EP3350441B1 - Verfahren zur treibmittelversorgung des antriebs eines satelliten und nach diesem verfahren angetriebenes satellitenantriebsmodul - Google Patents

Verfahren zur treibmittelversorgung des antriebs eines satelliten und nach diesem verfahren angetriebenes satellitenantriebsmodul Download PDF

Info

Publication number
EP3350441B1
EP3350441B1 EP16778690.4A EP16778690A EP3350441B1 EP 3350441 B1 EP3350441 B1 EP 3350441B1 EP 16778690 A EP16778690 A EP 16778690A EP 3350441 B1 EP3350441 B1 EP 3350441B1
Authority
EP
European Patent Office
Prior art keywords
cathode
plasma
anodes
propulsion
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16778690.4A
Other languages
English (en)
French (fr)
Other versions
EP3350441A1 (de
Inventor
Luc HERRERO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comat Concept Mecanique Et Assistance Technique
Original Assignee
Comat Concept Mecanique Et Assistance Technique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comat Concept Mecanique Et Assistance Technique filed Critical Comat Concept Mecanique Et Assistance Technique
Publication of EP3350441A1 publication Critical patent/EP3350441A1/de
Application granted granted Critical
Publication of EP3350441B1 publication Critical patent/EP3350441B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0087Electro-dynamic thrusters, e.g. pulsed plasma thrusters

Definitions

  • the invention relates to a power supply method for vacuum arc spatial propulsion, called VAT - acronym for "Vacuum Arc Thruster” in English terminology - and to a space vehicle propulsion module (also called satellite “in the present text) intended to implement such a method.
  • VAT - acronym for "Vacuum Arc Thruster” in English terminology -
  • space vehicle propulsion module also called satellite “in the present text
  • the invention relates to the field of satellite propulsion with a storage of the propulsive material in solid form.
  • plasma propulsion modules operate using a gas (usually xenon) stored in tanks, the engines having the role of ionizing and accelerating this gas to create the thrust needed to put the satellite in motion.
  • the gas storage propulsion module has been replaced by a solid storage propulsion module.
  • the solid storage propulsion systems can be classified according to several types: pulsed plasma propulsion systems or PPT, acronym for “Pulsed Plasma Thruster”, vacuum arc systems known as VAT, acronym for “Vacuum Arc Thruster”, and PLT laser ablation systems, the acronym for “Photonic Laser Thruster”, which uses a solid material (PTFE or metal) as a propellant. Ablation of this material is achieved by the impact of a high power density laser on the surface of the propellant solid.
  • a PPT propulsion system consists of conductive electrodes - anode and cathode - separated by an insulation serving as a propellant material, generally PTFE (acronym for "poly-tetrafluoroethylene").
  • the electrodes are connected via a high voltage circuit. When the voltage at the terminals of a capacitor of this circuit is sufficient to form an intense current on the surface of the insulator, the latter vaporizes. This vaporization causing an increase in the number of neutral particles available in the vacuum, the electronic avalanche can then occur between the electrodes.
  • the high temperature of the plasma thus causes the Laplace force to cause the acceleration of the plasma in the direction of thrust.
  • the ionized plasma thus formed is engaged at high speed through a channelized outlet to produce a pulsed propulsive reaction force.
  • This type of PPT propulsion has the advantage of being able to consume large quantities of PTFE, namely several kilograms, which ensures a long thrust time for the propulsion unit.
  • this technology offers a low propulsive efficiency, of the order of a few percent, and a specific impulse level (less than 800s) much lower than that obtained by the propulsion technology VAT, which provides a much higher level of impulse. high (greater than 1400s).
  • the VAT type propulsion uses the material of the cathode and not the insulator as a propellant.
  • electrical energy is stored in a high voltage circuit and released during the implementation of an arc initiation system.
  • This arc initiation system is based on the creation of an initial plasma between the electrodes. This plasma generates an electronic discharge between the cathode and the anode.
  • the electronic current takes place between the anode and the cathode and warms it locally by Joule effect to create a cathode spot.
  • This cathode spot generates a temperature sufficient to emit by evaporation neutral metal particles which are then ionized and accelerated near the cathode surface by substantially faster electrons.
  • each plasma pulse corresponds to a push pulse.
  • the repetition frequency of the pulses as well as their durations and intensities are determined by a power electronics.
  • the amount of material ejected at each pulse is substantially the same.
  • VAT propulsion examples are described in patent documents US 7,053,333 and US 2011/258981 A1 .
  • These systems generally comprise a hollow tube-shaped cathode and a central cylindrical anode (or vice versa) coaxial, separated by an electrical insulation of aluminum silicate over substantially their entire length.
  • the insulation is covered with a metal film to promote the formation of micro-plasmas that extend along the propulsion initiator plasma.
  • the superheated and consumed metal film is replaced by redeposition of the cathode material through the plasma arc.
  • a magnetic core coupled to a coil creates a magnetic field to orient the particles in the same direction to provide effective propulsion.
  • a spring - arranged in the propulsion module against the rear end face of the cathode - exerts a pressure on the cathode to bring its other end facing an end of the cathode. anode that is not separated by insulation.
  • This spring advance mechanism allows to consume only a few grams of cathode, which greatly limits the duration of thrust and is still insufficient to perform missions typically dedicated to space vehicles.
  • the invention aims to achieve a consumption of several kilograms of cathode, or even tens of kilograms or more, in the context of a propulsion type VAT, without degrading the performance of this type of propulsion.
  • the invention provides for driving the cathode in an optimized helical movement so as to allow the consumption of substantially all the usable cathode material.
  • the subject of the present invention is a feeding method for the vacuum type electric arc satellite propulsion, consisting in guiding an annular cathode in a helical path around a central axis, to be arranged at immediate proximity and radially to the cathode - several anodes regularly distributed in a plane perpendicular to the central axis, to adjust the pitch of the helical path of the cathode, as well as the advance of the cathode on its helical path and the intensity of the electronic discharge impact cycles between the cathode and the anodes, so that the helices formed by the electronic discharges between the cathode and each of the anodes are juxtaposed, and straighten the plasma jet formed by the electronic discharges according to the central axis to form a plasma that generates a propulsive reaction force parallel to this axis (X'X).
  • the consumption of cathode material is optimized by an abrasion of substantially the entire surface of the cathode that can be used.
  • the increase in the number of anodes makes it possible to better parallelize the arcs and thus to increase the intensity of the thrust.
  • This method allows an excellent vectorization of the thrust thanks to the possibility of choosing the location of the site of creation of the arc by powering up the anode corresponding to this site.
  • the thrust can be pulsed with a variable frequency.
  • the invention also relates to a satellite propulsion module for implementing the method defined above.
  • a satellite propulsion module for implementing the method defined above.
  • Such a module comprises a generally annular frame having a central axis and wherein is arranged an annular metal cathode guided by threading / tapping in helical connection with this frame, and a central hollow shaft and coaxial with the frame.
  • On a transverse wall of this central shaft is fixed a circular support consisting of an insulating material and equipped with metal anodes regularly distributed in circumference.
  • energy storage capacitors connect each anode to the cathode to provide, after the formation of a pre-plasma, the energy to generate electronic discharge cycles.
  • a rotational drive mechanism is connected to the cathode to impart to it a movement of step-by-step movement in connection with the helical guide formed between the frame and the cathode.
  • This module presents in particular robustness and simplification qualities of the mechanism for raising the cathode and the integration of its constituent elements in the same frame.
  • a circular support 10 - in the form of disk - is equipped with eight anodes 1, fixed by screws 11 on its circumference.
  • the anodes 1 are distributed regularly in a radial symmetry.
  • An annular cathode 2 surrounds the circular support 10 at a small distance from the anodes 1, approximately 10 mm in the example illustrated, so that a circular end edge 2b of the cathode 2 is substantially in close proximity to the anodes 1.
  • the cathode 2 extends along a longitudinal axis coinciding with the central axis X'X of the support 10 which extends transversely with respect to the cathode 2, perpendicularly to the central axis X'X.
  • the cathode 2 is coupled to a frame 20 which encompasses it longitudinally.
  • the circular support 10 has radial stiffening ribs 12, terminated by connecting rivets 13, via spacing pins 14, to a plate 30 which is also circular and arranged inside the frame 20.
  • An electromagnetic coil 3 of cylindrical shape is integrated on the outer cylindrical face 20e of the frame 20, parallel to the cathode 2, so that the end edge 3b of the electromagnetic coil 3 is at the level of the anodes 1.
  • FIG. 1 The views of module 100 of Figures 2a and 2b , respectively in perspective cut along a longitudinal plane passing through the axis X'X ( figure 2a ) and in frontal section ( figure 2b ), show more precisely the interior of the frame 20.
  • This frame 20 has a longitudinal hollow central shaft 2A X'X axis which extends at its ends to form transverse walls 21A and 21B.
  • the transverse wall 21A serves as a base for the circular support 10 and the other transverse wall 21B forms an end wall of the frame 20.
  • the optical terminations 5 are coupled to optical fiber ends 6 integrated in the longitudinal central shaft 2A of the frame 20.
  • the other ends of the optical fibers are coupled to lasers (not shown) for emitting high power density radiation. for example, 10 8 W / m 2 .
  • a helical guidance system for the annular cathode 2 is made from a thread / tapping type 2L connection between the internal cylindrical face 20i of the frame 20 and the external cylindrical face 2e of the cathode 2.
  • This helical guidance is implemented movement by a mechanism comprising a ring gear 7 arranged under the cathode 2 and driven in rotation by a worm 8 mounted on the axis of an electric motor 9.
  • the annular cathode 2 thus describes a helical path around a central axis X'X according to the pitch of the helical connection 2L.
  • the cathode 2 is driven step-by-step by the helical guidance system with a frequency allowing to draw some million arcs between two advances corresponding to a 1 ⁇ 4 of degree in rotation.
  • the electric drive motor 9 ( Figures 2a and 2b ) rotates the cathode intermittently all these few million cycles.
  • An arc trip is generated in the immediate vicinity of each anode 1 by the cone of laser radiation 1p focused by each optical termination 5 on the cathode 2.
  • An initial plasma 2p is formed by a local heating and amplified during successive electronic discharges between the cathode 2 and each of the anodes 1.
  • the shots in this same zone form a crater of diameter equal to 1d and which will form a helix 1H as the helical advance of the cathode 2.
  • Each cycle of impacts of arcs corresponds to a few hundred thousands of bows.
  • the cathode 2 is set in motion on the helical guide path 2T. This movement is only a few degrees and allows each anode to begin the formation of a new crucible adjacent to the preceding one.
  • the crucibles formed by the cycles of impacts of successive arcs from two adjacent anodes 1 then describe parallel helices 1H.
  • the value of the pitch "p T " of the guide path 2T of the cathode 2 is predetermined so that the adjacent helices 1H of width 1d are juxtaposed because of the arc firing frequency used.
  • all consumable cathodic material is used, which can represent several tens to several hundred kilograms depending on the thickness and height of the cathode.
  • the initial or pre-plasma plasma jet 2p formed in the transverse plane of the support 10 by tearing off the cathode material 2 ( Figures 2a and 2b ) and amplified by successive electronic discharges, is straightened and accelerated along the central axis X'X to form a plasma 3p that generates a propulsive reaction force.
  • the recovery and acceleration are produced axially by the application of a magnetic field "B" induced by the electromagnetic coil 3.
  • the invention is not limited to the embodiments described and shown.
  • the arcing between the cathode and each anode can be caused by the establishment of a high voltage between these electrodes, for example greater than 1000V, or by spark plugs adapted.
  • the cathode can be rotated by indexing leaf springs or by any type of indexable rotary actuator (paddle, rack, etc.).
  • the number of anodes is advantageously adapted to the dimensions of the propulsion module and can reach for example 12 or 16 or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Claims (9)

  1. Versorgungsverfahren für den Satellitenantrieb mit Vakuumlichtbogen, dadurch gekennzeichnet, dass es darin besteht, eine Ringkathode (2) gemäß einer Schraubenbahn (2T) um eine Mittelachse (X'X) zu führen, mehrere gleichmäßig in einer Ebene lotrecht zur Mittelachse (X'X) verteilte Anoden (1) - in direkter Nähe zu und radial bezüglich der Kathode (2) - anzuordnen, die Steigung (pT) der Schraubenbahn (2T) der Kathode (2) sowie den Vorschub der Kathode (2) auf ihrer Schraubenbahn (2T) und die Intensität der Stoßzyklen von Elektronenentladungen zwischen der Kathode (2) und den Anoden (2) so zu regeln, dass die durch die Elektronenentladungen zwischen der Kathode (2) und jeder der Anoden (1) gebildeten Schraubenlinien (1H) nebeneinander liegen, bis das ganze zur Verfügung stehende Kathodenmaterial verbraucht und der von den Elektronenentladungen gemäß der Mittelachse (X'X) gebildete Plasmastrahl (2p) gleichgerichtet wird, um ein Plasma (3p) zu bilden, das eine Antriebsreaktionskraft parallel zu dieser Achse (X'X) erzeugt.
  2. Versorgungsverfahren nach Anspruch 1, wobei ein Vorplasma (2p) in direkter Nähe jeder Anode (1) erzeugt wird, um eine von den Elektronenentladungen verstärkte Elektronenlawine auszulösen.
  3. Versorgungsverfahren nach einem der Ansprüche 1 oder 2, wobei die Steigung (pT) der Schraubenbahn (2T) der Kathode (2) abhängig von der Abmessung (1d) von Mulden bestimmt wird, die nacheinander durch jeden Zyklus von Lichtbogenstößen gebildet werden, die von der am nächsten liegenden Anode (1) kommen, wobei die Folge von benachbarten Mulden kombiniert mit der Schraubenbewegung der Kathode (2) dann für jede Anode (1) eine schraubenförmige Rille (1H) bildet, und die so gebildeten Schraubenlinien (1H) aneinandergrenzen.
  4. Versorgungsverfahren nach einem der Ansprüche 1 bis 3, wobei der radial in der Ebene der Anoden (2) erzeugte Plasmastrahl (2p) gleichgerichtet und axial durch ein Magnetfeld (B) beschleunigt wird.
  5. Satelliten-Antriebsmodul (100), das dazu bestimmt ist, das Verfahren nach einem der vorhergehenden Ansprüche anzuwenden, dadurch gekennzeichnet, dass es ein global ringförmiges Gestell (20), das eine Mittelachse (X'X) hat und in dem eine metallische Ringkathode (2) angeordnet ist, die durch Außengewinde/Innengewinde (2L) in Schraubenverbindung (2T) mit diesem Gestell (20) geführt wird, sowie eine mittlere und zum Gestell (20) koaxiale Hohlwelle (2A) aufweist, wobei die Mittelwelle (2A) eine Querwand (21A) aufweist, an der ein kreisförmiger Träger (10) befestigt ist, der aus einem Isoliermaterial besteht und mit Metallanoden (1) ausgestattet ist, die gleichmäßig am Umfang verteilt sind, dass dieses Gestell (20) ebenfalls Energiespeicher-Kondensatoren (4) aufweist, die jede Anode (1) mit der Kathode (2) verbinden, um die Energie zu liefern, um Zyklen von Elektronenentladungen nach der Bildung eines Vorplasmas (2p) zu erzeugen, und dass ein Drehantriebsmechanismus (7 bis 9) mit der Kathode (2) verbunden ist, um ihr eine schrittweise Verschiebebewegung in Verbindung mit der Schraubenführung (2T) zu verleihen, die zwischen dem Gestell (20) und der Kathode (2) gebildet ist.
  6. Antriebsmodul nach dem vorhergehenden Anspruch, wobei die Mittelwelle (2A) Lichtleitfasern (6) beinhaltet, die je mit optischen Endeinrichtungen (5) gekoppelt sind, die in direkter Nähe der Anoden (1) positioniert sind und in Richtung der Kathode (2) eine ionisierende elektromagnetische Strahlung emittieren können, die von mindestens einer elektromagnetischen Strahlungsquelle kommt, die die Initialisierung der Bildung eines Plasmastrahls (1p) ausgehend von einer Bogenerzeugung begünstigt.
  7. Antriebsmodul nach einem der Ansprüche 5 oder 6, wobei die ionisierende elektromagnetische Strahlungsquelle aus einem Laser besteht.
  8. Antriebsmodul nach einem der Ansprüche 5 bis 7, wobei eine ringförmige elektromagnetische Spule (3) ebenfalls an der Außenseite (20e) des Gestells (20) eingebaut ist, um ein induziertes Magnetfeld (B) zu erzeugen, um das von den aufeinanderfolgenden Elektronenentladungen gebildete Plasma (3p) axial gleichzurichten.
  9. Antriebsmodul nach einem der Ansprüche 5 bis 8, wobei der Drehantriebsmechanismus aus einem Tragring (7) der Kathode (2) in Verbindung mit einem elektrischen Schrittmotor (9) über eine Schnecke (8) besteht.
EP16778690.4A 2015-09-18 2016-09-14 Verfahren zur treibmittelversorgung des antriebs eines satelliten und nach diesem verfahren angetriebenes satellitenantriebsmodul Active EP3350441B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558809A FR3041390B1 (fr) 2015-09-18 2015-09-18 Procede d'alimentation pour la propulsion de satellite et module de propulsion de satellite alimente selon ce procede
PCT/EP2016/071617 WO2017046115A1 (fr) 2015-09-18 2016-09-14 Procédé d'alimentation pour la propulsion de satellite et module de propulsion de satellite alimenté selon ce procédé

Publications (2)

Publication Number Publication Date
EP3350441A1 EP3350441A1 (de) 2018-07-25
EP3350441B1 true EP3350441B1 (de) 2019-08-07

Family

ID=56555409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16778690.4A Active EP3350441B1 (de) 2015-09-18 2016-09-14 Verfahren zur treibmittelversorgung des antriebs eines satelliten und nach diesem verfahren angetriebenes satellitenantriebsmodul

Country Status (3)

Country Link
EP (1) EP3350441B1 (de)
FR (1) FR3041390B1 (de)
WO (1) WO2017046115A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916326A (zh) * 2020-06-09 2020-11-10 哈尔滨工业大学 一种具有防护功能的离子源的导磁套筒结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818853B1 (en) 2003-05-30 2004-11-16 Alameda Applied Sciences Corp. Vacuum arc plasma thrusters with inductive energy storage driver
US8875485B2 (en) * 2010-04-06 2014-11-04 The George Washington University Micro-cathode thruster and a method of increasing thrust output for a micro-cathode thruster

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3041390B1 (fr) 2018-02-23
EP3350441A1 (de) 2018-07-25
WO2017046115A1 (fr) 2017-03-23
FR3041390A1 (fr) 2017-03-24

Similar Documents

Publication Publication Date Title
EP2798209A1 (de) Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs
JP6141267B2 (ja) 自己閉じ込め型高密度空気プラズマを発生させるためのシステムおよび方法
WO2017037062A1 (fr) Propulseur ionique a grille avec agent propulsif solide integre
FR2485863A1 (fr) Dispositif a plasma d'arc sous vide
Duselis et al. Factors affecting energy deposition and expansion in single wire low current experiments
JP2018528358A (ja) 内部ワイヤトリガ型パルスカソードアーク推進システム
FR2995017A1 (fr) Dispositif electrothermique pour systeme de propulsion, notamment pour turboreacteur, systeme de propulsion comprenant un tel dispositif electrothermique, et procede associe.
EP3350441B1 (de) Verfahren zur treibmittelversorgung des antriebs eines satelliten und nach diesem verfahren angetriebenes satellitenantriebsmodul
EP0645947B1 (de) Neutronenröhre mit magnetischem Elektroneneinschluss durch Dauermagneten und dessen Herstellungsverfahren
FR2838102A1 (fr) Systeme de propulsion combine destine a un engin spatial
EP3420636B1 (de) Stromversorgungssystem für eine elektrisches halleffekt-strahlruder
EP1767894B1 (de) Im Innern eines Flugkörpers angebrachte Plasmaentladungen erzeugende Vorrichtung zur Steuerung eines supersonischen oder hypersonischen Flugkörpers
EP0184475A1 (de) Verfahren und Vorrichtung zum Starten einer Mikrowellenionenquelle
FR2529400A1 (fr) Laser a gaz a excitation par decharge electrique transverse declenchee par photoionisation
FR2984028A1 (fr) Eclateur haute tension a amorcage par laser comportant une cathode en materiau refractaire poreux a charge photoemissive
EP3574719B1 (de) System zur erzeugung eines plasmastrahls von metallionen
EP0251864B1 (de) Verfahren zum Abschiessen von Geschossen mit Übergeschwindigkeit und Abschussvorrichtung zur Ausführung dieses Verfahrens
FR2984027A1 (fr) Eclateur dont la cathode est montee sur une resistance
WO2007090850A1 (fr) Dispositif de couplage entre une antenne a plasma et un generateur de signal de puissance
FR2936648A1 (fr) Tube micro-ondes compact de forte puissance
EP1535307B1 (de) Entladungsstrahlungsquelle insbesondere für uv-strahlung
FR2612706A1 (fr) Source impulsionnelle de courant electrique et canon electromagnetique en faisant application
WO1991016591A1 (fr) Procede et dispositif de propulsion electrodynamique
FR2661033A1 (fr) Procede et dispositif pour produire de l'energie de fusion a partir de l'eau lourde.
FR2985366A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'une onde hyperfrequence associe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMAT CONCEPT MECANIQUE ET ASSISTANCE TECHNIQUE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016018289

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1164294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016018289

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190914

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190914

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230912

Year of fee payment: 8