EP3388734B1 - Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers - Google Patents

Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers Download PDF

Info

Publication number
EP3388734B1
EP3388734B1 EP18164117.6A EP18164117A EP3388734B1 EP 3388734 B1 EP3388734 B1 EP 3388734B1 EP 18164117 A EP18164117 A EP 18164117A EP 3388734 B1 EP3388734 B1 EP 3388734B1
Authority
EP
European Patent Office
Prior art keywords
light
light conducting
conducting segment
per
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18164117.6A
Other languages
English (en)
French (fr)
Other versions
EP3388734A1 (de
Inventor
Ernst-Olaf Rosenhahn
Daniel Rieger
Christoph Bürker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3388734A1 publication Critical patent/EP3388734A1/de
Application granted granted Critical
Publication of EP3388734B1 publication Critical patent/EP3388734B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources

Definitions

  • the invention relates to a light module of a motor vehicle lighting device, as from DE 10 2014 205 994 A1 and EP 2 865 937 A1 famous.
  • a light guide which comprises a number of light guide plates and a light source assigned to the respective light guide plate.
  • the light guide creates a beam of light consisting of a number of vertical pixels. Each vertical pixel can be turned on or off.
  • the focus of the light on a point of the exit surface is more extensive not sufficient near the optical axis.
  • no homogeneous and no soft vertical runout is produced, which leads to an unaesthetic edge in the emitted light distribution.
  • the proposed primary optics unit for a light module of a motor vehicle lighting device comprises a plurality of light-guiding sections, in particular designed like plates, with each light-guiding section being assigned a respective light source.
  • the light guide sections are designed to form a desired intermediate light distribution from light from the plurality of light sources.
  • the respective fiber-optics section is delimited by a first coupling surface in such a way that light generated by the light source assigned to the fiber-optics section can be coupled into the fiber-optics section.
  • the respective fiber-optics section is further such a reflection surface arranged opposite the first coupling-in surface limited, so that the light originating from the first coupling-in surface and impinging on the reflection surface can be deflected in such a way that it can be focused in the region of a coupling-out surface of the fiber-optics section.
  • the respective fiber-optics section is also delimited by a second coupling surface in such a way that light generated by the light source assigned to the fiber-optics section can be coupled into the fiber-optics section.
  • the respective fiber-optics section is additionally delimited by the decoupling surface in such a way that the light deflected by the reflection surface and the light incident from the second coupling-in surface can be coupled out of the fiber-optics section to generate the intermediate light distribution.
  • the purpose of the plurality of fiber-optics sections is to also operate the high beam distribution as a partial high beam or in the form of a matrix function, in that individual light sources can be switched on and off independently of one another.
  • a larger luminous flux can advantageously be coupled into the fiber-optics section and the efficiency is increased.
  • a high illuminance around 0°/0°, ie in the direction of the forward-facing optical axis of the light module is achieved, which provides the vehicle driver with a high visual range.
  • the superimposition of the light beams in the light-guiding section and the subsequent joint decoupling can improve the homogeneity in a vertical run-out of the light distribution.
  • This improvement in homogeneity in the vertical tail of the high beam distribution includes a smooth vertical tail with no transition visible to the vehicle driver.
  • disturbing gradients and unaesthetic sharp edges in the radiated high beam distribution can be avoided in this way.
  • the radiated high beam light distribution is thus improved, as a result of which an improved view is made possible for the vehicle driver. Consequently, road safety is also increased.
  • An advantageous embodiment is characterized in that the reflection surface follows an ellipse at least in sections in a section which runs in an imaginary plate plane of the light-guiding section. This enables the light beams to be focused in the area of the decoupling surface.
  • An advantageous embodiment is characterized in that the decoupling surfaces of the plurality of fiber-optics sections form a common decoupling surface.
  • the common decoupling surface also achieves horizontal homogenization of the emitted high beam distribution.
  • the light-guiding sections open into a common light-guiding body in the direction of the common decoupling surface. Consequently, it is not necessary for the fiber-optics sections to merge directly into a common decoupling surface, rather the fiber-optics sections can also abut against the common coupling-out surface in order to bring about light transmission.
  • An advantageous embodiment is characterized in that the common decoupling surface of the fiber-optics sections follows a Petzval surface of an associated secondary optics unit. Consequently, the common serves Coupling surface as an image plane and the imaging accuracy is increased.
  • An advantageous embodiment is characterized in that the light source is directed with its main emission direction onto the first coupling surface. This means that a maximum of the luminous flux emitted by the light source is guided into the area of the exit surface for focusing.
  • An advantageous embodiment is characterized in that the first coupling surface delimits the light-guiding section in a convex shape in a section which runs perpendicularly to the course of the associated narrow side of the light-guiding section.
  • the incoming light is parallelized as soon as it is coupled in, which has a positive effect on efficiency.
  • color effects that could arise due to dispersion in the area of the secondary optics unit are prevented or at least reduced.
  • An advantageous embodiment is characterized in that the first coupling surface delimits the light-guiding section in a convex shape in a section which runs in an imaginary plate plane of the light-guiding section. As a result, the coupled-in light can be guided better in the direction of the reflection surface.
  • An advantageous embodiment is characterized in that the second in-coupling surface delimits the light-guiding section in a concave shape in a section which runs perpendicularly to the course of the associated narrow side of the light-guiding section.
  • This concave training allows an expansion of the bundle of rays during coupling in order to fan out the vertical run-out of the emitted high-beam distribution in the sense of a horizontal width.
  • An advantageous embodiment is characterized in that the second in-coupling surface delimits the light-guiding section in a convex shape in a section which runs in the imaginary plate plane of the light-guiding section. This improves the homogeneity of the vertical runout of the emitted high beam distribution.
  • An advantageous embodiment is characterized in that the decoupling surface of a light-guiding section arranged centrally between further light-guiding sections follows, at least in sections, an outer surface of a cylinder in a transverse section. This advantageously reduces the illuminance by 0°/0°, i. H. 0° horizontal and 0° vertical in the direction of the optical axis of the light module.
  • An advantageous embodiment is characterized in that the decoupling surfaces of the fiber-optics sections follow a respective cylinder outer surface at least in sections in a transverse section.
  • the light is bundled in relation to the fiber-optics section and the efficiency is increased since less light is lost.
  • undesirable color effects are reduced or avoided by dispersion.
  • An advantageous embodiment is characterized in that the decoupling surface in a sagittal section of the optical axis of the associated secondary optics unit facing the light-guiding section limited convexly. In this way, light can advantageously be refracted in the direction of the secondary optics unit and is not lost. As a result, this results in an increase in efficiency and an increase in the maximum illuminance.
  • An advantageous embodiment is characterized in that the decoupling surface in the sagittal section facing away from the optical axis of the associated secondary optics unit delimits the light guide section in a concave manner. This has an advantageous effect on the vertical outlet downwards. In particular, a softer and more homogeneous run-out zone can be created.
  • An advantageous embodiment is characterized in that the decoupling surface has a wavy profile in the sagittal section.
  • the wavy profile improves the homogeneity of the high beam distribution emitted by the secondary optics unit, since in particular the light coming from the second coupling surface and the light coming from the reflection surface are more strongly mixed.
  • An advantageous embodiment is characterized in that the respective fiber-optics section is delimited by a third coupling surface in such a way that light generated by the light source assigned to the fiber-optics section can be coupled into the fiber-optics section, with the fiber-optics section being delimited by a further reflection surface arranged opposite the third coupling surface is, so that the light striking the further reflection surface from the third in-coupling surface can be deflected in such a way that it is in the region of a further out-coupling surface of the light-guiding section Generation of partial areas of the intermediate light distribution can be decoupled.
  • This advantageously makes the vertical outlet more homogeneous towards the top. Consequently, the efficiency of the primary optics unit is further increased.
  • the maximum height of the vertical runout in the emitted high beam distribution is increased if the second exit surface is below the light source associated with the light guide section.
  • the light module comprises a further primary optics unit, the secondary optics unit converting a further intermediate light distribution emitted by the further primary optics unit into a low beam distribution emitted by the light module.
  • a low beam and a matrix high beam are thus advantageously integrated in a single light module, with a common secondary optics unit being used.
  • figure 1 1 shows, in schematic form, a primary optics unit 2 which comprises a number of light-guiding sections 4a and 4b.
  • a light source 6a is assigned to the first fiber-optics section 4a.
  • a second light source 6b is assigned to the second fiber-optics section 4b.
  • the light guide sections 4a, 4b are each plate-shaped, with the respective light guide section 4a, 4b spanning an imaginary respective plate plane, which in the present schematic representation is located in the plane of the drawing or approximately parallel thereto.
  • the fiber-optics sections 4a and 4b are each delimited by two lateral fiber-optics surfaces running essentially parallel to one another.
  • the light guide portions 4a, 4b,... are as follows explained, preferably fanned out to one another, ie arranged at an angle to one another.
  • a high beam can be operated as a partial high beam, with light only being radiated into a subset of the existing fiber optic sections 4a, 4b.
  • the light generated by the light source 6a impinges on a first in-coupling surface 8a of the light-guiding section 4a and is thus at least partially coupled into the light-guiding section 4a.
  • the light coupled into the fiber-optics section 4a impinges on a reflection surface 10a, which deflects the light under total reflection in such a way that the deflected light can be focused in the region of a decoupling surface 12a.
  • Light generated by the light source 6a impinges on a second coupling-in surface 14a of the light-guiding section 4a and is coupled into the light-guiding section 4a.
  • the light coupled in via the second coupling-in surface 14a is conducted in the light-guiding section 4a directly to the coupling-out surface 10a.
  • This direct supply means that the light coupled in via the second coupling-in surface 14a is not guided to the coupling-out surface 12a via the reflection surface 10a.
  • the light incident directly from the second coupling-in surface 14a onto the coupling-out surface 12a and the light incident from the reflection surface 10a onto the coupling-out surface 12a is coupled out via the coupling-out surface 12a in such a way that, together with the further Light guide section 4b a common intermediate light distribution 16 is radiated from the primary optics unit 2.
  • a light module 105 is shown in a schematic sagittal section, which includes the primary optics unit 2 .
  • a sagittal section is understood to mean any section which runs parallel to the xy plane shown.
  • the imaginary respective plate plane is located in particular in the middle within the respective light guide section 4a, 4b. Furthermore, the imaginary plane of the plate is equidistant from the delimiting sides. For reasons of clarity, only the light guide section 4a and the associated light source 6a are shown.
  • the rays coming from the reflection surface 10a are focused in a focus area 22, which is arranged in the vicinity of or at the outcoupling surface 12a.
  • the secondary optics unit 18 can also be a biconvex lens or a plano-convex lens.
  • a further primary optics unit 24 is shown, which can emit a further intermediate light distribution 26 in the direction of the secondary optics unit 18 .
  • the further intermediate light distribution 26 is converted into a low beam distribution 28 by the secondary optics unit 18 and emitted by the light module 105 .
  • the secondary optics unit 18 is constructed rotationally symmetrically around an optical axis 30 .
  • a transverse section xy through the optical axis 30 divides the light module space arranged counter to the x-direction into a first half-space 32 oriented counter to the z-direction and a half-space 34 oriented in the z-direction.
  • the primary optics unit 2 for the high beam is located in the ventral hemisphere 32 .
  • the other primary optics unit 24 is located in the dorsal hemisphere 34.
  • the two primary optics units 2 and 24 are separated from one another by a wall 36 .
  • the wall 36 can be designed, for example, in the direction of the primary optics unit 2 as a coated sheet metal in the form of a mirror screen.
  • the wall 36 rests against the narrow side of the number of fiber-optics sections 4 oriented in the z-direction. This means that rays that do not meet the condition for total reflection are also reflected at the upper narrow side.
  • the reflection surface 10a follows an ellipse at least in sections.
  • the reflection surface 10a preferably follows an ellipsoid of revolution at least in sections.
  • the coupling surfaces 8a and 14a adjoin one another and delimit a coupling space 38a with the associated light source 6a.
  • the light source 6a is embodied as a semiconductor light source component, for example.
  • the emission surface of the light source 6a defines a main emission direction, which is oriented in the z-direction here, for example.
  • the main emission direction of the light source 6a is not directed towards the second coupling surface 14a, but towards the first coupling surface 8a.
  • FIG 3 shows the light module 105 in a schematic transverse section.
  • the secondary optics unit 18 defines an imaginary Petzval surface 40 in the area of which the individual decoupling surfaces 12 of the respective fiber-optics sections 4 run.
  • the decoupling surfaces 12 form a common decoupling surface 42 which runs through the imaginary Petzval surface 40 .
  • the individual fiber optic sections 4a to 4j are connected in a common fiber optic body 44.
  • the individual light-guiding sections 4a to 4j protrude individually from the common light-guiding body 44 .
  • the Petzval surface 40 represents an image plane that is imaged on the road in front of the motor vehicle.
  • the secondary optics unit 18 images the gap 46 as a recess in the emitted high beam distribution 20 .
  • FIG 4 an embodiment of the light module 105 is shown in a schematic sagittal section.
  • the narrow side 48 oriented in the z-direction of the representatively illustrated light-conducting section 4a is provided, for example, with the reflective wall 36 .
  • the narrow side 48 can thus also be designated as a further reflection surface.
  • the first coupling surface 8a thus transitions into the third coupling surface 50a.
  • Light coupled in via the third coupling surface 50a, which originates from the associated light source 6a is guided to the narrow side 48 designed as a further reflection surface.
  • the further reflection surface deflects the incident light from the third coupling-in surface 50a in such a way that it is directed to a second coupling-out surface 52a.
  • the second decoupling surface 52a decouples the light incident from the further reflection surface in such a way that its light beams intersect in a region 54 in the sagittal sectional plane shown, this region being located outside of the fiber-optics section 4a.
  • the light decoupled via the second decoupling surface 52a is part of the intermediate light distribution 16.
  • the light is decoupled from the second decoupling surface 52a in such a way that the intermediate light distribution 16 produces a homogeneous vertical runout of the high beam distribution and that it passes through the secondary optics 18.
  • Formations of the first coupling surface 8a are shown in a section which runs perpendicularly to the course of the associated narrow side of the fiber-optics section 4a.
  • the cut is in figure 5 Parabola-shaped and in figure 6 Circular in design, which results in a convex delimitation of the fiber-optics section 4a in the region of the first coupling surface 8a.
  • figure 9 shows the coupling-in region of the light-guiding section 4a in a schematic sagittal section in an enlarged form.
  • the light source 6a is arranged in such a way that its main emission direction 56 is directed onto the first coupling surface 8a, which is convex in the section shown here as an example.
  • the second coupling surface 14a is arranged here, for example, facing away from the main emission direction 56 .
  • FIGs 10-12 each show an embodiment of the common decoupling surface 42 in a schematic transverse section.
  • a central convex curvature 58 is provided, which is assigned to the centrally arranged light guide section 4a.
  • a light guide section 4a other than the centrally arranged light guide section 4a can be responsible for the light generation around 0°/0°, which is why the aforementioned curvature 58 can also be arranged offset from the center.
  • such a convex curvature 58 is assigned to each fiber-optics section 4 .
  • the Figures 13-16 each show an embodiment of the common decoupling surface 42 in a schematic sagittal section.
  • the upper curvature 60 delimits the common light guide body 44 in a convex manner.
  • a middle section 64 lying in between is provided with a wave-shaped profile.
  • the wave-shaped profile is designed, for example, as a sinusoidal shape, a sawtooth shape, or in some other way.
  • a lighting device for motor vehicles is denoted by reference numeral 101 in its entirety.
  • the lighting device 101 is designed as a motor vehicle headlight.
  • the lighting device 101 includes a housing 102, which is preferably made of plastic.
  • the headlight housing 102 has a light exit opening which is closed by a transparent cover plate 104 .
  • the cover plate 104 is made of colorless plastic or glass.
  • the pane 104 can be designed as a so-called clear pane without optically effective profiles (for example prisms).
  • the pane 104 can be provided, at least in regions, with optically effective profiles which, in particular, cause the light passing through to be scattered.
  • two light modules 105, 106 are arranged in the illustrated embodiment.
  • headlight range control can be implemented.
  • more or fewer than the two light modules 105, 106 shown can also be provided in the headlight housing 102.
  • the proposed light module 105 it is possible in particular to reduce the number of light modules integrated in a headlight housing 102 by integrating a plurality of light functions. In this way, in particular, the installation space of the headlight is reduced overall without having to do without a matrix headlight function.
  • a control unit 107 is arranged in a control unit housing 108 on the outside of the headlight housing 102 .
  • the control device 107 can also be arranged at any other location of the lighting device 101 .
  • each of the light modules 105, 106 can have its own control unit, it being possible for the control units to be an integral part of the light modules 105, 106.
  • the control device 107 can also be arranged at a distance from the lighting device 101 .
  • Control unit 107 is used, in particular in combination with a camera unit, to control and/or regulate light modules 105, 106 or subcomponents of light modules 105, 106, such as light sources of light modules 105, 106, in order to combine light module 105, 106 in one to operate in partial high beam mode. In this partial high beam mode, only some of the existing light sources for generating a high beam are operated to generate light.
  • the light modules 105, 106 or the subcomponents are controlled by the control unit 107 via connecting lines 110, which are shown in figure 1 are represented only symbolically by a dashed line.
  • the light modules 105 , 106 are supplied with electrical energy via the lines 110 .
  • the lines 110 are routed through an opening in the headlight housing 102 into the control unit housing 108 led and connected there to the circuit of the control unit 107. If several control units are provided as an integral part of the light modules 105, 106, the lines 110 and the opening in the headlight housing 102 can be omitted.

Description

  • Die Erfindung betrifft ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung, wie aus DE 10 2014 205 994 A1 und EP 2 865 937 A1 bekannt.
  • Aus der EP 2 865 937 A1 ist ein Lichtleiter bekannt, welcher eine Anzahl von Lichtleitplatten und eine der jeweiligen Lichtleitplatte zugeordnete Lichtquelle umfasst. Der Lichtleiter erzeugt einen Lichtstrahl, welcher aus einer Anzahl von vertikalen Pixeln besteht. Jeder vertikale Pixel kann aus- oder angeschaltet werden.
  • Diese Lösung ist dahingehend nachteilig, als dass die Lichtquelle im Bereich der optischen Achse positioniert ist, womit ein Abblendlicht im selben Modul nicht realisierbar ist.
  • Weitergehend ist für eine homogene Fernlichtverteilung die Fokussierung des Lichts auf einen Punkt der Austrittsfläche nahe der optischen Achse nicht ausreichend. Insbesondere wird kein homogener und kein weicher vertikaler Auslauf erzeugt, was zu einer unästhetischen Kante in der abgestrahlten Lichtverteilung führt.
  • Mithin ist es Aufgabe der Erfindung, die Effizienz einer Primäroptikeinheit zu erhöhen, das Erscheinungsbild der abgestrahlten Lichtverteilung zu verbessern und die Möglichkeit zu schaffen ein Abblendlichtmodul in das zugehörige Lichtmodul zu integrieren.
  • Dass der Erfindung zugrunde liegende Problem wird durch ein Lichtmodul gemäß dem Anspruch 1 gelöst.
  • Ein Aspekt dieser Beschreibung betrifft ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung umfassend eine Primäroptikeinheit sowie eine Sekundäroptikeinheit, wobei die Sekundäroptikeinheit die von der Primäroptikeinheit abgestrahlte Zwischenlichtverteilung in eine vom Lichtmodul abgestrahlte Fernlichtlichtverteilung umwandelt. Die vorgeschlagene Primäroptikeinheit für ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung umfasst eine Mehrzahl von insbesondere plattenartig ausgebildeten Lichtleitabschnitten, wobei jedem Lichtleitabschnitt eine jeweilige Lichtquelle zugeordnet ist. Die Lichtleitabschnitte sind zum Formen einer gewünschten Zwischenlichtverteilung aus Licht der Mehrzahl von Lichtquellen ausgebildet. Der jeweilige Lichtleitabschnitt ist durch eine erste Einkoppelfläche derart begrenzt, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist. Der jeweilige Lichtleitabschnitt ist weitergehend durch eine der ersten Einkoppelfläche gegenüberliegend angeordnete Reflexionsfläche derart begrenzt, sodass von der ersten Einkoppelfläche stammendes und auf die Reflexionsfläche treffendes Licht so umlenkbar ist, dass es im Bereich einer Auskoppelfläche des Lichtleitabschnitts fokussierbar ist. Der jeweilige Lichtleitabschnitt ist außerdem durch eine zweite Einkoppelfläche derart begrenzt, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist. Der jeweilige Lichtleitabschnitt ist zusätzlich durch die Auskoppelfläche derart begrenzt, sodass das von der Reflexionsfläche umgelenkte Licht und das von der zweiten Einkoppelfläche einfallende Licht zur Erzeugung der Zwischenlichtverteilung aus dem Lichtleitabschnitt auskoppelbar sind.
  • Zweck der Mehrzahl von Lichtleitabschnitten ist es, die Fernlichtverteilung auch als Teilfernlicht bzw. in Form einer Matrix-Funktion zu betreiben, indem einzelne Lichtquellen unabhängig voneinander an- bzw. ausgeschaltet werden können. Durch das Vorsehen der zweiten Einkoppelfläche kann vorteilhaft ein größerer Lichtstrom in den Lichtleitabschnitt eingekoppelt werden und die Effizienz wird erhöht. Durch die Fokussierung im Bereich der Auskoppelfläche wird eine hohe Beleuchtungsstärke um 0°/0°, also in Richtung der nach vorne weisenden optischen Achse des Lichtmoduls erreicht, womit eine hohe Sicht-Reichweite für den Fahrzeuglenker bereitgestellt wird. Darüber hinaus kann durch die Überlagerung der Lichtstrahlen im Lichtleitabschnitt und die anschließende gemeinsame Auskopplung die Homogenität in einem vertikalen Auslauf der Lichtverteilung verbessert werden. Diese Verbesserung der Homogenität im vertikalen Auslauf der Fernlichtverteilung umfasst einen weichen vertikalen Auslauf ohne einen für den Fahrzeugführer sichtbaren Übergang. Insbesondere können störende Farbverläufe und unästhetische scharfe Kanten in der abgestrahlten Fernlichtverteilung auf diese Art und Weise vermieden werden. Insgesamt verbessert sich somit die abgestrahlte Fernlichtlichtverteilung, wodurch für den Fahrzeuglenker eine verbesserte Sicht ermöglicht wird. Mithin wird auch die Verkehrssicherheit erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Reflexionsfläche in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts verläuft, zumindest abschnittsweise einer Ellipse folgt. Dies ermöglicht die Fokussierung der Lichtstrahlen im Bereich der Auskoppelfläche.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelflächen der Mehrzahl von Lichtleitabschnitten eine gemeinsame Auskoppelfläche bilden. Durch die gemeinsame Auskoppelfläche wird auch eine horizontale Homogenisierung der abgestrahlten Fernlichtverteilung erreicht.
  • In einer vorteilhaften Ausführungsform münden die Lichtleitabschnitte in Richtung der gemeinsamen Auskoppelfläche in einen gemeinsamen Lichtleitkörper. Mithin ist es nicht notwendig, dass die Lichtleitabschnitte direkt in eine gemeinsame Auskoppelfläche übergehen, sondern die Lichtleitabschnitten können auch an die gemeinsame Auskoppelfläche anstoßen, um einen Lichtübertrag zu bewerkstelligen.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die gemeinsame Auskoppelfläche der Lichtleitabschnitte einer Petzval-Fläche einer zugeordneten Sekundäroptikeinheit folgt. Mithin dient die gemeinsame Auskoppelfläche als Bildebene und die Abbildungsgenauigkeit wird erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Lichtquelle mit ihrer Hauptabstrahlrichtung auf die erste Einkoppelfläche gerichtet ist. Dies führt dazu, dass ein Maximum des von der Lichtquelle abgestrahlten Lichtstroms zur Fokussierung in den Bereich der Austrittsfläche geführt wird.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die erste Einkoppelfläche in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. So wird das eintretende Licht bereits beim Einkoppeln parallelisiert, was sich positiv auf die Effizienz auswirkt. Darüber hinaus werden Farbeffekte, welche durch Dispersion im Bereich der Sekundäroptikeinheit entstehen könnten, verhindert oder zumindest verringert.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die erste Einkoppelfläche in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. Hierdurch lässt sich das eingekoppelte Licht besser in Richtung der Reflexionsfläche lenken.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die zweite Einkoppelfläche in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konkaver Form begrenzt. Diese konkave Ausbildung ermöglicht eine Ausweitung des Strahlenbündels bei der Einkopplung, um den vertikalen Auslauf der abgestrahlten Fernlichtverteilung im Sinne einer horizontalen Breite aufzufächern.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die zweite Einkoppelfläche in einem Schnitt, welcher in der gedachten Plattenebene des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. Hierdurch wird die Homogenität des vertikalen Auslaufs der abgestrahlten Fernlichtverteilung verbessert.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche eines mittig zwischen weiteren Lichtleitabschnitten angeordneten Lichtleitabschnitts in einem Transversalschnitt zumindest abschnittsweise einer Zylinderaußenfläche folgt. Damit wird vorteilhaft die Beleuchtungsstärke um 0°/0°, d. h. 0° horizontal und 0° vertikal in Richtung der optischen Achse des Lichtmoduls, erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelflächen der Lichtleitabschnitte in einem Transversalschnitt zumindest abschnittsweise einer jeweiligen Zylinderaußenfläche folgen. Vorteilhaft findet hierdurch eine lichtleitabschnittbezogene Bündelung des Lichts statt und die Effizienz wird erhöht, da weniger Licht verloren geht. Ebenfalls werden im Fall eines Teilfernlicht-Betriebs unerwünschte Farbeffekte durch Dispersion verringert bzw. vermieden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in einem Sagittalschnitt der optischen Achse der zugeordneten Sekundäroptikeinheit zugewandt den Lichtleitabschnitt konvex begrenzt. Vorteilhaft kann so Licht in Richtung der Sekundäroptikeinheit gebrochen werden und geht nicht verloren. Mithin bewirkt dies eine Effizienzsteigerung und eine Erhöhung der Beleuchtungsstärke im Maximum.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in dem Sagittalschnitt von der optischen Achse der zugeordneten Sekundäroptikeinheit abgewandt den Lichtleitabschnitt konkav begrenzt. Dies wirkt sich vorteilhaft auf den vertikalen Auslauf nach unten aus. Insbesondere kann eine weichere und homogenere Auslaufzone geschaffen werden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in dem Sagittalschnitt ein wellen-förmiges Profil aufweist. Das wellen-förmige Profil verbessert die Homogenität der von der Sekundäroptikeinheit abgestrahlten Fernlichtverteilung, da insbesondere das von der zweiten Einkoppelfläche stammende Licht und das von der Reflexionsfläche kommende Licht stärker vermischt werden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass der jeweilige Lichtleitabschnitt durch eine dritte Einkoppelfläche derart begrenzt ist, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist, wobei der Lichtleitabschnitt durch eine weitere, der dritten Einkoppelfläche gegenüberliegend angeordnete Reflexionsfläche derart begrenzt ist, sodass von der dritten Einkoppelfläche auf die weitere Reflexionsfläche treffendes Licht so umlenkbar ist, dass es im Bereich einer weiteren Auskoppelfläche des Lichtleitabschnitts zur Erzeugung von Teilbereichen der Zwischenlichtverteilung auskoppelbar ist. Vorteilhaft wird hierdurch der vertikale Auslauf nach oben hin homogener. Mithin wird die Effizienz der Primäroptikeinheit weiter erhöht.
  • Weitergehend kann hierdurch auch Bauraum eingespart werden. Beispielsweise wird die maximale Höhe des vertikalen Auslaufs in der abgestrahlten Fernlichtverteilung erhöht, wenn die zweite Austrittsfläche unterhalb der dem Lichtleitabschnitt zugeordneten Lichtquelle liegt.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass das Lichtmodul eine weitere Primäroptikeinheit umfasst, wobei die Sekundäroptikeinheit eine von der weiteren Primäroptikeinheit abgestrahlte weitere Zwischenlichtverteilung in eine vom Lichtmodul abgestrahlte Abblendlichtverteilung umwandelt. Damit wird vorteilhaft ein Abblendlicht und ein Matrix-Fernlicht in einem einzigen Lichtmodul integriert, wobei eine gemeinsame Sekundäroptikeinheit genutzt wird.
  • Weitere Vorteile und Merkmale der Erfindung ergeben sich aus nachfolgend beschriebenen Ausführungsbeispielen der Zeichnung. In der Zeichnung zeigen:
    • Figur 1 eine Primäroptikeinheit in schematischer Form;
    • Figuren 2 und 4 jeweils ein Lichtmodul in einem schematischen Sagittalschnitt;
    • Figur 3 das Lichtmodul in einem schematischen Transversalschnitt;
    • Figuren 5 und 6 jeweils eine schematische Schnittansicht einer ersten Einkoppelfläche;
    • Figuren 7 und 8 jeweils eine schematische Schnittansicht einer zweiten Einkoppelfläche;
    • Figur 9 einen Einkoppelbereich in einem schematischen Sagittalschnitt;
    • Figuren 10, 11 und 12 jeweils eine Auskoppelfläche in einem schematischen Transversalschnitt;
    • Figuren 13, 14, 15 und 16 jeweils die Auskoppelfläche in einem schematischen Sagittalschnitt; und
    • Figur 17 eine Kraftfahrzeugbeleuchtungseinrichtung in schematischer Form.
  • Figur 1 zeigt in schematischer Form eine Primäroptikeinheit 2, welche eine Anzahl von Lichtleitabschnitten 4a und 4b umfasst. Dem ersten Lichtleitabschnitt 4a ist eine Lichtquelle 6a zugeordnet. Dem zweiten Lichtleitabschnitt 4b ist eine zweite Lichtquelle 6b zugeordnet. Die Lichtleitabschnitte 4a, 4b sind jeweils plattenförmig ausgebildet, wobei der jeweilige Lichtleitabschnitt 4a, 4b eine gedachte jeweilige Plattenebene aufspannt, die sich in der vorliegenden schematischen Darstellung in der Zeichenebene bzw. in etwa parallel dazu befinden. Die Lichtleitabschnitte 4a und 4b sind jeweils durch zwei im Wesentlichen parallel zueinander verlaufende laterale Lichtleitflächen begrenzt. Gestrichelt gezeichnet sind in der Figur 1 Schmalseiten des Lichtleitabschnitts 4a, welche weitere schmalseitige Lichtleitflächen darstellen. Die Lichtleitabschnitte 4a, 4b,.. sind, wie nachfolgend erläutert, bevorzugt zueinander aufgefächert, also mit einem Winkel zueinander angeordnet.
  • Vorteilhaft kann durch das Vorsehen einzelner Segmente in Form der Lichtleitabschnitte 4a, 4b ein Fernlicht als Teilfernlicht betrieben werden, wobei lediglich in eine Untermenge der vorhandenen Lichtleitabschnitte 4a, 4b Licht eingestrahlt wird.
  • Das von der Lichtquelle 6a erzeugte Licht trifft auf eine erste Einkoppelfläche 8a des Lichtleitabschnitts 4a und wird so zumindest teilweise in den Lichtleitabschnitt 4a eingekoppelt. Das so in den Lichtleitabschnitt 4a eingekoppelte Licht trifft auf eine Reflexionsfläche 10a, welche das Licht unter Totalreflexion so umlenkt, dass das umgelenkte Licht im Bereich einer Auskoppelfläche 12a fokussierbar ist.
  • Von der Lichtquelle 6a erzeugtes Licht trifft auf eine zweite Einkoppelfläche 14a des Lichtleitabschnitts 4a und wird in den Lichtleitabschnitt 4a eingekoppelt. Das über die zweite Einkoppelfläche 14a eingekoppelte Licht wird in dem Lichtleitabschnitt 4a direkt zu der Auskoppelfläche 10a geleitet. Unter dieser direkten Zuleitung ist zu verstehen, dass das über die zweite Einkoppelfläche 14a eingekoppelte Licht nicht über die Reflexionsfläche 10a zu der Auskoppelfläche 12a geleitet wird.
  • Das direkt von der zweiten Einkoppelfläche 14a auf die Auskoppelfläche 12a einfallende Licht und das von der Reflexionsfläche 10a auf die Auskoppelfläche 12a einfallende Licht wird über die Auskoppelfläche 12a so ausgekoppelt, dass gemeinsam mit dem über eine entsprechende Auskoppelfläche 12b des weiteren Lichtleitabschnitts 4b eine gemeinsame Zwischenlichtverteilung 16 von der Primäroptikeinheit 2 abgestrahlt wird.
  • In Figur 2 ist ein Lichtmodul 105 in einem schematischen Sagittalschnitt gezeigt, welches die Primäroptikeinheit 2 umfasst. In dieser Beschreibung wird unter einem Sagittalschnitt jeglicher Schnitt verstanden, welcher parallel zur dargestellten xy-Ebene verläuft. Die gedachte jeweilige Plattenebene befindet sich insbesondere mittig innerhalb des jeweiligen Lichtleitabschnitts 4a, 4b. Weitergehend ist die gedachte Plattenebene gleich weit von den begrenzenden Seiten beabstandet. Aus Übersichtsgründen sind lediglich der Lichtleitabschnitt 4a und die zugeordnete Lichtquelle 6a gezeigt. Die von der Reflexionsfläche 10a kommenden Strahlen werden in einem Fokusbereich 22, welcher in der Nähe oder bei der Auskoppelfläche 12a angeordnet ist, fokussiert.
  • Die von der Anzahl von Lichtleitabschnitten 4 erzeugte Zwischenlichtverteilung 16 trifft auf eine Sekundäroptikeinheit 18, welche vorliegend aus zwei plankonvexen Linsen 18a und 18b besteht, um eine Fernlichtverteilung 20 von dem Lichtmodul 105 abzustrahlen. Selbstverständlich kann es sich bei der Sekundäroptikeinheit 18 auch eine bikonvexe Linse oder eine plankonvexe Linse handeln. Des Weiteren ist eine weitere Primäroptikeinheit 24 gezeigt, welche eine weitere Zwischenlichtverteilung 26 in Richtung der Sekundäroptikeinheit 18 abstrahlen kann. Die weitere Zwischenlichtverteilung 26 wird von der Sekundäroptikeinheit 18 in eine Abblendlichtverteilung 28 umgewandelt und von dem Lichtmodul 105 abgestrahlt.
  • Die Sekundäroptikeinheit 18 ist rotationssymmetrisch um eine optische Achse 30 aufgebaut. Ein Transversalschnitt xy durch die optische Achse 30 teilt den entgegen der x-Richtung angeordneten Lichtmodulraum in einen ersten entgegen der z-Richtung orientierten Halbraum 32 und einen in z-Richtung orientierten Halbraum 34 auf. In dem ventralen Halbraum 32 befindet sich die Primäroptikeinheit 2 für das Fernlicht. Die weitere Primäroptikeinheit 24 befindet sich in dem dorsalen Halbraum 34.
  • Die beiden Primäroptikeinheiten 2 und 24 sind durch eine Wandung 36 voneinander getrennt. Die Wandung 36 kann beispielsweise in Richtung der Primäroptikeinheit 2 als beschichtetes Blech in Form einer Spiegelblende ausgeführt sein. In einer Ausführungsform liegt die Wandung 36 an der in z-Richtung orientierten Schmalseite der Anzahl von Lichtleitabschnitten 4 an. Damit werden auch Strahlen an der oberen Schmalseite reflektiert, welche nicht die Bedingung für Totalreflexion erfüllen.
  • Die Reflexionsfläche 10a folgt im gezeigten Schnitt zumindest abschnittsweise einer Ellipse. Vorzugsweise folgt die Reflexionsfläche 10a zumindest abschnittsweise einem Rotationsellipsoid.
  • Die Einkoppelflächen 8a und 14a grenzen aneinander an und begrenzen mit der zugeordneten Lichtquelle 6a einen Einkoppelraum 38a. Die Lichtquelle 6a ist beispielsweise als Halbleiterlichtquellenbauteil ausgeführt. Die Abstrahlfläche der Lichtquelle 6a definiert eine Hauptabstrahlrichtung, welche hier beispielsweise in z-Richtung orientiert ist. Die Hauptabstrahlrichtung der Lichtquelle 6a ist nicht auf die zweite Einkoppelfläche 14a, sondern auf die erste Einkoppelfläche 8a gerichtet.
  • Figur 3 zeigt das Lichtmodul 105 in einem schematischen Transversalschnitt. Aus Übersichtsgründen ist die weitere Primäroptikeinheit 24 nicht gezeigt. Die Sekundäroptikeinheit 18 definiert eine gedachte Petzval-Fläche 40, in dessen Bereich die einzelnen Auskoppelflächen 12 der jeweiligen Lichtleitabschnitte 4 verlaufen. Insbesondere bilden die Auskoppelflächen 12 eine gemeinsame Auskoppelfläche 42 aus, welche durch die gedachte Petzval-Fläche 40 verläuft. Ausgehend von der gemeinsamen Auskoppelfläche 42 sind die einzelnen Lichtleitabschnitte 4a bis 4j in einem gemeinsamen Lichtleitkörper 44 verbunden. Die einzelnen Lichtleitabschnitte 4a bis 4j stehen ausgehend von der Petzval-Fläche 40 vereinzelt von dem gemeinsamen Lichtleitkörper 44 ab. Die Petzval-Fläche 40 repräsentiert eine Bildebene, welche auf der Straße vor dem Kraftfahrzeug abgebildet wird.
  • Hier sind beispielsweise lediglich die Lichtquellen 6a, 6b und 6f nicht in Betrieb, weshalb im Bereich der gemeinsamen Auskoppelfläche 42 eine Lücke 46 entsteht, beispielsweise um den Gegenverkehr nicht zu blenden. Die Sekundäroptikeinheit 18 bildet die Lücke 46 als Ausnehmung in der abgestrahlten Fernlichtverteilung 20 ab.
  • In Figur 4 ist eine Ausführungsform des Lichtmoduls 105 in einem schematischen Sagittalschnitt gezeigt. Hier ist die in z-Richtung orientierte Schmalseite 48 des repräsentativ dargestellten Lichtleitabschnitts 4a beispielsweise mit der reflektierend ausgebildeten Wandung 36 versehen. Damit ist die Schmalseite 48 auch als weitere Reflexionsfläche bezeichenbar. Zwischen der ersten Einkoppelfläche 8a und der zweiten Einkoppelfläche 14a befindet sich eine dritte Einkoppelfläche 50a, wobei sich hier beispielsweise die dritte Einkoppelfläche 50a als Verlängerung der ersten Einkoppelfläche 8a darstellt. Die erste Einkoppelfläche 8a geht also in die dritte Einkoppelfläche 50a über. Über die dritte Einkoppelfläche 50a eingekoppeltes Licht, welches von der zugeordneten Lichtquelle 6a stammt, wird zu der als weitere Reflexionsfläche ausgebildeten Schmalseite 48 geleitet. Die weitere Reflexionsfläche lenkt das von der dritten Einkoppelfläche 50a einfallende Licht so um, dass es zu einer zweiten Auskoppelfläche 52a gelenkt wird. Die zweite Auskoppelfläche 52a koppelt das von der weiteren Reflexionsfläche einfallende Licht so aus, dass dessen Lichtstrahlen sich in einem Bereich 54 in der gezeigten Sagittalschnittebene schneiden, wobei sich dieser Bereich außerhalb des Lichtleitabschnitts 4a befindet. Das über die zweite Auskoppelfläche 52a ausgekoppelte Licht ist Teil der Zwischenlichtverteilung 16. Das Licht wird so aus der zweiten Auskoppelfläche 52a ausgekoppelt, dass sich in der Zwischenlichtverteilung 16 ein homogener vertikaler Auslauf der Fernlichtverteilung ergibt und dass es durch die Sekundäroptik 18 gelangt.
  • In den Figuren 5 und 6 sind Ausbildungen der ersten Einkoppelfläche 8a in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts 4a verläuft, gezeigt. Der Schnitt ist in Figur 5 Parabel-förmig und in Figur 6 Kreis-förmig ausgebildet, womit eine konvexe Begrenzung des Lichtleitabschnitts 4a im Bereich der ersten Einkoppelfläche 8a gegeben ist.
  • In den Figuren 7 und 8 ist ein Schnitt im Bereich der zweiten Einkoppelfläche 14a gezeigt, wobei der Schnitt lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts 4a verläuft. Damit ergibt sich eine konkave Begrenzung des Lichtleitabschnitts 4a im Bereich der zweiten Einkoppelfläche 14a.
  • Figur 9 zeigt in vergrößerter Form den Einkoppelbereich des Lichtleitabschnitts 4a in einem schematischen Sagittalschnitt. Die Lichtquelle 6a ist so angeordnet, dass deren Hauptabstrahlrichtung 56 auf die im hier beispielhaft dargestellten Schnitt konvex ausgebildete erste Einkoppelfläche 8a gerichtet ist. Die zweite Einkoppelfläche 14a ist hier beispielsweise von der Hauptabstrahlrichtung 56 weggewandt angeordnet.
  • Die Figuren 10-12 zeigen jeweils eine Ausführungsform der gemeinsamen Auskoppelfläche 42 in einem schematischen Transversalschnitt. In Figur 11 ist eine zentrale konvexe Wölbung 58 vorgesehen, welche dem mittig angeordneten Lichtleitabschnitt 4a zugeordnet ist. Selbstverständlich kann bei einer asymmetrischen Auslegung für den linken und den rechten Scheinwerfer auch ein anderer als der mittig angeordnete Lichtleitabschnitt 4a für die Lichterzeugung um 0°/0° zuständig sein, weshalb die vorgenannte Wölbung 58 auch aus der Mitte heraus gerückt angeordnet sein kann. In Figur 12 ist jedem Lichtleitabschnitt 4 eine derartige konvexe Wölbung 58 zugeordnet.
  • Die Figuren 13-16 zeigen jeweils eine Ausführungsform der gemeinsamen Auskoppelfläche 42 in einem schematischen Sagittalschnitt. In Figur 14 geht die ebene Ausgestaltung der Auskoppelfläche 42 in z-Richtung, d. h. in Richtung der optischen Achse 30, in ihrem oberen Abschnitt in eine obere Wölbung 60 über. Die obere Wölbung 60 begrenzt den gemeinsamen Lichtleitkörper 44 konvex.
  • In Figur 15 begrenzt eine untere Einbuchtung 62 den gemeinsamen Lichtleitkörper 44 in konkaver Form. In Figur 16 ist zusätzlich zu der konvexen Wölbung 60 und der von der optischen Achse 30 abgewandten unteren Einbuchtung 62 ein dazwischenliegender Mittenabschnitt 64 mit einem wellen-förmigen Profil versehen. Das wellen-förmige Profil ist beispielsweise als eine Sinusform, eine Sägezahnform oder andersartig ausgebildet.
  • In Figur 17 ist eine Beleuchtungseinrichtung für Kraftfahrzeuge in ihrer Gesamtheit mit dem Bezugszeichen 101 bezeichnet. Die Beleuchtungseinrichtung 101 ist in dem dargestellten Ausführungsbeispiel als ein Kraftfahrzeugscheinwerfer ausgebildet. Die Beleuchtungseinrichtung 101 umfasst ein Gehäuse 102, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 103 weist das Scheinwerfergehäuse 102 eine Lichtaustrittsöffnung auf, die durch eine transparente Abdeckscheibe 104 verschlossen ist. Die Abdeckscheibe 104 ist aus farblosem Kunststoff oder Glas gefertigt. Die Scheibe 104 kann ohne optisch wirksame Profile (zum Beispiel Prismen) als sogenannte klare Scheibe ausgebildet sein. Alternativ kann die Scheibe 104 zumindest bereichsweise mit optisch wirksamen Profilen, die insbesondere eine Streuung des hindurchtretenden Lichts bewirken, versehen sein.
  • Im Inneren des Scheinwerfergehäuses 102 sind in dem dargestellten Ausführungsbeispiel zwei Lichtmodule 105, 106 angeordnet. Bei einer Bewegung der Lichtmodule 105, 106 um eine horizontale Achse, also in vertikaler Richtung, kann eine Leuchtweitenregelung realisiert werden. Selbstverständlich können in dem Scheinwerfergehäuse 102 auch mehr oder weniger als die dargestellten zwei Lichtmodule 105, 106 vorgesehen sein. Mit dem vorgeschlagenen Lichtmodul 105 ist es insbesondere möglich, durch die Integration mehrerer Lichtfunktionen die Anzahl der in einem Scheinwerfergehäuse 102 integrierten Lichtmodule zu reduzieren. Damit wird insbesondere der Bauraum des Scheinwerfers insgesamt reduziert, ohne dass auf eine Matrixscheinwerfer-Funktion verzichtet werden müsste.
  • An der Außenseite des Scheinwerfergehäuses 102 ist ein Steuergerät 107 in einem Steuergerätegehäuse 108 angeordnet. Selbstverständlich kann das Steuergerät 107 auch an einer beliebig anderen Stelle der Beleuchtungseinrichtung 101 angeordnet sein. Insbesondere kann für jedes der Lichtmodule 105, 106 ein eigenes Steuergerät vorgesehen sein, wobei die Steuergeräte integraler Bestandteil der Lichtmodule 105, 106 sein können. Selbstverständlich kann das Steuergerät 107 auch entfernt von der Beleuchtungseinrichtung 101 angeordnet sein. Das Steuergerät 107 dient insbesondere in Kombination mit einer Kameraeinheit zur Steuerung und/oder Regelung der Lichtmodule 105, 106 bzw. von Teilkomponenten der Lichtmodule 105, 106, wie beispielsweise von Lichtquellen der Lichtmodule 105, 106, um so das Lichtmodul 105, 106 in einem Teilfernlicht-Modus zu betreiben. In diesem Teilfernlicht-Modus wird nur ein Teil der vorhandenen Lichtquellen zur Erzeugung eines Fernlichts zu einer Lichterzeugung betrieben. Die Ansteuerung der Lichtmodule 105, 106 bzw. der Teilkomponenten durch das Steuergerät 107 erfolgt über Verbindungsleitungen 110, die in Figur 1 durch eine gestrichelte Linie lediglich symbolisch dargestellt sind. Über die Leitungen 110 erfolgt eine Versorgung der Lichtmodule 105, 106 mit elektrischer Energie. Die Leitungen 110 sind durch eine Öffnung im Scheinwerfergehäuse 102 in das Steuergerätegehäuse 108 geführt und dort an die Schaltung des Steuergerätes 107 angeschlossen. Falls mehrere Steuergeräte als integraler Bestandteil der Lichtmodule 105, 106 vorgesehen sind, können die Leitungen 110 und kann die Öffnung in dem Scheinwerfergehäuse 102 entfallen.

Claims (19)

  1. Ein Lichtmodul (105) einer Kraftfahrzeugbeleuchtungseinrichtung (101) umfassend eine Primäroptikeinheit (2) sowie eine Sekundäroptikeinheit (18), wobei die Sekundäroptikeinheit (18) eine von der Primäroptikeinheit (2) abgestrahlte Zwischenlichtverteilung (16) in eine vom Lichtmodul (105) abgestrahlte Fernlichtlichtverteilung (20) umwandelt,
    - wobei die Primäroptikeinheit (2) eine Mehrzahl von Lichtleitabschnitten (4a, 4b, ...) umfasst,
    - wobei jedem Lichtleitabschnitt (4a, 4b, ...) eine jeweilige Lichtquelle (6a, 6b, ...) zugeordnet ist,
    - wobei die Lichtleitabschnitte (4a, 4b, ...) zum Formen der gewünschten Zwischenlichtverteilung (16) aus Licht der Mehrzahl von Lichtquellen (6a, 6b, ...) ausgebildet sind,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine erste Einkoppelfläche (8a; 8b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht durch die erste Einkoppelfläche (8a; 8b; ...) hindurch in den Lichtleitabschnitt (4a; 4b; ...) eingekoppelt wird,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine der ersten Einkoppelfläche (8a; 8b; ...) gegenüberliegend angeordnete Reflexionsfläche (10a; 10b; ...) derart begrenzt ist, sodass von der ersten Einkoppelfläche (8a; 8b; ...) kommendes und auf die Reflexionsfläche (10a; 10b; ...) treffendes Licht so umgelenkt wird, dass es im Bereich einer Auskoppelfläche (12a; 12b; ...) fokussiert wird,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine zweite Einkoppelfläche (14a; 14b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht durch die zweite Einkoppelfläche (14a; 14b; ...) hindurch in den Lichtleitabschnitt (4a; 4b; ...) eingekoppelt wird, und
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch die Auskoppelfläche (12a; 12b; ...) derart begrenzt ist, sodass das von der Reflexionsfläche (10a; 10b; ...) umgelenkte Licht und das von der zweiten Einkoppelfläche (14a; 14b; ...) kommende Licht zur Erzeugung der Zwischenlichtverteilung (16) aus dem Lichtleitabschnitt (4a; 4b; ...) ausgekoppelt wird.
  2. Das Lichtmodul (105) nach Anspruch 1, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch die zweite Einkoppelfläche (14a; 14b; ...) und die Auskoppelfläche (12a; 12b; ...) derart begrenzt ist, sodass das über die zweite Einkoppelfläche (14a) eingekoppelte Licht in dem Lichtleitabschnitt (4a) direkt zu der Auskoppelfläche (10a) geleitet wird.
  3. Das Lichtmodul (105) nach Anspruch 1 oder 2, wobei die Lichtleitabschnitte (4a; 4b; ...) plattenförmig ausgebildet sind.
  4. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Reflexionsfläche (10a; 10b; ...) in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts (4a; 4b; ...) verläuft, zumindest abschnittsweise einer Ellipse folgt.
  5. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Auskoppelflächen (12a, 12b, ...) der Mehrzahl von Lichtleitabschnitten (4a, 4b, ...) eine gemeinsame Auskoppelfläche (42) bilden.
  6. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Lichtleitabschnitte (4a, 4b, ...) in Richtung der gemeinsamen Auskoppelfläche (42) in einen gemeinsamen Lichtleitkörper (44) münden.
  7. Das Lichtmodul (105) nach dem Anspruch 5 oder 6, wobei die gemeinsame Auskoppelfläche (42) der Lichtleitabschnitte (4a, 4b, ...) einer Petzval-Fläche (40) einer zugeordneten Sekundäroptikeinheit (18) folgt.
  8. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die jeweilige Lichtquelle (6a; 6b; ...) mit ihrer Hauptabstrahlrichtung (56) auf die erste Einkoppelfläche (8a; 8b; ...) gerichtet ist.
  9. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die jeweilige erste Einkoppelfläche (8a; 8b; ...) in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konvexer Form begrenzt.
  10. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die jeweilige erste Einkoppelfläche (8a; 8b; ...) in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konvexer Form begrenzt.
  11. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die jeweilige zweite Einkoppelfläche (14a; 14b; ...) in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konkaver Form begrenzt.
  12. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die jeweilige zweite Einkoppelfläche (14a; 14b; ...) in einem Schnitt, welcher in der gedachten Plattenebene des Lichtleitabschnitts (14a; 14b; ...) verläuft, den Lichtleitabschnitt (14a; 14b; ...) in konvexer Form begrenzt.
  13. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42; 12a) eines mittig zwischen weiteren Lichtleitabschnitten (4b, ..., 4f, ...) angeordneten Lichtleitabschnitts (4a) in einem Transversalschnitt (xy) zumindest abschnittsweise einer Zylinderaußenfläche folgt.
  14. Das Lichtmodul (105) nach einem der Ansprüche 1 bis 11, wobei die Auskoppelflächen (42; 12a, 12b, ...) der Lichtleitabschnitte (4a, 4b, ...) in einem Transversalschnitt zumindest abschnittsweise einer jeweiligen Zylinderaußenfläche folgen.
  15. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in einem Sagittalschnitt der optischen Achse (30) der zugeordneten Sekundäroptikeinheit (18) zugewandt den Lichtleitabschnitt (4a; 4b; ...) konvex begrenzt.
  16. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in dem Sagittalschnitt von der optischen Achse (30) der zugeordneten Sekundäroptikeinheit (18) abgewandt den Lichtleitabschnitt (4a; 4b; ...) konkav begrenzt.
  17. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in dem Sagittalschnitt ein wellen-förmiges Profil aufweist.
  18. Das Lichtmodul (105) nach einem der vorstehenden Ansprüche, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine dritte Einkoppelfläche (50a; 50b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht in den Lichtleitabschnitt (4a; 4b; ...) eingekoppelt wird, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine weitere, der dritten Einkoppelfläche (50a; 50b; ...) gegenüberliegend angeordnete Reflexionsfläche (48a; 48b; ...) derart begrenzt ist, sodass von der dritten Einkoppelfläche (50a; 50b; ...) kommendes und auf die weitere Reflexionsfläche (48a; 48b; ...) treffendes Licht so umgelenkt wird, dass es im Bereich einer weiteren Auskoppelfläche (52a; 52b; ...) des Lichtleitabschnitts (4a; 4b; ...) zur Erzeugung von Teilbereichen der Zwischenlichtverteilung (16) ausgekoppelt wird.
  19. Das Lichtmodul (105) gemäß einem der vorigen Ansprüche, wobei das Lichtmodul (105) eine weitere Primäroptikeinheit (24) umfasst, und wobei die Sekundäroptikeinheit (18) eine von der weiteren Primäroptikeinheit (24) abgestrahlte weitere Zwischenlichtverteilung (26) in eine vom Lichtmodul (105) abgestrahlte Abblendlichtverteilung (28) umwandelt.
EP18164117.6A 2017-04-11 2018-03-27 Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers Active EP3388734B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017107781.2A DE102017107781A1 (de) 2017-04-11 2017-04-11 Primäroptikeinheit für ein Lichtmodul

Publications (2)

Publication Number Publication Date
EP3388734A1 EP3388734A1 (de) 2018-10-17
EP3388734B1 true EP3388734B1 (de) 2022-03-16

Family

ID=61832269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18164117.6A Active EP3388734B1 (de) 2017-04-11 2018-03-27 Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers

Country Status (2)

Country Link
EP (1) EP3388734B1 (de)
DE (1) DE102017107781A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002046B2 (ja) * 2017-12-25 2022-02-04 パナソニックIpマネジメント株式会社 車両用前照灯
CN112771306B (zh) * 2018-10-02 2024-04-05 亮锐控股有限公司 用于照明设备的光学元件
DE102019107825A1 (de) * 2019-03-27 2020-10-01 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für ein Kraftfahrzeug
DE102020107075A1 (de) * 2020-03-15 2021-09-16 Docter Optics Se Scheinwerferlinse für einen Fahrzeugscheinwerfer
DE102020124423A1 (de) * 2020-09-18 2022-03-24 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für ein Kraftfahrzeug
EP4123217A1 (de) * 2021-07-20 2023-01-25 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918583B2 (en) * 2006-08-16 2011-04-05 Rpc Photonics, Inc. Illumination devices
DE102009053581B3 (de) * 2009-10-05 2011-03-03 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
JP5589930B2 (ja) * 2011-03-30 2014-09-17 豊田合成株式会社 照明装置
FR3012203B1 (fr) * 2013-10-23 2015-10-30 Valeo Vision Dispositif d'eclairage comportant un guide de rayons lumineux
DE102014102496A1 (de) * 2014-02-26 2015-08-27 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
DE102014205994B4 (de) * 2014-03-31 2023-02-02 Automotive Lighting Reutlingen Gmbh Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
JP6340751B2 (ja) * 2014-08-25 2018-06-13 スタンレー電気株式会社 レンズ体及び車両用灯具
FR3032517B1 (fr) * 2015-02-05 2018-06-29 Valeo Vision Dispositif lumineux de vehicule
CN106090783B (zh) * 2016-08-04 2019-02-12 上海小糸车灯有限公司 一种近光车灯模组

Also Published As

Publication number Publication date
EP3388734A1 (de) 2018-10-17
DE102017107781A1 (de) 2018-10-11

Similar Documents

Publication Publication Date Title
EP3388734B1 (de) Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2306073B1 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2910847B1 (de) Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul
EP2893249B1 (de) Leuchteinheit für einen scheinwerfer
AT512246B1 (de) Led-projektionsmodul und scheinwerfer mit modul
DE102010056313C5 (de) Beleuchtungseinrichtung eines Kraftfahrzeugs
DE102014205994B4 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP3343091A1 (de) Lichtmodul für kraftfahrzeugscheinwerfer
DE102009037698A1 (de) Fahrzeugbeleuchtungseinheit und Fahrzeugleuchte
EP2730836B1 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs
AT518551B1 (de) Kraftfahrzeugbeleuchtungsvorrichtung
WO2014114308A1 (de) Scheinwerferlinse für einen fahrzeugscheinwerfer
EP2984396A2 (de) Leuchteinheit mit blende mit zumindest einem lichtfenster
EP3301350A1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP1912018A1 (de) Projektionsscheinwerfer für Fahrzeuge
AT519356B1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer
EP3667389B1 (de) Beleuchtungsvorrichtung für ein kraftfahrzeug
EP3870894B1 (de) Leuchteinheit für einen kfz-scheinwerfer
EP3070395A1 (de) Projektionslichtmodul für einen kraftfahrzeugscheinwerfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190408

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEGER, DANIEL

Inventor name: ROSENHAHN, ERNST-OLAF

Inventor name: BUERKER, CHRISTOPH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSENHAHN, ERNST-OLAF

Inventor name: RIEGER, DANIEL

Inventor name: BUERKER, CHRISTOPH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009076

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009076

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 6

Ref country code: AT

Payment date: 20230222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230221

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240222

Year of fee payment: 7