EP3361485A1 - Transformator mit integrierter kühlung - Google Patents

Transformator mit integrierter kühlung Download PDF

Info

Publication number
EP3361485A1
EP3361485A1 EP18154040.2A EP18154040A EP3361485A1 EP 3361485 A1 EP3361485 A1 EP 3361485A1 EP 18154040 A EP18154040 A EP 18154040A EP 3361485 A1 EP3361485 A1 EP 3361485A1
Authority
EP
European Patent Office
Prior art keywords
coolant
coolant line
winding
transformer
transformer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18154040.2A
Other languages
English (en)
French (fr)
Other versions
EP3361485B1 (de
Inventor
Nicolai Tarasinski
Volker Kegel
Dennis Kremer (GR)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Publication of EP3361485A1 publication Critical patent/EP3361485A1/de
Application granted granted Critical
Publication of EP3361485B1 publication Critical patent/EP3361485B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/125Cooling by synthetic insulating and incombustible liquid

Definitions

  • the invention relates to a transformer with integrated cooling, comprising a primary and secondary side winding and a partially or completely embedded in at least one of the two windings coolant line, which can be fed from a supply device with coolant.
  • a water-cooled electrical coil of a transformer known. This comprises a laminated core and a multi-layer winding applied thereto. A cooling pipe formed as a flexible hose is wound around the outer surface of the winding. The cooling line is traversed by a coolant for cooling the coil or the winding. According to a different embodiment of the coil, an internal arrangement of the cooling line between the layers of the winding is also proposed.
  • the transformer with integrated cooling comprises a primary and secondary winding and a partially or completely embedded in at least one of the two windings coolant line, which can be fed from a supply device with coolant.
  • the coolant line has a variety from outlet openings, which open in the direction of the at least one winding in order to pressurize them with coolant.
  • the heated coolant can flow away between the turns of the at least one winding in the direction of a collecting container and can be supplied from there by means of a coolant pump encompassed by the supply device to a heat exchanger for discharging absorbed waste heat. Due to the capillary action of adjacent turns an automatic distribution of the coolant is ensured within the respective winding of the transformer.
  • the transformer may, for example, be a medium frequency transformer for frequencies in the range of a few hundred Hz to several thousand Hz, which is part of an energy transmission path between a power supply station and an electrically operated agricultural vehicle, for example an agricultural tractor.
  • the transmission of electrical energy is typically at medium voltage levels, requiring on-board adjustment (reduction) to on-board voltage levels.
  • the transformer may be formed as a two- or three-phase transformer.
  • the coolant line is designed as a flexible hose and is made of heat-resistant plastic, in particular PTFE, silicone or Viton.
  • the number and / or distribution of the outlet openings along the wall of the coolant line is determined on the basis of tests and / or computer-aided simulations.
  • the coolant line runs in the same direction with the at least one winding, so that leading to possible field inhomogeneities and thus power losses leading gaps within the respective winding can be reduced.
  • the coolant line can in this case run between adjacent turns of the same winding layer or form a separate (intermediate) layer.
  • a first and / or second coolant line may be provided, wherein the first coolant line is wound around an inner winding layer of the primary side winding and / or the second coolant line around an outer winding layer of the secondary side winding.
  • an insulating layer and / or (consisting of copper foil) RF shield is provided, thus the use of a common coolant line due to the spatial separation is not possible.
  • the two coolant lines run as far as possible in the edge region of the winding package formed by the primary and secondary windings, so that undesired To avoid field inhomogeneities within the winding package, including the associated power losses largely.
  • the first coolant line has unidirectionally distributed outlet openings along its wall, so that coolant flows through the primary-side winding from the inside to the outside.
  • the second coolant line it is possible for the second coolant line to have only inwardly directed outlet openings along its wall, which makes it possible to deploy the coolant specifically for cooling the secondary-side winding.
  • the heated coolant exits at the end faces of the primary and secondary windings to flow back from there under the action of gravity in the collecting container.
  • the first coolant line an inner diameter of 2 to 4 mm and / or the second coolant line has an inner diameter of 5 to 7 mm.
  • the exact inner diameter depends - as well as that of the outlet openings - from different circumstances, in particular the viscosity of the coolant used, the delivery volume of the coolant pump, the flow resistance of the windings, the dissipated power loss, and the like.
  • the coolant flowing through the coolant line is preferably a nonconductive cooling fluid with non-corrosive properties, for example a heat-resistant oil, in particular silicone oil.
  • Fig. 1 shows a schematic representation of an embodiment of the transformer according to the invention in section.
  • the transformer 10 includes a laminated core 12 and a arranged on the laminated core 12 winding body 14 made of plastic.
  • the winding body 14 carries an inner primary-side winding 16 and an outer secondary-side winding 18.
  • Each of the windings 16, 18 has a plurality of winding layers 20, 22.
  • the individual turns 24, 26 of the winding layers 20, 22 are made of copper enameled wire or enamel-insulated stranded wire. Between the two windings 16, 18 extends an existing plastic film insulating layer 28th
  • the transformer 10 is designed as a voltage dropper, in which the windings 24 of the primary-side winding 16 have a relation to the turns 26 of the secondary-side winding 18 of smaller diameter.
  • first and second coolant line 30, 32 is provided, wherein the first coolant line 30 in the form of an intermediate layer 34 about an inner (first) winding layer 20 of the primary-side winding 16 and the second coolant line 32 in the form of an outer layer 36 to an external (last ) Winding layer 22 of the secondary-side winding 18 is wound in the same direction.
  • the coolant lines 30, 32 each extend along the spaces formed by adjacent turns 24, 26, 38, 40, so that they are partially or completely embedded in the respective winding 16, 18.
  • the secondary-side winding 18 is in this case surrounded together with the second coolant line 32 by a further final insulating layer 42.
  • the two coolant lines 30, 32 are part of a coolant circuit 44, which consists of a collecting container 46, a coolant pump 50 encompassed by a supply device 48, a heat exchanger 52 for discharging absorbed waste heat and associated supply lines 54, 56 and 58.
  • the collecting container 46 is formed for example by a bottom trough of an outer housing, not shown, of the transformer 10.
  • Each of the coolant lines 30, 32 has a plurality of outlet openings 60, 62, which open in the direction of the respective winding 16, 18 in order to directly impinge or flush with them coolant. More specifically, the first coolant line 30 along its wall unidirectionally distributed arranged outlet openings 60, whereas the second Coolant line 32 along its wall has only inwardly directed outlet openings 62.
  • the heated coolant then exits at the end faces 64, 66 of the primary and secondary windings 16, 18 to flow back from there into the collecting container 46 under the effect of gravity.
  • the coolant lines 30, 32 are each designed as flexible hose lines and are made of heat-resistant plastic, in particular PTFE, silicone or Viton.
  • the number and / or distribution of the outlet openings 60, 62 along the walls of the coolant lines 30, 32 is determined on the basis of tests and / or computer-aided simulations.
  • the first coolant line 30 has an inner diameter of 2 to 4 mm and the second coolant line 32 has an inner diameter of 5 to 7 mm.
  • the exact inner diameter depends - as well as that of the outlet openings 60, 62 - on different circumstances, in particular the viscosity of the coolant used, the delivery volume of the coolant pump 50, the flow resistance of the windings 16, 18, the dissipated power loss, and the like.
  • the coolant flowing through the coolant line 30, 32 is a non-conductive cooling fluid with non-corrosive properties, for example a heat-resistant oil, in particular silicone oil.
  • Fig. 2 additionally shows an external perspective view of the in Fig. 1 reproduced transformer 10, wherein the further insulating layer 42 is omitted, so that the course of the second coolant line 32 along the formed by the adjacent turns 26 of the secondary-side winding 18 spaces 40 is visible.
  • the transformer 10 is a medium frequency transformer for frequencies in the range of several 100 Hz to several 1000 Hz, which is part of a not shown energy transmission path between a power station and an electrically operated agricultural vehicle, such as an agricultural tractor. To reduce line losses, the transmission of electrical energy to medium voltage level, which makes an on-board adjustment (reduction) to on-board voltage level required.
  • the transformer 10 is designed as a two- or three-phase transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Transformator (10) mit integrierter Kühlung, umfassend eine primar- und sekundärseitige Wicklung (16, 18) sowie eine in zumindest eine der beiden Wicklungen (16, 18) teilweise oder vollständig eingebettete Kühlmittelleitung (30, 32), die aus einer Versorgungseinrichtung (48) mit Kühlmittel speisbar ist. Hierbei weist die Kühlmittelleitung (30, 32) eine Vielzahl von Austrittsöffnungen (60, 62) auf, die in Richtung der zumindest einen Wicklung (16, 18) münden, um diese mit Kühlmittel zu beaufschlagen.

Description

  • Die Erfindung betrifft einen Transformator mit integrierter Kühlung, umfassend eine primär- und sekundärseitige Wicklung sowie eine in zumindest eine der beiden Wicklungen teilweise oder vollständig eingebettete Kühlmittelleitung, die aus einer Versorgungseinrichtung mit Kühlmittel speisbar ist.
  • In diesem Zusammenhang ist aus der DE 10 2012 208 545 A1 eine wassergekühlte elektrische Spule eines Transformators bekannt. Diese umfasst einen geblechten Kern sowie eine darauf aufgebrachte mehrlagige Wicklung. Eine als flexibler Schlauch ausgebildete Kühlleitung ist um die Außenoberfläche der Wicklung gewunden. Die Kühlleitung ist zur Kühlung der Spule bzw. der Wicklung von einem Kühlmittel durchflossen. Gemäß einer abweichenden Ausgestaltung der Spule wird zudem eine innenliegende Anordnung der Kühlleitung zwischen den Lagen der Wicklung vorgeschlagen.
  • Es ist Aufgabe der vorliegenden Erfindung, einen Transformator der eingangs genannten Art hinsichtlich seiner Leistungsdichte durch weitere Verbesserung der Kühlleistung zu optimieren.
  • Diese Aufgabe wird durch einen Transformator mit integrierter Kühlung mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Der Transformator mit integrierter Kühlung umfasst eine primar- und sekundärseitige Wicklung sowie eine in zumindest eine der beiden Wicklungen teilweise oder vollständig eingebettete Kühlmittelleitung, die aus einer Versorgungseinrichtung mit Kühlmittel speisbar ist. Hierbei weist die Kühlmittelleitung eine Vielzahl von Austrittsöffnungen auf, die in Richtung der zumindest einen Wicklung münden, um diese mit Kühlmittel zu beaufschlagen.
  • Durch die unmittelbare Umspülung der zu kühlenden Windungen mit Kühlmittel ist eine besonders gute Wärmeableitung sichergestellt, was zu einer entsprechenden Verbesserung der Leistungsdichte des Transformators führt. Das erwärmte Kühlmittel kann hierbei zwischen den Windungen der zumindest einen Wicklung in Richtung eines Auffangbehälters abfließen und von dort mittels einer von der Versorgungseinrichtung umfassten Kühlmittelpumpe einem Wärmetauscher zur Abgabe aufgenommener Abwärme zugeführt werden. Aufgrund der Kapillarwirkung aneinander grenzender Windungen ist eine selbsttätige Verteilung des Kühlmittels innerhalb der betreffenden Wicklung des Transformators gewährleistet.
  • In Laborversuchen konnte mittels eines mit der vorstehend beschriebenen integrierten Kühlung ausgestatteten Transformators eine Leistungsdichte von mehr als 5kW/kg erzielt werden.
  • Bei dem Transformator kann es sich beispielsweise um einen Mittelfrequenztransformator für Frequenzen im Bereich einiger 100 Hz bis einiger 1000 Hz handeln, der Bestandteil einer Energieübertragungsstrecke zwischen einer Energieversorgungsstation und einem elektrisch betriebenen landwirtschaftlichen Fahrzeug, beispielweise einem landwirtschaftlichen Traktor, ist. Zur Reduzierung von Leitungsverlusten erfolgt die Übertragung der elektrischen Energie typischerweise auf Mittelspannungsniveau, was eine fahrzeugseitige Anpassung (Verringerung) auf Bordspannungsniveau erforderlich macht. Hierzu kann der Transformator als Zwei- oder Dreiphasentransformator ausgebildet sein.
  • Vorteilhafte Ausgestaltungen des erfindungsgemäßen Transformators gehen aus den Unteransprüchen hervor.
  • Vorzugsweise ist die Kühlmittelleitung als flexible Schlauchleitung ausgebildet und besteht aus hitzebeständigem Kunststoff, insbesondere aus PTFE, Silikon oder Viton. Die Anzahl und/oder Verteilung der Austrittsöffnungen entlang der Wandung der Kühlmittelleitung wird hierbei auf Grundlage von Versuchen und/oder computergestützten Simulationen ermittelt.
  • Des Weiteren ist es möglich, dass die Kühlmittelleitung mit der zumindest einen Wicklung gleichsinnig gewunden verläuft, sodass zu möglichen Feldinhomogenitäten und damit Leistungsverlusten führende Zwischenräume innerhalb der betreffenden Wicklung reduziert werden können. Die Kühlmittelleitung kann hierbei zwischen benachbarten Windungen ein und derselben Wicklungslage verlaufen oder aber eine separate (Zwischen-)Lage bilden.
  • Insbesondere kann eine erste und/oder zweite Kühlmittelleitung vorgesehen sein, wobei die erste Kühlmittelleitung um eine innenliegende Wicklungslage der primärseitigen Wicklung und/oder die zweite Kühlmittelleitung um eine außenliegende Wicklungslage der sekundärseitigen Wicklung gewunden ist. Eine derartige Konfiguration ist insbesondere dann von Vorteil, wenn zwischen primär- und sekundärseitiger Wicklung des Transformators eine Isolierlage und/oder eine (aus Kupferfolie bestehende) HF-Abschirmung vorgesehen ist, mithin die Verwendung einer gemeinsamen Kühlmittelleitung aufgrund der räumlichen Trennung nicht möglich ist. Mit anderen Worten verlaufen die beiden Kühlmittelleitungen jeweils möglichst im Randbereich des durch die primär- und sekundärseitigen Wicklungen gebildeten Wicklungspakets, sodass sich unerwünschte Feldinhomogenitäten innerhalb des Wicklungspakets einschließlich der damit einhergehenden Leistungsverluste weitgehend vermeiden lassen.
  • Hierbei besteht die Möglichkeit, dass die erste Kühlmittelleitung entlang ihrer Wandung unidirektional verteilt angeordnete Austrittsöffnungen aufweist, sodass die primärseitige Wicklung von innen nach außen mit Kühlmittel durchströmt wird.
  • Dementsprechend ist es möglich, dass die zweite Kühlmittelleitung entlang ihrer Wandung ausschließlich nach innen gerichtete Austrittsöffnungen aufweist, was es ermöglicht, das Kühlmittel gezielt zur Kühlung der sekundärseitigen Wicklung auszubringen.
  • Das erwärmte Kühlmittel tritt hierbei an den Stirnseiten der primär- und sekundärseitigen Wicklungen aus, um von dort unter der Wirkung der Schwerkraft in den Auffangbehälter zurückzufließen.
  • Für den Fall, dass der Transformator als Spannungsherabsetzer ausgebildet ist, mithin die sekundärseitig auftretenden Verlustleistungen größer sind als die primärseitigen, hat es sich als vorteilhaft herausgestellt, wenn die erste Kühlmittelleitung einen Innendurchmesser von 2 bis 4 mm und/oder die zweite Kühlmittelleitung einen Innendurchmesser von 5 bis 7 mm aufweist. Der genaue Innendurchmesser hängt - wie auch derjenige der Austrittsöffnungen - von unterschiedlichen Gegebenheiten ab, insbesondere der Viskosität des verwendeten Kühlmittels, dem Fördervolumen der Kühlmittelpumpe, dem Durchflusswiderstand der Wicklungen, der abzuführenden Verlustleistung, und dergleichen.
  • Bei dem durch die Kühlmittelleitung fließenden Kühlmittel handelt es sich bevorzugt um eine nichtleitende Kühlflüssigkeit mit nichtkorrosiven Eigenschaften, beispielsweise um ein hitzebeständiges Öl, insbesondere Silikonöl.
  • Der erfindungsgemäße Transformator mit integrierter Kühlung wird im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Transformators im Schnitt, und
    Fig. 2
    ein perspektivische Außenansicht des in Fig. 1 wiedergegebenen Transformators.
  • Fig. 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Transformators im Schnitt.
  • Der Transformator 10 umfasst ein Blechpaket 12 sowie einen auf dem Blechpaket 12 angeordneten Wickelkörper 14 aus Kunststoff. Der Wickelkörper 14 trägt eine innenliegende primärseitige Wicklung 16 sowie eine außenliegende sekundärseitige Wicklung 18. Jede der Wicklungen 16, 18 weist mehrere Wicklungslagen 20, 22 auf. Die einzelnen Windungen 24, 26 der Wicklungslagen 20, 22 bestehen aus Kupferlackdraht oder lackisolierter Litze. Zwischen den beiden Wicklungen 16, 18 verläuft eine aus Kunststofffolie bestehende Isolierlage 28.
  • Beispielsgemäß ist der Transformator 10 als Spannungsherabsetzer ausgebildet, bei dem die Windungen 24 der primärseitigen Wicklung 16 einen gegenüber den Windungen 26 der sekundärseitigen Wicklung 18 geringeren Durchmesser aufweisen.
  • Des Weiteren ist eine erste und zweite Kühlmittelleitung 30, 32 vorgesehen, wobei die erste Kühlmittelleitung 30 in Gestalt einer Zwischenlage 34 um eine innenliegende (erste) Wicklungslage 20 der primärseitigen Wicklung 16 und die zweite Kühlmittelleitung 32 in Gestalt einer Außenlage 36 um eine außenliegende (letzte) Wicklungslage 22 der sekundärseitigen Wicklung 18 gleichsinnig gewunden ist. Wie sich Fig. 1 entnehmen lässt, verlaufen die Kühlmittelleitungen 30, 32 jeweils entlang der durch aneinandergrenzende Windungen 24, 26 gebildeten Zwischenräume 38, 40, sodass diese in die betreffende Wicklung 16, 18 teilweise oder vollständig eingebettet sind. Die sekundärseitige Wicklung 18 ist hierbei gemeinsam mit der zweiten Kühlmittelleitung 32 von einer weiteren abschließenden Isolierlage 42 umgeben.
  • Die beiden Kühlmittelleitungen 30, 32 sind Bestandteil eines Kühlmittelkreislaufs 44, der aus einem Auffangbehälter 46, einer von einer Versorgungseinrichtung 48 umfassten Kühlmittelpumpe 50, einem Wärmetauscher 52 zur Abgabe aufgenommener Abwärme sowie zugehörigen Zuleitungen 54, 56 und 58 besteht. Der Auffangbehälter 46 ist beispielsweise durch eine Bodenwanne eines nicht dargestellten Außengehäuses des Transformators 10 gebildet.
  • Jede der Kühlmittelleitungen 30, 32 weist eine Vielzahl von Austrittsöffnungen 60, 62 auf, die in Richtung der betreffenden Wicklung 16, 18 münden, um diese unmittelbar mit Kühlmittel zu beaufschlagen bzw. zu umspülen. Genauer gesagt weist die erste Kühlmittelleitung 30 entlang ihrer Wandung unidirektional verteilt angeordnete Austrittsöffnungen 60 auf, wohingegen die zweite Kühlmittelleitung 32 entlang ihrer Wandung ausschließlich nach innen gerichtete Austrittsöffnungen 62 aufweist.
  • Das erwärmte Kühlmittel tritt anschließend an den Stirnseiten 64, 66 der primär- und sekundärseitigen Wicklungen 16, 18 aus, um von dort unter der Wirkung der Schwerkraft in den Auffangbehälter 46 zurückzufließen.
  • Die Kühlmittelleitungen 30, 32 sind jeweils als flexible Schlauchleitungen ausgebildet und bestehen aus hitzebeständigem Kunststoff, insbesondere aus PTFE, Silikon oder Viton. Die Anzahl und/oder Verteilung der Austrittsöffnungen 60, 62 entlang der Wandungen der Kühlmittelleitungen 30, 32 wird hierbei auf Grundlage von Versuchen und/oder computergestützten Simulationen ermittelt.
  • Beispielsgemäß weist die erste Kühlmittelleitung 30 einen Innendurchmesser von 2 bis 4 mm und die zweite Kühlmittelleitung 32 einen Innendurchmesser von 5 bis 7 mm auf. Der genaue Innendurchmesser hängt - wie auch derjenige der Austrittsöffnungen 60, 62 - von unterschiedlichen Gegebenheiten ab, insbesondere der Viskosität des verwendeten Kühlmittels, dem Fördervolumen der Kühlmittelpumpe 50, dem Durchflusswiderstand der Wicklungen 16, 18, der abzuführenden Verlustleistung, und dergleichen.
  • Bei dem durch die Kühlmittelleitung 30, 32 fließenden Kühlmittel handelt es sich um eine nichtleitende Kühlflüssigkeit mit nichtkorrosiven Eigenschaften, beispielsweise um ein hitzebeständiges Öl, insbesondere Silikonöl.
  • Fig. 2 zeigt ergänzend eine perspektivische Außenansicht des in Fig. 1 wiedergegebenen Transformators 10, wobei die weitere Isolierlage 42 weggelassen ist, sodass der Verlauf der zweiten Kühlmittelleitung 32 entlang der durch die aneinandergrenzenden Windungen 26 der sekundärseitigen Wicklung 18 gebildeten Zwischenräume 40 sichtbar ist.
  • Bei dem Transformator 10 handelt es sich um einen Mittelfrequenztransformator für Frequenzen im Bereich einiger 100 Hz bis einiger 1000 Hz, der Bestandteil einer nicht dargestellten Energieübertragungsstrecke zwischen einer Energieversorgungsstation und einem elektrisch betriebenen landwirtschaftlichen Fahrzeug, beispielweise einem landwirtschaftlichen Traktor, ist. Zur Reduzierung von Leitungsverlusten erfolgt die Übertragung der elektrischen Energie auf Mittelspannungsniveau, was eine fahrzeugseitige Anpassung (Verringerung) auf Bordspannungsniveau erforderlich macht. Hierzu ist der Transformator 10 als Zwei- oder Dreiphasentransformator ausgebildet.

Claims (8)

  1. Transformator mit integrierter Kühlung, umfassend eine primar- und sekundärseitige Wicklung (16, 18) sowie eine in zumindest eine der beiden Wicklungen (16, 18) teilweise oder vollständig eingebettete Kühlmittelleitung (30, 32), die aus einer Versorgungseinrichtung (48) mit Kühlmittel speisbar ist, dadurch gekennzeichnet, dass die Kühlmittelleitung (30, 32) eine Vielzahl von Austrittsöffnungen (60, 62) aufweist, die in Richtung der zumindest einen Wicklung (16, 18) münden, um diese mit Kühlmittel zu beaufschlagen.
  2. Transformator nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlmittelleitung (30, 32) als flexible Schlauchleitung ausgebildet ist und aus hitzebeständigem Kunststoff besteht, insbesondere aus PTFE, Silikon oder Viton.
  3. Transformator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlmittelleitung (30, 32) mit der zumindest einen Wicklung (16, 18) gleichsinnig gewunden verläuft.
  4. Transformator nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine erste und/oder zweite Kühlmittelleitung (30, 32) vorgesehen ist, wobei die erste Kühlmittelleitung (30) um eine innenliegende Wicklungslage (20) der primärseitigen Wicklung (16) und/oder die zweite Kühlmittelleitung (32) um eine außenliegende Wicklungslage (22) der sekundärseitigen Wicklung (18) gewunden ist.
  5. Transformator nach Anspruch 4, dadurch gekennzeichnet, dass die erste Kühlmittelleitung (30) entlang ihrer Wandung unidirektional verteilt angeordnete Austrittsöffnungen (60) aufweist.
  6. Transformator nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die zweite Kühlmittelleitung (32) entlang ihrer Wandung ausschließlich nach innen gerichtete Austrittsöffnungen (62) aufweist.
  7. Transformator nach wenigstens einem der Ansprüche 4 bis 6, dass die erste Kühlmittelleitung (30) einen Innendurchmesser von 2 bis 4 mm und/oder die zweite Kühlmittelleitung (32) einen Innendurchmesser von 5 bis 7 mm aufweist.
  8. Transformator nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei dem durch die Kühlmittelleitung (30, 32) fließenden Kühlmittel um ein hitzebeständiges Öl, insbesondere Silikonöl, handelt.
EP18154040.2A 2017-02-10 2018-01-30 Transformator mit integrierter kühlung Active EP3361485B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017202124.1A DE102017202124A1 (de) 2017-02-10 2017-02-10 Transformator mit integrierter Kühlung

Publications (2)

Publication Number Publication Date
EP3361485A1 true EP3361485A1 (de) 2018-08-15
EP3361485B1 EP3361485B1 (de) 2019-10-02

Family

ID=61132014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18154040.2A Active EP3361485B1 (de) 2017-02-10 2018-01-30 Transformator mit integrierter kühlung

Country Status (3)

Country Link
US (2) US11031175B2 (de)
EP (1) EP3361485B1 (de)
DE (1) DE102017202124A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2884080T3 (es) * 2018-10-31 2021-12-10 Abb Power Grids Switzerland Ag Transformador y procedimiento de fabricación de un transformador
CN110069020A (zh) * 2019-04-28 2019-07-30 中国长江电力股份有限公司 一种变压器强迫油循环水冷冷却器仿真控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107536A (en) * 1980-01-29 1981-08-26 Mitsubishi Electric Corp Electromagnetic induction equipment
JPS6071124U (ja) * 1983-10-21 1985-05-20 株式会社明電舎 蒸発冷却誘導電器
JPS6073210U (ja) * 1983-10-24 1985-05-23 株式会社富士電機総合研究所 蒸発冷却ガス絶縁静止電器
JPS6280314U (de) * 1985-11-08 1987-05-22

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985707A (en) * 1956-04-16 1961-05-23 Raytheon Co Electrical cooling system
US3261905A (en) * 1963-12-18 1966-07-19 Gen Electric Stationary induction apparatus cooling system
CH458467A (de) * 1966-03-23 1968-06-30 Siemens Ag Flüssigkeitskühlanordnung für elektrische Stromleiter, insbesondere für Supra- oder Kryoleiter
JPS5878406A (ja) 1981-11-05 1983-05-12 Toshiba Corp 箔巻変圧器
JPS6065503A (ja) 1983-09-21 1985-04-15 Toshiba Corp 箔巻変圧器
JPS6071124A (ja) * 1983-09-27 1985-04-23 Mitsubishi Electric Corp 放電加工装置
US6157282A (en) 1998-12-29 2000-12-05 Square D Company Transformer cooling method and apparatus therefor
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
US20100315161A1 (en) * 2009-06-16 2010-12-16 Advanced Energy Industries, Inc. Power Inductor
US7830237B1 (en) * 2009-08-19 2010-11-09 Intelextron Inc. Transformer
US20130207763A1 (en) * 2011-06-24 2013-08-15 General Electric Company Cooling device for electrical device and method of cooling an electrical device
US8928443B2 (en) * 2012-05-17 2015-01-06 Elwha Llc Electrical device with emergency cooling system
DE102012208545A1 (de) 2012-05-22 2013-11-28 Schmidbauer Transformatoren und Gerätebau GmbH Wassergekühlte elektrische Spule
CN104425112B (zh) * 2013-09-04 2017-01-18 台达电子企业管理(上海)有限公司 变压器
CN106463241A (zh) * 2014-03-25 2017-02-22 维斯塔斯风力系统集团公司 液冷电气设备
CN104240917B (zh) * 2014-09-26 2017-04-26 珠海市竞争电子科技有限公司 可视对讲系统开关电源用变压器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107536A (en) * 1980-01-29 1981-08-26 Mitsubishi Electric Corp Electromagnetic induction equipment
JPS6071124U (ja) * 1983-10-21 1985-05-20 株式会社明電舎 蒸発冷却誘導電器
JPS6073210U (ja) * 1983-10-24 1985-05-23 株式会社富士電機総合研究所 蒸発冷却ガス絶縁静止電器
JPS6280314U (de) * 1985-11-08 1987-05-22

Also Published As

Publication number Publication date
US20210287844A1 (en) 2021-09-16
DE102017202124A1 (de) 2018-08-16
EP3361485B1 (de) 2019-10-02
US11031175B2 (en) 2021-06-08
US20180233271A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
DE69916038T2 (de) Verfahren und vorrichtung zum kühlen eines transformators
DE102013204047B4 (de) Elektrische Einrichtung mit einer Spule
DE112017006217T5 (de) Elektronische Leiterplatte und Enrgie-Umwandlungseinrichtung
EP2428967B1 (de) Transformatorwicklung
EP2068426B1 (de) Elektrischer Wickelleiter mit rechteckigem Querschnitt
DE602004008635T2 (de) Kühlung eines stators
DE102018115654A1 (de) Aktiv gekühlte Spule
EP3361485B1 (de) Transformator mit integrierter kühlung
DE102021214491A1 (de) Stator für eine elektrische Maschine und elektrische Maschine
EP2426674A1 (de) Anordnung zum Kühlen eines Energiekabels
DE212010000159U1 (de) Spulenkühlsystem und flüssigkeitsgekühIte Spule
DE60108583T2 (de) Stromerzeugungssystem mit Statorspulen zur Spannungsverteilung zwischen inneren Kühlrohren und Wicklungssträngen sowie dazugehörige Verfahren
DE3336842C2 (de)
DE10345664B4 (de) Leiter für flüssigkeitsgekühlte Wicklungen
WO2002043085A1 (de) Mittelfrequenztransformator
EP3494584B1 (de) Elektrisches gerät mit mehreren kühleinheiten
EP3657643A1 (de) Isoliermittel für einen stator eines elektromotors sowie zugehöriger stator und verfahren zur herstellung des stators
WO2013030031A1 (de) Transformator und zugehöriges herstellungsverfahren
DE102019217964A1 (de) Kühlsystem und Bauteil für eine elektrische Maschine mit Hohlleiterkühlung
DE102016102895A1 (de) Wärmetauscher, insbesondere Wasser-Luft-Wärmetauscher oder Öl-Wasser-Wärmetauscher
DE102015118652A1 (de) Spulenanordnung
DE102009052489A1 (de) Vorrichtung zum Austausch von Wärme mit einem Plattenpaket und Verfahren zu deren Herstellung
DE102012103797A1 (de) Flüssigkeitsgekühlter Widerstand
EP2721620B1 (de) Wicklungsanordnung mit spulenwicklungen und einem kühlkanalsystem
DE2717553C2 (de) Flüssigkeitsgekühlter Transformator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/28 20060101ALI20190318BHEP

Ipc: H01F 27/12 20060101AFI20190318BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1187083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018000253

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018000253

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

26N No opposition filed

Effective date: 20200703

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1187083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231220

Year of fee payment: 7