EP3388734A1 - Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers - Google Patents

Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers Download PDF

Info

Publication number
EP3388734A1
EP3388734A1 EP18164117.6A EP18164117A EP3388734A1 EP 3388734 A1 EP3388734 A1 EP 3388734A1 EP 18164117 A EP18164117 A EP 18164117A EP 3388734 A1 EP3388734 A1 EP 3388734A1
Authority
EP
European Patent Office
Prior art keywords
light
optics unit
light guide
primary optics
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18164117.6A
Other languages
English (en)
French (fr)
Other versions
EP3388734B1 (de
Inventor
Ernst-Olaf Rosenhahn
Daniel Rieger
Christoph Bürker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3388734A1 publication Critical patent/EP3388734A1/de
Application granted granted Critical
Publication of EP3388734B1 publication Critical patent/EP3388734B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources

Definitions

  • the invention relates to a primary optics unit for a light module of a motor vehicle lighting device.
  • an optical fiber which comprises a number of light guide plates and a light source associated with the respective light guide plate.
  • the light guide generates a light beam consisting of a number of vertical pixels. Each vertical pixel can be turned off or on.
  • the focusing of the light on a point of the exit surface not sufficient near the optical axis.
  • no homogeneous and no soft vertical outlet is created, resulting in an unaesthetic edge in the radiated light distribution.
  • the proposed primary optics unit for a light module of a motor vehicle lighting device comprises a plurality of, in particular, plate-like light guide sections, wherein each light guide section is assigned a respective light source.
  • the light guide sections are formed to form a desired intermediate light distribution of light from the plurality of light sources.
  • the respective light-guiding section is delimited by a first coupling surface in such a way that light generated by the light source assigned to the light-guiding section can be coupled into the light-guiding section.
  • the respective light-guiding section is further limited by a reflection surface arranged opposite the first coupling-in surface such that light originating from the first coupling surface and striking the reflection surface can be deflected in such a way that it can be focused in the region of a coupling-out surface of the light-guiding section.
  • the respective Lichtleitabites is also limited by a second coupling surface so that of the Lichtleitabites associated light source light generated in the Lichtleitabites can be coupled.
  • the respective light guide section is additionally delimited by the coupling-out surface such that the light deflected by the reflection surface and the light incident from the second coupling surface can be coupled out of the light guide section to generate the intermediate light distribution.
  • the purpose of the plurality of Lichtleitabitesen is to operate the high beam distribution as a Colourfernlicht or in the form of a matrix function by individual light sources can be switched on and off independently of each other.
  • a larger luminous flux can be coupled into the light-conducting section and the efficiency is increased. Due to the focusing in the area of the decoupling surface, a high illuminance of 0 ° / 0 °, that is to say in the direction of the forwardly pointing optical axis of the light module, is achieved, thus providing a high visual range for the vehicle driver.
  • the homogeneity in a vertical outlet of the light distribution can be improved by the superposition of the light beams in the light guide section and the subsequent common coupling.
  • This improvement in homogeneity in the vertical output of the high beam distribution includes a soft vertical spout without a transition visible to the driver.
  • disturbing color gradients and unaesthetic sharp edges in the radiated high beam distribution can be avoided in this way.
  • the radiated high-beam light distribution improves, which allows the vehicle driver an improved view. Consequently, the traffic safety is increased.
  • An advantageous embodiment is characterized in that the reflection surface in a section, which runs in an imaginary plane of the light guide portion, at least partially follows an ellipse. This makes it possible to focus the light beams in the region of the decoupling surface.
  • An advantageous embodiment is characterized in that the decoupling surfaces of the plurality of Lichtleitabitesen form a common outcoupling surface.
  • the common decoupling surface and a horizontal homogenization of the radiated high beam distribution is achieved.
  • the light-guiding sections open in the direction of the common decoupling surface into a common light-conducting body. Consequently, it is not necessary that the light-guiding sections pass directly into a common decoupling surface, but the light-conducting sections can also abut on the common decoupling surface in order to effect a light transfer.
  • An advantageous embodiment is characterized in that the common outcoupling surface of the Lichtleitabroughe a Petzval surface of an associated secondary optical unit follows.
  • the common decoupling surface serves as an image plane and the imaging accuracy is increased.
  • An advantageous embodiment is characterized in that the light source is directed with its Schoabstrahlraum on the first coupling surface. This leads to in that a maximum of the luminous flux emitted by the light source for focusing is guided into the area of the exit surface.
  • An advantageous embodiment is characterized in that the first coupling surface in a section which runs perpendicular to the course of the associated narrow side of the Lichtleitabitess, the Lichtleitabrough limited in a convex shape.
  • the incoming light is parallelized already during coupling, which has a positive effect on the efficiency.
  • color effects that could arise due to dispersion in the area of the secondary optical unit are prevented or at least reduced.
  • An advantageous embodiment is characterized in that the first coupling surface in a section which extends in an imaginary plane of the plane of the Lichtleitabitess, the Lichtleitabrough limited in a convex shape.
  • the coupled light can be better directed in the direction of the reflection surface.
  • An advantageous embodiment is characterized in that the second coupling surface in a section which runs perpendicular to the course of the associated narrow side of the Lichtleitabitess, the Lichtleitabrough limited in a concave shape.
  • This concave design allows an expansion of the beam at the coupling to fan out the vertical outlet of the radiated high beam distribution in terms of a horizontal width.
  • An advantageous embodiment is characterized in that the second coupling surface in a section which runs in the imaginary plane of the plane of the light-guiding section delimits the light-guiding section in convex form. This improves the homogeneity of the vertical outlet of the radiated high beam distribution.
  • An advantageous embodiment is characterized in that the coupling-out surface of a light-guiding section arranged centrally between further light-guiding sections follows at least in sections a cylinder outer surface in a transverse section.
  • the illuminance is advantageously 0 ° / 0 °, d. H. 0 ° horizontally and 0 ° vertically in the direction of the optical axis of the light module, increases.
  • An advantageous embodiment is characterized in that the outcoupling surfaces of the light-guiding sections at least in sections follow a respective cylinder outer surface in a transverse section.
  • An advantageous embodiment is characterized in that the decoupling surface in a sagittal section of the optical axis facing the associated secondary optics unit convexly bounds the light guide section.
  • light can thus be broken in the direction of the secondary optical unit and is not lost. Consequently, this causes an increase in efficiency and an increase in the maximum illuminance.
  • An advantageous embodiment is characterized in that the decoupling surface in the sagittal section facing away from the optical axis of the associated secondary optics unit concavely delimits the light guide section. This has an advantageous effect on the vertical outlet down. In particular, a softer and more homogeneous outlet zone can be created.
  • An advantageous embodiment is characterized in that the decoupling surface has a wave-shaped profile in the sagittal section.
  • the wave-shaped profile improves the homogeneity of the high-beam distribution emitted by the secondary optical unit, in particular because the light originating from the second coupling surface and the light coming from the reflection surface are mixed more strongly.
  • An advantageous embodiment is characterized in that the respective light guide section is delimited by a third coupling surface such that light generated by the light guide section associated light can be coupled into the Lichtleitabrough, wherein the Lichtleitabrough limited by a further, the third coupling surface oppositely arranged reflection surface is, so that from the third coupling surface on the further reflection surface incident light is deflected so that it can be coupled out in the region of another coupling surface of the Lichtleitabitess for generating portions of the intermediate light distribution.
  • this makes the vertical outlet to the top homogeneous.
  • the efficiency of the primary optics unit is further increased.
  • the maximum height of the vertical outlet in the radiated high beam distribution is increased when the second exit surface is below the light guide associated with the light source.
  • a further aspect relates to a light module of a motor vehicle lighting device comprising the primary optics unit described above and the secondary optics unit, wherein the secondary optics unit converts the intermediate light distribution radiated by the primary optics unit into a high beam light distribution radiated by the light module.
  • the light module comprises a further primary optics unit, wherein the secondary optics unit converts a further intermediate light distribution emitted by the further primary optics unit into a low beam distribution radiated by the light module.
  • the secondary optics unit converts a further intermediate light distribution emitted by the further primary optics unit into a low beam distribution radiated by the light module.
  • FIG. 1 shows in schematic form a primary optics unit 2, which comprises a number of Lichtleitabroughen 4 a and 4 b.
  • the first light-guiding section 4a is assigned a light source 6a.
  • the second light guide 4b is associated with a second light source 6b.
  • the Lichtleitabroughe 4a, 4b are each plate-shaped, wherein the respective Lichtleitabrough 4a, 4b spans an imaginary respective plate plane, which are in the present schematic representation in the drawing plane or approximately parallel thereto.
  • the light guide sections 4a and 4b are each delimited by two lateral light guide surfaces extending essentially parallel to one another. Dashed lines are drawn in the FIG. 1 Narrow sides of the Lichtleitabites 4a, which represent further narrow-side Lichtleit lake.
  • the Lichtleitabroughe 4a, 4b, .. are, as explained below, preferably fanned out to one another, that is arranged at an angle to each other.
  • a high-beam light can be operated as a partial high-beam, wherein light is radiated only into a subset of the existing optical-fiber sections 4a, 4b.
  • the light generated by the light source 6a strikes a first coupling surface 8a of the Lichtleitabitess 4a and is at least partially coupled into the Lichtleitabrough 4a.
  • the light thus coupled into the light guide section 4a strikes a reflection surface 10a, which deflects the light under total reflection so that the deflected light can be focused in the region of a decoupling surface 12a.
  • Light generated by the light source 6a strikes a second coupling surface 14a of the light guide section 4a and is coupled into the light guide section 4a.
  • the light coupled in via the second coupling-in surface 14a is conducted in the light-guiding section 4a directly to the coupling-out surface 10a.
  • this direct supply line is meant that the light coupled in via the second coupling-in surface 14a is not conducted via the reflection surface 10a to the coupling-out surface 12a.
  • the light incident directly from the second coupling surface 14a on the decoupling surface 12a and the light incident on the decoupling surface 12a from the reflecting surface 10a is decoupled via the decoupling surface 12a in such a way that together with the one above the decoupling surface 12a corresponding decoupling surface 12b of the further Lichtleitabitess 4b a common intermediate light distribution 16 is emitted from the primary optics unit 2.
  • a light module 105 is shown in a schematic sagittal section, which comprises the primary optics unit 2.
  • a sagittal section is understood to mean any section which runs parallel to the illustrated xy plane.
  • the imaginary respective plate plane is located in particular centrally within the respective light guide section 4a, 4b. Furthermore, the imaginary plate plane is equidistant from the limiting sides. For reasons of clarity, only the light guide section 4a and the associated light source 6a are shown.
  • the rays coming from the reflection surface 10a are focused in a focus region 22 which is arranged in the vicinity or at the decoupling surface 12a.
  • the intermediate light distribution 16 generated by the number of light guide sections 4 strikes a secondary optical unit 18, which in the present case consists of two plano-convex lenses 18a and 18b, in order to radiate a high beam distribution 20 from the light module 105.
  • the secondary optics unit 18 may also be a biconvex lens or a plano-convex lens.
  • a further primary optical unit 24 is shown, which can emit a further intermediate light distribution 26 in the direction of the secondary optical unit 18.
  • the further intermediate light distribution 26 is converted by the secondary optical unit 18 into a low-beam light distribution 28 and emitted by the light module 105.
  • the secondary optical unit 18 is rotationally symmetrical about an optical axis 30.
  • a transverse section xy through the optical axis 30 divides the light module space disposed opposite to the x direction into a first half space 32 oriented opposite to the z direction and a half space 34 oriented in the z direction.
  • the primary optics unit 2 for the high beam In the ventral hemisphere 32 is the primary optics unit 2 for the high beam.
  • the further primary optic unit 24 is located in the dorsal half space 34.
  • the two primary optics units 2 and 24 are separated from each other by a wall 36.
  • the wall 36 may be designed, for example, in the direction of the primary optical unit 2 as a coated sheet metal in the form of a mirror panel.
  • the wall 36 bears against the narrow side of the number of light-conducting sections 4 oriented in the z-direction. This also reflects rays on the upper narrow side, which do not fulfill the condition for total reflection.
  • the reflection surface 10a follows in the section shown at least in sections an ellipse.
  • the reflection surface 10a preferably follows, at least in sections, an ellipsoid of revolution.
  • the coupling surfaces 8a and 14a adjoin one another and, with the associated light source 6a, delimit a coupling-in space 38a.
  • the light source 6a is designed, for example, as a semiconductor light source component.
  • the emission surface of the light source 6a defines a main emission direction, which is here oriented, for example, in the z-direction.
  • the main emission direction of the light source 6a is not on the second coupling surface 14a, but directed to the first coupling surface 8a.
  • FIG. 3 shows the light module 105 in a schematic transverse section.
  • the secondary optics unit 18 defines an imaginary Petzval surface 40, in the region of which the individual outcoupling surfaces 12 of the respective light guide sections 4 run.
  • the decoupling surfaces 12 form a common decoupling surface 42 which extends through the imaginary Petzval surface 40.
  • the individual light guide sections 4a to 4j are connected in a common light guide body 44.
  • the individual light guide sections 4a to 4j, starting from the Petzval surface 40, are separated from the common light guide body 44.
  • the Petzval surface 40 represents an image plane which is imaged on the road in front of the motor vehicle.
  • a gap 46 is formed, for example, not to dazzle oncoming traffic.
  • the secondary optical unit 18 images the gap 46 as a recess in the radiated high-beam distribution 20.
  • FIG. 4 an embodiment of the light module 105 is shown in a schematic sagittal section.
  • the narrow side 48, oriented in the z-direction, of the representatively-illustrated light-conducting section 4 a is provided, for example, with the wall 36 which has a reflective design.
  • the narrow side 48 can also be labeled as a further reflection surface.
  • a third Einkoppel reaction 50a between the first coupling surface 8a and the second coupling surface 14a is a third Einkoppel reaction 50a, wherein here, for example, the third coupling surface 50a as an extension of the first coupling surface 8a represents.
  • the first coupling surface 8a thus goes into the third coupling surface 50a.
  • the further reflection surface deflects the light incident from the third coupling surface 50a in such a way that it is directed to a second coupling-out surface 52a.
  • the second outcoupling surface 52a couples the light incident from the further reflection surface such that its light rays intersect in a region 54 in the sagittal sectional plane shown, this region being located outside the light-conducting section 4a.
  • the light coupled out via the second outcoupling surface 52a is part of the intermediate light distribution 16.
  • the light is coupled out of the second outcoupling surface 52a such that a homogeneous vertical outflow of the main beam distribution results in the intermediate light distribution 16 and passes through the secondary optics 18.
  • FIGS. 5 and 6 are embodiments of the first coupling surface 8a in a section which is perpendicular to the course of the associated narrow side of the Lichtleitabitess 4a, shown.
  • the cut is in FIG. 5 Parabolic-shaped and in FIG. 6 Circular-shaped, whereby a convex boundary of the Lichtleitabitess 4a is given in the region of the first coupling surface 8a.
  • FIGS. 7 and 8 is a section in the region of the second coupling surface 14a shown, wherein the section perpendicular to the course of the associated narrow side of the Lichtleitabitess 4a runs. This results in a concave boundary of the light guide section 4a in the region of the second coupling surface 14a.
  • FIG. 9 shows in enlarged form the coupling region of the Lichtleitabitess 4a in a schematic sagittal section.
  • the light source 6a is arranged in such a way that its main emission direction 56 is directed onto the first coupling-in surface 8a, which is convex in the section shown here by way of example.
  • the second coupling-in surface 14a is arranged here, for example, facing away from the main emission direction 56.
  • FIG. 10-12 each show an embodiment of the common decoupling surface 42 in a schematic transverse section.
  • a central convex curvature 58 is provided which is assigned to the centrally arranged light guide section 4a.
  • each convex curvature 58 is assigned to each light guide 4 such.
  • the Figures 13-16 each show an embodiment of the common decoupling surface 42 in a schematic sagittal section.
  • FIG. 14 If the planar configuration of the decoupling surface 42 in the z-direction, ie in the direction of the optical axis 30, in its upper portion in an upper camber 60 via.
  • the upper curvature 60 limits the common light guide body 44 convex.
  • a lower indentation 62 bounds the common light guide body 44 in concave form.
  • an intermediate central portion 64 is provided with a wave-shaped profile.
  • the wave-shaped profile is designed, for example, as a sinusoidal shape, a sawtooth shape or otherwise.
  • a lighting device for motor vehicles is designated in its entirety by the reference numeral 101.
  • the lighting device 101 is formed in the illustrated embodiment as a motor vehicle headlight.
  • the lighting device 101 comprises a housing 102, which is preferably made of plastic.
  • the headlight housing 102 has a light exit opening, which is closed by a transparent cover 104.
  • the cover 104 is made of colorless plastic or glass.
  • the disk 104 may be formed without optically effective profiles (for example, prisms) as a so-called clear disk.
  • the pane 104 may be provided, at least in regions, with optically active profiles, which in particular cause a scattering of the light passing through.
  • two light modules 105, 106 are arranged in the illustrated embodiment.
  • a headlight range control can be realized.
  • more or less than the illustrated two Light modules 105, 106 may be provided.
  • the proposed light module 105 it is possible, in particular, to reduce the number of light modules integrated in a headlight housing 102 by integrating a plurality of light functions.
  • the installation space of the headlight is reduced overall, without having to forego a matrix headlight function.
  • a control device 107 is arranged in a control unit housing 108.
  • the control device 107 may also be arranged at any other point of the illumination device 101.
  • a separate control unit can be provided for each of the light modules 105, 106, wherein the control units can be an integral part of the light modules 105, 106.
  • the controller 107 may also be disposed away from the illumination device 101.
  • the control unit 107 is used in particular in combination with a camera unit for controlling and / or regulating the light modules 105, 106 or subcomponents of the light modules 105, 106, such as light sources of the light modules 105, 106, so as the light module 105, 106 in one To operate partial remote light mode. In this partial high beam mode, only a portion of the existing light sources are operated to generate a high beam for generating light.
  • the control of the light modules 105, 106 and the sub-components by the controller 107 via connecting lines 110, the in FIG. 1 are shown only symbolically by a dashed line. Via the lines 110, the light modules 105, 106 are supplied with electrical energy.
  • the lines 110 are through an opening in Headlight housing 102 is guided in the control unit housing 108 and connected there to the circuit of the control unit 107. If a plurality of control devices are provided as an integral part of the light modules 105, 106, the lines 110 and can account for the opening in the headlight housing 102.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Es wird eine Primäroptikeinheit (2) für ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung vorgeschlagen, bei dem die Primäroptikeinheit (2) eine Mehrzahl von Lichtleitabschnitten (4a, 4b, ...) umfasst. Jedem Lichtleitabschnitt (4a, 4b, ...) ist eine jeweilige Lichtquelle (6a, 6b, ...) zugeordnet. Die Lichtleitabschnitte (4a, 4b, ...) sind zum Formen einer gewünschten Zwischenlichtverteilung (16) aus Licht der Mehrzahl von Lichtquellen (6a, 6b, ...) ausgebildet. Der jeweilige Lichtleitabschnitt (4a; 4b; ...) ist durch eine erste Einkoppelfläche (8a; 8b; ...) derart begrenzt, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht in den Lichtleitabschnitt (4a; 4b; ...) einkoppelbar ist.

Description

  • Die Erfindung betrifft eine Primäroptikeinheit für ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung.
  • Aus der EP 2 865 937 A1 ist ein Lichtleiter bekannt, welcher eine Anzahl von Lichtleitplatten und eine der jeweiligen Lichtleitplatte zugeordnete Lichtquelle umfasst. Der Lichtleiter erzeugt einen Lichtstrahl, welcher aus einer Anzahl von vertikalen Pixeln besteht. Jeder vertikale Pixel kann aus- oder angeschaltet werden.
  • Diese Lösung ist dahingehend nachteilig, als dass die Lichtquelle im Bereich der optischen Achse positioniert ist, womit ein Abblendlicht im selben Modul nicht realisierbar ist.
  • Weitergehend ist für eine homogene Fernlichtverteilung die Fokussierung des Lichts auf einen Punkt der Austrittsfläche nahe der optischen Achse nicht ausreichend. Insbesondere wird kein homogener und kein weicher vertikaler Auslauf erzeugt, was zu einer unästhetischen Kante in der abgestrahlten Lichtverteilung führt.
  • Mithin ist es Aufgabe der Erfindung, die Effizienz einer Primäroptikeinheit zu erhöhen, das Erscheinungsbild der abgestrahlten Lichtverteilung zu verbessern und die Möglichkeit zu schaffen ein Abblendlichtmodul in das zugehörige Lichtmodul zu integrieren.
  • Dass der Erfindung zugrunde liegende Problem wird durch eine Primäroptikeinheit gemäß dem Anspruch 1 gelöst.
  • Die vorgeschlagene Primäroptikeinheit für ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung umfasst eine Mehrzahl von insbesondere plattenartig ausgebildeten Lichtleitabschnitten, wobei jedem Lichtleitabschnitt eine jeweilige Lichtquelle zugeordnet ist. Die Lichtleitabschnitte sind zum Formen einer gewünschten Zwischenlichtverteilung aus Licht der Mehrzahl von Lichtquellen ausgebildet. Der jeweilige Lichtleitabschnitt ist durch eine erste Einkoppelfläche derart begrenzt, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist. Der jeweilige Lichtleitabschnitt ist weitergehend durch eine der ersten Einkoppelfläche gegenüberliegend angeordnete Reflexionsfläche derart begrenzt, sodass von der ersten Einkoppelfläche stammendes und auf die Reflexionsfläche treffendes Licht so umlenkbar ist, dass es im Bereich einer Auskoppelfläche des Lichtleitabschnitts fokussierbar ist. Der jeweilige Lichtleitabschnitt ist außerdem durch eine zweite Einkoppelfläche derart begrenzt, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist. Der jeweilige Lichtleitabschnitt ist zusätzlich durch die Auskoppelfläche derart begrenzt, sodass das von der Reflexionsfläche umgelenkte Licht und das von der zweiten Einkoppelfläche einfallende Licht zur Erzeugung der Zwischenlichtverteilung aus dem Lichtleitabschnitt auskoppelbar sind.
  • Zweck der Mehrzahl von Lichtleitabschnitten ist es, die Fernlichtverteilung auch als Teilfernlicht bzw. in Form einer Matrix-Funktion zu betreiben, indem einzelne Lichtquellen unabhängig voneinander an- bzw. ausgeschaltet werden können. Durch das Vorsehen der zweiten Einkoppelfläche kann vorteilhaft ein größerer Lichtstrom in den Lichtleitabschnitt eingekoppelt werden und die Effizienz wird erhöht. Durch die Fokussierung im Bereich der Auskoppelfläche wird eine hohe Beleuchtungsstärke um 0°/0°, also in Richtung der nach vorne weisenden optischen Achse des Lichtmoduls erreicht, womit eine hohe Sicht-Reichweite für den Fahrzeuglenker bereitgestellt wird. Darüber hinaus kann durch die Überlagerung der Lichtstrahlen im Lichtleitabschnitt und die anschließende gemeinsame Auskopplung die Homogenität in einem vertikalen Auslauf der Lichtverteilung verbessert werden. Diese Verbesserung der Homogenität im vertikalen Auslauf der Fernlichtverteilung umfasst einen weichen vertikalen Auslauf ohne einen für den Fahrzeugführer sichtbaren Übergang. Insbesondere können störende Farbverläufe und unästhetische scharfe Kanten in der abgestrahlten Fernlichtverteilung auf diese Art und Weise vermieden werden. Insgesamt verbessert sich somit die abgestrahlte Fernlichtlichtverteilung, wodurch für den Fahrzeuglenker eine verbesserte Sicht ermöglicht wird. Mithin wird auch die Verkehrssicherheit erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Reflexionsfläche in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts verläuft, zumindest abschnittsweise einer Ellipse folgt. Dies ermöglicht die Fokussierung der Lichtstrahlen im Bereich der Auskoppelfläche.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelflächen der Mehrzahl von Lichtleitabschnitten eine gemeinsame Auskoppelfläche bilden. Durch die gemeinsame Auskoppelfläche wird auch eine horizontale Homogenisierung der abgestrahlten Fernlichtverteilung erreicht.
  • In einer vorteilhaften Ausführungsform münden die Lichtleitabschnitte in Richtung der gemeinsamen Auskoppelfläche in einen gemeinsamen Lichtleitkörper. Mithin ist es nicht notwendig, dass die Lichtleitabschnitte direkt in eine gemeinsame Auskoppelfläche übergehen, sondern die Lichtleitabschnitten können auch an die gemeinsame Auskoppelfläche anstoßen, um einen Lichtübertrag zu bewerkstelligen.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die gemeinsame Auskoppelfläche der Lichtleitabschnitte einer Petzval-Fläche einer zugeordneten Sekundäroptikeinheit folgt. Mithin dient die gemeinsame Auskoppelfläche als Bildebene und die Abbildungsgenauigkeit wird erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Lichtquelle mit ihrer Hauptabstrahlrichtung auf die erste Einkoppelfläche gerichtet ist. Dies führt dazu, dass ein Maximum des von der Lichtquelle abgestrahlten Lichtstroms zur Fokussierung in den Bereich der Austrittsfläche geführt wird.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die erste Einkoppelfläche in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. So wird das eintretende Licht bereits beim Einkoppeln parallelisiert, was sich positiv auf die Effizienz auswirkt. Darüber hinaus werden Farbeffekte, welche durch Dispersion im Bereich der Sekundäroptikeinheit entstehen könnten, verhindert oder zumindest verringert.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die erste Einkoppelfläche in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. Hierdurch lässt sich das eingekoppelte Licht besser in Richtung der Reflexionsfläche lenken.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die zweite Einkoppelfläche in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konkaver Form begrenzt. Diese konkave Ausbildung ermöglicht eine Ausweitung des Strahlenbündels bei der Einkopplung, um den vertikalen Auslauf der abgestrahlten Fernlichtverteilung im Sinne einer horizontalen Breite aufzufächern.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die zweite Einkoppelfläche in einem Schnitt, welcher in der gedachten Plattenebene des Lichtleitabschnitts verläuft, den Lichtleitabschnitt in konvexer Form begrenzt. Hierdurch wird die Homogenität des vertikalen Auslaufs der abgestrahlten Fernlichtverteilung verbessert.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche eines mittig zwischen weiteren Lichtleitabschnitten angeordneten Lichtleitabschnitts in einem Transversalschnitt zumindest abschnittsweise einer Zylinderaußenfläche folgt. Damit wird vorteilhaft die Beleuchtungsstärke um 0°/0°, d. h. 0° horizontal und 0° vertikal in Richtung der optischen Achse des Lichtmoduls, erhöht.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelflächen der Lichtleitabschnitte in einem Transversalschnitt zumindest abschnittsweise einer jeweiligen Zylinderaußenfläche folgen. Vorteilhaft findet hierdurch eine lichtleitabschnittbezogene Bündelung des Lichts statt und die Effizienz wird erhöht, da weniger Licht verloren geht. Ebenfalls werden im Fall eines Teilfernlicht-Betriebs unerwünschte Farbeffekte durch Dispersion verringert bzw. vermieden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in einem Sagittalschnitt der optischen Achse der zugeordneten Sekundäroptikeinheit zugewandt den Lichtleitabschnitt konvex begrenzt. Vorteilhaft kann so Licht in Richtung der Sekundäroptikeinheit gebrochen werden und geht nicht verloren. Mithin bewirkt dies eine Effizienzsteigerung und eine Erhöhung der Beleuchtungsstärke im Maximum.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in dem Sagittalschnitt von der optischen Achse der zugeordneten Sekundäroptikeinheit abgewandt den Lichtleitabschnitt konkav begrenzt. Dies wirkt sich vorteilhaft auf den vertikalen Auslauf nach unten aus. Insbesondere kann eine weichere und homogenere Auslaufzone geschaffen werden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass die Auskoppelfläche in dem Sagittalschnitt ein wellen-förmiges Profil aufweist. Das wellen-förmige Profil verbessert die Homogenität der von der Sekundäroptikeinheit abgestrahlten Fernlichtverteilung, da insbesondere das von der zweiten Einkoppelfläche stammende Licht und das von der Reflexionsfläche kommende Licht stärker vermischt werden.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass der jeweilige Lichtleitabschnitt durch eine dritte Einkoppelfläche derart begrenzt ist, sodass von der dem Lichtleitabschnitt zugeordneten Lichtquelle erzeugtes Licht in den Lichtleitabschnitt einkoppelbar ist, wobei der Lichtleitabschnitt durch eine weitere, der dritten Einkoppelfläche gegenüberliegend angeordnete Reflexionsfläche derart begrenzt ist, sodass von der dritten Einkoppelfläche auf die weitere Reflexionsfläche treffendes Licht so umlenkbar ist, dass es im Bereich einer weiteren Auskoppelfläche des Lichtleitabschnitts zur Erzeugung von Teilbereichen der Zwischenlichtverteilung auskoppelbar ist. Vorteilhaft wird hierdurch der vertikale Auslauf nach oben hin homogener. Mithin wird die Effizienz der Primäroptikeinheit weiter erhöht.
  • Weitergehend kann hierdurch auch Bauraum eingespart werden.
  • Beispielsweise wird die maximale Höhe des vertikalen Auslaufs in der abgestrahlten Fernlichtverteilung erhöht, wenn die zweite Austrittsfläche unterhalb der dem Lichtleitabschnitt zugeordneten Lichtquelle liegt.
  • Ein weiterer Aspekt betrifft ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung umfassend die vorangehend beschriebene Primäroptikeinheit sowie die Sekundäroptikeinheit, wobei die Sekundäroptikeinheit die von der Primäroptikeinheit abgestrahlte Zwischenlichtverteilung in eine vom Lichtmodul abgestrahlte Fernlichtlichtverteilung umwandelt.
  • Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, dass das Lichtmodul eine weitere Primäroptikeinheit umfasst, wobei die Sekundäroptikeinheit eine von der weiteren Primäroptikeinheit abgestrahlte weitere Zwischenlichtverteilung in eine vom Lichtmodul abgestrahlte Abblendlichtverteilung umwandelt. Damit wird vorteilhaft ein Abblendlicht und ein Matrix-Fernlicht in einem einzigen Lichtmodul integriert, wobei eine gemeinsame Sekundäroptikeinheit genutzt wird.
  • Weitere Vorteile und Merkmale der Erfindung ergeben sich aus nachfolgend beschriebenen Ausführungsbeispielen der Zeichnung. In der Zeichnung zeigen:
    • Figur 1 eine Primäroptikeinheit in schematischer Form;
    • Figuren 2 und 4 jeweils ein Lichtmodul in einem schematischen Sagittalschnitt;
    • Figur 3 das Lichtmodul in einem schematischen Transversalschnitt;
    • Figuren 5 und 6 jeweils eine schematische Schnittansicht einer ersten Einkoppelfläche;
    • Figuren 7 und 8 jeweils eine schematische Schnittansicht einer zweiten Einkoppelfläche;
    • Figur 9 einen Einkoppelbereich in einem schematischen Sagittalschnitt;
    • Figuren 10, 11 und 12 jeweils eine Auskoppelfläche in einem schematischen Transversalschnitt;
    • Figuren 13, 14, 15 und 16 jeweils die Auskoppelfläche in einem schematischen Sagittalschnitt; und
    • Figur 17 eine Kraftfahrzeugbeleuchtungseinrichtung in schematischer Form.
  • Figur 1 zeigt in schematischer Form eine Primäroptikeinheit 2, welche eine Anzahl von Lichtleitabschnitten 4a und 4b umfasst. Dem ersten Lichtleitabschnitt 4a ist eine Lichtquelle 6a zugeordnet. Dem zweiten Lichtleitabschnitt 4b ist eine zweite Lichtquelle 6b zugeordnet. Die Lichtleitabschnitte 4a, 4b sind jeweils Platten-förmig ausgebildet, wobei der jeweilige Lichtleitabschnitt 4a, 4b eine gedachte jeweilige Plattenebene aufspannt, die sich in der vorliegenden schematischen Darstellung in der Zeichenebene bzw. in etwa parallel dazu befinden. Die Lichtleitabschnitte 4a und 4b sind jeweils durch zwei im Wesentlichen parallel zueinander verlaufende laterale Lichtleitflächen begrenzt. Gestrichelt gezeichnet sind in der Figur 1 Schmalseiten des Lichtleitabschnitts 4a, welche weitere schmalseitige Lichtleitflächen darstellen. Die Lichtleitabschnitte 4a, 4b,.. sind, wie nachfolgend erläutert, bevorzugt zueinander aufgefächert, also mit einem Winkel zueinander angeordnet.
  • Vorteilhaft kann durch das Vorsehen einzelner Segmente in Form der Lichtleitabschnitte 4a, 4b ein Fernlicht als Teilfernlicht betrieben werden, wobei lediglich in eine Untermenge der vorhandenen Lichtleitabschnitte 4a, 4b Licht eingestrahlt wird.
  • Das von der Lichtquelle 6a erzeugte Licht trifft auf eine erste Einkoppelfläche 8a des Lichtleitabschnitts 4a und wird so zumindest teilweise in den Lichtleitabschnitt 4a eingekoppelt. Das so in den Lichtleitabschnitt 4a eingekoppelte Licht trifft auf eine Reflexionsfläche 10a, welche das Licht unter Totalreflexion so umlenkt, dass das umgelenkte Licht im Bereich einer Auskoppelfläche 12a fokussierbar ist.
  • Von der Lichtquelle 6a erzeugtes Licht trifft auf eine zweite Einkoppelfläche 14a des Lichtleitabschnitts 4a und wird in den Lichtleitabschnitt 4a eingekoppelt. Das über die zweite Einkoppelfläche 14a eingekoppelte Licht wird in dem Lichtleitabschnitt 4a direkt zu der Auskoppelfläche 10a geleitet. Unter dieser direkten Zuleitung ist zu verstehen, dass das über die zweite Einkoppelfläche 14a eingekoppelte Licht nicht über die Reflexionsfläche 10a zu der Auskoppelfläche 12a geleitet wird.
  • Das direkt von der zweiten Einkoppelfläche 14a auf die Auskoppelfläche 12a einfallende Licht und das von der Reflexionsfläche 10a auf die Auskoppelfläche 12a einfallende Licht wird über die Auskoppelfläche 12a so ausgekoppelt, dass gemeinsam mit dem über eine entsprechende Auskoppelfläche 12b des weiteren Lichtleitabschnitts 4b eine gemeinsame Zwischenlichtverteilung 16 von der Primäroptikeinheit 2 abgestrahlt wird.
  • In Figur 2 ist ein Lichtmodul 105 in einem schematischen Sagittalschnitt gezeigt, welches die Primäroptikeinheit 2 umfasst. In dieser Beschreibung wird unter einem Sagittalschnitt jeglicher Schnitt verstanden, welcher parallel zur dargestellten xy-Ebene verläuft. Die gedachte jeweilige Plattenebene befindet sich insbesondere mittig innerhalb des jeweiligen Lichtleitabschnitts 4a, 4b. Weitergehend ist die gedachte Plattenebene gleich weit von den begrenzenden Seiten beabstandet. Aus Übersichtsgründen sind lediglich der Lichtleitabschnitt 4a und die zugeordnete Lichtquelle 6a gezeigt. Die von der Reflexionsfläche 10a kommenden Strahlen werden in einem Fokusbereich 22, welcher in der Nähe oder bei der Auskoppelfläche 12a angeordnet ist, fokussiert.
  • Die von der Anzahl von Lichtleitabschnitten 4 erzeugte Zwischenlichtverteilung 16 trifft auf eine Sekundäroptikeinheit 18, welche vorliegend aus zwei plankonvexen Linsen 18a und 18b besteht, um eine Fernlichtverteilung 20 von dem Lichtmodul 105 abzustrahlen. Selbstverständlich kann es sich bei der Sekundäroptikeinheit 18 auch eine bikonvexe Linse oder eine plankonvexe Linse handeln. Des Weiteren ist eine weitere Primäroptikeinheit 24 gezeigt, welche eine weitere Zwischenlichtverteilung 26 in Richtung der Sekundäroptikeinheit 18 abstrahlen kann. Die weitere Zwischenlichtverteilung 26 wird von der Sekundäroptikeinheit 18 in eine Abblendlichtverteilung 28 umgewandelt und von dem Lichtmodul 105 abgestrahlt.
  • Die Sekundäroptikeinheit 18 ist rotationssymmetrisch um eine optische Achse 30 aufgebaut. Ein Transversalschnitt xy durch die optische Achse 30 teilt den entgegen der x-Richtung angeordneten Lichtmodulraum in einen ersten entgegen der z-Richtung orientierten Halbraum 32 und einen in z-Richtung orientierten Halbraum 34 auf. In dem ventralen Halbraum 32 befindet sich die Primäroptikeinheit 2 für das Fernlicht. Die weitere Primäroptikeinheit 24 befindet sich in dem dorsalen Halbraum 34.
  • Die beiden Primäroptikeinheiten 2 und 24 sind durch eine Wandung 36 voneinander getrennt. Die Wandung 36 kann beispielsweise in Richtung der Primäroptikeinheit 2 als beschichtetes Blech in Form einer Spiegelblende ausgeführt sein. In einer Ausführungsform liegt die Wandung 36 an der in z-Richtung orientierten Schmalseite der Anzahl von Lichtleitabschnitten 4 an. Damit werden auch Strahlen an der oberen Schmalseite reflektiert, welche nicht die Bedingung für Totalreflexion erfüllen.
  • Die Reflexionsfläche 10a folgt im gezeigten Schnitt zumindest abschnittsweise einer Ellipse. Vorzugsweise folgt die Reflexionsfläche 10a zumindest abschnittsweise einem Rotationsellipsoid.
  • Die Einkoppelflächen 8a und 14a grenzen aneinander an und begrenzen mit der zugeordneten Lichtquelle 6a einen Einkoppelraum 38a. Die Lichtquelle 6a ist beispielsweise als Halbleiterlichtquellenbauteil ausgeführt. Die Abstrahlfläche der Lichtquelle 6a definiert eine Hauptabstrahlrichtung, welche hier beispielsweise in z-Richtung orientiert ist. Die Hauptabstrahlrichtung der Lichtquelle 6a ist nicht auf die zweite Einkoppelfläche 14a, sondern auf die erste Einkoppelfläche 8a gerichtet.
  • Figur 3 zeigt das Lichtmodul 105 in einem schematischen Transversalschnitt. Aus Übersichtsgründen ist die weitere Primäroptikeinheit 24 nicht gezeigt. Die Sekundäroptikeinheit 18 definiert eine gedachte Petzval-Fläche 40, in dessen Bereich die einzelnen Auskoppelflächen 12 der jeweiligen Lichtleitabschnitte 4 verlaufen. Insbesondere bilden die Auskoppelflächen 12 eine gemeinsame Auskoppelfläche 42 aus, welche durch die gedachte Petzval-Fläche 40 verläuft. Ausgehend von der gemeinsamen Auskoppelfläche 42 sind die einzelnen Lichtleitabschnitte 4a bis 4j in einem gemeinsamen Lichtleitkörper 44 verbunden. Die einzelnen Lichtleitabschnitte 4a bis 4j stehen ausgehend von der Petzval-Fläche 40 vereinzelt von dem gemeinsamen Lichtleitkörper 44 ab. Die Petzval-Fläche 40 repräsentiert eine Bildebene, welche auf der Straße vor dem Kraftfahrzeug abgebildet wird.
  • Hier sind beispielsweise lediglich die Lichtquellen 6a, 6b und 6f nicht in Betrieb, weshalb im Bereich der gemeinsamen Auskoppelfläche 42 eine Lücke 46 entsteht, beispielsweise um den Gegenverkehr nicht zu blenden. Die Sekundäroptikeinheit 18 bildet die Lücke 46 als Ausnehmung in der abgestrahlten Fernlichtverteilung 20 ab.
  • In Figur 4 ist eine Ausführungsform des Lichtmoduls 105 in einem schematischen Sagittalschnitt gezeigt. Hier ist die in z-Richtung orientierte Schmalseite 48 des repräsentativ dargestellten Lichtleitabschnitts 4a beispielsweise mit der reflektierend ausgebildeten Wandung 36 versehen. Damit ist die Schmalseite 48 auch als weitere Reflexionsfläche bezeichenbar. Zwischen der ersten Einkoppelfläche 8a und der zweiten Einkoppelfläche 14a befindet sich eine dritte Einkoppelfläche 50a, wobei sich hier beispielsweise die dritte Einkoppelfläche 50a als Verlängerung der ersten Einkoppelfläche 8a darstellt. Die erste Einkoppelfläche 8a geht also in die dritte Einkoppelfläche 50a über. Über die dritte Einkoppelfläche 50a eingekoppeltes Licht, welches von der zugeordneten Lichtquelle 6a stammt, wird zu der als weitere Reflexionsfläche ausgebildeten Schmalseite 48 geleitet. Die weitere Reflexionsfläche lenkt das von der dritten Einkoppelfläche 50a einfallende Licht so um, dass es zu einer zweiten Auskoppelfläche 52a gelenkt wird. Die zweite Auskoppelfläche 52a koppelt das von der weiteren Reflexionsfläche einfallende Licht so aus, dass dessen Lichtstrahlen sich in einem Bereich 54 in der gezeigten Sagittalschnittebene schneiden, wobei sich dieser Bereich außerhalb des Lichtleitabschnitts 4a befindet. Das über die zweite Auskoppelfläche 52a ausgekoppelte Licht ist Teil der Zwischenlichtverteilung 16. Das Licht wird so aus der zweiten Auskoppelfläche 52a ausgekoppelt, dass sich in der Zwischenlichtverteilung 16 ein homogener vertikaler Auslauf der Fernlichtverteilung ergibt und dass es durch die Sekundäroptik 18 gelangt.
  • In den Figuren 5 und 6 sind Ausbildungen der ersten Einkoppelfläche 8a in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts 4a verläuft, gezeigt. Der Schnitt ist in Figur 5 Parabel-förmig und in Figur 6 Kreis-förmig ausgebildet, womit eine konvexe Begrenzung des Lichtleitabschnitts 4a im Bereich der ersten Einkoppelfläche 8a gegeben ist.
  • In den Figuren 7 und 8 ist ein Schnitt im Bereich der zweiten Einkoppelfläche 14a gezeigt, wobei der Schnitt lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts 4a verläuft. Damit ergibt sich eine konkave Begrenzung des Lichtleitabschnitts 4a im Bereich der zweiten Einkoppelfläche 14a.
  • Figur 9 zeigt in vergrößerter Form den Einkoppelbereich des Lichtleitabschnitts 4a in einem schematischen Sagittalschnitt. Die Lichtquelle 6a ist so angeordnet, dass deren Hauptabstrahlrichtung 56 auf die im hier beispielhaft dargestellten Schnitt konvex ausgebildete erste Einkoppelfläche 8a gerichtet ist. Die zweite Einkoppelfläche 14a ist hier beispielsweise von der Hauptabstrahlrichtung 56 weggewandt angeordnet.
  • Die Figuren 10-12 zeigen jeweils eine Ausführungsform der gemeinsamen Auskoppelfläche 42 in einem schematischen Transversalschnitt. In Figur 11 ist eine zentrale konvexe Wölbung 58 vorgesehen, welche dem mittig angeordneten Lichtleitabschnitt 4a zugeordnet ist. Selbstverständlich kann bei einer asymmetrischen Auslegung für den linken und den rechten Scheinwerfer auch ein anderer als der mittig angeordnete Lichtleitabschnitt 4a für die Lichterzeugung um 0°/0° zuständig sein, weshalb die vorgenannte Wölbung 58 auch aus der Mitte heraus gerückt angeordnet sein kann. In Figur 12 ist jedem Lichtleitabschnitt 4 eine derartige konvexe Wölbung 58 zugeordnet.
  • Die Figuren 13-16 zeigen jeweils eine Ausführungsform der gemeinsamen Auskoppelfläche 42 in einem schematischen Sagittalschnitt. In Figur 14 geht die ebene Ausgestaltung der Auskoppelfläche 42 in z-Richtung, d. h. in Richtung der optischen Achse 30, in ihrem oberen Abschnitt in eine obere Wölbung 60 über. Die obere Wölbung 60 begrenzt den gemeinsamen Lichtleitkörper 44 konvex.
  • In Figur 15 begrenzt eine untere Einbuchtung 62 den gemeinsamen Lichtleitkörper 44 in konkaver Form. In Figur 16 ist zusätzlich zu der konvexen Wölbung 60 und der von der optischen Achse 30 abgewandten unteren Einbuchtung 62 ein dazwischenliegender Mittenabschnitt 64 mit einem wellen-förmigen Profil versehen. Das wellen-förmige Profil ist beispielsweise als eine Sinusform, eine Sägezahnform oder andersartig ausgebildet.
  • In Figur 17 ist eine Beleuchtungseinrichtung für Kraftfahrzeuge in ihrer Gesamtheit mit dem Bezugszeichen 101 bezeichnet. Die Beleuchtungseinrichtung 101 ist in dem dargestellten Ausführungsbeispiel als ein Kraftfahrzeugscheinwerfer ausgebildet. Die Beleuchtungseinrichtung 101 umfasst ein Gehäuse 102, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 103 weist das Scheinwerfergehäuse 102 eine Lichtaustrittsöffnung auf, die durch eine transparente Abdeckscheibe 104 verschlossen ist. Die Abdeckscheibe 104 ist aus farblosem Kunststoff oder Glas gefertigt. Die Scheibe 104 kann ohne optisch wirksame Profile (zum Beispiel Prismen) als sogenannte klare Scheibe ausgebildet sein. Alternativ kann die Scheibe 104 zumindest bereichsweise mit optisch wirksamen Profilen, die insbesondere eine Streuung des hindurchtretenden Lichts bewirken, versehen sein.
  • Im Inneren des Scheinwerfergehäuses 102 sind in dem dargestellten Ausführungsbeispiel zwei Lichtmodule 105, 106 angeordnet. Bei einer Bewegung der Lichtmodule 105, 106 um eine horizontale Achse, also in vertikaler Richtung, kann eine Leuchtweitenregelung realisiert werden. Selbstverständlich können in dem Scheinwerfergehäuse 102 auch mehr oder weniger als die dargestellten zwei Lichtmodule 105, 106 vorgesehen sein. Mit dem vorgeschlagenen Lichtmodul 105 ist es insbesondere möglich, durch die Integration mehrerer Lichtfunktionen die Anzahl der in einem Scheinwerfergehäuse 102 integrierten Lichtmodule zu reduzieren. Damit wird insbesondere der Bauraum des Scheinwerfers insgesamt reduziert, ohne dass auf eine Matrixscheinwerfer-Funktion verzichtet werden müsste.
  • An der Außenseite des Scheinwerfergehäuses 102 ist ein Steuergerät 107 in einem Steuergerätegehäuse 108 angeordnet. Selbstverständlich kann das Steuergerät 107 auch an einer beliebig anderen Stelle der Beleuchtungseinrichtung 101 angeordnet sein. Insbesondere kann für jedes der Lichtmodule 105, 106 ein eigenes Steuergerät vorgesehen sein, wobei die Steuergeräte integraler Bestandteil der Lichtmodule 105, 106 sein können. Selbstverständlich kann das Steuergerät 107 auch entfernt von der Beleuchtungseinrichtung 101 angeordnet sein. Das Steuergerät 107 dient insbesondere in Kombination mit einer Kameraeinheit zur Steuerung und/oder Regelung der Lichtmodule 105, 106 bzw. von Teilkomponenten der Lichtmodule 105, 106, wie beispielsweise von Lichtquellen der Lichtmodule 105, 106, um so das Lichtmodul 105, 106 in einem Teilfernlicht-Modus zu betreiben. In diesem Teilfernlicht-Modus wird nur ein Teil der vorhandenen Lichtquellen zur Erzeugung eines Fernlichts zu einer Lichterzeugung betrieben. Die Ansteuerung der Lichtmodule 105, 106 bzw. der Teilkomponenten durch das Steuergerät 107 erfolgt über Verbindungsleitungen 110, die in Figur 1 durch eine gestrichelte Linie lediglich symbolisch dargestellt sind. Über die Leitungen 110 erfolgt eine Versorgung der Lichtmodule 105, 106 mit elektrischer Energie. Die Leitungen 110 sind durch eine Öffnung im Scheinwerfergehäuse 102 in das Steuergerätegehäuse 108 geführt und dort an die Schaltung des Steuergerätes 107 angeschlossen. Falls mehrere Steuergeräte als integraler Bestandteil der Lichtmodule 105, 106 vorgesehen sind, können die Leitungen 110 und kann die Öffnung in dem Scheinwerfergehäuse 102 entfallen.

Claims (20)

  1. Eine Primäroptikeinheit (2) für ein Lichtmodul (105) einer Kraftfahrzeugbeleuchtungseinrichtung (101),
    - wobei die Primäroptikeinheit (2) eine Mehrzahl von Lichtleitabschnitten (4a, 4b, ...) umfasst,
    - wobei jedem Lichtleitabschnitt (4a, 4b, ...) eine jeweilige Lichtquelle (6a, 6b, ...) zugeordnet ist,
    - wobei die Lichtleitabschnitte (4a, 4b, ...) zum Formen einer gewünschten Zwischenlichtverteilung (16) aus Licht der Mehrzahl von Lichtquellen (6a, 6b, ...) ausgebildet sind,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine erste Einkoppelfläche (8a; 8b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht durch die erste Einkoppelfläche (8a; 8b; ...) hindurch in den Lichtleitabschnitt (4a; 4b; ...) einkoppelbar ist,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine der ersten Einkoppelfläche (8a; 8b; ...) gegenüberliegend angeordnete Reflexionsfläche (10a; 10b; ...) derart begrenzt ist, sodass von der ersten Einkoppelfläche (8a; 8b; ...) kommendes und auf die Reflexionsfläche (10a; 10b; ...) treffendes Licht so umlenkbar ist, dass es im Bereich einer Auskoppelfläche (12a; 12b; ...) fokussierbar ist,
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine zweite Einkoppelfläche (14a; 14b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht durch die zweite Einkoppelfläche (14a; 14b; ...) hindurch in den Lichtleitabschnitt (4a; 4b; ...) einkoppelbar ist, und
    - wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch die Auskoppelfläche (12a; 12b; ...) derart begrenzt ist, sodass das von der Reflexionsfläche (10a; 10b; ...) umgelenkte Licht und das von der zweiten Einkoppelfläche (14a; 14b; ...) kommende Licht zur Erzeugung der Zwischenlichtverteilung (16) aus dem Lichtleitabschnitt (4a; 4b; ...) auskoppelbar sind.
  2. Die Primäroptikeinheit (2) nach Anspruch 1, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch die zweite Einkoppelfläche (14a; 14b; ...) und die Auskoppelfläche (12a; 12b; ...) derart begrenzt ist, sodass das über die zweite Einkoppelfläche (14a) eingekoppelte Licht in dem Lichtleitabschnitt (4a) direkt zu der Auskoppelfläche (10a) geleitet wird.
  3. Die Primäroptikeinheit (2) nach Anspruch 1 oder 2, wobei die Lichtleitabschnitt (4a; 4b; ...) Platten-förmig ausgebildet sind.
  4. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Reflexionsfläche (10a; 10b; ...) in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts (4a; 4b; ...) verläuft, zumindest abschnittsweise einer Ellipse folgt.
  5. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Auskoppelflächen (12a, 12b, ...) der Mehrzahl von Lichtleitabschnitten (4a, 4b, ...) eine gemeinsame Auskoppelfläche (42) bilden.
  6. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Lichtleitabschnitte (4a, 4b, ...) in Richtung der gemeinsamen Auskoppelfläche (42) in einen gemeinsamen Lichtleitkörper (44) münden.
  7. Die Primäroptikeinheit (2) nach dem Anspruch 5 oder 6, wobei die gemeinsame Auskoppelfläche (42) der Lichtleitabschnitte (4a, 4b, ...) einer Petzval-Fläche (40) einer zugeordneten Sekundäroptikeinheit (18) folgt.
  8. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die jeweilige Lichtquelle (6a; 6b; ...) mit ihrer Hauptabstrahlrichtung (56) auf die erste Einkoppelfläche (8a; 8b; ...) gerichtet ist.
  9. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die jeweilige erste Einkoppelfläche (8a; 8b; ...) in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konvexer Form begrenzt.
  10. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die jeweilige erste Einkoppelfläche (8a; 8b; ...) in einem Schnitt, welcher in einer gedachten Plattenebene des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konvexer Form begrenzt.
  11. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die jeweilige zweite Einkoppelfläche (14a; 14b; ...) in einem Schnitt, welcher lotrecht zum Verlauf der zugeordneten Schmalseite des Lichtleitabschnitts (4a; 4b; ...) verläuft, den Lichtleitabschnitt (4a; 4b; ...) mit konkaver Form begrenzt.
  12. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die jeweilige zweite Einkoppelfläche (14a; 14b; ...) in einem Schnitt, welcher in der gedachten Plattenebene des Lichtleitabschnitts (14a; 14b; ...) verläuft, den Lichtleitabschnitt (14a; 14b; ...) in konvexer Form begrenzt.
  13. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42; 12a) eines mittig zwischen weiteren Lichtleitabschnitten (4b, ..., 4f, ...) angeordneten Lichtleitabschnitts (4a) in einem Transversalschnitt (xy) zumindest abschnittsweise einer Zylinderaußenfläche folgt.
  14. Die Primäroptikeinheit (2) nach einem der Ansprüche 1 bis 11, wobei die Auskoppelflächen (42; 12a, 12b, ...) der Lichtleitabschnitte (4a, 4b, ...) in einem Transversalschnitt zumindest abschnittsweise einer jeweiligen Zylinderaußenfläche folgen.
  15. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in einem Sagittalschnitt der optischen Achse (30) der zugeordneten Sekundäroptikeinheit (18) zugewandt den Lichtleitabschnitt (4a; 4b; ...) konvex begrenzt.
  16. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in dem Sagittalschnitt von der optischen Achse (30) der zugeordneten Sekundäroptikeinheit (18) abgewandt den Lichtleitabschnitt (4a; 4b; ...) konkav begrenzt.
  17. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei die Auskoppelfläche (42, 12a, 12b, ...) in dem Sagittalschnitt ein wellen-förmiges Profil aufweist.
  18. Die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine dritte Einkoppelfläche (50a; 50b; ...) derart begrenzt ist, sodass von der dem Lichtleitabschnitt (4a; 4b; ...) zugeordneten Lichtquelle (6a; 6b; ...) erzeugtes Licht in den Lichtleitabschnitt (4a; 4b; ...) einkoppelbar ist, wobei der jeweilige Lichtleitabschnitt (4a; 4b; ...) durch eine weitere, der dritten Einkoppelfläche (50a; 50b; ...) gegenüberliegend angeordnete Reflexionsfläche (48a; 48b; ...) derart begrenzt ist, sodass von der dritten Einkoppelfläche (50a; 50b; ...) kommendes und auf die weitere Reflexionsfläche (48a; 48b; ...) treffendes Licht so umlenkbar ist, dass es im Bereich einer weiteren Auskoppelfläche (52a; 52b; ...) des Lichtleitabschnitts (4a; 4b; ...) zur Erzeugung von Teilbereichen der Zwischenlichtverteilung (16) auskoppelbar ist.
  19. Ein Lichtmodul (105) einer Kraftfahrzeugbeleuchtungseinrichtung (101) umfassend die Primäroptikeinheit (2) nach einem der vorstehenden Ansprüche sowie eine Sekundäroptikeinheit (18), wobei die Sekundäroptikeinheit (18) die von der Primäroptikeinheit (2) abgestrahlte Zwischenlichtverteilung (16) in eine vom Lichtmodul (105) abgestrahlte Fernlichtlichtverteilung (20) umwandelt.
  20. Das Lichtmodul (105) nach dem Anspruch 19, wobei das Lichtmodul (105) eine weitere Primäroptikeinheit (24) umfasst, und wobei die Sekundäroptikeinheit (18) eine von der weiteren Primäroptikeinheit (24) abgestrahlte weitere Zwischenlichtverteilung (26) in eine vom Lichtmodul (105) abgestrahlte Abblendlichtverteilung (28) umwandelt.
EP18164117.6A 2017-04-11 2018-03-27 Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers Active EP3388734B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017107781.2A DE102017107781A1 (de) 2017-04-11 2017-04-11 Primäroptikeinheit für ein Lichtmodul

Publications (2)

Publication Number Publication Date
EP3388734A1 true EP3388734A1 (de) 2018-10-17
EP3388734B1 EP3388734B1 (de) 2022-03-16

Family

ID=61832269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18164117.6A Active EP3388734B1 (de) 2017-04-11 2018-03-27 Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers

Country Status (2)

Country Link
EP (1) EP3388734B1 (de)
DE (1) DE102017107781A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502547A1 (de) * 2017-12-25 2019-06-26 Panasonic Intellectual Property Management Co., Ltd. Fahrzeugscheinwerfer
WO2021185411A1 (de) * 2020-03-15 2021-09-23 Docter Optics Se Fahrzeugscheinwerfer
WO2022058225A1 (de) * 2020-09-18 2022-03-24 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für ein kfz-scheinwerfer
EP3861241B1 (de) * 2018-10-02 2023-01-11 Lumileds Holding B.V. Optisches element für beleuchtungsvorrichtung
EP4123217A1 (de) * 2021-07-20 2023-01-25 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019107825A1 (de) * 2019-03-27 2020-10-01 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für ein Kraftfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080043466A1 (en) * 2006-08-16 2008-02-21 Chakmakjian Stephen H Illumination devices
DE102009053581B3 (de) * 2009-10-05 2011-03-03 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
JP2012212507A (ja) * 2011-03-30 2012-11-01 Toyoda Gosei Co Ltd 照明装置
EP2865937A1 (de) * 2013-10-23 2015-04-29 Valeo Vision Beleuchtungsvorrichtung, die eine Lichtstrahlführung umfasst
DE102014102496A1 (de) * 2014-02-26 2015-08-27 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
DE102014205994A1 (de) * 2014-03-31 2015-10-01 Automotive Lighting Reutlingen Gmbh Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
US20160230949A1 (en) * 2015-02-05 2016-08-11 Valeo Vision Vehicle lighting device
CN106090783A (zh) * 2016-08-04 2016-11-09 上海小糸车灯有限公司 一种近光车灯模组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340751B2 (ja) * 2014-08-25 2018-06-13 スタンレー電気株式会社 レンズ体及び車両用灯具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080043466A1 (en) * 2006-08-16 2008-02-21 Chakmakjian Stephen H Illumination devices
DE102009053581B3 (de) * 2009-10-05 2011-03-03 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
JP2012212507A (ja) * 2011-03-30 2012-11-01 Toyoda Gosei Co Ltd 照明装置
EP2865937A1 (de) * 2013-10-23 2015-04-29 Valeo Vision Beleuchtungsvorrichtung, die eine Lichtstrahlführung umfasst
DE102014102496A1 (de) * 2014-02-26 2015-08-27 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
DE102014205994A1 (de) * 2014-03-31 2015-10-01 Automotive Lighting Reutlingen Gmbh Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
US20160230949A1 (en) * 2015-02-05 2016-08-11 Valeo Vision Vehicle lighting device
CN106090783A (zh) * 2016-08-04 2016-11-09 上海小糸车灯有限公司 一种近光车灯模组

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502547A1 (de) * 2017-12-25 2019-06-26 Panasonic Intellectual Property Management Co., Ltd. Fahrzeugscheinwerfer
US10753564B2 (en) 2017-12-25 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Vehicle headlamp
EP3861241B1 (de) * 2018-10-02 2023-01-11 Lumileds Holding B.V. Optisches element für beleuchtungsvorrichtung
WO2021185411A1 (de) * 2020-03-15 2021-09-23 Docter Optics Se Fahrzeugscheinwerfer
US11959608B2 (en) 2020-03-15 2024-04-16 Docter Optics Se Vehicle headlight
WO2022058225A1 (de) * 2020-09-18 2022-03-24 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für ein kfz-scheinwerfer
US11994264B2 (en) 2020-09-18 2024-05-28 HELLA GmbH & Co. KGaA Lighting device for a motor vehicle headlight with a first optical component and second optical system
EP4123217A1 (de) * 2021-07-20 2023-01-25 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer
WO2023001462A1 (de) * 2021-07-20 2023-01-26 Zkw Group Gmbh Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer

Also Published As

Publication number Publication date
DE102017107781A1 (de) 2018-10-11
EP3388734B1 (de) 2022-03-16

Similar Documents

Publication Publication Date Title
EP3388734B1 (de) Primäroptikeinheit für lichtmodul eines kfz-scheinwerfers
EP2910847B1 (de) Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul
EP3343091B1 (de) Lichtmodul für kraftfahrzeugscheinwerfer
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
DE102009053581B3 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2893249B1 (de) Leuchteinheit für einen scheinwerfer
EP2357398B1 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2587125B1 (de) Scheinwerferprojektionsmodul für ein Kraftfahrzeug
DE102010056313C5 (de) Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2730836B1 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs
DE102014205994B4 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
AT517524B1 (de) Laserbeleuchtungsvorrichtung für Fahrzeugscheinwerfer
EP3494343B1 (de) Kfz scheinwerfer
DE102009037698A1 (de) Fahrzeugbeleuchtungseinheit und Fahrzeugleuchte
EP2984396B1 (de) Leuchteinheit mit blende mit zumindest einem lichtfenster
AT512246A1 (de) Led-projektionsmodul und scheinwerfer mit modul
WO2011154470A1 (de) Vorsatzoptik aus transparentem material zum bündeln von licht, linsenarray mit mindestens einer solchen vorsatzoptik und lichtmodul mit einem solchen linsenarray
EP3699486B1 (de) Scheinwerfer mit einer mehrzahl von halbleiterlichtquellen und einem einstückigen primäroptikfeld
EP3803197A1 (de) Kraftfahrzeugscheinwerfer mit mindestens zwei lichtmodulen
EP3301350A1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2034235B1 (de) Scheinwerfer für Fahrzeuge
EP4202289B1 (de) Optiksystem für einen kraftfahrzeugscheinwerfer
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer
EP3070395A1 (de) Projektionslichtmodul für einen kraftfahrzeugscheinwerfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190408

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEGER, DANIEL

Inventor name: ROSENHAHN, ERNST-OLAF

Inventor name: BUERKER, CHRISTOPH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSENHAHN, ERNST-OLAF

Inventor name: RIEGER, DANIEL

Inventor name: BUERKER, CHRISTOPH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009076

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009076

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220616

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240222

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316