EP3385637B1 - Electrical hot water processing system - Google Patents

Electrical hot water processing system Download PDF

Info

Publication number
EP3385637B1
EP3385637B1 EP18165855.0A EP18165855A EP3385637B1 EP 3385637 B1 EP3385637 B1 EP 3385637B1 EP 18165855 A EP18165855 A EP 18165855A EP 3385637 B1 EP3385637 B1 EP 3385637B1
Authority
EP
European Patent Office
Prior art keywords
layer
heat transfer
transfer element
substrate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18165855.0A
Other languages
German (de)
French (fr)
Other versions
EP3385637A1 (en
Inventor
Alexander Janzen
Olaf Diederich
Michael Grobe
Ralf Stock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP3385637A1 publication Critical patent/EP3385637A1/en
Application granted granted Critical
Publication of EP3385637B1 publication Critical patent/EP3385637B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to an electric water heating system.
  • a tubular heating element of a tubular heating element heating system consists of a turned heating conductor wire, which is electrically insulated from the outer metallic jacket tube by an inorganic insulation compound.
  • the system has a high thermal mass and a relatively poor thermal conductivity. Because of this, it is sluggish and leads to considerable losses in the performance properties.
  • the pipe heating system is very susceptible to limescale. The advantage of the pipe heating system, on the other hand, is that it can be used worldwide in all water qualities. In addition, no drainage sections are required, which means that the flow pressure losses are low.
  • the bare wire heating system has clear advantages here.
  • the low mass of the heating wire, which lies directly in the medium flowing past, results in an excellent transient temperature behavior. This means that such a system can be controlled fully electronically without any problems.
  • the high surface load on the bare wire results in a significantly longer service life. This is based on the fact that the lime in the calcareous water is blasted off the bare wire due to the high surface loads.
  • a disadvantage of the bare wire heating system is the restriction to water quality with low electrical conductivity.
  • Another disadvantage is that the metallic heating conductor lies directly in the flowing water and, because of this, certain discharge sections must be provided before and after the bare wire.
  • U.S. 6,376,816 shows a heating system for a water heating system.
  • the heating system is tubular and has a substrate and an electrically conductive thin layer on the substrate as a heating element.
  • U.S. 6,037,574 shows a heating system for an electrical hot water preparation system, which is designed as a tube with a substrate and a heating element in the form of an electrical thin layer
  • the document DE 103 22 034 A1 shows a heating system with the features of the preamble of claim 1 or manufactured according to the features of the preamble of claim 6.
  • WO 2006/023979 A2 discloses a heating system in which an electrical heating layer and a dielectric layer are applied by thermal spraying.
  • the water heating system has a layered heat transfer element which has a substrate and a heating unit made of an electrical coating material.
  • the electrical coating material is arranged on the substrate.
  • the layer heat transfer element is designed as a double-walled heat transfer element and has an internal flow channel, an external flow channel, a thermally sprayed electrically conductive layer, a thermally sprayed electrically insulating layer, a substrate and an insulation unit.
  • an alternative heating for electrical flow heating is provided.
  • the findings in the field of coating technology to deposit defined functional layers on a polymeric, ceramic or even on a metallic carrier material are applied.
  • a thin electrical layer is provided on a substrate which has a relatively high ohmic resistance, so that the medium to be heated is heated by the Joule effect.
  • the heating system according to the invention is inexpensive to manufacture and efficient and reliable in operation.
  • the functional thin layers of the heating system are thermally stable, electrically conductive and electrically insulating from the medium to be heated.
  • the layer according to the invention is a thermally conductive and electrically insulating layer which protects the electrically conductive layer from corrosion, deposits (fouling) and erosion by particles in the medium to be heated.
  • the thermally conductive and electrically insulating layer has high thermal stability and high dielectric strength.
  • the layer has a high insulation strength so that no leakage currents occur in the flowing medium. With little or no leakage currents in the medium to be heated, the flow pressure losses and the structural volume could be reduced in a heating system, for example a flow heater.
  • an efficient substrate geometry of the layer is provided.
  • a suitable coating technology as well as an efficient arrangement of the multifunctional layers on the layer is also provided.
  • suitable contacting of the electrically conductive layers of the layer is provided. It is also proposed to convert the layer into a heating system for electrical hot water preparation.
  • the electrical water heating system described above can be used in a domestic appliance such as a water heater, a hot water storage tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation device, an air conditioner, a dehumidifier, a heat store, a natural stone heater, an underfloor heating system , direct heating or a radiator can be used.
  • a domestic appliance such as a water heater, a hot water storage tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation device, an air conditioner, a dehumidifier, a heat store, a natural stone heater, an underfloor heating system , direct heating or a radiator can be used.
  • the electrical water heating system can also be used in household appliances, such as coffee machines, Tumble dryers, laundry machines, dishwashers, cleaning machines, disinfecting machines or the like can be used.
  • the invention also relates to a method for producing an electrical hot water preparation system with the features of claim 6.
  • the double-walled heating element can be produced in an injection molding process.
  • electrical power components can be thermally sprayed.
  • an aluminum oxide layer is provided on the substrate and a titanium suboxide layer is provided on the first aluminum oxide layer, a further aluminum oxide layer being applied to the titanium suboxide layer.
  • Figures 1A to 1D each show a schematic representation of an electrical layer heat transfer element. As in the Figures 1A to 1D can be seen, four different configurations of the heat transfer element are shown.
  • Figure 1A is an annular or cylindrical heat transfer element
  • Figure 1B is a flat-shaped heat transfer element
  • Figure 1C is a spiral-shaped heat transfer element
  • Figure 1D a helical heat transfer element is shown.
  • the heat transfer element has a substrate 100 and a coating area 200.
  • Circular substrates can be coated on the outside as well as on the inside after a pretreatment of the surfaces. The coatings on the annular substrates can be applied over the entire area using appropriate masking or special etching processes.
  • the substrate 100 according to Figure 1A is configured in the shape of a circular ring and the coating area 200, ie the area in or on which the layer according to the invention is provided, is applied inside or outside.
  • the heat transfer element according to Figure 1B is configured flat and a coating area 200 is provided on the flat substrate 100.
  • the heat transfer element according to Figure 1C is at least partially designed in a spiral shape.
  • the substrate 100 has a first, for example flat end 110, a second, for example flat end 120, and a coating area 200 in between, the coating area being at least partially spiral-shaped.
  • a substrate 100 is provided with a flat first end, a flat second end and a coating area 200 in between, which is helical in shape.
  • the flat, spiral and helical substrates can in principle also be manufactured from all materials.
  • Thermoplastics polyamides and polyoxymethylene as well as the ceramic materials aluminum oxides and nitrites can be used as materials.
  • Fig. 2 shows a schematic representation of an electrical layer heat transfer element.
  • half-shells / insulation blocks or containers can also be coated.
  • the heat transfer element can be designed as two half-shells, it being possible for these half-shells to be coated at least partially on their inside in order to provide the heat transfer layers.
  • the heat transfer element 300 has an inlet 310, an outlet 320, at least one channel 330 between the inlet and outlet 310, 320 and coating areas 200 which extend along the channel 330.
  • Fig. 3 and 4th show a schematic representation of a layer structure of a flat electrical layer heat transfer element.
  • the production of the flat-shaped layer heat transfer elements begins with the complete cleaning in the surfactant wet bath.
  • a nickel-chromium alloy layer is then implemented over the entire surface, with a distance of 1 mm being maintained towards the edge.
  • the front side and the rear side of the flat-shaped aluminum oxide substrate 101 are provided with a mask so that the distance from the edge of 1 mm is maintained. This creates two areas that are electrically separated from one another. By separating the electrical heating conductor, the heating element can later use the two areas use either in series or in parallel.
  • the electrically insulating aluminum oxide layer is applied over the entire surface on both sides. Only a small recess at the two ends of the heating element is masked, at the point where the electrical contact will be made later.
  • a heat conductor layer 102 (nickel-chromium, indium-tin oxide, titanium nitrate) is applied to a flat substrate 101.
  • a first contact layer 100a made of copper can then be applied.
  • a second contact layer 100b for example likewise made of copper, can be provided.
  • An insulation layer 103 (for example aluminum oxide) can then be applied.
  • Contact layer bolts 100c for example made of copper, can then be provided at the ends.
  • a sealing bolt 100d with a groove for an O-ring can be provided.
  • an electrical contacting bolt 100e can be provided.
  • Fig. 5 shows a schematic representation of a layer structure of an annular or cylindrical electrical layer heat transfer element.
  • the annular electrical layer heat transfer element has a substrate 101, an insulation layer 102, a heat conductor layer 103, a heat conductor contact layer 103a and an insulation layer 104.
  • the substrate 101 can be made of aluminum oxide, borosilicate glass, or of copper.
  • the insulation layer 102 can be produced from silicon oxide, for example.
  • the heating conductor layer 103 can be made of nickel-chromium, indium-zinc oxide or, for example, titanium nitrate.
  • the heating conductor contact layer 103a can be made of copper, for example.
  • the second insulation layer 104 can be made of aluminum oxide, for example.
  • these layers can be used by thermal spraying, sputtering from physical vapor deposition.
  • thermal spraying and sputtering are used to coat aluminum oxide, copper and stainless steel pipes.
  • the Fig. 5 shows the layer structure of the circular heat transfer elements.
  • the annular layer heat transfer elements guide the medium to be heated inside the tube.
  • the electrical power is generated outside of the medium to be heated (water).
  • the great advantage of this is that the flow pressure losses are reduced.
  • the flat-shaped layer heat transfer elements ( Fig. 2 ) lie directly in the medium flowing past. The great advantage here is that the electrical power can be fed directly to the medium.
  • the thermal spraying in the form of atmospheric plasma spraying (APS), initially generates a defined sub-stochimetric titanium suboxide layer on the outside of the aluminum oxide tube 101.
  • This titanium suboxide layer with a specific resistance of 0.04 Ohmcm can serve as a heating conductor and generates an output of 500 W to 5000 W, depending on the layer thickness and length of the heating element.
  • the aluminum oxide tube can then be provided with an appropriate mask.
  • the masking can be constructed in such a way that recesses are provided for the contacting at the corresponding points.
  • Copper 103a can then be sprayed onto the contact points by means of high-speed flame spraying. The copper serves to improve the surface roughness and to minimize local hotspots.
  • the contact and transition resistances are later reduced with appropriate electrical contact with, for example, a clamp.
  • electrically conductive paints could also be used.
  • the manufacturing process is completed with the application of a final electrical insulation layer, which is also a thermal insulation layer.
  • An aluminum oxide layer is used for electrical insulation by means of the APS process.
  • an electrically insulating aluminum oxide layer is also applied in front of the titanium suboxide layer during thermal spraying.
  • the aim is to use the electrically insulating layer to create an electrical separation between copper and the titanium suboxide. This also creates electrical insulation between the medium to be heated and the heating conductor. All further process steps are similar to the structure and manufacture of the aluminum oxide tube described above.
  • sputtering In addition to coating the annular substrates, sputtering also offers the possibility of providing flat, spiral and helical substrates with a defined layer.
  • all substrates are cleaned and subjected to a plasma pretreatment before coating.
  • the copper and aluminum oxide tube provided with multifunctional layers.
  • a nickel-chromium alloy is used as the heating conductor material during sputtering.
  • the nickel-chromium alloy has a specific resistance of approx. 0.000112 Ohmcm. This enables outputs in the range from 500 W to 2500 W to be achieved.
  • an aluminum oxide layer is used up beforehand using reactive sputtering, ie in this case a reactive gas (oxygen, nitrogen) is also integrated into the process.
  • a mask is applied in order to deposit a copper layer on the outer areas for subsequent contacting. After the partial copper layer has been applied, an aluminum oxide layer is applied as a protective layer for electrical and thermal insulation.
  • Fig. 6 shows a schematic sectional view of a hydraulic seal and an electrical contact of a flat-shaped heat transfer element.
  • a solderable copper layer for sealing the hydraulic sealing bolt is provided at one end of the layered heat transfer element, the hydraulic sealing bolt 3 being provided at the end.
  • outer circumferential electrically insulating layers made of aluminum oxide are present.
  • an electrical contact pin 2, for example made of brass, is provided.
  • Recesses for soldering between the copper contact-making layer and the electrical contact bolt 2 can be provided on the substrate of the heat transfer element.
  • a flat-shaped layer heat transfer element 8a is also shown.
  • the flat-shaped layer heat transfer element 8a has a solderable copper layer 8c for sealing the hydraulic sealing bolt 3.
  • there is an outer circumferential electrically insulating layer 8d for example made of aluminum oxide. Recesses 8e for soldering between the copper contact-making layer and the bolts can be provided in the substrate.
  • Fig. 7 shows a schematic sectional view of a double-walled layer heat transfer element according to an embodiment of the invention.
  • the double-walled layer transmission element 1060 has a copper substrate 1020, a thin outer pipe 1030, an inner flow channel 1040, an outer flow channel 1050, an insulation block 1060, an electrically insulating polymer or ceramic bolt 1070, a thermally sprayed electrically insulating layer (or a electrically insulating sealing compound) 1080, a thermally sprayed electrically conductive TiO x layer 1090 and optionally a stamped grid 1091 fixed around the circumference, which is then thermally sprayed or thermally compressed.
  • the electrical contact is made in the case of the annular layer heat transfer elements via clamps or molded leadframe components ( Fig. 7 ) or via one or more bolts ( Fig. 6 ) realized in the flat-shaped layer heat transfer elements.
  • a double-walled layer heat transfer element is presented.
  • the lead frame components can be applied to an electrically insulating layer. Then positioned accordingly and sprayed with a further electrical insulation layer by thermal spraying or compacted with magnesium oxide powder.
  • the consideration of such a double-walled heating element could also offer the possibility of spraying the electronic power components such as triacs and thus minimizing the previous effort in electrical connection technology.
  • a double-walled heat transfer element has a substrate 1020 (for example made of copper) with an inner flow channel 1040 and an outer flow channel 1050.
  • the outer flow channel 1050 can optionally be delimited by an insulation block 1060.
  • the heat transfer element also has a thermally sprayed electrically conductive layer 1090 and a thermally sprayed electrically insulating layer 1080.
  • An electrically insulating layer is optionally present between the electrically conductive layer 1090 and the water in the inner or outer flow channel 1040, 1050, so that the electrically conductive layer is not in direct contact with the water. This means that discharge lines can be dispensed with.
  • FIGS. 8 to 10 each show a schematic representation of a heating unit for a double-walled layer heat transfer element according to an exemplary embodiment of the invention.
  • Fig. 8 shows a schematic representation of a heating unit for a double-walled layer heat transfer element according to an embodiment of the invention.
  • the heating unit 2000 has a printed circuit board 2100 for contacting the heating elements, an upper flange 2200, an upper intermediate flange 2300, a heater 1000, an insulating body 2400, a lower intermediate flange 2500 and a lower flange 2600.
  • a heating system is shown, which enables the layer heat transfer elements to be implemented in the area of electrical hot water preparation.
  • the designed double-walled layer heat transfer elements have a basic layer structure like this one in Fig. 5 has been described for thermally sprayed heating elements.
  • the double-walled heat transfer element is characterized by the accommodation of the molded lead frame components for electrical contacting.
  • the punched grid components are thermally sprayed with an electrically insulating layer or compacted with an electrically insulating powder.
  • a further process step takes place with the double-walled layer heat transfer element. After the insulation layer has been applied, a thin copper or stainless steel pipe is pulled over the prepared heating element while it is warm. As a result of the subsequent cooling, this tube forges itself around the heating element.
  • the main advantage of the double-walled layer heat transfer elements is based on the fact that the fluid flows around both sides along the heat transfer surface.
  • the flow around both sides as shown in Fig. 7 is shown, reduces the surface temperatures and thus promotes the calcification resistance while at the same time effective heat transfer.
  • the layered heat transfer system 1000 has a substrate 1020, an insulation layer 1070, a heating conductor layer 1090, a second insulation layer 104, optionally a stamped grid 1091, an insulation layer 1080, an electrically insulating bolt 1070, an insulating body 1060.
  • an upper flange 2200 and an upper intermediate flange 2300 can be provided.
  • Fig. 10 shows a schematic representation of a hydraulic seal of the layer heat transfer element in a heating block. Furthermore, the heating is characterized by a two-stage hydraulic seal, as shown in Fig. 14 is shown. On the one hand, a seal with O-rings 2310 is implemented between the insulating body 2400 and the upper intermediate flange 2300 and, on the other hand, a profile seal 2210 is used at the interface between the upper intermediate flange 2300 and the upper flange 2200. This provides the prerequisites for implementing the flow around the double-walled layer heat transfer elements on both sides.
  • the advantages of the invention are lower pressure losses compared to the bare wire heating system.
  • the electrical layer heat transfer elements can be compared to the Bare wire heating systems can be used anywhere without restricting the water quality. Compared to the bare wire heating system, the electrical layer heat transfer elements can do without upstream and downstream sections and thus require a smaller overall volume. Compared to tubular heating elements, faster heating and cooling times can be achieved. Compared to tubular heating elements, there is greater resistance to deposits (CaCO 3 , CaSO 4 , Mg (OH) 2 ) and air bubbles.
  • the layer heat transfer elements according to the invention can be used in all hot water heaters, such as: instantaneous water heaters, hot water storage tanks, boiling water devices, hot water machines, hand dryers, heat pumps, ventilation devices, air conditioners, dehumidifiers, heat storage devices, natural stone heating, surface heating / underfloor heating, direct heaters, bathroom radiators, coffee machines, tumble dryers, Washing machines, dishwashers / dishwashers, cleaning machines / devices, disinfection machines / devices.
  • hot water heaters such as: instantaneous water heaters, hot water storage tanks, boiling water devices, hot water machines, hand dryers, heat pumps, ventilation devices, air conditioners, dehumidifiers, heat storage devices, natural stone heating, surface heating / underfloor heating, direct heaters, bathroom radiators, coffee machines, tumble dryers, Washing machines, dishwashers / dishwashers, cleaning machines / devices, disinfection machines / devices.
  • FIG 11A and 11B each show a schematic representation of a layered heat transfer element according to the invention.
  • the heat transfer element 1000 has a tube 1020 on which a thermally sprayed electrically insulating layer 1080 and a thermally sprayed electrically conductive layer 1090 are applied.
  • the electrically conductive layer 1090 then forms the core of the electrical heating element.
  • the heating element can furthermore have an outer tube 1030 and be placed in a further tube, so that water can flow both through an inner flow channel 1040 and through an outer flow channel 1050 and is heated by the heating element as it flows through the tube.
  • heating element is shown without the outer tube.
  • the heating element also has an electrical connection bolt 1092 and an electrically insulating sleeve 1093.
  • Figure 12A and 12B each show a schematic sectional illustration of a layered heat transfer element according to an aspect of the present invention.
  • the layer heat transfer element has a tube or cylindrical substrate 1020, thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090.
  • the electrically conductive layer 1090 can be contacted via the electrically conductive bolts 1092.
  • the sleeves 1093 are designed to be electrically insulating.
  • FIG. 8 shows an enlarged section of the heat transfer element from FIG Figure 12A .
  • FIG 13A shows a schematic representation of a flow heater and Figure 13B shows a schematic sectional view of the flow heater.
  • the flow heater has a layered heat transfer element according to the invention, the layered heat transfer element being incorporated directly during the injection molding.
  • the heating element 1000 is thus overmolded with plastic.
  • the heating element is then integrated directly into the injection molding.
  • Fig. 14 shows a schematic sectional view of a heat transfer element according to a further embodiment.
  • the heat transfer element has a tubular substrate 1040 with thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090.
  • the electrically conductive layer 1090 can be contacted via the electrically conductive bolt 1092.
  • a bare wire heating system 1094 can be integrated in order to support the heating output of the layer element.
  • a double-walled heat transfer element with a heating conductor made from a bare heating conductor wire is provided.
  • An inner tube of the double-walled heat transfer element can be designed as a copper tube or as an SS tube.
  • a thermally sprayed insulating layer can be provided on the inner tube.
  • a heating wire (for example NiCr 8020) can be wound over the thermally insulating layer.
  • An electrically insulating layer can then be thermally sprayed. After the thermally sprayed layers have been applied, an after-treatment of the layer can take place, whereby tips of the upper insulating layer, which have arisen due to the roughness of the treatment, can be ground off. An outer tube can then be pulled over.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Description

Die vorliegende Erfindung betrifft ein elektrisches Warmwasseraufbereitungssystem.The present invention relates to an electric water heating system.

Kommerzielle Heizsysteme für die elektrische Warmwasseraufbereitung, wie z.B. in Warmwasserspeichern oder auch in Durchlauferhitzern, basieren auf Rohrheizkörper-Heizsystemen oder Blankdraht-Heizsystemen. Beide Systeme erzeugen joulesche Wärme durch elektrische Energie, die durch einen ohmschen Widerstand fließt. Diese Energie wird durch Wärmeübertragung an das zu erhitzende Medium übergeben.Commercial heating systems for electrical hot water preparation, e.g. in hot water storage tanks or in instantaneous water heaters, are based on tubular radiator heating systems or bare wire heating systems. Both systems generate Joule heat using electrical energy that flows through an ohmic resistor. This energy is transferred to the medium to be heated by heat transfer.

Ein Rohrheizkörper eines Rohrheizkörper-Heizsystem besteht aus einem gewendeten Heizleiterdraht, wobei dieser durch eine anorganische Isolationsmasse von dem äußeren metallischen Mantelrohr elektrisch isoliert ist. Dadurch hat das System eine hohe thermische Masse und eine relativ schlechte Wärmeleitfähigkeit. Aufgrund dessen ist es träge und führt zu erheblichen Einbußen in den Gebrauchseigenschaften. Weiterhin ist das Rohrheizsystem stark verkalkungsanfällig. Der Vorteil des Rohrheizsystems hingegen stellt die weltweite Verwendung in allen Wasserqualitäten dar. Außerdem werden keine Ableitstrecken benötigt und somit sind die Fließdruckverluste gering.A tubular heating element of a tubular heating element heating system consists of a turned heating conductor wire, which is electrically insulated from the outer metallic jacket tube by an inorganic insulation compound. As a result, the system has a high thermal mass and a relatively poor thermal conductivity. Because of this, it is sluggish and leads to considerable losses in the performance properties. Furthermore, the pipe heating system is very susceptible to limescale. The advantage of the pipe heating system, on the other hand, is that it can be used worldwide in all water qualities. In addition, no drainage sections are required, which means that the flow pressure losses are low.

Das Blankdraht-Heizsystem hat hierbei deutliche Vorteile. Durch die geringe Masse des Heizdrahtes, welches direkt im vorbeifließenden Medium liegt, ergibt sich ein hervorragendes instationäres Temperaturverhalten. Dadurch kann ein solches System problemlos vollelektronisch geregelt werden. Weiterhin ergibt sich durch die hohe Oberflächenbelastung am Blankdraht eine deutlich höhere Lebensdauer. Diese beruht darauf, dass im kalkhaltigen Wasser der Kalk durch die hohen Oberflächenbelastungen vom Blankdraht abgesprengt wird. Ein Nachteil des Blankdraht-Heizsystems ist die Beschränkung auf Wasserqualitäten mit geringer elektrischer Leitfähigkeit. Ein weiterer Nachteil liegt darin, dass der metallische Heizleiter direkt im fließenden Wasser liegt und aufgrund dessen gewisser Ableitstrecken vor und nach dem Blankdraht vorgesehen werden müssen.The bare wire heating system has clear advantages here. The low mass of the heating wire, which lies directly in the medium flowing past, results in an excellent transient temperature behavior. This means that such a system can be controlled fully electronically without any problems. Furthermore, the high surface load on the bare wire results in a significantly longer service life. This is based on the fact that the lime in the calcareous water is blasted off the bare wire due to the high surface loads. A disadvantage of the bare wire heating system is the restriction to water quality with low electrical conductivity. Another disadvantage is that the metallic heating conductor lies directly in the flowing water and, because of this, certain discharge sections must be provided before and after the bare wire.

Diese dünnen und langen Ableitstrecken führen zu relativ hohen Fließdruckverlusten und können in Gebäuden mit einem geringen Wassernetzdruck zu Problemen führen.These thin and long drainage sections lead to relatively high flow pressure losses and can lead to problems in buildings with a low water network pressure.

US 6,376,816 zeigt ein Heizsystem für ein Warmwasseraufbereitungssystem. Das Heizsystem ist rohrförmig ausgestaltet und weist ein Substrat sowie eine elektrisch leitfähige Dünnschicht auf dem Substrat als Heizelement auf. U.S. 6,376,816 shows a heating system for a water heating system. The heating system is tubular and has a substrate and an electrically conductive thin layer on the substrate as a heating element.

US 6,037,574 zeigt ein Heizsystem für ein elektrisches Warmwasseraufbereitungssystem, welches als Rohr mit einem Substrat und einem Heizelement in Form einer elektrischen Dünnschicht ausgestaltet ist U.S. 6,037,574 shows a heating system for an electrical hot water preparation system, which is designed as a tube with a substrate and a heating element in the form of an electrical thin layer

Das Dokument DE 103 22 034 A1 zeigt ein Heizsystem mit den Merkmalen des Oberbegriffs des Anspruchs 1 bzw. hergestellt nach den Merkmalen des Oberbegriffs des Anspruchs 6.The document DE 103 22 034 A1 shows a heating system with the features of the preamble of claim 1 or manufactured according to the features of the preamble of claim 6.

Dokument WO 2006/023979 A2 offenbart ein Heizsystem, bei dem eine elektrische Heizschicht und eine dielektrische Schicht durch thermisches Spritzen aufgebracht sind.document WO 2006/023979 A2 discloses a heating system in which an electrical heating layer and a dielectric layer are applied by thermal spraying.

Es ist daher eine Aufgabe der Erfindung hinsichtlich dieser Nachteile ein alternatives elektrisches Warmwasseraufbereitungssystem und ein Heizsystem zu entwickeln, welche die Vorteile der konventionellen und bewährten Heizsysteme beibehalten und somit zuverlässig, effizient und wirtschaftlich für den Endverbraucher sind.It is therefore an object of the invention with regard to these disadvantages to develop an alternative electrical hot water preparation system and a heating system which retain the advantages of the conventional and proven heating systems and are thus reliable, efficient and economical for the end user.

Diese Aufgabe wird durch ein elektrisches Warmwasseraufbereitungssystem nach Anspruch 1 gelöst.This object is achieved by an electrical hot water preparation system according to claim 1.

Diese Aufgabe wird durch ein elektrisches Warmwasseraufbereitungssystem gelöst. Das Warmwasseraufbereitungssystem weist ein Schicht-Wärmeübertragungselement auf, welches ein Substrat und eine Heizeinheit aus einem elektrischen Beschichtungsmaterial aufweist. Das elektrische Beschichtungsmaterial ist auf dem Substrat angeordnet. Das Schicht-Wärmeübertragungselement ist als ein doppelwandiges Wärmeübertragungselement ausgestaltet und weist einen innenführenden Strömungskanal, einen außenführenden Strömungskanal, eine thermisch gespritzte elektrisch leitende Schicht, eine thermisch gespritzte elektrisch isolierende Schicht, ein Substrat und eine Isolationseinheit auf.This task is solved by an electric water heating system. The water heating system has a layered heat transfer element which has a substrate and a heating unit made of an electrical coating material. The electrical coating material is arranged on the substrate. The layer heat transfer element is designed as a double-walled heat transfer element and has an internal flow channel, an external flow channel, a thermally sprayed electrically conductive layer, a thermally sprayed electrically insulating layer, a substrate and an insulation unit.

Gemäß der Erfindung wird eine alternative Beheizung für die elektrische Durchflusserwärmung vorgesehen. Dazu werden die Erkenntnisse auf dem Gebiet der Beschichtungstechnologie, definierte funktionale Schichten auf einem polymerischen, keramischen oder auch auf einem metallischen Trägermaterial abzuscheiden, angewendet. Gemäß der Erfindung wird eine dünne elektrische Schicht auf einem Substrat vorgesehen, welche einen relativ hohen ohmschen Widerstand aufweist, so dass das zu erwärmende Medium durch den jouleschen Effekt erwärmt wird.According to the invention, an alternative heating for electrical flow heating is provided. For this purpose, the findings in the field of coating technology to deposit defined functional layers on a polymeric, ceramic or even on a metallic carrier material are applied. According to the invention, a thin electrical layer is provided on a substrate which has a relatively high ohmic resistance, so that the medium to be heated is heated by the Joule effect.

Das erfindungsgemäße Heizsystem ist in der Herstellung kostengünstig und im Betrieb effizient und zuverlässig. Die funktionalen dünnen Schichten des Heizsystems sind thermisch stabil, elektrisch leitfähig und gegenüber dem zu erwärmenden Medium elektrisch isolierend. Die erfindungsgemäße Schicht ist eine wärmeleitfähige und elektrisch isolierende Schicht, welche die elektrisch leitfähige Schicht vor Korrosion, Ablagerungen (Fouling) und der Abtragung durch Partikel im zu erwärmenden Medium schützt. Die wärmeleitfähige und elektrisch isolierende Schicht weist eine hohe thermische Stabilität und eine hohe Durchschlagsfestigkeit auf.The heating system according to the invention is inexpensive to manufacture and efficient and reliable in operation. The functional thin layers of the heating system are thermally stable, electrically conductive and electrically insulating from the medium to be heated. The layer according to the invention is a thermally conductive and electrically insulating layer which protects the electrically conductive layer from corrosion, deposits (fouling) and erosion by particles in the medium to be heated. The thermally conductive and electrically insulating layer has high thermal stability and high dielectric strength.

Die Schicht weist eine hohe Isolationsfestigkeit auf, so dass keine Ableilströme im strömenden Medium auftreten. Durch geringe bzw. keine Ableitströme im zu erwärmenden Medium könnten in einer Beheizung, beispielweise eines Durchlauferhitzers, die Fließdruckverluste und das Bauvolumen reduziert werden.The layer has a high insulation strength so that no leakage currents occur in the flowing medium. With little or no leakage currents in the medium to be heated, the flow pressure losses and the structural volume could be reduced in a heating system, for example a flow heater.

Da es sich um dünne funktionale Schichten handelt, die durch definierte Leistungsansteuerung die gewünschten Temperaturen in dem durchströmenden Medium erzeugen, entstehen an den Schichten sehr hohe Temperaturen. Damit die hohen lokalen Schichttemperaturen die polymerischen oder auch keramischen Trägermaterialien nicht beschädigen, muss die elektrische Leistung gezielt an das durchströmende Medium abgegeben werden. Die konstruktive Gestaltung ist hierbei so realisiert, dass es zu einer großen Wärmeübertragungsfläche zwischen den dünnen Schichten und dem vorbeiströmenden Medium kommt.Since these are thin functional layers that generate the desired temperatures in the medium flowing through through defined power control, very high temperatures arise at the layers. So that the high local layer temperatures do not damage the polymeric or ceramic carrier materials, the electrical power has to be given off in a targeted manner to the medium flowing through. The structural design is implemented in such a way that there is a large heat transfer surface between the thin layers and the medium flowing past.

Gemäß der Erfindung wird eine effiziente Substratgeometrie der Schicht vorgesehen. Eine geeignete Beschichtungstechnologie, sowie eine effiziente Anordnung der multifunktionalen Schichten auf der Schicht wird ebenfalls vorgesehen. Ferner wird eine geeignete Kontaktierung der elektrisch leitenden Schichten der Schicht vorgesehen. Und eine Umsetzung der Schicht in ein Heizsystem für die elektrische Warmwasseraufbereitung wird vorgeschlagen.According to the invention, an efficient substrate geometry of the layer is provided. A suitable coating technology as well as an efficient arrangement of the multifunctional layers on the layer is also provided. In addition, suitable contacting of the electrically conductive layers of the layer is provided. It is also proposed to convert the layer into a heating system for electrical hot water preparation.

Gemäß der Erfindung kann das oben beschriebene elektrische Warmwasseraufbereitungssystem in einem Haustechnikgerät wie bspw. einem Durchlauferhitzer, einem Warmwasserspeicher, einem Kochendwassergerät, einem Heißwasserautomaten, einem Händetrockner, einer Wärmepumpe, einem Lüftungsgerät, einem Klimagerät, einem Luftentfeuchter, einem Wärmespeicher, einer Natursteinheizung, einer Fußbodenheizung, einer Direktheizung oder einem Heizkörper verwendet werden. Das elektrische Warmwasseraufbereitungssystem kann ebenfalls in Haushaltsgeräten, wie bspw. Kaffeemaschinen, Wäschetrocknern, Wäschemaschinen, Geschirrspülern, Reinigungsautomaten, Desinfektionsautomaten oder dergleichen verwendet werden.According to the invention, the electrical water heating system described above can be used in a domestic appliance such as a water heater, a hot water storage tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation device, an air conditioner, a dehumidifier, a heat store, a natural stone heater, an underfloor heating system , direct heating or a radiator can be used. The electrical water heating system can also be used in household appliances, such as coffee machines, Tumble dryers, laundry machines, dishwashers, cleaning machines, disinfecting machines or the like can be used.

Die Erfindung betrifft ebenfalls ein Verfahren zum Herstellen eines elektrischen Warmwasseraufbereitungssystems mit den Merkmalen des Anspruchs 6.The invention also relates to a method for producing an electrical hot water preparation system with the features of claim 6.

Gemäß einem Aspekt der vorliegenden Erfindung kann das doppelwandige Heizelement in einem Spritzgussverfahren hergestellt werden.According to one aspect of the present invention, the double-walled heating element can be produced in an injection molding process.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung können elektrische Leistungsbauteile thermisch verspritzt werden.According to a further aspect of the present invention, electrical power components can be thermally sprayed.

Gemäß der Erfindung ist eine Aluminiumoxid-Schicht auf dem Substrat vorgesehen und eine Titansuboxid-Schicht ist auf der ersten Aluminiumoxid-Schicht vorgesehen wobei eine weitere Aluminiumoxid-Schicht auf der Titansuboxid-Schicht aufgebracht ist.According to the invention, an aluminum oxide layer is provided on the substrate and a titanium suboxide layer is provided on the first aluminum oxide layer, a further aluminum oxide layer being applied to the titanium suboxide layer.

Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Further refinements of the invention are the subject of the subclaims.

Vorteile und Ausführungsbespiele der Erfindung werden nachstehend unter Bezugnahme auf die Zeichnung näher erläutert.

Fig. 1A bis 1D
zeigen jeweils eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes,
Fig. 2
zeigt eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes
Fig 3 und 4
zeigen jeweils eine schematische Darstellung eines Schichtaufbaus eines flächigen elektrischen Schicht-Wärmeübertragungselementes,
Fig. 5
zeigt eine schematische Darstellung eines Schichtaufbaus eines kreisringförmigen elektrischen Schicht-Wärmeübertragungselementes,
Fig. 6
zeigt eine schematische Schnittansicht einer hydraulischen Abdichtung und einer elektrischen Kontaktierung eines flachförmigen Wärmeübertragungselementes,
Fig. 7
zeigt eine schematische Schnittansicht eines doppelwandigen Schicht-Wärmeübertragungselementes gemäß einem Ausführungsbeispiel der Erfindung,
Fig. 8 - 10
zeigen jeweils eine schematische Darstellung einer Heizeinheit für ein doppelwandiges Schicht-Wärmeübertragungselementes,
Fig. 11A und 11B
zeigen jeweils eine schematische Darstellung eines SchichtWärmeübertragungselementes gemäß der Erfindung,
Fig. 12A und 12B
zeigen jeweils eine schematische Schnittdarstellung eines Schicht- Wärmeübertragungselementes gemäß einem Aspekt der vorliegenden Erfindung,
Fig. 13A
zeigt eine schematische Darstellung eines Durchlauferhitzers,
Fig. 13B
zeigt eine schematische Schnittansicht des Durchlauferhitzers, und
Fig. 14
zeigt eine schematische Schnittansicht eines Wärmeübertragungselementes gemäß einem weiteren Ausführungsbeispiel.
Advantages and exemplary embodiments of the invention are explained in more detail below with reference to the drawing.
Figures 1A to 1D
each show a schematic representation of an electrical layer heat transfer element,
Fig. 2
shows a schematic representation of an electrical layer heat transfer element
Figures 3 and 4
each show a schematic representation of a layer structure of a flat electrical layer heat transfer element,
Fig. 5
shows a schematic representation of a layer structure of an annular electrical layer heat transfer element,
Fig. 6
shows a schematic sectional view of a hydraulic seal and an electrical contact of a flat-shaped heat transfer element,
Fig. 7
shows a schematic sectional view of a double-walled layer heat transfer element according to an embodiment of the invention,
Figures 8-10
each show a schematic representation of a heating unit for a double-walled layer heat transfer element,
Figures 11A and 11B
each show a schematic representation of a layer heat transfer element according to the invention,
Figures 12A and 12B
each show a schematic sectional illustration of a layer heat transfer element according to one aspect of the present invention,
Figure 13A
shows a schematic representation of a flow heater,
Figure 13B
shows a schematic sectional view of the flow heater, and
Fig. 14
shows a schematic sectional view of a heat transfer element according to a further embodiment.

Fig. 1A bis 1D zeigen jeweils eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes. Wie in den Fig. 1A bis 1D zu sehen, sind vier unterschiedliche Ausgestaltungen des Wärmeübertragungselementes gezeigt. In Fig. 1A ist ein kreisringförmiges bzw. zylindrisches Wärmeübertragungselement, in Fig. 1B ist ein flachförmiges Wärmeübertragungselement, in Fig. 1C ist ein spiralförmiges Wärmeüber tragungselement und in Fig. 1D ist ein helixförmiges Wärmeübertragungselement gezeigt. Diese vier Substrate sind aus der Sicht der Wärmeübertragung, der Beschichtbarkeit, sowie einer rationalen Fertigbarkeit vorteilhaft. Das Wärmeübertragungselement weist ein Substrat 100 und einen Beschichtungsbereich 200 auf. Die kreisringförmigen Substrate gemäß Fig. 1 können aus metallischen Werkstoffen, wie Edelstahl, Aluminium, Kupfer, sowie aus keramischen Werkstoffen aus Aluminiumoxid, Aluminiumnitrit oder vergleichbaren Werkstoffen wie Siliziumoxid (Quarz) als auch verschiedenen Borsilikatgläsern bestehen. Kreisförmige Substrate lassen sich nach einer Vorbehandlung der Oberflächen außen als auch innen beschichten. Die Beschichtungen auf den kreisringförmigen Substraten können über entsprechende Maskierungen oder speziellen Ätzverfahren vollflächig aufgebracht werden. Figures 1A to 1D each show a schematic representation of an electrical layer heat transfer element. As in the Figures 1A to 1D can be seen, four different configurations of the heat transfer element are shown. In Figure 1A is an annular or cylindrical heat transfer element, in Figure 1B is a flat-shaped heat transfer element, in Figure 1C is a spiral-shaped heat transfer element and in Figure 1D a helical heat transfer element is shown. These four substrates are advantageous from the point of view of heat transfer, coatability and rational manufacturability. The heat transfer element has a substrate 100 and a coating area 200. The annular substrates according to Fig. 1 can consist of metallic materials such as stainless steel, aluminum, copper, as well as ceramic materials made of aluminum oxide, aluminum nitrite or comparable materials such as silicon oxide (quartz) as well as various borosilicate glasses. Circular substrates can be coated on the outside as well as on the inside after a pretreatment of the surfaces. The coatings on the annular substrates can be applied over the entire area using appropriate masking or special etching processes.

Das Substrat 100 gemäß Fig. 1A ist kreisringförmig ausgestaltet und der Beschichtungsbereich 200, d. h. der Bereich in oder an welchem die erfindungsgemäße Schicht vorgesehen ist, ist innen oder außen aufgetragen. Das Wärmeübertragungselement gemäß Fig. 1B ist flachförmig ausgestaltet und ein Beschichtungsbereich 200 ist auf dem flachförmigen Substrat 100 vorgesehen. Das Wärmeübertragungselement gemäß Fig. 1C ist zumindest teilweise spiralförmig ausgestaltet. Das Substrat 100 weist ein erstes, beispielsweise flaches Ende 110, ein zweites, beispielsweise flaches Ende 120, sowie einen Beschichtungsbereich 200 dazwischen auf, wobei der Beschichtungsbereich zumindest teilweise spiralförmig ausgestaltet ist. Bei dem Wärmeübertragungselement gemäß Fig. 1D ist ein Substrat 100 mit einem flachen ersten Ende, einem flachen zweiten Ende sowie einem Beschichtungsbereich 200 dazwischen vorgesehen, welcher helixförmig ausgestaltet ist.The substrate 100 according to Figure 1A is configured in the shape of a circular ring and the coating area 200, ie the area in or on which the layer according to the invention is provided, is applied inside or outside. The heat transfer element according to Figure 1B is configured flat and a coating area 200 is provided on the flat substrate 100. The heat transfer element according to Figure 1C is at least partially designed in a spiral shape. The substrate 100 has a first, for example flat end 110, a second, for example flat end 120, and a coating area 200 in between, the coating area being at least partially spiral-shaped. In the heat transfer element according to Figure 1D For example, a substrate 100 is provided with a flat first end, a flat second end and a coating area 200 in between, which is helical in shape.

Die flach-, spiral- als auch die helixförmigen Substrate können im Prinzip auch aus allen Werkstoffen gefertigt werden. Als Werkstoffe können thermoplastische Kunststoffe Polyamide und Polyoxymethylene als auch die keramischen Werkstoffe Aluminiumoxide und -nitrite verwendet werden.The flat, spiral and helical substrates can in principle also be manufactured from all materials. Thermoplastics polyamides and polyoxymethylene as well as the ceramic materials aluminum oxides and nitrites can be used as materials.

Fig. 2 zeigt eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes. Neben der Beschichtung von einzelnen Substraten können auch Halbschalen/Isolierungsblöcke oder Behälter beschichtet werden. Das Wärmeübertragungselement kann als zwei Halbschalen ausgestaltet werden, wobei diese Halbschalen zumindest teilweise an ihrer Innenseite beschichtet sein können, um die Wärmeübertragungsschichten vorzusehen. Das Wärmeübertragungselement 300 weist einen Einlauf 310, einen Auslauf 320, mindestens einen Kanal 330 zwischen dem Ein- und Auslauf 310, 320 sowie Beschichtungsbereiche 200 auf, welche sich entlang des Kanals 330 erstrecken. Fig. 2 shows a schematic representation of an electrical layer heat transfer element. In addition to the coating of individual substrates, half-shells / insulation blocks or containers can also be coated. The heat transfer element can be designed as two half-shells, it being possible for these half-shells to be coated at least partially on their inside in order to provide the heat transfer layers. The heat transfer element 300 has an inlet 310, an outlet 320, at least one channel 330 between the inlet and outlet 310, 320 and coating areas 200 which extend along the channel 330.

Fig. 3 und 4 zeigen eine schematische Darstellung eines Schichtaufbaus eines flächigen elektrischen Schicht-Wärmeübertragungsetementes. Die Herstellung der flachförmigen Schicht- Wärmeübertragungselemente beginnt mit der vollständigen Reinigung im tensidischen Nassbad. Danach wird vollflächig eine Nickel-Chromlegierungsschicht -, wobei zum Rand hin ein Abstand von einem 1 mm eingehalten wird, realisiert. Weiterhin werden die Vorderseite und die Rückseite des flachförmigen Aluminiumoxidsubstrates 101 mit einer Maskierung versehen, damit der Abstand zur Berandung von 1 mm eingehalten wird. Dadurch werden zwei elektrisch voneinander getrennte Bereiche erzeugt. Durch die Trennung des elektrischen Heizleiters kann das Heizelement später die beiden Bereiche entweder in Reihe oder Parallel nutzen. Die elektrisch isolierende Aluminiumoxidschicht wird vollflächig auf beiden Seiten aufgebracht. Es wird ausschließlich eine kleine Aussparung an den beiden Enden des Heizelementes maskiert, an der Stelle, wo später die elektrische Kontaktierung angebracht wird. Fig. 3 and 4th show a schematic representation of a layer structure of a flat electrical layer heat transfer element. The production of the flat-shaped layer heat transfer elements begins with the complete cleaning in the surfactant wet bath. A nickel-chromium alloy layer is then implemented over the entire surface, with a distance of 1 mm being maintained towards the edge. Furthermore, the front side and the rear side of the flat-shaped aluminum oxide substrate 101 are provided with a mask so that the distance from the edge of 1 mm is maintained. This creates two areas that are electrically separated from one another. By separating the electrical heating conductor, the heating element can later use the two areas use either in series or in parallel. The electrically insulating aluminum oxide layer is applied over the entire surface on both sides. Only a small recess at the two ends of the heating element is masked, at the point where the electrical contact will be made later.

Auf einem flachförmigen Substrat 101 wird eine Heizleiterschicht 102 (Nickel-Chrom, Indium-Zinnoxid, Titannitrat) aufgebracht. Anschließend kann eine erste Kontaktschicht 100a aus Kupfer aufgebracht werden. Danach kann eine zweite Kontaktschicht 100b, beispielsweise ebenfalls aus Kupfer, vorgesehen sein. Anschließend kann eine Isolationsschicht 103 (beispielsweise Aluminiumoxid) aufgebracht werden. Dann können Kontaktschichtbolzen 100c, beispielsweise aus Kupfer, an den Enden vorgesehen werden. Ein Dichtbolzen 100d mit Nut für einen O-Ring kann vorgesehen werden. Schließlich kann ein elektrischer Kontaktierungsbolzen 100e vorgesehen sein.A heat conductor layer 102 (nickel-chromium, indium-tin oxide, titanium nitrate) is applied to a flat substrate 101. A first contact layer 100a made of copper can then be applied. Thereafter, a second contact layer 100b, for example likewise made of copper, can be provided. An insulation layer 103 (for example aluminum oxide) can then be applied. Contact layer bolts 100c, for example made of copper, can then be provided at the ends. A sealing bolt 100d with a groove for an O-ring can be provided. Finally, an electrical contacting bolt 100e can be provided.

Fig. 5 zeigt eine schematische Darstellung eines Schichtaufbaus eines kreisringförmigen oder zylindrischen elektrischen Schicht-Wärmeübertragungselementes. Das kreisringförmige elektrische Schicht-Wärmeübertragungselement weist ein Substrat 101, eine Isolationsschicht 102, eine Heizleiterschicht 103, eine Heizleiter-Kontaktschicht 103a sowie eine Isolationsschicht 104 auf. Fig. 5 shows a schematic representation of a layer structure of an annular or cylindrical electrical layer heat transfer element. The annular electrical layer heat transfer element has a substrate 101, an insulation layer 102, a heat conductor layer 103, a heat conductor contact layer 103a and an insulation layer 104.

Das Substrat 101 kann aus Aluminiumoxid, Borsilikat-Glas oder aus Kupfer hergestellt sein. Die Isolationsschicht 102 kann beispielsweise aus Siliziumoxid hergestellt sein. Die Heizleiterschicht 103 kann aus Nickel-Chrom, Indium-Zinkoxid oder beispielsweise Titannitrat hergestellt sein. Die Heizleiter-Kontaktschicht 103a kann beispielsweise aus Kupfer hergestellt sein. Die zweite Isolationsschicht 104 kann beispielsweise aus Aluminiumoxid hergestellt sein.The substrate 101 can be made of aluminum oxide, borosilicate glass, or of copper. The insulation layer 102 can be produced from silicon oxide, for example. The heating conductor layer 103 can be made of nickel-chromium, indium-zinc oxide or, for example, titanium nitrate. The heating conductor contact layer 103a can be made of copper, for example. The second insulation layer 104 can be made of aluminum oxide, for example.

Gemäß der Erfindung können diese Schichten durch thermisches Spritzen, Sputtern aus der physikalischen Gasphasenabscheidung verwendet werden. Mittels dieser Verfahren werden auf den kreisring- und flachförmigen Substratgeometrien vollflächige und partielle elektrisch leitende und elektrisch isolierende Funktionsschichten abgeschieden. Bei den kreisförmigen Substratgeometrien werden mittels des thermischen Spritzens, sowie mit dem Sputtern Aluminiumoxid- und auch Kupferrohre und Edelstahlrohre beschichtet.According to the invention, these layers can be used by thermal spraying, sputtering from physical vapor deposition. By means of this process, full-area and partial electrically conductive and electrically insulating functional layers are deposited on the circular ring-shaped and flat-shaped substrate geometries. In the case of circular substrate geometries, thermal spraying and sputtering are used to coat aluminum oxide, copper and stainless steel pipes.

Die Fig. 5 zeigt den Schichtaufbau der kreisringförmigen Wärmeübertragungselemente. Die kreisringförmigen Schicht- Wärmeübertragungselemente führen im Inneren des Rohres das zu erwärmende Medium. Durch die Aufbringungen der elektrisch isolierenden und elektrisch leitenden Schichten 102, 103 wird die elektrische Leistung außerhalb des zu erwärmenden Mediums (Wasser) erzeugt. Dadurch haben wir keinen elektrischen Strom im Medium (Wasser) und können auf Vor- und Nachschaltstrecken verzichten. Der große Vorteil der sich daraus ergibt, ist, dass die Fließdruckverluste reduziert werden. Die flachförmigen Schicht-Wärmeübertragungselemente (Fig. 2) liegen direkt im vorbei strömenden Medium. Hierbei ist der große Vorteil, dass die elektrische Leistung dem Medium direkt zugeführt werden kann.The Fig. 5 shows the layer structure of the circular heat transfer elements. The annular layer heat transfer elements guide the medium to be heated inside the tube. By applying the electrically insulating and electrically conductive layers 102, 103, the electrical power is generated outside of the medium to be heated (water). As a result, we have no electrical current in the medium (water) and can do without upstream and downstream connections. The great advantage of this is that the flow pressure losses are reduced. The flat-shaped layer heat transfer elements ( Fig. 2 ) lie directly in the medium flowing past. The great advantage here is that the electrical power can be fed directly to the medium.

Das thermische Spritzen, in Form des atmosphärischen Plasmaspritzens (APS), erzeugt außen auf dem Aluminiumoxidrohr 101 zunächst eine definierte unterstochimetrische Titansuboxid- Schicht. Diese Titansuboxidschicht mit einem spezifischen Widerstand von 0,04 Ohmcm kann als Heizleiter dienen und erzeugt eine Leistung, je nach Schichtdicke und Länge des Heizelementes, von 500 W bis 5000 W. Anschließend kann das Aluminiumoxidrohr mittels einer entsprechenden Maskierung versehen werden. Die Maskierung kann so aufgebaut sein, das an entsprechenden Stellen Aussparungen für die Kontaktierung vorgesehen werden. Anschließend kann mittels des Hochgeschwindigkeitsflammspritzens Kupfer 103a an die Kontaktstellen gespritzt werden. Das Kupfer dient zur Verbesserung der Oberflächenrauhigkeit und zur Minimierung lokaler Hotspots. Damit werden die Kontakt- und Übergangswiderstände später bei entsprechender elektrischer Kontaktierung mit zum Beispiel einer Schelle reduziert. Alternativ könnten auch elektrisch leitende Lacke verwendet werden. Der Herstellungsprozess wird mit der Auftragung einer abschließenden elektrischen Isolationsschicht, die gleichzeitig auch eine thermische Isolationsschicht ist, abgeschlossen Zur elektrischen Isolation wird mittels des APS-Verfahrens eine Aluminiumoxidschicht verwendet.The thermal spraying, in the form of atmospheric plasma spraying (APS), initially generates a defined sub-stochimetric titanium suboxide layer on the outside of the aluminum oxide tube 101. This titanium suboxide layer with a specific resistance of 0.04 Ohmcm can serve as a heating conductor and generates an output of 500 W to 5000 W, depending on the layer thickness and length of the heating element. The aluminum oxide tube can then be provided with an appropriate mask. The masking can be constructed in such a way that recesses are provided for the contacting at the corresponding points. Copper 103a can then be sprayed onto the contact points by means of high-speed flame spraying. The copper serves to improve the surface roughness and to minimize local hotspots. In this way, the contact and transition resistances are later reduced with appropriate electrical contact with, for example, a clamp. Alternatively, electrically conductive paints could also be used. The manufacturing process is completed with the application of a final electrical insulation layer, which is also a thermal insulation layer. An aluminum oxide layer is used for electrical insulation by means of the APS process.

Bei der Beschichtung des Kupferrohres bzw. eines Edelstahlrohres 101 als Substrat wird bei dem thermischen Spritzen vor der Titansuboxidschicht noch eine elektrisch isolierende Aluminiumoxidschicht aufgetragen. Ziel ist es, mit der elektrisch isolierenden Schicht eine elektrische Trennung zwischen Kupfer und dem Titansuboxid zu realisieren. Damit wird auch eine elektrische Isolation zwischen dem zu erwärmenden Medium und dem Heizleiter erzeugt. Alle weiteren Prozessschritte ähneln dem Aufbau und der Herstellung des oben beschriebenen Aluminiumoxidrohres.When coating the copper pipe or a stainless steel pipe 101 as a substrate, an electrically insulating aluminum oxide layer is also applied in front of the titanium suboxide layer during thermal spraying. The aim is to use the electrically insulating layer to create an electrical separation between copper and the titanium suboxide. This also creates electrical insulation between the medium to be heated and the heating conductor. All further process steps are similar to the structure and manufacture of the aluminum oxide tube described above.

Das Sputtern bietet neben der Beschichtung der kreisringförmigen Substrate auch die Möglichkeit flach-, spiral- und helixförmige Substrate mittels einer definierten Schicht zu versehen. Bei den kreisringförmigen Substraten werden vor dem Beschichten alle Substrate gereinigt und einer Plasmavorbehandlung unterzogen. Danach wird das Kupfer- und Aluminiumoxidrohr mit multifunktionalen Schichten versehen. Als Heizleiterwerkstoff wird beim Sputtern eine Nickel-Chromlegierung verwendet. Die Nickel-Chromlegierung hat einen spezifischen Widerstand von ca. 0,000112 Ohmcm. Damit lassen sich Leistungen im Bereich von 500 W bis 2500 W realisieren. Beim Kupferrohr wird vorher noch eine Aluminiumoxidschicht mit den reaktiven Sputtern, d.h. in diesem Fall wird zusätzlich noch ein reaktives Gas (Sauerstoff, Stickstoff) in den Prozess integriert, aufgebraucht. In beiden Fällen wird eine Maske aufgetragen, um an den äußeren Stellen eine Kupferschicht für die spätere Kontaktierung abzuscheiden. Nachdem die partielle Kupferschicht aufgetragen wurde, wird zur elektrischen und thermischen Isolation noch eine Aluminiumoxidschicht als Schutzschicht aufgebracht.In addition to coating the annular substrates, sputtering also offers the possibility of providing flat, spiral and helical substrates with a defined layer. In the case of the annular substrates, all substrates are cleaned and subjected to a plasma pretreatment before coating. Then the copper and aluminum oxide tube provided with multifunctional layers. A nickel-chromium alloy is used as the heating conductor material during sputtering. The nickel-chromium alloy has a specific resistance of approx. 0.000112 Ohmcm. This enables outputs in the range from 500 W to 2500 W to be achieved. In the case of copper pipes, an aluminum oxide layer is used up beforehand using reactive sputtering, ie in this case a reactive gas (oxygen, nitrogen) is also integrated into the process. In both cases, a mask is applied in order to deposit a copper layer on the outer areas for subsequent contacting. After the partial copper layer has been applied, an aluminum oxide layer is applied as a protective layer for electrical and thermal insulation.

Fig. 6 zeigt eine schematische Schnittansicht einer hydraulischen Abdichtung und einer elektrischen Kontaktierung eines flachförmigen Wärmeübertragungselementes. An einem Ende des Schicht-Wärmeübertragungselementes ist eine lötfähige Kupferschicht zur Abdichtung des hydraulischen Abdichtbolzens vorgesehen, wobei der hydraulische Abdichtbolzen 3 an dem Ende vorgesehen ist. Ferner sind äußere umlaufende elektrisch isolierende Schichten aus Aluminiumoxid vorhanden. Des Weiteren ist ein elektrischer Kontaktbolzen 2 beispielsweise aus Messing vorgesehen. An dem Substrat des Wärmeübertragungselementes können Aussparungen für Lötungen zwischen der Kupferkontaktierungsschicht und dem elektrischen Kontaktbolzen 2 vorgesehen sein. In Fig. 6 ist ferner ein flachförmiges Schicht-Wärmeübertragungselement 8a dargestellt. Das flachförmige Schicht-Wärmeübertragungselement 8a weist eine lötfähige Kupferschicht 8c zur Abdichtung des hydraulischen Abdichtbolzens 3 auf. Ferner ist eine äußere umlaufende elektrisch isolierende Schicht 8d beispielsweise aus Aluminumoxid vorhanden. In dem Substrat können Aussparungen 8e für Lötungen zwischen der Kupferkontaktierungsschicht und den Bolzen vorgesehen sein. Fig. 6 shows a schematic sectional view of a hydraulic seal and an electrical contact of a flat-shaped heat transfer element. A solderable copper layer for sealing the hydraulic sealing bolt is provided at one end of the layered heat transfer element, the hydraulic sealing bolt 3 being provided at the end. Furthermore, outer circumferential electrically insulating layers made of aluminum oxide are present. Furthermore, an electrical contact pin 2, for example made of brass, is provided. Recesses for soldering between the copper contact-making layer and the electrical contact bolt 2 can be provided on the substrate of the heat transfer element. In Fig. 6 a flat-shaped layer heat transfer element 8a is also shown. The flat-shaped layer heat transfer element 8a has a solderable copper layer 8c for sealing the hydraulic sealing bolt 3. Furthermore, there is an outer circumferential electrically insulating layer 8d, for example made of aluminum oxide. Recesses 8e for soldering between the copper contact-making layer and the bolts can be provided in the substrate.

Fig. 7 zeigt eine schematische Schnittansicht eines doppelwandigen Schicht-Wärmeübertragungselementes gemäß einem Ausführungsbeispiel der Erfindung. Das doppelwandige Schicht-Übertragungselement 1060 weist ein Kupfersubstrat 1020, ein dünnes außenführendes Rohr 1030, einen innenführenden Strömungskanal 1040, einen außenführenden Strömungskanal 1050, einen Isolationsblock 1060, einen elektrisch isolierenden Polymer bzw. Keramikbolzen 1070, eine thermisch gespritzte elektrisch isolierende Schicht (bzw. eine elektrisch isolierende Verdichtungsmasse) 1080, eine thermisch gespritzte elektrisch leitende TiOx-Schicht 1090 und optional ein um den Umfang fixiertes Stanzgitter 1091, welches anschließend thermisch verspritzt oder thermisch verdichtet wird, auf. Die elektrische Kontaktierung wird bei den kreisringförmigen Schicht-Wärmeübertragungselementen über Schellen oder über ausgeformte Stanzgitterbauteile (Fig. 7) bzw. über eine oder mehrere Bolzen (Fig. 6) bei den flachförmigen Schicht-Wärmeübertragungselementen realisiert. Fig. 7 shows a schematic sectional view of a double-walled layer heat transfer element according to an embodiment of the invention. The double-walled layer transmission element 1060 has a copper substrate 1020, a thin outer pipe 1030, an inner flow channel 1040, an outer flow channel 1050, an insulation block 1060, an electrically insulating polymer or ceramic bolt 1070, a thermally sprayed electrically insulating layer (or a electrically insulating sealing compound) 1080, a thermally sprayed electrically conductive TiO x layer 1090 and optionally a stamped grid 1091 fixed around the circumference, which is then thermally sprayed or thermally compressed. The electrical contact is made in the case of the annular layer heat transfer elements via clamps or molded leadframe components ( Fig. 7 ) or via one or more bolts ( Fig. 6 ) realized in the flat-shaped layer heat transfer elements.

In Fig. 7 wird ein doppelwandiges Schicht-Wärmeübertragungselement vorgestellt. Bei diesem Beheizungselement können die Stanzgitterbauteile auf eine elektrisch isolierende Schicht aufgebracht werden. Anschließend entsprechend positioniert und mit einer weiteren elektrischen Isolationsschicht durch das thermische Spritzen verspritzt oder mit Magnesiumoxidpulver verdichtet. Die Betrachtung eines solchen doppelwandigen Heizelementes könnte auch die Möglichkeit bieten, die elektronischen Leistungsbauteile wie z B. Triacs zu verspritzen und damit den bisherigen Aufwand bei der elektrischen Verbindungstechnik minimieren.In Fig. 7 a double-walled layer heat transfer element is presented. With this heating element, the lead frame components can be applied to an electrically insulating layer. Then positioned accordingly and sprayed with a further electrical insulation layer by thermal spraying or compacted with magnesium oxide powder. The consideration of such a double-walled heating element could also offer the possibility of spraying the electronic power components such as triacs and thus minimizing the previous effort in electrical connection technology.

Gemäß einem Aspekt der vorliegenden Erfindung wird ein doppelwandiges Wärmeübertragungselement vorgesehen. Das Übertragungselement 1000 weist ein Substrat 1020 (beispielsweise aus Kupfer) mit einem inneren Strömungskanal 1040 und einem äußeren Strömungskanal 1050 auf. Der äußere Strömungskanal 1050 kann optional durch einen Isolationsblock 1060 begrenzt sein. Das Wärmeübertragungselement weist ferner eine thermisch gespritzte elektrisch leitende Schicht 1090 sowie eine thermisch gespritzte elektrisch isolierende Schicht 1080 auf. Zwischen der elektrisch leitenden Schicht 1090 und dem Wasser in dem inneren oder äußeren Strömungskanal 1040, 1050 ist optional eine elektrisch isolierende Schicht vorhanden, so dass die elektrisch leitende Schicht nicht in direktem Kontakt mit dem Wasser steht. Damit kann auf Ableitstrecken verzichtet werden.In accordance with one aspect of the present invention, a double-walled heat transfer element is provided. The transmission element 1000 has a substrate 1020 (for example made of copper) with an inner flow channel 1040 and an outer flow channel 1050. The outer flow channel 1050 can optionally be delimited by an insulation block 1060. The heat transfer element also has a thermally sprayed electrically conductive layer 1090 and a thermally sprayed electrically insulating layer 1080. An electrically insulating layer is optionally present between the electrically conductive layer 1090 and the water in the inner or outer flow channel 1040, 1050, so that the electrically conductive layer is not in direct contact with the water. This means that discharge lines can be dispensed with.

Fig. 8 bis Fig. 10 zeigen jeweils eine schematische Darstellung einer Heizeinheit für ein doppelwandiges Schicht-Wärmeübertragungselement gemäß einem Ausführungsbeispiel der Erfindung. FIGS. 8 to 10 each show a schematic representation of a heating unit for a double-walled layer heat transfer element according to an exemplary embodiment of the invention.

Fig. 8 zeigt eine schematische Darstellung einer Heizeinheit für ein doppelwandiges Schicht-Wärmeübertragungselement gemäß einem Ausführungsbeispiel der Erfindung. Die Heizeinheit 2000 weist eine Leiterplatine 2100 zur Kontaktierung der Heizelemente, einen oberen Flansch 2200, einen oberen Zwischenflansch 2300, eine Beheizung 1000, einen Isolierkörper 2400, einen unteren Zwischenflansch 2500 und einen unteren Flansch 2600 auf. In Fig. 8 wird eine Beheizung dargestellt, welche eine Umsetzung der Schicht-Wärmeübertragungselemente im Bereich der elektrischen Warmwasseraufbereitung ermöglicht. Die konzipierten doppelwandigen Schicht-Wärmeübertragungselemente haben einen prinzipiellen Schichtaufbau, wie dieser in Fig. 5 für thermisch gespritzte Heizelemente beschrieben worden ist. Weiterhin wird das doppelwandige Wärmeübertragungselement durch die Aufnahme der ausgeformten Stanzgitterbauteile zur elektrischen Kontaktierung charakterisiert. Die Stanzgiterbauteile werden in einem zusätzlichen Schritt mit einer elektrisch isolierenden Schicht thermisch verspritzt oder mit einem elektrisch isolierenden Pulver verdichtet. Anders als bei den obigen Schicht-Wärmeübertragungselementen, erfolgt beim doppelwandigen Schicht-Wärmeübertragungselement noch ein weiterer Prozessschritt. Nachdem die Isolationsschicht aufgebracht wurde, wird ein dünnes Kupfer- oder Edelstahlrohr im erwärmten Zustand über das vorbereitete Heizelement gezogen. Durch das anschließende Abkühlen schmiedet sich dieses Rohr um das Heizelement. Fig. 8 shows a schematic representation of a heating unit for a double-walled layer heat transfer element according to an embodiment of the invention. The heating unit 2000 has a printed circuit board 2100 for contacting the heating elements, an upper flange 2200, an upper intermediate flange 2300, a heater 1000, an insulating body 2400, a lower intermediate flange 2500 and a lower flange 2600. In Fig. 8 A heating system is shown, which enables the layer heat transfer elements to be implemented in the area of electrical hot water preparation. The designed double-walled layer heat transfer elements have a basic layer structure like this one in Fig. 5 has been described for thermally sprayed heating elements. Furthermore, the double-walled heat transfer element is characterized by the accommodation of the molded lead frame components for electrical contacting. In an additional step, the punched grid components are thermally sprayed with an electrically insulating layer or compacted with an electrically insulating powder. In contrast to the above layer heat transfer elements, a further process step takes place with the double-walled layer heat transfer element. After the insulation layer has been applied, a thin copper or stainless steel pipe is pulled over the prepared heating element while it is warm. As a result of the subsequent cooling, this tube forges itself around the heating element.

Der wesentliche Vorteil der doppelwandigen Schicht-Wärmeübertragungsetemente basiert auf dem beidseitigen Umströmen des Fluids entlang der wärmeübertragenden Oberfläche. Die beidseitige Umströmung, wie sie in Fig. 7 aufgezeigt wird, reduziert die Oberflächentemperaturen und fördert damit die Verkalkungsbeständigkeit bei gleichzeitig effektiver Wärmeübertragung.The main advantage of the double-walled layer heat transfer elements is based on the fact that the fluid flows around both sides along the heat transfer surface. The flow around both sides, as shown in Fig. 7 is shown, reduces the surface temperatures and thus promotes the calcification resistance while at the same time effective heat transfer.

In Fig. 9 sind verschiedene Komponenten des Schicht-Wärmeübertragungselementes gemäß einem Ausführungsbeispiel der Erfindung gezeigt. Das Schichtwärmeübertragungssystem 1000 weist ein Substrat 1020, eine Isolationsschicht 1070, eine Heizleiterschicht 1090, eine zweite Isolationsschicht 104, optional ein Stanzgitter 1091, eine Isolationsschicht 1080, einen elektrisch isolierenden Bolzen 1070, einen Isolierkörper 1060 auf. Optional kann ein oberer Flansch 2200 und ein oberer Zwischenflansch 2300 vorgesehen sein.In Fig. 9 various components of the layered heat transfer element according to an embodiment of the invention are shown. The layered heat transfer system 1000 has a substrate 1020, an insulation layer 1070, a heating conductor layer 1090, a second insulation layer 104, optionally a stamped grid 1091, an insulation layer 1080, an electrically insulating bolt 1070, an insulating body 1060. Optionally, an upper flange 2200 and an upper intermediate flange 2300 can be provided.

Fig. 10 zeigt eine schematische Darstellung einer hydraulischen Abdichtung des Schicht-Wärmeübertragungselementes in einem Beheizungsblock. Desweiteren wird die Beheizung durch eine zweistufige hydraulische Abdichtung charakterisiert, wie sie in Fig. 14 aufgezeigt wird. Zum einen wird eine Abdichtung mit O-Ringen 2310 zwischen Isolierkörper 2400 und oberen Zwischenflansch 2300 realisiert und zum anderen wird eine Profildichtung 2210 an der Schnittstelle zwischen oberen Zwischenflansch 2300 und oberen Flansch 2200 eingesetzt. Damit sind die Voraussetzungen gegeben, um die beidseitige Umströmung der doppelwandigen Schicht-Wärmeübertragungselemente umzusetzen. Fig. 10 shows a schematic representation of a hydraulic seal of the layer heat transfer element in a heating block. Furthermore, the heating is characterized by a two-stage hydraulic seal, as shown in Fig. 14 is shown. On the one hand, a seal with O-rings 2310 is implemented between the insulating body 2400 and the upper intermediate flange 2300 and, on the other hand, a profile seal 2210 is used at the interface between the upper intermediate flange 2300 and the upper flange 2200. This provides the prerequisites for implementing the flow around the double-walled layer heat transfer elements on both sides.

Die Vorteile der Erfindung sind, gegenüber dem Blankdraht-Heizsystem geringere Druckverluste. Die elektrischen Schicht-Wärmeübertragungselemente können gegenüber dem Blankdraht-Heizsystem ohne Einschränkung der Wasserqualität überall eingesetzt werden. Gegenüber dem Blankdraht-Heizsystem können die elektrischen Schicht- Wärmeübertragungselemente ohne Vor- und Nachschaltstrecken auskommen und benötigen damit ein geringeres Bauvolumen. Gegenüber dem Rohrheizkörper können schnellere Aufheiz- und Abkühlzeiten realisiert werden. Gegenüber dem Rohrheizkörper ist eine größere Beständigkeit gegen Ablagerungen (CaCO3, CaSO4, Mg(OH)2) und Luftblasen vorhanden.The advantages of the invention are lower pressure losses compared to the bare wire heating system. The electrical layer heat transfer elements can be compared to the Bare wire heating systems can be used anywhere without restricting the water quality. Compared to the bare wire heating system, the electrical layer heat transfer elements can do without upstream and downstream sections and thus require a smaller overall volume. Compared to tubular heating elements, faster heating and cooling times can be achieved. Compared to tubular heating elements, there is greater resistance to deposits (CaCO 3 , CaSO 4 , Mg (OH) 2 ) and air bubbles.

Die erfindungsgemäßen Schicht-Wärmeübertragungselemente können in allen Warmwasseraufbereitern, wie zum Beispiel: Durchlauferhitzer, Warmwasser-Speicher, Kochendwassergeräte, Heißwasserautomaten, Händetrockner, Wärmepumpen, Lüftungsgeräte, Klimageräte, Luftentfeuchter, Wärmespeicher, Natursteinheizungen, Flächenheizungen/Fußbodenheizungen, Direktheizer, Badheizkörper, Kaffeemaschinen, Wäschetrockner, Waschmaschinen, Spülmaschinen/Geschirrspüler, Reinigungsautomaten/- geräte, Desinfektionsautomaten/-geräte, eingesetzt werden.The layer heat transfer elements according to the invention can be used in all hot water heaters, such as: instantaneous water heaters, hot water storage tanks, boiling water devices, hot water machines, hand dryers, heat pumps, ventilation devices, air conditioners, dehumidifiers, heat storage devices, natural stone heating, surface heating / underfloor heating, direct heaters, bathroom radiators, coffee machines, tumble dryers, Washing machines, dishwashers / dishwashers, cleaning machines / devices, disinfection machines / devices.

Fig. 11A und 11B zeigen jeweils eine schematische Darstellung eines Schicht-Wärmeübertragungselementes gemäß der Erfindung. Das Wärmeübertragungselement 1000 weist ein Rohr 1020 auf, auf welchem eine thermisch gespritzte elektrisch isolierende Schicht 1080 und eine thermisch gespritzte elektrisch leitfähige Schicht 1090 aufgebracht wird. Die elektrisch leitende Schicht 1090 bildet dann den Kern des elektrischen Heizelementes. Das Heizelement kann ferner ein Außenrohr 1030 aufweisen und in einem weiteren Rohr platziert sein, so dass Wasser sowohl durch einen inneren Strömungskanal 1040 als auch durch einen äußeren Strömungskanal 1050 fließen kann und beim Durchfluss durch das Rohr durch das Heizelement aufgeheizt wird. Figure 11A and 11B each show a schematic representation of a layered heat transfer element according to the invention. The heat transfer element 1000 has a tube 1020 on which a thermally sprayed electrically insulating layer 1080 and a thermally sprayed electrically conductive layer 1090 are applied. The electrically conductive layer 1090 then forms the core of the electrical heating element. The heating element can furthermore have an outer tube 1030 and be placed in a further tube, so that water can flow both through an inner flow channel 1040 and through an outer flow channel 1050 and is heated by the heating element as it flows through the tube.

In Fig. 11B ist das Heizelement ohne Außenrohr dargestellt. Das Heizelement weist ferner einen elektrischen Anschlussbolzen 1092 sowie eine elektrisch isolierende Hülse 1093 auf.In Figure 11B the heating element is shown without the outer tube. The heating element also has an electrical connection bolt 1092 and an electrically insulating sleeve 1093.

Fig. 12A und 12B zeigen jeweils eine schematische Schnittdarstellung eines Schicht-Wärmeübertragungselementes gemäß einem Aspekt der vorliegenden Erfindung. Das Schicht-Wärmeübertragungselement weist ein Rohr bzw. zylinderförmiges Substrat 1020, thermisch gespritzte elektrisch isolierende Schichten 1080 und thermisch gespritzte elektrisch leitende Schichten 1090 auf. Die elektrisch leitende Schicht 1090 kann über die elektrisch leitenden Bolzen 1092 kontaktiert werden. Die Hülsen 1093 sind elektrisch isolierend ausgestaltet. Figure 12A and 12B each show a schematic sectional illustration of a layered heat transfer element according to an aspect of the present invention. The layer heat transfer element has a tube or cylindrical substrate 1020, thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090. The electrically conductive layer 1090 can be contacted via the electrically conductive bolts 1092. The sleeves 1093 are designed to be electrically insulating.

Fig. 12B zeigt einen vergrößerten Ausschnitt des Wärmeübertragungselementes von Fig. 12A. Figure 12B FIG. 8 shows an enlarged section of the heat transfer element from FIG Figure 12A .

Fig. 13A zeigt eine schematische Darstellung eines Durchlauferhitzers und Fig. 13B zeigt eine schematische Schnittansicht des Durchlauferhitzers. Der Durchlauferhitzer weist ein Schicht-Wärmeübertragungselement gemäß der Erfindung auf, wobei das Schicht-Wärmeübertragungselement direkt während des Spritzgusses eingebunden wird. Das Heizelement 1000 wird somit mit Kunststoff umspritzt. Das Heizelement ist dann direkt in den Spritzguss integriert. Figure 13A shows a schematic representation of a flow heater and Figure 13B shows a schematic sectional view of the flow heater. The flow heater has a layered heat transfer element according to the invention, the layered heat transfer element being incorporated directly during the injection molding. The heating element 1000 is thus overmolded with plastic. The heating element is then integrated directly into the injection molding.

Fig. 14 zeigt eine schematische Schnittansicht eines Wärmeübertragungselementes gemäß einem weiteren Ausführungsbeispiel. Das Wärmeübertragungselement weist ein rohrförmiges Substrat 1040 mit thermisch gespritzten elektrisch isolierenden Schichten 1080 und thermisch gespritzten elektrisch leitfähigen Schichten 1090 auf. Die elektrisch leitfähige Schicht 1090 kann über den elektrisch leitenden Bolzen 1092 kontaktiert werden. Zusätzlich zu der elektrisch leitfähigen Schicht 1090 kann ein Blankdraht-Heizsystem 1094 integriert werden, um die Heizleistung des Schichtelementes zu unterstützen. Fig. 14 shows a schematic sectional view of a heat transfer element according to a further embodiment. The heat transfer element has a tubular substrate 1040 with thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090. The electrically conductive layer 1090 can be contacted via the electrically conductive bolt 1092. In addition to the electrically conductive layer 1090, a bare wire heating system 1094 can be integrated in order to support the heating output of the layer element.

Gemäß diesem Aspekt der vorliegenden Erfindung wird ein doppelwandiges Wärmeübertragungselement mit einem Heizleiter aus einem blanken Heizleiterdraht vorgesehen. Ein inneres Rohr des doppelwandigen Wärmeübertragungselementes kann als Kupferrohr oder als SS-Rohr ausgestaltet sein. Eine thermisch gespritzte Isolierschicht kann auf dem inneren Rohr vorgesehen sein. Über die thermisch isolierende Schicht kann ein Heizdraht (beispielsweise NiCr 8020) gewickelt werden. Danach kann eine elektrisch isolierende Schicht thermisch verspritzt werden. Nachdem die thermisch gespritzten Schichten aufgetragen worden sind, kann eine Nachbehandlung der Schicht stattfinden, wobei Spitzen der oberen Isolierschicht, welche auf Grund der Rauigkeit der Behandlung entstanden sind, abgeschliffen werden können. Anschließend kann ein Außenrohr übergezogen werden.According to this aspect of the present invention, a double-walled heat transfer element with a heating conductor made from a bare heating conductor wire is provided. An inner tube of the double-walled heat transfer element can be designed as a copper tube or as an SS tube. A thermally sprayed insulating layer can be provided on the inner tube. A heating wire (for example NiCr 8020) can be wound over the thermally insulating layer. An electrically insulating layer can then be thermally sprayed. After the thermally sprayed layers have been applied, an after-treatment of the layer can take place, whereby tips of the upper insulating layer, which have arisen due to the roughness of the treatment, can be ground off. An outer tube can then be pulled over.

Claims (6)

  1. An electric water heating system, comprising
    a layered heat transfer element, including a substrate (101) and a heating unit (103) of an electric coating material, wherein the electric coating material (103) is disposed on the substrate (101, 1020),
    wherein the layered heat transfer element is configured as a double-walled heat transfer element and includes an internally guiding flow channel (1040), an externally guiding flow channel (1050), the substrate (1020), and an insulation unit (1060), characterised in that the layered heat transfer element additionally includes a thermally sprayed, electrically conductive layer (1090) and a thermally sprayed, electrically insulating layer (1080),
    wherein the layered heat transfer element includes at least one layer of aluminium oxide as the electrically insulating layer (1080), followed by a titanium suboxide layer as the electrically conductive layer (1090), and again an aluminium oxide layer.
  2. The electric water heating system according to claim 1, wherein
    the double-walled heat transfer element is overmoulded in an injection moulding process.
  3. The electric water heating system according to claim 1 or 2, comprising
    electric power components, wherein the electric power components are thermally oversprayed.
  4. A building services appliance, comprising
    an electric water heating system according to one of claims 1 to 3.
  5. A domestic appliance, comprising
    at least one electric water heating system according to one of claims 1 to 3.
  6. A method of manufacturing an electric water heating system which includes a layered heat transfer element comprising a substrate and a heating unit of an electric coating material, wherein the electric coating material is disposed on the substrate, wherein the layered heat transfer element comprises a double-walled heat transfer element, comprising the step of:
    overmoulding the double-walled heating element,
    characterised by the further steps of:
    thermal spraying of an electrically conductive layer, and
    thermal spraying of an electrically insulating layer,
    wherein a first aluminium oxide layer is provided on the substrate, a titanium suboxide layer is provided on the first aluminium oxide layer, and a further aluminium oxide layer is provided on the titanium suboxide layer.
EP18165855.0A 2017-04-07 2018-04-05 Electrical hot water processing system Active EP3385637B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017003416.8A DE102017003416A1 (en) 2017-04-07 2017-04-07 Electric water heating system

Publications (2)

Publication Number Publication Date
EP3385637A1 EP3385637A1 (en) 2018-10-10
EP3385637B1 true EP3385637B1 (en) 2021-06-09

Family

ID=61906742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18165855.0A Active EP3385637B1 (en) 2017-04-07 2018-04-05 Electrical hot water processing system

Country Status (2)

Country Link
EP (1) EP3385637B1 (en)
DE (1) DE102017003416A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903649C1 (en) * 1989-02-08 1990-04-12 Tuerk & Hillinger Gmbh, 7200 Tuttlingen, De Electric flow heater for liquids
US6037574A (en) 1997-11-06 2000-03-14 Watlow Electric Manufacturing Quartz substrate heater
US6376816B2 (en) 2000-03-03 2002-04-23 Richard P. Cooper Thin film tubular heater
DE10162276C5 (en) * 2001-12-19 2019-03-14 Watlow Electric Manufacturing Co. Tubular water heater and heating plate and method for their preparation
DE10312728A1 (en) * 2003-03-21 2004-09-30 BSH Bosch und Siemens Hausgeräte GmbH Heater
DE10322034A1 (en) * 2003-05-16 2004-12-02 Stiebel Eltron Gmbh & Co. Kg A throughflow water heater has concentric tubes having a spiral fin around the inner and thick film surface heating elements with the water flowing through the tubes
ITTO20040253A1 (en) * 2004-04-23 2004-07-23 Incos Spa PROCEDURE FOR THE PRODUCTION OF A COMPONENT FOR INJECTION MOLDING EQUIPMENT
US7123825B2 (en) * 2004-08-20 2006-10-17 Thermoceramix, Inc. Water heater and method of providing the same
KR101372256B1 (en) * 2012-02-29 2014-03-10 한라비스테온공조 주식회사 Cooling-water heating type heater
DE102013213342A1 (en) * 2013-07-08 2015-01-08 Mahle International Gmbh Fuel filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3385637A1 (en) 2018-10-10
DE102017003416A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
DE69534857T2 (en) POLYMER RESISTANCE HEATING ELEMENT
EP2812581B1 (en) Pump with integrated heater
EP2215301B1 (en) Method for operating a washing machine having a heating unit
WO2001097566B1 (en) Electric heating device
EP0017057A1 (en) Fuel oil preheating device
DE19707240C2 (en) Device and method for heating rooms with an electrically heated hot water pipe
EP2861914B1 (en) Continuous flow heater
EP3385637B1 (en) Electrical hot water processing system
EP3329736B1 (en) Heating device for a domestic appliance
EP3477178B1 (en) Heatable flexible hose with applied heating element
EP3614797A1 (en) Heating device and method for operating a heating device
WO2011009589A2 (en) Electrode boiler
DE19825835C2 (en) Radiator for a water heater
EP1006320A2 (en) Electral instantaneous heater and method for making same
WO2015025022A1 (en) Method and device for producing a heating coil on a metal body
EP0630463B1 (en) Electric instantaneous water heater
WO2017021076A1 (en) Connecting thermally-sprayed layer structures of heating devices
DE102016014300A1 (en) Device for preparing at least one intended for consumption liquid
EP2348251A2 (en) Device for heating a liquid and method for producing a heating device for heating a liquid
DE102018208252A1 (en) Method for producing a heating device and heating device produced therewith
EP2287540A2 (en) Fluid heater
DE3218442A1 (en) Process for heating water and thereafter operating a water heater
DE1141737B (en) Process for the production of flat electrical heating elements for high temperatures up to 600 ° C and electrical heating element produced according to the process
EP2471339B1 (en) Heat exchanger
DE102006053001A1 (en) Heating device for heating tool parts of injection molding machines comprises a first thin film layer made from single layers placed on each other

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190410

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24H 1/10 20060101AFI20201022BHEP

INTG Intention to grant announced

Effective date: 20201120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005580

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210910

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005580

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220405

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220405

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220405

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 6

Ref country code: CH

Payment date: 20230502

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609