EP3349929B1 - Penetrator comprising a core surrounded by a ductile sheath and process for manufacturing such a penetrator - Google Patents
Penetrator comprising a core surrounded by a ductile sheath and process for manufacturing such a penetrator Download PDFInfo
- Publication number
- EP3349929B1 EP3349929B1 EP16757687.5A EP16757687A EP3349929B1 EP 3349929 B1 EP3349929 B1 EP 3349929B1 EP 16757687 A EP16757687 A EP 16757687A EP 3349929 B1 EP3349929 B1 EP 3349929B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tungsten
- core
- sheath
- mass
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 74
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 74
- 229910052721 tungsten Inorganic materials 0.000 claims description 74
- 239000010937 tungsten Substances 0.000 claims description 74
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- 239000010941 cobalt Substances 0.000 claims description 37
- 229910017052 cobalt Inorganic materials 0.000 claims description 37
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 37
- 229910052759 nickel Inorganic materials 0.000 claims description 37
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 229910001385 heavy metal Inorganic materials 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 229910001080 W alloy Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 60
- 238000005253 cladding Methods 0.000 description 17
- 239000012071 phase Substances 0.000 description 16
- 238000001000 micrograph Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/04—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
- F42B12/06—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with hard or heavy core; Kinetic energy penetrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/72—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
- F42B12/74—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B14/00—Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
- F42B14/06—Sub-calibre projectiles having sabots; Sabots therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B14/00—Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
- F42B14/06—Sub-calibre projectiles having sabots; Sabots therefor
- F42B14/061—Sabots for long rod fin stabilised kinetic energy projectiles, i.e. multisegment sabots attached midway on the projectile
Definitions
- the technical field of the invention is that of heavy metal penetrators and in particular that of penetrators used to produce large caliber sub-caliber projectiles (calibrated greater than or equal to 25 mm).
- projectiles are most often referred to as arrow projectiles. They feature a sub-caliber penetrator or bar that is fired by a weapon using a weapon-caliber sabot.
- the penetrator For a projectile of caliber 120 mm, the penetrator generally has a diameter of 20 to 30 mm and the sabot allowing the shot is formed of a set of sectors made of light material (aluminum alloy for example).
- Licences US8580188B2 , FR-2521717 And FR-2661739 describe examples of arrow projectiles.
- penetrators are most often made of an alloy with a high tungsten content.
- Such alloys are sensitive to the transverse stresses they receive during impact on an inclined target or else during interaction with reactive protection.
- the transverse shocks cause the penetrator to break, which reduces the perforating power of the penetrator after passing such targets.
- a penetrator comprising a core formed from an alloy comprising 90 to 97% by mass of tungsten and which is surrounded by a peripheral sheath of a tungsten alloy that is more ductile than the material of the core.
- the sheath of this penetrator has a tungsten content between 85% and 91%.
- the tungsten percentage of the sheath is relatively close to that of the core and this penetrator therefore has insufficient bending resistance performance.
- Such a penetrator is not suited to current needs for making arrow projectiles having an elongation, that is to say a ratio (L/D) of the length (L) of the penetrator to the diameter (D) of the penetrator, which is important.
- the patent EP-1940574 proposes to sinter the core and the sheath in the same mould.
- the separation between sheath and core is ensured by a particular funnel associated with a tube which separates the core zone and the sheath zone.
- the tube and funnel are removed.
- the cladding and core materials are then in contact and sintering can be performed.
- Such a method has the disadvantage of leaving between cladding and core a transition zone having a thickness between 25 micrometers and 200 micrometers.
- This zone is formed of a material whose composition and characteristics are intermediate between those of the core and of the cladding.
- Such a transition zone associates, like the core and the cladding, tungsten nodules and a gamma phase. The size of the tungsten nodules and the composition of the gamma phase of this zone are obligatorily different from those of the core and the sheath. If it were otherwise, there would be no such transition zone.
- this transition zone thickness, positioning relative to the axis of the indenter, etc.
- the ductility of the cladding obtained with this process is therefore slightly higher than that of the core, of the order of 5 to 10%.
- the object of the invention is to propose an indenter structure in which the adhesion between sheath and core is excellent, even with a difference in tungsten content between sheath and core.
- the penetrator according to the invention can then have a sheath ductility which is greater than that of the known tungsten sheath penetrators.
- the subject of the invention is a heavy metal penetrator with a high tungsten content comprising a central part or core formed of an alloy comprising from 85 to 97% by mass of tungsten associated with additional metals and which is surrounded by a peripheral sheath of a tungsten alloy that is more ductile than the material of the core, penetrator characterized in that the sheath is made of an alloy comprising from 30% to 72% by mass of tungsten, the core comprising tungsten nodules bonded by a matrix of a gamma ⁇ C phase associating tungsten with the additional metals, the two gamma phases being connected to each other continuously without a transition zone.
- the gamma phases of the ⁇ C core and of the ⁇ G cladding will have a composition combining tungsten, nickel, cobalt and possibly iron.
- the core may comprise 85% by mass of tungsten and the cladding 38% by mass of tungsten, the gamma phases of the ⁇ C core and of the ⁇ G cladding having compositions combining Tungsten, Nickel, and Cobalt.
- the core may comprise 89% by mass of tungsten and the cladding 68% by mass of tungsten, the gamma phases of the ⁇ C core and of the ⁇ G cladding having compositions combining Tungsten, Nickel and Cobalt.
- the alloy of the core may comprise 95% by mass of Tungsten, 2% by mass of Nickel, 1.5% by mass of Cobalt and 2% by mass of Fe and the sheath 70% in mass of tungsten, the gamma phases of the ⁇ C core and of the ⁇ G sheath having compositions combining Tungsten, Nickel, Cobalt and Iron.
- the invention also relates to a method for producing such an indenter.
- FIG. 1 shows an arrow projectile 1 which comprises in a conventional way a sabot 2 made of light material (such as an aluminum alloy), sabot formed of several segments and which surrounds a sub-caliber penetrator 3.
- a sabot 2 made of light material (such as an aluminum alloy), sabot formed of several segments and which surrounds a sub-caliber penetrator 3.
- the penetrator comprises a conical front part 3a and carries at its rear part 3b a stabilizer 4 ensuring its stabilization on trajectory.
- the very structure of the indenter 3 will be described later.
- the sabot carries a belt 5, made of plastic material, and which seals against propellant gases during firing in the barrel of a weapon (not shown).
- the gases of the propellant charge exert their thrust at the level of a rear part 6 of the sabot which is in the caliber and which constitutes what is called the thrust plate.
- Sabot 2 is intended to allow the projectile to be fired in the weapon. It is made up of several segments (most often three) which surround the indenter3 and which are in contact two by two at the joint planes.
- the segments of the sabot 2 deviate from the penetrator 3 under the action of the aerodynamic pressure which is exerted at the level of the front part (AV) of the sabot 2.
- Shape-matching means (not shown), for example a thread, are interposed between the sabot 2 and the indenter 3 to drive the latter.
- FIG. 2 shows more precisely the structure of the penetrator 3 which comprises a central part or core 7 which is surrounded by a peripheral sheath 8.
- the core is formed from an alloy comprising from 85% to 97% by weight of tungsten and the sheath is made from an alloy comprising from 30% to 72% by weight of tungsten.
- Tungsten is alloyed, both at the level of the core and of the sheath, with addition metals such as Nickel which will always be associated with Cobalt with or without iron.
- the material comprises nodules 9 of phase ⁇ tungsten with a centered cubic crystalline structure which are bonded together by a matrix 10 of a gamma ⁇ C phase combining tungsten with nickel, with cobalt with or without iron (Fe), with a face-centered cubic crystal structure.
- the tungsten content of the core is between 85% and 97%, which results in a core density of the order of 17 g/cm 3 .
- the core 7 is formulated so as to have an elastic limit greater than or equal to 1100 MPa (Mega Pascals).
- the ductility is around 6% and its Charpy resilience (unnotched test according to ISO 179-1 standard) is 80 J/cm 2 .
- the material essentially comprises a matrix 11 of a gamma ⁇ G phase essentially associating tungsten with Nickel and Cobalt with or without Fe, and with a face-centered cubic crystalline structure which is the sign that this sheath has a high resilience.
- the percentage of tungsten of the sheath 8 is between 30% and 72%, which leads to a density of this sheath which can vary between 10 g/cm3 and 15 g/cm3.
- the alloy of the sheath 8 will be formulated so as to have a ductility greater than 7% and a high resilience: Charpy resilience (non-notched test according to standard ISO 179-1) greater than or equal to 200 J/cm 2 .
- the sheath 8 is therefore more ductile than the core 7.
- the gamma ⁇ C phase of the core combines tungsten with nickel and cobalt (with or without iron)
- the gamma ⁇ G phase of the cladding will also include nickel and cobalt (with or without iron) as additional metals.
- THE figures 5a and 5b show that after shaping the indenter 3, the matrices 10 and 11 of the core 8 and of the sheath 7 (matrices formed by the gamma phases of the core and of the sheath) are connected to each other in a continuous manner without transition zone.
- the zones marked with the arrows Z1 and Z2 the figure 5b is at twice the magnification of the figure 5a ).
- step A to manufacture an alloy comprising 85% to 97% by mass of tungsten, the powders of Tungsten, Nickel, Cobalt and possibly Iron are mixed homogeneously and pre-compressed in the form of a bar. which will constitute the heart.
- a sheath 8 of an alloy comprising 30% to 72% by mass of tungsten associated with additional metals comprising nickel, cobalt and optionally iron is produced.
- the materials are mixed homogeneously and then compressed in a tool which comprises a cylindrical core having a diameter equal to or greater than the internal diameter desired for the sheath.
- the rest of the compression tooling is conventional.
- the cladding and the core are assembled by sintering.
- the alloys are consolidated at temperatures between 1400°C and 1600°C.
- the sintering makes it possible to ensure the continuity of the gamma phases between the cladding and the core.
- the thickness of the sheath 8 may thus vary between 5 mm and 9 mm for an indenter with an external diameter of 35 mm.
- Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
- the core is formed of 85% by mass of tungsten, and having a density of 16.5 g/cm 3 , an elastic limit of 1800 MPa, a ductility of 10% and an unnotched Charpy resilience of 150 J/cm 2 .
- the core alloy comprises 85% by mass of Tungsten, 15% by mass of Nickel and 5% by mass of Cobalt.
- the sheath has a density of 11.2 g/cm 2 , an elastic limit of 1400 MPa, a ductility of 18% and an unnotched Charpy resilience of 400 J/cm 2 .
- the sheath alloy comprises (proportions by mass): 38.0% Tungsten, 40% Nickel and 22% Cobalt.
- This penetrator (and its blank) was manufactured by implementing the process described above.
- Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
- the core is formed of 89% by mass of tungsten, and having a density of 17.1 g/cm 3 , an elastic limit of 1500 MPa, a ductility of 9% and an unnotched Charpy resilience of 300 J/cm 2 .
- the core alloy comprises 89% by mass of Tungsten, 7.5% by mass of Nickel and 3.5% by mass of Cobalt.
- the sheath is formed of 68% by mass of tungsten and having a density of 14.1 g/cm 2 , an elastic limit of 2000 MPa, a ductility of 11% and an unnotched Charpy resilience of 400 J/cm 2 .
- the sheath alloy comprises (proportions by mass): 68% Tungsten, 22% Nickel and 10% Cobalt.
- This penetrator (and its blank) was manufactured by implementing the process described above.
- Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
- the core is formed of 95% by mass of tungsten, and having a density of 18.3 g/cm 3 , an elastic limit of 1300 MPa, a ductility of 7% and an unnotched Charpy resilience of 50 J/cm 2 .
- the core alloy comprises 95% by mass of Tungsten, 2% by mass of nickel, 1.5% by mass of cobalt and 2% by mass of iron.
- the sheath is formed of 70.0% by mass of tungsten and having a density of 14.0 g/cm 2 , an elastic limit of 2000 MPa, a ductility of 9% and an unnotched Charpy resilience of 300 J/cm 2 .
- the sheath alloy comprises (proportions by mass): 70.0% by mass of Tungsten, 18% by mass of Nickel, 10% by mass of Cobalt and 2% by mass of Fe.
- This penetrator (and its blank) was manufactured by implementing the process described above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Powder Metallurgy (AREA)
- Braking Arrangements (AREA)
Description
Le domaine technique de l'invention est celui des pénétrateurs en métal lourd et en particulier celui des pénétrateurs utilisés pour réaliser des projectiles sous calibrés de gros calibre (calibré supérieur ou égal à 25 mm).The technical field of the invention is that of heavy metal penetrators and in particular that of penetrators used to produce large caliber sub-caliber projectiles (calibrated greater than or equal to 25 mm).
Ces projectiles sont le plus souvent appelés projectiles flèches. Ils comportent un pénétrateur ou barreau sous-calibré qui est tiré par une arme à l'aide d'un sabot au calibre de l'arme.These projectiles are most often referred to as arrow projectiles. They feature a sub-caliber penetrator or bar that is fired by a weapon using a weapon-caliber sabot.
Pour un projectile de calibre 120 mm, le pénétrateur a généralement un diamètre de 20 à 30 mm et le sabot permettant le tir est formé d'un ensemble de secteurs en matériau léger (alliage d'aluminium parexemple).For a projectile of caliber 120 mm, the penetrator generally has a diameter of 20 to 30 mm and the sabot allowing the shot is formed of a set of sectors made of light material (aluminum alloy for example).
Les brevets
Pour augmenter l'efficacité pénétrante des projectiles flèches, les pénétrateurs sont le plus souvent réalisés en un alliage à haute teneur en tungstène.To increase the penetrating efficiency of arrow projectiles, penetrators are most often made of an alloy with a high tungsten content.
De tels alliages sont sensibles aux sollicitations transversales qu'ils reçoivent lors de l'impact sur une cible inclinée ou bien lors de l'interaction avec une protection réactive. Les chocs transversaux provoquent la rupture du pénétrateur ce qui réduit le pouvoir perforant du pénétrateur après passage de telles cibles.Such alloys are sensitive to the transverse stresses they receive during impact on an inclined target or else during interaction with reactive protection. The transverse shocks cause the penetrator to break, which reduces the perforating power of the penetrator after passing such targets.
Il est connu de doter les pénétrateurs d'une chemise périphérique en un matériau plus ductile assurant une résistance à la flexion pour le pénétrateur.It is known to provide penetrators with a peripheral jacket made of a more ductile material providing resistance to bending for the penetrator.
On connaît par exemple par le brevet
La gaine de ce pénétrateur a une proportion en tungstène comprise entre 85% et 91%.The sheath of this penetrator has a tungsten content between 85% and 91%.
Le pourcentage en tungstène de la gaine est relativement proche de celui du coeur et ce pénétrateur a donc des performances de résistance à la flexion insuffisantes.The tungsten percentage of the sheath is relatively close to that of the core and this penetrator therefore has insufficient bending resistance performance.
Un tel pénétrateur n'est pas adapté aux besoins actuels de réalisation de projectiles flèches ayant un allongement, c'est à dire un rapport (L/D) de la longueur (L) du pénétrateur sur le diamètre (D) du pénétrateur, qui est important.Such a penetrator is not suited to current needs for making arrow projectiles having an elongation, that is to say a ratio (L/D) of the length (L) of the penetrator to the diameter (D) of the penetrator, which is important.
On cherche en effet à réaliser aujourd'hui des pénétrateurs ayant un allongement dépassant 20 (L/D > 20). Ceci conduit à des pénétrateurs de plus de 500 mm de long pour un diamètre de 25 à 35 mm. De tels pénétrateurs sont particulièrement sensibles aux impacts sur des cibles inclinées.Today, in fact, attempts are made to produce penetrators with an elongation exceeding 20 (L/D > 20). This leads to penetrators over 500 mm long for a diameter of 25 to 35 mm. Such penetrators are particularly sensitive to impacts on inclined targets.
Il n'est cependant pas aisé de donner à la gaine une ductilité supérieure à celle du coeur. Par ailleurs, il est également nécessaire d'assurer une liaison entre le matériau du coeur et celui de la gaine. Si cette liaison est insuffisante, les efforts radiaux ou longitudinaux conduisent à une séparation de ces éléments lors de l'impact ou même comme suite au tir.However, it is not easy to give the sheath a ductility greater than that of the core. Furthermore, it is also necessary to ensure a connection between the material of the core and that of the cladding. If this connection is insufficient, the radial or longitudinal forces lead to a separation of these elements during the impact or even as a result of the shot.
Pour assurer la liaison, le brevet
Un tel procédé présente l'inconvénient de laisser subsister entre gaine et coeur une zone de transition ayant une épaisseur entre 25 micromètres et 200 micromètres. Cette zone est formée d'un matériau dont la composition et les caractéristiques sont intermédiaires entre celles du coeur et de la gaine. Une telle zone de transition associe, tout comme le coeur et la gaine, des nodules de tungstène et une phase gamma. La taille des nodules de tungstène et la composition de la phase gamma de cette zone sont obligatoirement différentes de celles du coeur et de la gaine. S'il en était autrement, il n'y aurait pas une telle zone de transition.Such a method has the disadvantage of leaving between cladding and core a transition zone having a thickness between 25 micrometers and 200 micrometers. This zone is formed of a material whose composition and characteristics are intermediate between those of the core and of the cladding. Such a transition zone associates, like the core and the cladding, tungsten nodules and a gamma phase. The size of the tungsten nodules and the composition of the gamma phase of this zone are obligatorily different from those of the core and the sheath. If it were otherwise, there would be no such transition zone.
L'inconvénient d'une telle zone de transition est qu'elle constitue une interface fragilisant le barreau ainsi réalisé.The disadvantage of such a transition zone is that it constitutes an interface weakening the bar thus produced.
Plus spécifiquement encore, la géométrie de cette zone de transition (épaisseur, positionnement par rapport à l'axe du pénétrateur...) n'est pas maîtrisée.More specifically still, the geometry of this transition zone (thickness, positioning relative to the axis of the indenter, etc.) is not controlled.
Il en résulte des variations du positionnement radial de cette zone de transition le long du pénétrateur, variations d'autant plus marquées pour un pénétrateur de grand allongement. Il en résulte également une résistance de cette interface qui est très variable le long du pénétrateur, ce qui diminue les performances de perforation.This results in variations in the radial positioning of this transition zone along the indenter, variations which are all the more marked for an indenter of great elongation. This also results in a resistance of this interface which is very variable along the indenter, which reduces the perforation performance.
Par ailleurs, le procédé décrit par le brevet
La ductilité de la gaine obtenue avec ce procédé est donc peu supérieure à celle du coeur, de l'ordre de 5 à 10%.The ductility of the cladding obtained with this process is therefore slightly higher than that of the core, of the order of 5 to 10%.
L'invention a pour but de proposer une structure de pénétrateur dans laquelle l'adhérence entre gaine et coeur est excellente, même avec une différence de taux de tungstène entre gaine et coeur.The object of the invention is to propose an indenter structure in which the adhesion between sheath and core is excellent, even with a difference in tungsten content between sheath and core.
Le pénétrateur selon l'invention peut alors avoir une ductilité de gaine qui est supérieure à celle des pénétrateurs à gaine de tungstène connus.The penetrator according to the invention can then have a sheath ductility which is greater than that of the known tungsten sheath penetrators.
Ainsi, l'invention a pour objet un pénétrateur en métal lourd à haute teneur en tungstène comportant une partie centrale ou coeur formé d'un alliage comprenant de 85 à 97% en masse de tungstène associé à des métaux additionnels et qui est entouré d'une gaine périphérique d'un alliage de tungstène plus ductile que le matériau du coeur, pénétrateur caractérisé en ce que la gaine est réalisée en un alliage comprenant de 30% à 72% en masse de tungstène, le coeur comprenant des nodules de tungstène liés par une matrice d'une phase gamma γC associant le tungstène aux métaux additionnels, les deux phases gamma étant reliées l'une à l'autre de façon continue sans zone de transition.Thus, the subject of the invention is a heavy metal penetrator with a high tungsten content comprising a central part or core formed of an alloy comprising from 85 to 97% by mass of tungsten associated with additional metals and which is surrounded by a peripheral sheath of a tungsten alloy that is more ductile than the material of the core, penetrator characterized in that the sheath is made of an alloy comprising from 30% to 72% by mass of tungsten, the core comprising tungsten nodules bonded by a matrix of a gamma γ C phase associating tungsten with the additional metals, the two gamma phases being connected to each other continuously without a transition zone.
Avantageusement, les phases gamma du coeur γC et de la gaine γG auront une composition associant le tungstène, le nickel, le cobalt et éventuellement le fer.Advantageously, the gamma phases of the γ C core and of the γ G cladding will have a composition combining tungsten, nickel, cobalt and possibly iron.
Selon un mode de réalisation, le coeur pourra comprendre 85% en masse de tungstène et la gaine 38% en masse de tungstène, les phases gamma du coeur γC et de la gaine γG ayant des compositions associant Tungstène, Nickel,et Cobalt.According to one embodiment, the core may comprise 85% by mass of tungsten and the cladding 38% by mass of tungsten, the gamma phases of the γ C core and of the γ G cladding having compositions combining Tungsten, Nickel, and Cobalt.
Selon un autre mode de réalisation, le coeur pourra comprendre 89% en masse de tungstène et la gaine 68% en masse de tungstène, les phases gamma du coeur γC et de la gaine γG ayant des composition associant Tungstène, Nickel et Cobalt.According to another embodiment, the core may comprise 89% by mass of tungsten and the cladding 68% by mass of tungsten, the gamma phases of the γ C core and of the γ G cladding having compositions combining Tungsten, Nickel and Cobalt.
Selon encore un autre mode de réalisation, l'alliage du coeur pourra comprendre 95% en masse de Tungstène, 2% en masse de Nickel, 1,5% en masse de Cobalt et 2% en masse de Fe et la gaine 70% en masse de tungstène, les phases gamma du coeur γC et de la gaine γG ayant des compositions associant Tungstène, Nickel, Cobalt et Fer.According to yet another embodiment, the alloy of the core may comprise 95% by mass of Tungsten, 2% by mass of Nickel, 1.5% by mass of Cobalt and 2% by mass of Fe and the sheath 70% in mass of tungsten, the gamma phases of the γ C core and of the γ G sheath having compositions combining Tungsten, Nickel, Cobalt and Iron.
L'invention a également pour objet un procédé permettant de réaliser un tel pénétrateur.The invention also relates to a method for producing such an indenter.
Ce procédé de fabrication d'un pénétrateur en métal lourd à haute teneur en tungstène est caractérisé en ce qu'il comprend les étapes suivantes (qui conduisent à la réalisation d'un ébauché de ce pénétrateur) :
- fabrication d'un coeur composé de poudres compactées comprenant de 85% à 97% en masse de tungstène associé à des métaux additionnels comprenant le nickel, le cobalt avec ou sans Fer,
- fabrication d'une gaine composée de poudres compactées comprenant de 30% à 72% en masse de tungstène associé à des métaux additionnels comprenant le nickel, le cobalt avec ou sans Fer,
- assemblage par frittage de la gaine et du coeur.
- manufacture of a core composed of compacted powders comprising from 85% to 97% by mass of tungsten associated with additional metals including nickel, cobalt with or without iron,
- manufacture of a sheath composed of compacted powders comprising from 30% to 72% by mass of tungsten associated with additional metals including nickel, cobalt with or without iron,
- assembly by sintering of the sheath and the core.
L'invention sera mieux comprise à la lecture de la description qui va suivre de modes particuliers de réalisation, description faite en référence aux dessins annexés et dans lesquels :
- la
figure 1 montre l'architecture générale d'un projectile sous calibré de type flèche, - la
figure 2 montre en coupe longitudinale partielle un pénétrateur selon l'invention, - la
figure 3 est une micrographie montrant la structure du coeur du pénétrateur selon l'invention, - la
figure 4 est une micrographie montrant la structure de la gaine du pénétrateur selon l'invention, - la
figure 5a est une micrographie montrant la liaison entre gaine et coeur, et - la
figure 5b est un grossissement de la micrographie de lafigure 5a .
- there
figure 1 shows the general architecture of an arrow-type subcaliber projectile, - there
figure 2 shows in partial longitudinal section an indenter according to the invention, - there
picture 3 - there
figure 4 is a micrograph showing the structure of the sheath of the indenter according to the invention, - there
figure 5a is a micrograph showing the connection between sheath and core, and - there
figure 5b is a magnification of the micrograph of thefigure 5a .
La
Le pénétrateur comporte une partie avant 3a conique et porte à sa partie arrière 3b un empennage 4 assurant sa stabilisation sur trajectoire. La structure même du pénétrateur 3 sera décrite par la suite.The penetrator comprises a conical front part 3a and carries at its
Le sabot porte une ceinture 5, réalisée en matière plastique, et qui assure l'étanchéité aux gaz propulsifs lors du tir dans le tube d'une arme (non représenté).The sabot carries a
Lors du tir, les gaz du chargement propulsif (non représenté) exercent leur poussée au niveau d'une partie arrière 6 du sabot qui est au calibre et qui constitue ce qu'on appelle la plaque de poussée.During firing, the gases of the propellant charge (not shown) exert their thrust at the level of a rear part 6 of the sabot which is in the caliber and which constitutes what is called the thrust plate.
Une telle configuration générale d'un projectile sous calibré stabilisé par empennage (projectile flèche) est bien connue. On pourra notamment considérer les brevets
Le sabot 2 est destiné à permettre le tir du projectile dans l'arme. Il est constitué de plusieurs segments (le plus souvent trois) qui entourent le pénétrateur3 et qui sont en contact deux à deux au niveau de plans de joints.
A la sortie du tube de l'arme, les segments du sabot 2 s'écartent du pénétrateur 3 sous l'action de la pression aérodynamique qui s'exerce au niveau de la partie avant (AV) du sabot 2.At the exit from the barrel of the weapon, the segments of the
L'écartement des segments conduit à la rupture de la ceinture 5 et le sabot libère donc le pénétrateur 3 qui poursuit sa trajectoire.The separation of the segments leads to the rupture of the
Des moyens à concordance de forme (non représentés), par exemple un filetage, sont interposés entre le sabot 2 et le pénétrateur 3 pour assurer l'entraînement de ce dernier.Shape-matching means (not shown), for example a thread, are interposed between the
La
Conformément à l'invention, le coeur est formé d'un alliage comprenant de 85% à 97% en masse de tungstène et la gaine est réalisée en un alliage comprenant de 30% à 72% en masse de tungstène.In accordance with the invention, the core is formed from an alloy comprising from 85% to 97% by weight of tungsten and the sheath is made from an alloy comprising from 30% to 72% by weight of tungsten.
Le tungstène est allié, tant au niveau du coeur que de la gaine, à des métaux d'addition comme le Nickel qui sera toujours associé au Cobalt avec ou sans fer.Tungsten is alloyed, both at the level of the core and of the sheath, with addition metals such as Nickel which will always be associated with Cobalt with or without iron.
Plus précisément et en référence à la
Le taux de tungstène du coeur est compris entre 85% et 97%, ce qui conduit à une densité du coeur de l'ordre de 17 g/cm3. Le coeur 7 est formulé de façon à avoir une limite élastique supérieure ou égale à 1100 MPa (Méga Pascals). La ductilité est de l'ordre de 6% et sa résilience Charpy (essai non entaillé selon norme ISO 179-1 est de 80 J/cm2.The tungsten content of the core is between 85% and 97%, which results in a core density of the order of 17 g/cm 3 . The
La composition du cœur comportera (proportions en masse):
- 85 à 97% de tungstène,
- 1 à 10% de Nickel,
- 1 à 6% de Cobalt.
- 85 to 97% tungsten,
- 1 to 10% Nickel,
- 1 to 6% Cobalt.
Selon un autre mode de réalisation, la composition du coeur comportera (proportions en masse) :
- 85 à 97% de tungstène,
- 1 à 10% de Nickel,
- 0.5 à 10% de Fer,
- 1 à 8% de Cobalt.
- 85 to 97% tungsten,
- 1 to 10% Nickel,
- 0.5 to 10% Iron,
- 1 to 8% Cobalt.
En référence à la
Le pourcentage de tungstène de la gaine 8 est compris entre 30% et 72%, ce qui conduit à une densité de cette gaine qui peut varier entre 10 g/cm3 et 15 g/cm3. L'alliage de la gaine 8 sera formulé de façon à avoir une ductilité supérieure à 7% et une résilience élevée : résilience Charpy (essai non entaillé selon norme ISO 179-1) supérieure ou égale à 200 J/cm2.The percentage of tungsten of the
La composition de la gaine comportera (proportions en masse) :
- 30 à 72% de tungstène,
- 20 à 44% de Nickel,
- 5 à 25% de Cobalt.
- 30 to 72% tungsten,
- 20 to 44% Nickel,
- 5 to 25% Cobalt.
Selon un autre mode de réalisation, la composition de la gaine comportera (proportions en masse):
- 30 à 72% de tungstène,
- 30 à 44% de Nickel,
- 0.5 à 10% de Fer,
- 5 à 25% de Cobalt.
- 30 to 72% tungsten,
- 30 to 44% Nickel,
- 0.5 to 10% Iron,
- 5 to 25% Cobalt.
Etant donné la différence de concentration du tungstène dans la gaine et le coeur, la gaine 8 est donc plus ductile que le cœur 7.Given the difference in concentration of tungsten in the sheath and the core, the
Si la phase gamma γC du coeur associe le tungstène au nickel et au cobalt (avec ou sans Fer), la phase gamma γG de la gaine comportera aussi le nickel et :le cobalt (avec ou sans Fer) comme métaux additionnels.If the gamma γ C phase of the core combines tungsten with nickel and cobalt (with or without iron), the gamma γ G phase of the cladding will also include nickel and cobalt (with or without iron) as additional metals.
Les
Il en résulte une liaison intime de la gaine 7 sur le coeur 8 et une résistance extrêmement forte de cette liaison.This results in an intimate connection of the
Pour réaliser un tel pénétrateur 3 on met en oeuvre un procédé décrit de la façon suivante :
Au cours d'une étape A, pour fabriquer un alliage comprenant de 85% à 97% en masse de tungstène, les poudres de Tungstène, Nickel, Cobalt et éventuellement de Fer sont mélangées de façon homogène et pré comprimés sous forme d'un barreau qui constituera le coeur.To produce such an
During a step A, to manufacture an alloy comprising 85% to 97% by mass of tungsten, the powders of Tungsten, Nickel, Cobalt and possibly Iron are mixed homogeneously and pre-compressed in the form of a bar. which will constitute the heart.
Au cours d'une étape B, on élabore une gaine 8 d'un alliage comprenant de 30% à 72% en masse de tungstène associé à des métaux additionnels comprenant le Nickel, le Cobalt et éventuellement du Fer.During a step B, a
Les matériaux sont mélangés de façon homogène puis comprimés dans un outillage qui comporte un noyau cylindrique ayant un diamètre égal ou supérieur au diamètre interne souhaité pour la gaine. Le reste de l'outillage de compression est classique.The materials are mixed homogeneously and then compressed in a tool which comprises a cylindrical core having a diameter equal to or greater than the internal diameter desired for the sheath. The rest of the compression tooling is conventional.
Au cours d'une étape C on assemble par frittage la gaine et le coeur.During a step C, the cladding and the core are assembled by sintering.
Le frittage a lieu en présence de phase liquide. On pourra mettre en oeuvre le procédé de frittage à haute puissance décrit dans la demande de
Les alliages sont consolidés à des températures comprises entre 1400°C et 1600°C.The alloys are consolidated at temperatures between 1400°C and 1600°C.
Le frittage permet d'assurer la continuité des phases gamma entre la gaine et le coeur.The sintering makes it possible to ensure the continuity of the gamma phases between the cladding and the core.
Ces étapes A à C conduisent ainsi à la réalisation d'un ébauché du pénétrateur.These steps A to C thus lead to the production of a rough outline of the indenter.
On procède ensuite aux différents usinages de l'ébauché permettant de réaliser le pénétrateur 3 souhaité. On réalisera en particulier le filetage externe porté par la gaine et permettant l'assemblage du pénétrateur 3 et de son sabot de lancement 2.One then proceeds to the various machining operations of the blank making it possible to produce the desired
On pourra réaliser des gaines dont le diamètre est compris entre 1,4 et 2,0 fois le diamètre du coeur. L'épaisseur de la gaine 8 pourra ainsi varier entre 5 mm et 9mm pour un pénétrateur de 35 mm de diamètre externe.It will be possible to produce claddings whose diameter is between 1.4 and 2.0 times the diameter of the core. The thickness of the
A titre d'exemple, on a ainsi fabriqué les pénétrateurs suivants :By way of example, the following penetrators have thus been manufactured:
Diamètre du coeur égal à 0,5-0,7 fois le diamètre de la gaine.Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
Le coeur est formé de 85% en masse de tungstène, et ayant une densité de 16,5 g/cm3, une limite élastique de 1 800 MPa, une ductilité de 10% et une résilience Charpy non entaillé de 150 J/cm2.The core is formed of 85% by mass of tungsten, and having a density of 16.5 g/cm 3 , an elastic limit of 1800 MPa, a ductility of 10% and an unnotched Charpy resilience of 150 J/cm 2 .
L'alliage du coeur comprend 85% en masse de Tungstène, 15% en masse de Nickel et 5% en masse de Cobalt.The core alloy comprises 85% by mass of Tungsten, 15% by mass of Nickel and 5% by mass of Cobalt.
La gaine a une densité de 11,2 g/cm2, une limite élastique de 1 400 MPa, une ductilité de 18% et une résilience Charpy non entaillée de 400 J/cm2. L'alliage de la gaine comprend (proportions en masse) : 38,0% de Tungstène, 40% de Nickel et 22% de Cobalt.The sheath has a density of 11.2 g/cm 2 , an elastic limit of 1400 MPa, a ductility of 18% and an unnotched Charpy resilience of 400 J/cm 2 . The sheath alloy comprises (proportions by mass): 38.0% Tungsten, 40% Nickel and 22% Cobalt.
Ce pénétrateur (et son ébauché) a été fabriqué en mettant en œuvre le procédé précédemment décrit.This penetrator (and its blank) was manufactured by implementing the process described above.
Diamètre du coeur égal à 0,5-0,7 fois le diamètre de la gaine.Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
Le coeur est formé de 89% en masse de tungstène, et ayant une densité de 17,1 g/cm3, une limite élastique de 1 500 MPa, une ductilité de 9% et une résilience Charpy non entaillé de 300 J/cm2. L'alliage du coeur comprend 89% en masse de Tungstène, 7,5% en masse de Nickel et 3,5% en masse de Cobalt.The core is formed of 89% by mass of tungsten, and having a density of 17.1 g/cm 3 , an elastic limit of 1500 MPa, a ductility of 9% and an unnotched Charpy resilience of 300 J/cm 2 . The core alloy comprises 89% by mass of Tungsten, 7.5% by mass of Nickel and 3.5% by mass of Cobalt.
La gaine est formée de 68% en masse de tungstène et ayant une densité de 14,1 g/cm2, une limite élastique de 2 000 MPa, une ductilité de 11% et une résilience Charpy non entaillée de 400 J/cm2. L'alliage de la gaine comprend (proportions en masse) : 68% de Tungstène, 22% de Nickel et 10% de Cobalt.The sheath is formed of 68% by mass of tungsten and having a density of 14.1 g/cm 2 , an elastic limit of 2000 MPa, a ductility of 11% and an unnotched Charpy resilience of 400 J/cm 2 . The sheath alloy comprises (proportions by mass): 68% Tungsten, 22% Nickel and 10% Cobalt.
Ce pénétrateur (et son ébauché) a été fabriqué en mettant en oeuvre le procédé précédemment décrit.This penetrator (and its blank) was manufactured by implementing the process described above.
Diamètre du cœur égal à 0,5-0,7 fois le diamètre de la gaine.Diameter of the core equal to 0.5-0.7 times the diameter of the sheath.
Le coeur est formé de 95% en masse de tungstène, et ayant une densité de 18,3 g/cm3, une limite élastique de 1 300 MPa, une ductilité de 7% et une résilience Charpy non entaillée de 50 J/cm2. L'alliage du coeur comprend 95% en masse de Tungstène, 2% en masse de nickel, 1,5% en masse de cobalt et 2% en masse de fer.The core is formed of 95% by mass of tungsten, and having a density of 18.3 g/cm 3 , an elastic limit of 1300 MPa, a ductility of 7% and an unnotched Charpy resilience of 50 J/cm 2 . The core alloy comprises 95% by mass of Tungsten, 2% by mass of nickel, 1.5% by mass of cobalt and 2% by mass of iron.
La gaine est formée de 70,0% en masse de tungstène et ayant une densité de 14,0 g/cm2, une limite élastique de 2000 MPa, une ductilité de 9% et une résilience Charpy non entaillé de 300 J/cm2. L'alliage de la gaine comprend (proportions en masse) : 70,0% en masse de Tungstène, 18% en masse de Nickel, 10% en masse de Cobalt et 2% en masse de Fe.The sheath is formed of 70.0% by mass of tungsten and having a density of 14.0 g/cm 2 , an elastic limit of 2000 MPa, a ductility of 9% and an unnotched Charpy resilience of 300 J/cm 2 . The sheath alloy comprises (proportions by mass): 70.0% by mass of Tungsten, 18% by mass of Nickel, 10% by mass of Cobalt and 2% by mass of Fe.
Ce pénétrateur (et son ébauché) a été fabriqué en mettant en oeuvre le procédé précédemment décrit.This penetrator (and its blank) was manufactured by implementing the process described above.
Claims (6)
- A heavy metal penetrator (3) with a high tungsten content incorporating a central part or core (7) formed of an alloy comprising from 85% to 97% by mass of tungsten associated with additional metals and which is surrounded by a peripheral sheath (8) made of a more ductile tungsten alloy than that of the core (7), penetrator characterized in that the sheath (8) is made of an alloy comprising 30% to 72% by mass of tungsten, the core (7) comprising nodules (9) of tungsten bound in a matrix (10) of a gamma phase γC associating tungsten with additional metals, the two gamma phases being continuously joined to one another with no transition zone.
- A heavy metal penetrator according to Claim 1, characterized in that the gamma phases of the core γC and of the sheath γG have a composition associating tungsten, nickel, cobalt and possibly iron.
- A heavy metal penetrator according to Claim 2, characterized in that the core (7) comprises 85% by mass of tungsten and the sheath (8) 38% by mass of tungsten, the gamma phases of the core Yc and the sheath γG being of compositions associating tungsten, nickel and cobalt.
- A heavy metal penetrator according to Claim 2, characterized in that the core (7) comprises 89% by mass of tungsten and the sheath (8) 68% by mass of tungsten, the gamma phases of the core Yc and the sheath γG having compositions associating tungsten, nickel and cobalt.
- A heavy metal penetrator according to Claim 2, characterized in that the alloy making up the core (7) comprises 95% by mass of tungsten, 2% by mass of nickel, 1.5% by mass of cobalt and 2% by mass of iron and the sheath (8) 70% by mass of tungsten, the gamma phases of the core Yc and the sheath γG having compositions associating tungsten, nickel, cobalt and iron.
- A process to manufacture a heavy metal penetrator with a high tungsten content according to one of Claims 1 to 5, characterized in that it comprises the following steps:- production of a core (7) composed of compacted powders comprising from 85% to 97% by mass of tungsten associated with additional material comprising nickel, cobalt with or without iron,- production of a sheath (8) composed of compacted powders comprising from 30% to 72% by mass of tungsten associated with additional metals comprising nickel, cobalt with or without iron,- assembly by sintering of the sheath (8) and core (7).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1501552A FR3039266B1 (en) | 2015-07-22 | 2015-07-22 | PENETRATOR HAVING A CORE SURROUNDED BY A DUCTILE SHEATH AND METHOD FOR MANUFACTURING SUCH A PENETRATOR |
PCT/FR2016/000122 WO2017013314A1 (en) | 2015-07-22 | 2016-07-20 | Penetrator comprising a core surrounded by a ductile sheath and process for manufacturing such a penetrator |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3349929A1 EP3349929A1 (en) | 2018-07-25 |
EP3349929B1 true EP3349929B1 (en) | 2023-09-06 |
EP3349929C0 EP3349929C0 (en) | 2023-09-06 |
Family
ID=54545190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16757687.5A Active EP3349929B1 (en) | 2015-07-22 | 2016-07-20 | Penetrator comprising a core surrounded by a ductile sheath and process for manufacturing such a penetrator |
Country Status (10)
Country | Link |
---|---|
US (1) | US10240906B2 (en) |
EP (1) | EP3349929B1 (en) |
KR (1) | KR102203134B1 (en) |
CN (1) | CN107848036B (en) |
ES (1) | ES2963820T3 (en) |
FR (1) | FR3039266B1 (en) |
HU (1) | HUE064184T2 (en) |
IL (1) | IL256732B (en) |
PL (1) | PL3349929T3 (en) |
WO (1) | WO2017013314A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10996037B2 (en) * | 2018-09-04 | 2021-05-04 | The United States Of America As Represented By The Secretary Of The Army | Obturator for robust and uniform discard |
CN114147233B (en) * | 2022-02-10 | 2022-04-12 | 北京煜鼎增材制造研究院有限公司 | Missile warhead shell and additive manufacturing method thereof |
CN115625337B (en) * | 2022-12-06 | 2024-07-09 | 成都虹波实业股份有限公司 | Tungsten alloy composite material and preparation method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU56486A1 (en) * | 1968-07-15 | 1969-05-21 | ||
US3946673A (en) * | 1974-04-05 | 1976-03-30 | The United States Of America As Represented By The Secretary Of The Navy | Pyrophoris penetrator |
FR2521717B1 (en) | 1982-02-16 | 1986-11-21 | France Etat | CINETIC ENERGY PROJECTILE AND LAUNCHING METHOD THEREOF |
FR2610715A1 (en) * | 1987-02-11 | 1988-08-12 | Munitions Ste Fse | PERFORATING PROJECTILE WITH HARD CORE AND DUCTILE GUIDE |
FR2622209B1 (en) * | 1987-10-23 | 1990-01-26 | Cime Bocuze | HEAVY DUTIES OF TUNGSTENE-NICKEL-IRON WITH VERY HIGH MECHANICAL CHARACTERISTICS AND METHOD OF MANUFACTURING SAID ALLOYS |
DE3821474C1 (en) * | 1988-06-25 | 1998-08-27 | Nwm De Kruithoorn Bv | One-piece frangible armour-piercing discarding sabot |
FR2661739A1 (en) | 1990-05-04 | 1991-11-08 | Giat Ind Sa | DEVICE FOR SEALING A BOOM PROJECTILE. |
DE19700349C2 (en) * | 1997-01-08 | 2002-02-07 | Futurtec Ag | Missile or warhead to fight armored targets |
FR2830022B1 (en) | 2001-09-26 | 2004-08-27 | Cime Bocuze | HIGH POWER SINTERED TUNGSTEN BASE ALLOY |
KR100467393B1 (en) * | 2002-07-13 | 2005-01-24 | 주식회사 풍산 | W-heavy alloy penetrator producing accumulation fragmentation effect & Method of manufacuring of same |
DE102005021982B4 (en) * | 2005-05-12 | 2007-04-05 | Rheinmetall Waffe Munition Gmbh | Process for the preparation of a penetrator |
DE102005049748A1 (en) * | 2005-10-18 | 2007-04-19 | Rheinmetall Waffe Munition Gmbh | Process for the preparation of a penetrator |
US8985026B2 (en) * | 2011-11-22 | 2015-03-24 | Alliant Techsystems Inc. | Penetrator round assembly |
WO2014141172A1 (en) * | 2013-03-15 | 2014-09-18 | Sandvik Intellectual Property Ab | Method of joining sintered parts of different sizes and shapes |
-
2015
- 2015-07-22 FR FR1501552A patent/FR3039266B1/en active Active
-
2016
- 2016-07-20 PL PL16757687.5T patent/PL3349929T3/en unknown
- 2016-07-20 ES ES16757687T patent/ES2963820T3/en active Active
- 2016-07-20 KR KR1020187005016A patent/KR102203134B1/en active IP Right Grant
- 2016-07-20 HU HUE16757687A patent/HUE064184T2/en unknown
- 2016-07-20 US US15/737,899 patent/US10240906B2/en active Active
- 2016-07-20 CN CN201680042805.XA patent/CN107848036B/en active Active
- 2016-07-20 WO PCT/FR2016/000122 patent/WO2017013314A1/en active Application Filing
- 2016-07-20 EP EP16757687.5A patent/EP3349929B1/en active Active
-
2018
- 2018-01-04 IL IL256732A patent/IL256732B/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
IL256732A (en) | 2018-03-29 |
IL256732B (en) | 2021-04-29 |
FR3039266A1 (en) | 2017-01-27 |
US20180231358A1 (en) | 2018-08-16 |
ES2963820T3 (en) | 2024-04-02 |
US10240906B2 (en) | 2019-03-26 |
CN107848036B (en) | 2020-04-14 |
PL3349929T3 (en) | 2024-05-20 |
EP3349929C0 (en) | 2023-09-06 |
CN107848036A (en) | 2018-03-27 |
FR3039266B1 (en) | 2017-09-01 |
EP3349929A1 (en) | 2018-07-25 |
KR102203134B1 (en) | 2021-01-14 |
HUE064184T2 (en) | 2024-02-28 |
WO2017013314A1 (en) | 2017-01-26 |
KR20180033244A (en) | 2018-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3349929B1 (en) | Penetrator comprising a core surrounded by a ductile sheath and process for manufacturing such a penetrator | |
CA2375292C (en) | Bullet with an internally carried sub-projectile | |
US10830249B2 (en) | Shrouded impeller made by additive manufacturing and including voids in the hub and in the shroud | |
US6446558B1 (en) | Shaped-charge projectile having an amorphous-matrix composite shaped-charge liner | |
EP0297001B1 (en) | Process for decreasing the range of values of the mechanical characteristics of tungsten-nickel-iron alloys | |
US20090078144A1 (en) | Liner for shaped charges | |
EP1384539B1 (en) | Metal matrix composite blade and process for its manufacture | |
EP2997310B1 (en) | Cartridge with a neckless case | |
EP0279732A1 (en) | Armour-piercing projectile with a hard core and ductile sleeve, and method for its manufacture | |
EP1664663B1 (en) | Hunting bullet with reduced aerodynamic resistance | |
FR2987891A1 (en) | PROJECTILE UNDER CALIBER HAVING A DRAINED HEAD STRUCTURE | |
FR2793314A1 (en) | Artillery or heavy caliber weapon projectile, utilizes a deforming plate and liner assembly deformed by the detonation of the main explosive charge to form a core projectile that has improved stability characteristics | |
EP3663703B1 (en) | Penetrative warhead | |
EP0249525B1 (en) | Stabilization fins for an arrow-type penetrator | |
WO1992000499A1 (en) | Mixed organic/metallic alloys for making projectiles | |
FR2923003A1 (en) | Shell for use as e.g. war shell for shooting target, has hollow body made of sintered iron and provided with strap and ballistic warhead, where strap and body are formed as single block, and insert extended till level of strap | |
EP1870640B1 (en) | Warhead generating an explosively formed tubular projectile | |
US20080314233A1 (en) | Process for the Production of a Jacketed Penetrator | |
FR2966582A1 (en) | Multimode shaped charge for warhead, has steel grid placed in front of metal coating, where steel grid is in contact with exothermic energy material that is activatable by pyrotechnic fuse | |
EP1988355A1 (en) | Projectile generating flashes of light | |
WO2022184992A1 (en) | Segmented threaded tubular element | |
FR2617586A1 (en) | PROJECTILE ENVELOPE | |
FR2711786A1 (en) | Kinetic-effect sub-calibre fin-stabilised projectile | |
FR2685076A1 (en) | Projectile with kinetic effect | |
EP0334764A1 (en) | Plastics projectile for short-range ammunition, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180416 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: COUQUE, HERVE Inventor name: ECHES, NICOLAS Inventor name: ISSARTEL, FABIEN Inventor name: DARTUS, LAURENT Inventor name: CURY, RAFAEL |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CURY, RAFAEL Inventor name: COUQUE, HERVE Inventor name: ISSARTEL, FABIEN Inventor name: DARTUS, LAURENT Inventor name: ECHES, NICOLAS |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210818 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016082545 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
U01 | Request for unitary effect filed |
Effective date: 20231006 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20231017 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20230402365 Country of ref document: GR Effective date: 20240110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E064184 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2963820 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KNDS AMMO FRANCE Owner name: CIME BOCUZE |
|
U1H | Name or address of the proprietor changed [after the registration of the unitary effect] |
Owner name: KNDS AMMO FRANCE; FR Owner name: CIME BOCUZE; FR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016082545 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240621 Year of fee payment: 9 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240628 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240624 Year of fee payment: 9 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 9 Effective date: 20240628 |
|
26N | No opposition filed |
Effective date: 20240607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240802 Year of fee payment: 9 Ref country code: CH Payment date: 20240801 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240711 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240701 Year of fee payment: 9 |