible to avoid the thermal dissociation reactions.
  • the dissociation is responsible for stopping the rise in the temperature of the combustion products at 3500 ° C ( GB Sinyarev, MV Dobrovol'skiy, Liquid Engines, M .: Gosoboronizdat, 1955, p. 62 ).
  • the afterburning of the oxygen-containing cold plasma in the jet nozzle always causes an increase in the speed of the outflowing jet. This increases the efficiency of ablation-based surface cleaning with the Plasmatron.
  • the plasmatron jet When the plasmatron jet is used to remove old coatings on the workpiece surface, it is sometimes useful to add flammable gases and airflow to the work zone for cleaning to maintain the stoichiometric and high temperature combustion of cleaning waste products. Because the high-temperature combustion with excess oxygen is environmentally friendly (does not give carcinogenic molecules) as a smoldering combustion, such. B. waste incineration.
  • the arc plasma for surface treatment with supply channels (lines) is provided to supply air and combustibles. The supply takes place in parallel with the jet flowing out of the nozzle or cuts it.
  • the plasmatron additionally contains extinguishing agent supply channels (water, steam, etc.) to supply them, if necessary, in parallel with the effluent jet of the composite plasma and the combustion products, if there is a risk of fire in the surface cleaning zone. This stops the supply of the plasmatron with all other components.
  • extinguishing agent supply channels water, steam, etc.
  • the arc plasma is equipped with more than one handle (with at least two handles) and controls mounted on it to manually operate the arc plasma generator.
  • it is provided with brackets to allow its mounting on the handling devices of robots.
  • the Plasmatron is gas-tight, has non-conductive outer coverings and consists of materials that allow it to operate in a wide range of temperature and humidity.
  • the Plasmatron can also be operated under water, because the physical processes underlying its function also make such an operating mode possible.
  • the Plasmatron For operation under water, the Plasmatron is first turned on in the countryside and then submerged.
  • Fig. 2 shows the Plasmatron with nozzle view.
  • the outflow openings for the components K 1 and K 3 are arranged concentrically around the outflowing jet of the plasma and the products of combustion.
  • the purpose of the surface treatment arc plasma cartridge is to produce a high temperature and high velocity jet having a temperature between 3000 and 8000 ° C.
  • the diameter and length of the jet F ( Fig. 1 ) These are the conventional Lichtbogenplasmatronen, z. B. after the prototype "PLASMABOHRER PB-40" exceed.
  • the plasmatron contains two logically combined gas heating chambers, namely an arc chamber 3 and a combustion chamber 4.
  • the arc plasma according to the invention consists of a water-cooled cathode assembly 8, a water-cooled anode assembly 2, these assemblies being protected by an insulator 1
  • the jet nozzle 9 has an extendable attachment nozzle 5.
  • the cathode assembly 8 has an insertable emission part 6 made of zirconium or hafnium.
  • a swirl generator 7 of the plasma-forming working body is arranged.
  • the potential of the power supply (in Fig. 1 not shown) is applied to the cathode assembly 8 and the anode assembly 2.
  • the oxygen-containing plasma-forming working body (oxidizer) is fed to the arc chamber 3 via the swirl generator 7.
  • an electric discharge is ignited.
  • the electrical discharge forms under the action of the vortex of the plasma-forming working body after the swirl generator 7 in the arc chamber 3, a current-carrying channel in the burning zone of the arc discharge A.
  • This current-conducting channel closes with the anode zone of the discharge E the circle in the anode assembly 2 on the surface of the stabilizing heel H.
  • the stabilizing heel H is intended to avoid a negative effect, the so-called arc bridging, in plasma lobes. This effect leads to unwanted fluctuations in the arc and the arc discharge.
  • the plasma-forming working body passes the discharge column of the discharge A, heats up very strongly, ionizes and turns into the cold plasma. Thereafter, the cold plasma enters the mixing zone B.
  • zones B and C in the combustion chamber 4 intensive mixing of the oxygen-containing plasma and the molecules and atoms of the K 1 component of the hydrocarbon-containing fuel is achieved.
  • zone D the conversion of the gas heat energy into the kinetic beam energy occurs, ie, depending on the nozzle profile, the beam accelerates F to sonic or supersonic speed.
  • zone D the conversion of the gas heat energy into the kinetic beam energy occurs, ie, depending on the nozzle profile, the beam accelerates F to sonic or supersonic speed.
  • z the treatment of the workpiece surfaces.
  • the combustion chamber 4 and the arc chamber 3 in Fig. 1 Lengthwise comparable.
  • the combustion chamber 4 is two to three times shorter than the arc chamber 3, because at temperatures above 3000 ° C, the combustion processes run slightly different than the usual combustion; they are much faster and more intense ( GB Sinyarev, MV Dobrovol'skiy, Liquid Engines, M .: Oborongiz, 1955, p. 62 ).
  • the recombination processes proceed in the outflowing jet F, whereby its dimensions exceed the equally powerful plasma jet of the plasmatron, both the length and the diameter, by 5 to 10 times.
  • the plasmatron In addition to the plasma-forming working body and the second fuel component K 1 (oxidizer and fuel), the plasmatron still has channels to other components K 2 , K 3 , etc. the outgoing jet F or parallel (coaxial) supply it.
  • One of these components is provided to sustain the combustion reactions, e.g. During the removal of asphalt, resin, paraffin deposits in riser tubes in the surface cleaning zone.
  • compressed air or oxygen are used as K 2 . This method is used effectively in outdoor and especially in the inner surface cleaning of the riser pipes.
  • Another component that can or may be supplied via such channels is a gas or liquid that suppresses burning or eliminates (neutralizes) harmful properties of the combustion products.
  • So z. B. suppresses the formation of CO by addition of air or oxygen.
  • the supply of z. B. neutral gases suppresses the unwanted burning of impurities to be removed or eliminates any resulting fire.
  • the use of the extendable attachment nozzle 5 increases the effectiveness of these measures.
  • the Plasmatron housing, the cable and the supply lines of the Plasmatrons and the connections are sealed and allow it to be used for surface treatment under water.
  • the Plasmatron is switched on before immersion.
  • the K 1 component used was propane, alcohol, liquid paraffin, diesel oil and kerosene.
EP17167209.0A 2017-04-20 2017-04-20 Traitement de surface par plasmatron à arc électrique Withdrawn EP3393215A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17167209.0A EP3393215A1 (fr) 2017-04-20 2017-04-20 Traitement de surface par plasmatron à arc électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17167209.0A EP3393215A1 (fr) 2017-04-20 2017-04-20 Traitement de surface par plasmatron à arc électrique

Publications (1)

Publication Number Publication Date
EP3393215A1 true EP3393215A1 (fr) 2018-10-24

Family

ID=58640679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167209.0A Withdrawn EP3393215A1 (fr) 2017-04-20 2017-04-20 Traitement de surface par plasmatron à arc électrique

Country Status (1)

Country Link
EP (1) EP3393215A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715054C1 (ru) * 2019-04-15 2020-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) Электродуговой плазмотрон

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU122603A1 (ru) 1958-10-21 1958-11-30 И.А. Чугунков Приспособление к гвоздезабивным станкам дл закручивани проволоки вокруг гвозд при сколотке дощатых щиков
US3075065A (en) * 1960-10-04 1963-01-22 Adriano C Ducati Hyperthermal tunnel apparatus and electrical plasma-jet torch incorporated therein
SU367980A1 (ru) 1971-07-13 1973-01-26 УСТРОЙСТВО дл СВАРКИ НЕПОВОРОТНЫХ CTblKtTB" ТРУБ МАГНИТОУПРАВЛЯЕМОЙ ДУГОЙ
FR2403860A1 (fr) 1977-09-26 1979-04-20 Union Carbide Corp Procede et appareil de decriquage thermochimique
GB2055939A (en) 1979-07-25 1981-03-11 Hopley B Shading method and means
SU986673A1 (ru) 1979-02-02 1983-01-07 За витель Волков, Т. В. СосноБск ица,Ю,Н. Серебр ков и В. П. ПавловI п . .. Устройство дл электродуговой обработки длинномерных изделий
US4421970A (en) * 1981-01-30 1983-12-20 Hypertherm, Incorporated Height sensing system for a plasma arc cutting tool
SU1113196A1 (ru) 1983-07-13 1984-09-15 Магнитогорский горно-металлургический институт им.Г.И.Носова Устройство дл очистки катанки дуговым разр дом
SU1189618A1 (ru) 1984-01-20 1985-11-07 Чебоксарский Проектно-Конструкторский И Технологический Институт "Промтрактор" Устройство дл обработки магнитоуправл емой дугой
GB2164359A (en) 1984-09-14 1986-03-19 Atomic Energy Authority Uk Surface treatment of metals
US4816637A (en) * 1985-11-25 1989-03-28 Hypertherm, Inc. Underwater and above-water plasma arc cutting torch and method
US4950377A (en) 1988-09-23 1990-08-21 Siemens Aktiengesellschaft Apparatus and method for reactive ion etching
SU1590257A1 (ru) 1988-03-16 1990-09-07 В.П.Терехов, П.А.Салмаш, А.И.Серг геенко, В.В.Шефель и Н.Б.Зеленцов Устройство дл вакуумно-дуговой обработки длинномерных изделий
US4971667A (en) 1988-02-05 1990-11-20 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
EP0474899A1 (fr) * 1990-09-11 1992-03-18 Tadahiro Shimadzu Méthode et dispositif pour générer un jet de flammes de plasma
WO1992006965A1 (fr) 1990-10-19 1992-04-30 Ici Australia Operations Proprietary Limited Derives de sulfonyluree herbicides
WO1993013238A1 (fr) 1988-01-13 1993-07-08 Tadahiro Ohmi Procede et appareil de traitement de surface sous vide
US5246741A (en) 1989-12-22 1993-09-21 Hitachi, Ltd. Method for surface modification and apparatus therefor
RU2012694C1 (ru) 1991-01-14 1994-05-15 Всероссийский научно-исследовательский институт авиационных материалов Способ получения алюминидного покрытия на изделия
RU2021391C1 (ru) 1989-12-28 1994-10-15 Центральный институт повышения квалификации кадров авиационной промышленности Способ электродуговой металлизации
RU2064524C1 (ru) 1991-02-04 1996-07-27 Деев Герман Федорович Способ электродуговой металлизации
RU2068029C1 (ru) 1994-11-28 1996-10-20 Товарищество с ограниченной ответственностью "Старт-А-Техно" Способ плазмохимического нанесения покрытия
WO1997000106A1 (fr) 1995-06-16 1997-01-03 Virtual World Entertainment, Inc. Copkpit incluant un systeme d'affichage et une interface utilisateur pour un systeme informatique interactif
RU2074903C1 (ru) 1993-10-11 1997-03-10 Владимир Александрович Дудкин Устройство для ионно-плазменной обработки изделий
JPH09248617A (ja) 1996-03-15 1997-09-22 Nippon Steel Corp 真空アークデスケーリング局所処理装置
JPH09248618A (ja) 1996-03-15 1997-09-22 Nippon Steel Corp 真空アークデスケーリング装置
JPH10251882A (ja) 1997-03-11 1998-09-22 Nippon Steel Corp 真空アークによる表面クリーニング方法およびその装置
JPH1177141A (ja) 1997-09-11 1999-03-23 Nippon Steel Corp 真空アークによる金属表面局所処理装置
JPH1180893A (ja) 1997-07-11 1999-03-26 Kawasaki Steel Corp 耐衝撃特性に優れかつ板クラウンが良好な高強度高加工性熱延鋼板およびその製造方法
WO1999028520A2 (fr) 1997-12-03 1999-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif de traitement de pieces dans un plasma basse pression
RU2135316C1 (ru) 1998-08-25 1999-08-27 Сенокосов Евгений Степанович Установка для электродуговой очистки проволоки в вакууме
RU2144096C1 (ru) 1998-05-18 2000-01-10 Антипов Борис Федорович Способ обработки поверхности изделий дуговым разрядом в вакууме
RU2165474C2 (ru) 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ обработки поверхности металлических изделий
RU2170283C2 (ru) 1998-12-29 2001-07-10 Сенокосов Евгений Степанович Способ очистки поверхности металлических изделий
RU2195517C2 (ru) 2000-07-28 2002-12-27 Сенокосов Евгений Степанович Способ получения дугового разряда и устройство для его осуществления
US6627004B1 (en) * 2000-05-22 2003-09-30 Mathey Dearman, Inc. Carriage for cutting, beveling and welding torches
RU2340125C2 (ru) 2006-07-10 2008-11-27 Анатолий Тимофеевич Неклеса Электродуговой плазмотрон
RU2359433C1 (ru) 2007-11-02 2009-06-20 Александр Иванович Апуневич Способ генерации плазменного потока
RU2387107C1 (ru) 2009-03-16 2010-04-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Электродуговой плазмотрон
RU2397848C2 (ru) 2008-06-02 2010-08-27 Юрий Михайлович Агриков Способ плазменно-дуговой сварки металлов
RU2431685C2 (ru) 2009-12-18 2011-10-20 Общество с ограниченной ответственностью "АС и ПП" Способ обработки поверхности металлов нагреванием плазменной струей
RU2451879C2 (ru) 2009-01-19 2012-05-27 Алексей Михайлович Бондарев Горелка для пыли высокой концентрации
RU2456780C2 (ru) 2006-02-23 2012-07-20 Коммиссариат А Л' Энержи Атомик Плазменная горелка с дугой прямого действия
RU2465748C2 (ru) 2010-12-10 2012-10-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Электродуговой плазмотрон
RU2466331C1 (ru) 2011-10-26 2012-11-10 Закрытое акционерное общество "ЗиО-КОТЭС" Растопочная угольная горелка
RU2503885C2 (ru) 2008-03-07 2014-01-10 Альстом Текнолоджи Лтд Наконечник сопла для печи, работающей на пылевидном твердом топливе (варианты)
RU2511947C1 (ru) 2012-09-27 2014-04-10 Открытое акционерное общество "ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат", ОАО "ЕВРАЗ ЗСМК" Комбинированная пылеугольная горелка

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU122603A1 (ru) 1958-10-21 1958-11-30 И.А. Чугунков Приспособление к гвоздезабивным станкам дл закручивани проволоки вокруг гвозд при сколотке дощатых щиков
US3075065A (en) * 1960-10-04 1963-01-22 Adriano C Ducati Hyperthermal tunnel apparatus and electrical plasma-jet torch incorporated therein
SU367980A1 (ru) 1971-07-13 1973-01-26 УСТРОЙСТВО дл СВАРКИ НЕПОВОРОТНЫХ CTblKtTB" ТРУБ МАГНИТОУПРАВЛЯЕМОЙ ДУГОЙ
FR2403860A1 (fr) 1977-09-26 1979-04-20 Union Carbide Corp Procede et appareil de decriquage thermochimique
SU986673A1 (ru) 1979-02-02 1983-01-07 За витель Волков, Т. В. СосноБск ица,Ю,Н. Серебр ков и В. П. ПавловI п . .. Устройство дл электродуговой обработки длинномерных изделий
GB2055939A (en) 1979-07-25 1981-03-11 Hopley B Shading method and means
US4421970A (en) * 1981-01-30 1983-12-20 Hypertherm, Incorporated Height sensing system for a plasma arc cutting tool
SU1113196A1 (ru) 1983-07-13 1984-09-15 Магнитогорский горно-металлургический институт им.Г.И.Носова Устройство дл очистки катанки дуговым разр дом
SU1189618A1 (ru) 1984-01-20 1985-11-07 Чебоксарский Проектно-Конструкторский И Технологический Институт "Промтрактор" Устройство дл обработки магнитоуправл емой дугой
EP0175538A1 (fr) 1984-09-14 1986-03-26 United Kingdom Atomic Energy Authority Traitement de surface de métaux
GB2164359A (en) 1984-09-14 1986-03-19 Atomic Energy Authority Uk Surface treatment of metals
US4816637A (en) * 1985-11-25 1989-03-28 Hypertherm, Inc. Underwater and above-water plasma arc cutting torch and method
WO1993013238A1 (fr) 1988-01-13 1993-07-08 Tadahiro Ohmi Procede et appareil de traitement de surface sous vide
US4971667A (en) 1988-02-05 1990-11-20 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
SU1590257A1 (ru) 1988-03-16 1990-09-07 В.П.Терехов, П.А.Салмаш, А.И.Серг геенко, В.В.Шефель и Н.Б.Зеленцов Устройство дл вакуумно-дуговой обработки длинномерных изделий
US4950377A (en) 1988-09-23 1990-08-21 Siemens Aktiengesellschaft Apparatus and method for reactive ion etching
US5246741A (en) 1989-12-22 1993-09-21 Hitachi, Ltd. Method for surface modification and apparatus therefor
RU2021391C1 (ru) 1989-12-28 1994-10-15 Центральный институт повышения квалификации кадров авиационной промышленности Способ электродуговой металлизации
EP0474899A1 (fr) * 1990-09-11 1992-03-18 Tadahiro Shimadzu Méthode et dispositif pour générer un jet de flammes de plasma
WO1992006965A1 (fr) 1990-10-19 1992-04-30 Ici Australia Operations Proprietary Limited Derives de sulfonyluree herbicides
RU2012694C1 (ru) 1991-01-14 1994-05-15 Всероссийский научно-исследовательский институт авиационных материалов Способ получения алюминидного покрытия на изделия
RU2064524C1 (ru) 1991-02-04 1996-07-27 Деев Герман Федорович Способ электродуговой металлизации
RU2074903C1 (ru) 1993-10-11 1997-03-10 Владимир Александрович Дудкин Устройство для ионно-плазменной обработки изделий
RU2068029C1 (ru) 1994-11-28 1996-10-20 Товарищество с ограниченной ответственностью "Старт-А-Техно" Способ плазмохимического нанесения покрытия
WO1997000106A1 (fr) 1995-06-16 1997-01-03 Virtual World Entertainment, Inc. Copkpit incluant un systeme d'affichage et une interface utilisateur pour un systeme informatique interactif
JPH09248617A (ja) 1996-03-15 1997-09-22 Nippon Steel Corp 真空アークデスケーリング局所処理装置
JPH09248618A (ja) 1996-03-15 1997-09-22 Nippon Steel Corp 真空アークデスケーリング装置
JPH10251882A (ja) 1997-03-11 1998-09-22 Nippon Steel Corp 真空アークによる表面クリーニング方法およびその装置
JPH1180893A (ja) 1997-07-11 1999-03-26 Kawasaki Steel Corp 耐衝撃特性に優れかつ板クラウンが良好な高強度高加工性熱延鋼板およびその製造方法
JPH1177141A (ja) 1997-09-11 1999-03-23 Nippon Steel Corp 真空アークによる金属表面局所処理装置
WO1999028520A2 (fr) 1997-12-03 1999-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif de traitement de pieces dans un plasma basse pression
RU2144096C1 (ru) 1998-05-18 2000-01-10 Антипов Борис Федорович Способ обработки поверхности изделий дуговым разрядом в вакууме
RU2135316C1 (ru) 1998-08-25 1999-08-27 Сенокосов Евгений Степанович Установка для электродуговой очистки проволоки в вакууме
RU2170283C2 (ru) 1998-12-29 2001-07-10 Сенокосов Евгений Степанович Способ очистки поверхности металлических изделий
RU2165474C2 (ru) 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ обработки поверхности металлических изделий
US6627004B1 (en) * 2000-05-22 2003-09-30 Mathey Dearman, Inc. Carriage for cutting, beveling and welding torches
RU2195517C2 (ru) 2000-07-28 2002-12-27 Сенокосов Евгений Степанович Способ получения дугового разряда и устройство для его осуществления
RU2456780C2 (ru) 2006-02-23 2012-07-20 Коммиссариат А Л' Энержи Атомик Плазменная горелка с дугой прямого действия
RU2340125C2 (ru) 2006-07-10 2008-11-27 Анатолий Тимофеевич Неклеса Электродуговой плазмотрон
RU2359433C1 (ru) 2007-11-02 2009-06-20 Александр Иванович Апуневич Способ генерации плазменного потока
RU2503885C2 (ru) 2008-03-07 2014-01-10 Альстом Текнолоджи Лтд Наконечник сопла для печи, работающей на пылевидном твердом топливе (варианты)
RU2397848C2 (ru) 2008-06-02 2010-08-27 Юрий Михайлович Агриков Способ плазменно-дуговой сварки металлов
RU2451879C2 (ru) 2009-01-19 2012-05-27 Алексей Михайлович Бондарев Горелка для пыли высокой концентрации
RU2387107C1 (ru) 2009-03-16 2010-04-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Электродуговой плазмотрон
RU2431685C2 (ru) 2009-12-18 2011-10-20 Общество с ограниченной ответственностью "АС и ПП" Способ обработки поверхности металлов нагреванием плазменной струей
RU2465748C2 (ru) 2010-12-10 2012-10-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Электродуговой плазмотрон
RU2466331C1 (ru) 2011-10-26 2012-11-10 Закрытое акционерное общество "ЗиО-КОТЭС" Растопочная угольная горелка
RU2511947C1 (ru) 2012-09-27 2014-04-10 Открытое акционерное общество "ЕВРАЗ Объединенный Западно-Сибирский металлургический комбинат", ОАО "ЕВРАЗ ЗСМК" Комбинированная пылеугольная горелка

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"KALTPLASMA", vol. 20, 2004, VERLAG NAUKA, article "Novosibirsk", pages: 121
G.B. SINYAREV; M.V. DOBROVOL'SKIY: "Flüssigkeitstriebwerke", 1955, M.: GOSOBORONIZDAT, pages: 62
G.B. SINYAREV; M.V. DOBROVOL'SKIY: "Flüssigkeitstriebwerke", 1955, M.: GOSOBORONPROM, pages: 129
G.B. SINYAREV; M.V. DOBROVOL'SKIY: "Flüssigkeitstriebwerke", 1955, M.: GOSOBORONPROM, pages: 130
G.B. SINYAREV; M.V. DOBROVOL'SKIY: "Flüssigkeitstriebwerke", 1955, M.: OBORONGIZ, pages: 62
PLASMAPHYSIK, vol. 4, no. 4, 1978, pages 425 - 428
S.A. KRAPIVINA, PLASMACHEMISCHE VORGÄNGE, LENINGRAD, CHEMIE, 1981, pages 83

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715054C1 (ru) * 2019-04-15 2020-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) Электродуговой плазмотрон

Similar Documents

Publication Publication Date Title
DE69735800T2 (de) Dreiphasendrehstrom-plasmaerzeuger
DE60201387T2 (de) Doppel-plasmabrennervorrichtung
DE112014001444T5 (de) Verfahren zum Herstellen von Ruß unter Verwenden eines Extenderfluids
Boopathi Performance improvement of eco-friendly near-dry wire-cut electrical discharge machining process using coconut oil-mist dielectric fluid
DE102007025551A1 (de) Verfahren und Vorrichtung zur Verbrennung von kohlenwasserstoffhaltigen Brennstoffen
WO2003060169A1 (fr) Procede pour le traitement pyrometallurgique de metaux, de bains de fusion et/ou de scories et dispositif d'injection
WO2016046029A1 (fr) Allumage de flammes d'un métal électropositif par plasmatisation du gaz de réaction
EP2130414B1 (fr) Dispositif et procédé pour générer un jet de plasma
WO2013135391A2 (fr) Procédé et dispositif pour foncer ou creuser des cavités dans des massifs rocheux
DE3220820A1 (de) Verfahren zur versorgung eines reaktors mit waermeenergie mit hilfe eines plasmalichtbogenbrenners sowie vorrichtung zur durchfuehrung desselben
EP0134961B1 (fr) Torche à plasma et méthode de fonctionnement
DE10112494C2 (de) Verfahren zum Plasmaschweißen
EP3393215A1 (fr) Traitement de surface par plasmatron à arc électrique
DE1639325A1 (de) Vielseitig verwendbarer Plasmastrahlgenerater und Verfahren zu seiner Herstellung
DE1614801A1 (de) Beschmutzungsfreier Plasmabrenner mit hohem Wirkungsgrad fuer spektroskopische Lichtquellen
RU166312U1 (ru) Электродуговой плазмотрон для обработки поверхности
DE1539691C2 (de) Verfahren zur Inbetriebnahme des Lichtbogens eines Plasmastrahlerzeugers und Vorrichtung zu seiner Durchführung
DE102005039070A1 (de) Vorrichtung und Verfahren zum Plasmaschneiden von Werkstücken
DE60209146T2 (de) Elektrode, insbesondere für elektrolichtbogenöfen der stahlindustrie und dergleichen, und entsprechende operationsmethode
DE19927557A1 (de) Verfahren zum Vorbehandeln von zu schweißenden oder zu lötenden Werkstücken
DE4039877C1 (fr)
DE2725643C2 (de) Elektrode für einen Schweißbrenner
DE3236037A1 (de) Verfahren und vorrichtung zum erzeugen heisser gase
DE19518208C2 (de) Anlage zum thermischen Behandeln von Stoffen
DE1254364B (de) Verfahren zur Erzeugung eines Gasgemisches mit hohem Waermeinhalt zum Schmelzen und/oder zum Frischen von Metallen und Brenner zur Durchfuehrung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190425