EP3347985B1 - Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon - Google Patents

Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon Download PDF

Info

Publication number
EP3347985B1
EP3347985B1 EP15759808.7A EP15759808A EP3347985B1 EP 3347985 B1 EP3347985 B1 EP 3347985B1 EP 15759808 A EP15759808 A EP 15759808A EP 3347985 B1 EP3347985 B1 EP 3347985B1
Authority
EP
European Patent Office
Prior art keywords
signal
circuit
amplifier circuit
amplification setting
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15759808.7A
Other languages
English (en)
French (fr)
Other versions
EP3347985A1 (de
Inventor
Pirmin Hermann Otto Rombach
Gino Rocca
Anton Leidl
Armin Schober
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to EP18166857.5A priority Critical patent/EP3367565B9/de
Publication of EP3347985A1 publication Critical patent/EP3347985A1/de
Application granted granted Critical
Publication of EP3347985B1 publication Critical patent/EP3347985B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • H03G3/3026Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being discontinuously variable, e.g. controlled by switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • H03G3/301Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers the gain being continuously variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones

Definitions

  • An integrated circuit comprises at least one supply voltage terminal, at least one input terminal configured to receive an analog input signal corresponding to an audio signal, and at least one output terminal, wherein the integrated circuit is configured to amplify the audio signal received from the input terminal and to output a corresponding amplified signal at the at least one output terminal.
  • a circuit assembly is described that comprises a signal source, a signal processing device and an amplifier circuit arranged in a signal path between the signal source and the signal processing device.
  • a method for operating a circuit assembly is described that comprises a signal source, an amplifier circuit, and a signal processing device.
  • circuits, circuit assemblies and corresponding methods for their operation are known from the field of signal processing in general.
  • circuit arrangements can be used at an analog stage for amplifying a signal provided by a microphone or similar transducer.
  • processing of signals having a high dynamic range is desirable.
  • both quiet and loud passages of the performance should be recorded with high-fidelity.
  • the dynamic range of a processing device is often limited.
  • the dynamic range of an analog-to-digital converter used to convert an analog audio signal for a subsequent digital signal processing device may be restricted by the supply voltage available from the battery.
  • some form of signal preconditioning may be used.
  • an analog signal provided by a microphone may be preamplified using an amplifier having an automatic gain control circuit. In this way, quieter passages of the performance can be amplified using a higher amplification setting, resulting in a greater signal amplitude, while louder parts of the performance can be amplified using a lower amplification setting.
  • US 2014/0185832 A1 discloses an assembly including the signal processing unit SPU shown in Figure 4 .
  • a signal path SL guides from an analog signal input IN A to an analog signal output OUT A .
  • an amplifier LNA is arranged to amplify the useful analog signal fed to the analog signal input IN A and guides the amplified signal to the analog signal output OUT A .
  • an automatic gain control AGC controlling the gain of the amplifier LNA.
  • Gain information about the current gain is provided by the automatic gain control AGC as a digital or analog signal which is delivered to a gain information output DGI.
  • the signal processing unit SPU comprises an analog signal output OUT A and further the gain information output DGI.
  • the information provided at the gain information output DGI may be useful for further processing the amplified analog signal where information about the sensitivity of the signal processing unit SPU is needed.
  • the circuit assembly disclosed in US 2014/0185832 A1 requires the provision of an additional terminal for providing the gain information.
  • the provision of an additional terminal may be problematic.
  • such a circuit assembly may not be used in existing chip packages or circuit arrangements, which do not allow the provision of an additional terminal to supply the required gain information.
  • Prior art document EP 2890155 A1 describes a hearing instrument, in which a microphone amplification circuit has a switchable power supply with two different voltages. The level of a microphone signal is detected with a level detector causing one or the other power supply voltage being connected.
  • Prior art document US 2007/184796 A1 describes a power amplifier controller circuit which controls a power amplifier based upon an amplitude correction signal indicating an amplitude difference between an amplitude of an input signal and an attenuated amplitude of an output signal.
  • the power amplifier controller circuit comprises an amplitude control loop and a phase control loop. The control loop adjusts the supply voltage to the power amplifier based upon the amplitude correction signal.
  • an integrated amplifier circuit hereinafter referred to as integrated circuit.
  • the integrated circuit comprises at least one supply voltage terminal configured to receive a supply voltage for operation of the integrated circuit.
  • the integrated circuit further comprises at least one input terminal configured to receive an analog input signal corresponding to an audio signal and at least one output terminal configured to provide an analog output signal.
  • the integrated circuit further comprises a signal strength detector configured to detect a signal strength of the analog input signal provided at the at least one input terminal.
  • the integrated circuit is configured to amplify the audio signal based on the detected signal strength and to output a corresponding amplified signal at the at least one output terminal.
  • the integrated circuit further comprises a signaling circuit configured to indicate an amplification setting of the integrated circuit at the at least one supply voltage terminal or the at least one output terminal.
  • an integrated circuit used for amplifying an audio signal By detecting a signal strength using a signal strength detector an integrated circuit used for amplifying an audio signal can be configured in accordance with the signal strength of an input signal.
  • the internal configuration of the integrated circuit can be signaled to external entities, such as a signal processing device, by means of a signaling circuit using an existing terminal of the integrated circuit, in particular the output terminal or the supply voltage terminal. In this way, provision of an addition terminal can be prevented, while allowing for a high dynamic range of the audio signal.
  • the analog input signal received at the at least one first input terminal has a predetermined signal bandwidth and the predetermined first frequency signal has a frequency outside the predetermined signal bandwidth, in particular above an upper limit of the predetermined signal bandwidth.
  • the first predetermined signal may be an audio signal in the ultrasonic range, i.e. above 20 kHz.
  • the signaling circuit comprises at least one electrical load and is connected to the at least one supply voltage terminal.
  • the signaling circuit is configured to activate a predetermined first electrical load if the integrated circuit is operating in a first amplification setting, and not to activate a predetermined first electrical load or to activate a predetermined second load if the integrated circuit is operating in a second amplification setting.
  • the amplification setting of the integrated circuit can be signaled by means of a decreased impedance or drop in the supply voltage supplied to the integrated circuit.
  • the signaling circuit comprises an offset generator and is connected to the at least one signal output terminal.
  • the signaling circuit is configured to generate a predetermined first offset voltage and to superimpose the amplified signal with the predetermined first offset voltage if the integrated circuit is operating in a first amplification setting. If the integrated circuit is operating in the second amplification setting, the amplified signal is not superimposed with the predetermined first offset voltage or is superimposed with a predetermined second offset voltage.
  • An offset voltage provided via the at least one output terminal can easily be detected and filtered by a high pass filter. As such, signaling of the amplification setting of the integrated circuit is enabled without significantly disturbing the amplified analog output signal.
  • the signaling circuit is configured to provide a first control signal to indicate a first amplification setting for a first predetermined time period when the integrated circuit is switched into an operating mode using the first amplification setting, and to provide a second control signal to indicate a second amplification setting for a second predetermined time period when the integrated circuit is switched into an operating mode using the second amplification setting.
  • the signaling circuit is configured to provide a first control signal to indicate a first amplification setting as long as the integrated circuit is operating using the first amplification setting, and not to provide the first control signal or to provide a second control signal to indicate a second amplification setting as long as the integrated circuit is operating using the second amplification setting.
  • a first and, optionally, a second control signal By generating a first and, optionally, a second control signal as long as the integrated circuit is operating using a first or second amplification setting, the current amplification setting of the integrated circuit can be detected at any time.
  • a first or a second control signal may only be activated when the operating mode of the integrated circuit has previously changed.
  • the integrated circuit may be operated in one of two predetermined operating modes.
  • the integrated circuit may be operated with one of a plurality of different gain settings of an adjustable amplifier and/or one of a plurality of different microphone bias voltage settings of a bias voltage generator in order to achieve a yet higher dynamic range.
  • the signal strength detector may be configured to determine a sound pressure level of the audio signal.
  • the integrated circuit may comprise a first input terminal and a second input terminal being configured as an input for a differential signal source.
  • the integrated circuit may further comprise a first signal output terminal and a second signal output terminal being configured as a signal output for a differential signal processing device.
  • a circuit assembly comprising a signal source providing a first analog signal, a signal processing device configured to process a second analog signal and an amplifier circuit comprising a signal strength detector and a signaling circuit.
  • the amplifier circuit is arranged in a signal path between the signal source and the signal processing device.
  • the signal strength detector is configured to detect a signal strength of the first analog signal.
  • the amplifier circuit is configured to amplify the first analog signal based on the detected signal strength and to output an amplified version of the first analog signal comprised in the second analog signal.
  • the signaling circuit is configured to indicate an amplification setting of the amplifier circuit by providing a control signal comprised the second analog signal or by modifying a power consumption of the amplifier circuit.
  • the circuit assembly according to the second aspect allows the indication of an amplifier setting to a signal processing device without the provision of an additional terminal at an amplifier circuit or an additional connection between the amplifier circuit and a signal processing device.
  • the circuit assembly further comprises a load detection circuit, the load detection circuit being connected externally to the at least one supply voltage terminal of the amplifier circuit.
  • the load detection circuit is configured to provide a control signal indicative of the amplification setting of the amplifier circuit to the signal processing device.
  • a drop in the supply voltage of the amplifier circuit can be detected. In this way, an appropriate control signal indicative of the amplification setting may be provided to other parts of the circuit assembly.
  • the signal source comprises a high dynamic range analog microphone.
  • the signal processing device comprises at least one of an analog-to-digital converter, an analog signal processor, a microcontroller, a digital signal processor, an audio CODEC and a power amplifier.
  • a method for operating a circuit assembly comprising a signal source, an amplifier circuit, and a signal processing device is provided in accordance with claim 10.
  • an amplification setting of an amplifier circuit can be signaled to a signal processing device without the provision of an additional terminal.
  • an additional high frequency signal is superimposed on an output signal of an amplifier circuit.
  • Figure 1A shows a circuit assembly 100 comprising a signal source 110, an application specific integrated circuit (ASIC) 120 implementing an amplifier circuit, and a signal processing device 190.
  • the signaling source 110 comprises a differential microphone 112.
  • the microphone 112 is connected to the ASIC 120 by means of two input terminals 122 and 124.
  • the first input terminal 122 may be a positive input terminal
  • the second input terminal 124 may be a negative input terminal of a differential signal line.
  • the analog signal provided via the input terminals 122 and 124 is amplified by an amplifier 126 and the output signal of the amplifier 126 is provided at two output terminals 132 and 134 of a differential signal output.
  • the amplifier 126 is a preamplifier with two different gain settings.
  • the gain setting is selected based on a control signal High_SPL generated by signal strength detector in the form of a sound pressure monitor 136. If the detected sound pressure at the input terminals 122 and 124 exceeds a predetermined threshold, the control signal High_SPL is provided to the amplifier 126. If the sound pressure level lies below the predetermined threshold level, the corresponding control signal is not provided.
  • the control signal High_SPL is also provided to a logic circuit 138 and used as a mask signal to mask a high frequency clock signal which is provided by a clock generator 140.
  • the clock generator 140 may provide a fixed frequency signal with a frequency of 25 kHz.
  • the signal generated by the clock generator 140 is used to operate a switch 142.
  • the switch 142 connects the negative output terminal 134 over an internal resistor R with a terminal 144 for connecting the ASIC 120 to an electrical ground potential 146. In this way, an additional signal with a frequency of the clock signal generated by the clock generator 140 is superimposed onto the output signal provided by the ASIC 120.
  • the signal processing device 190 comprises an analog-to-digital converter 192 as well as a digital CODEC 194. Based on a frequency spectrum analysis performed by the CODEC 194, the additional signal generated by the signaling circuit of the ASIC 120 can be detected. Accordingly, the signal processing device 190 can be made aware of the amplification setting of the amplifier 126 and process the amplified signal accordingly.
  • Figure 1B shows a signal level of the control signal High_SPL over time together with a frequency response of the ASIC 120.
  • an additional high frequency signal with a frequency f1 is provided in the time period between t 1 and t 2 , in which a high sound pressure level is detected by the sound pressure monitor 136.
  • the additional signal is provided as long as the control signal High_SPL is high.
  • the frequency f1 of the provided signal lies above the bandwidth of an audio signal provided by the microphone 112, which is amplified by the ASIC 190. In this way, the provision of the additional signal does not interfere with the useful signal provided to the signal processing device 190.
  • Figure 1C shows an alternative signaling scheme according to another embodiment.
  • the control signal High_SPL is also provided to the clock generator 140.
  • the clock generator 140 According to the control signal High_SPL, the clock generator 140 generates a clock frequency with either a first frequency or a second, different frequency, resulting in an additional signal tone with a first frequency f1 or a second frequency f2, respectively.
  • the logic circuit 138 according to this embodiment is configured to pass the clock signal only for a predetermined period of time after the control signal High_SPL has changed. Accordingly, after switching to a low gain setting for a high sound pressure at time t 2 , a signal tone with a frequency f1 is superimposed on the output signal for a predetermined time period.
  • a second signal tone with the same frequency as used before is superimposed on the output signal after switching the amplifier 126 back to the a high gain setting.
  • the ASIC 120 starts in a predefined normal mode on activation, e.g. with a high gain setting, and then, on each toggling of the amplification setting, superimposes a signal tone with the same frequency, e.g. frequency f1, on the output signal.
  • a current signal is superimposed on a normal current consumption of an amplifier circuit.
  • an adjustable bias voltage generator is used to change an amplification ratio of the amplifier circuit.
  • FIG. 2A shows a circuit assembly 200 comprising an application specific integrated circuit (ASIC) 220 implementing an amplifier circuit and a load detection circuit 280. Its intended function and use is similar to that of the ASIC 120 according to the first embodiment. However, in the embodiment shown in Figure 2A , a signal provided by a single ended transducer (not shown) is provided at a single input terminal 222, amplified by an amplifier 126 and provided as an amplified signal at a single output terminal 232 for a subsequent signal processing device (not shown).
  • ASIC application specific integrated circuit
  • the ASIC 220 further comprises a bias voltage generator 228 for generating a bias voltage for a microphone (not shown in Figure 2A ) connected to the input terminal 224.
  • the bias voltage may be provided separately by means of a bias voltage terminal 230 as shown in Figure 2A or may be superimposed on the input signal and provided over the input terminal 222.
  • the bias voltage provided by the bias voltage generator 228 is modified in accordance with a control signal High_SPL indicating a high sound pressure level. If a high sound pressure level is detected, a low bias voltage is supplied to the microphone resulting in a low amplification setting, and vice versa.
  • a supply voltage Vdd is provided to the ASIC 220 by means of a supply voltage terminal 262.
  • the supply voltage Vdd supplied at supply voltage terminal 262 is used, among others, to power the bias voltage generator 228, the amplifier 126, a logic circuit 264, and a sound pressure monitor 136.
  • the control signal High_SPL determined by the sound pressure monitor 136 is provided to the bias voltage generator 228 and the logic circuit 264.
  • the logic circuit 264 selectively closes a first switch 266 or a second switch 268. By closing the first switch 266, a first internal load R1 is connected to the supply voltage terminal 262. By closing the second switch 268, a second internal load R2 is connected to the supply voltage terminal 262.
  • the load detection circuit 280 comprises a detection resistor Rext. Based on the voltage drop across the detection resistor Rext, a current Idd through the ASIC 220 can be determined. Moreover, if the current consumption Idd0 of the ASIC 220 without activated loads R1 and R2 is known, based on the detected current Idd, activation of the loads R1 and R2 can be detected by the load detection circuit 280. Although not shown in Figure 2A , the load detection circuit 280 provides a corresponding control signal to any subsequent processing device which requires knowledge about the amplification setting of the ASIC 220.
  • circuit assembly 200 can best be understood with reference to the signal diagram of Figure 2B .
  • a transition from a mode with high amplification to a mode with low amplification i.e. a transition of the control signal High_SPL from a low state to a high state
  • a first peak on the input current signature of the ASIC 220 to an operating current Idd1 corresponding to the activation of the first load R1 can be observed for a predetermined period of time.
  • the first load R1 is disconnected by the logic circuit 264 using the first switch 266 and the current of the ASIC 220 returns to its nominal current Idd0.
  • a second peak is imprinted on the current signature of the ASIC 220.
  • the peak current consumption in this period corresponds to Idd2.
  • an absolute amplification setting may be communicated to the load detection circuit 280.
  • the second peak may have the same amplitude as the first peak in order to encode a cyclic mode change or mode toggling as described above with respect to the first embodiment. Since the additional loads R1 and R2 are only activated for relatively short periods, they do not significantly affect the energy efficiency of the circuit assembly 200.
  • the additional load R1 may also be activated for the entire duration in which the amplifier 126 is operated in the first amplification setting. In this case, no additional load may be necessary to indicate the second amplification signal.
  • the additional load is activated in the operation mode of the amplifier that is used less in order to improve the energy efficiency of the ASIC 220.
  • FIG. 3A A further illustrative example that is not covered by the claims is shown in Figure 3A , in which a DC shift is applied to the output signal of an amplifier circuit.
  • FIG. 3A shows a circuit assembly 300 comprising a signal source 110, an application specific integrated circuit (ASIC) 320 implementing an amplifier circuit and a signal processing device 390. Its intended function and use is similar to that of the ASIC 120 according to the first embodiment.
  • ASIC application specific integrated circuit
  • the ASIC 320 shown in Figure 3A is connected to a differential microphone 112.
  • a DC shift is forced to the common mode output voltage at output terminals 132 and 134 of the ASIC 320.
  • the output voltage of an amplifier circuit is centered on a mid-rail voltage, for example around 0.9 V for an ASIC 320 having a supply voltage Vdd of 1.8 V.
  • the sound pressure monitor 136 provides a control signal High_SPL to a DC shifter 372.
  • a bias voltage of for example 0.4 V is superimposed on the amplified output signal at the output terminals 132 and 134.
  • a DC detector 396 may be used to detect the DC shift. Moreover, a subsequent subtraction unit 398 will automatically cancel out any DC component provided by the DC shifter 372, such that the signal provided at the output tunnels 132 and 134 can be processed in the same way as in a conventional system.
  • the DC shift may only be provided for a short period after the transition from one amplification setting to another amplification setting.
  • a negative DC shift to voltage level Vo1 may be provided for a predetermined period of time.
  • a DC voltage shift to the voltage potential of Vo2 may be provided.
  • a "toggle" signal may be provided using only a positive or negative offset at changes of the amplification setting, or a corresponding signaling may be applied as long as a particular amplification setting is used by the amplifier 126.
  • each amplification setting could be communicated by use of a tone with a corresponding frequency, a corresponding current signal or a corresponding DC shift.
  • an analog gain setting or microphone bias voltage change may be indicated based on a corresponding frequency of the superimposed control signal, a corresponding current signal or a corresponding DC offset.
  • ASICs 120, 220 and 320 While the embodiment has been described with respect to ASICs 120, 220 and 320, other integrated circuits or circuit arrangements may be used to implement the amplifier circuit. Any such circuit only needs to comprise a supply voltage terminal, a ground potential terminal, one or two input terminals and one or two output terminals. Thus, a conventional chip package having between 4 and 6 output pins can be used in accordance with the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Claims (10)

  1. Schaltungsanordnung (200), die Folgendes umfasst:
    - eine Signalquelle, die ein erstes Analogsignal liefert, das ein Audiosignal ist;
    - eine Signalverarbeitungsvorrichtung, die zur Verarbeitung eines zweiten Analogsignals konfiguriert ist; und
    - eine Verstärkerschaltung, bei der es sich um eine integrierte Verstärkerschaltung handelt, mit mindestens einem Versorgungsspannungsanschluss (262), der so konfiguriert ist, dass er eine Versorgungsspannung (Vdd) für den Betrieb der Verstärkerschaltung empfängt, einem Signalstärkedetektor und einer Signalisierungsschaltung, wobei die Verstärkerschaltung in einem Signalweg zwischen der Signalquelle (110) und der Signalverarbeitungsvorrichtung angeordnet ist;
    - wobei der Signalstärkedetektor so konfiguriert ist, dass er eine Signalstärke des ersten Analogsignals erfasst;
    - wobei die Verstärkerschaltung so konfiguriert ist, dass sie das erste Analogsignal auf der Grundlage der erfassten Signalstärke verstärkt und eine verstärkte Version des ersten Analogsignals ausgibt, die in dem zweiten Analogsignal enthalten ist; und
    - wobei die Signalisierungsschaltung so konfiguriert ist, dass sie eine Verstärkungseinstellung der Verstärkerschaltung an dem mindestens einen Versorgungsspannungsanschluss (262) durch Ändern einer Leistungsaufnahme der Verstärkerschaltung anzeigt, wobei die Verstärkerschaltung so konfiguriert ist, dass sie die Verstärkungseinstellung auf der Grundlage der erfassten Signalstärke auswählt, dadurch gekennzeichnet, dass
    - die Signalverarbeitungsschaltung eine externe Einheit der integrierten Verstärkerschaltung ist; und
    - die Schaltungsanordnung ferner eine Lasterfassungsschaltung (280) umfasst, die einen Erfassungswiderstand (Rext) aufweist und extern mit dem mindestens einen Versorgungsspannungsanschluss (262) der Verstärkerschaltung verbunden ist, wobei die Lasterfassungsschaltung (280) für Folgendes konfiguriert ist:
    Bestimmen eines Verbrauchsstroms (Idd) durch die Verstärkerschaltung auf der Grundlage eines Spannungsabfalls über dem Erfassungswiderstand, und
    Bereitstellen eines Steuersignals, das die Verstärkungseinstellung der Verstärkerschaltung angibt, an die Signalverarbeitungsvorrichtung.
  2. Schaltungsanordnung (200) nach Anspruch 1,
    wobei die Signalquelle (110) ein analoges Mikrofon mit hohem Dynamikbereich (112) umfasst.
  3. Schaltungsanordnung nach Anspruch 1 oder 2,
    wobei die Signalverarbeitungsvorrichtung mindestens einen Analog-Digital-Wandler, einen Analogsignalprozessor, einen Mikrocontroller, einen Digitalsignalprozessor, einen Audiocodec und einen Leistungsverstärker umfasst.
  4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche,
    wobei die Signalisierungsschaltung mindestens eine elektrische Last (R1, R2) umfasst und mit dem mindestens einen Versorgungsspannungsanschluss (262) verbunden ist, wobei die Signalisierungsschaltung so konfiguriert ist, dass sie eine vorbestimmte erste elektrische Last aktiviert, wenn die integrierte Verstärkerschaltung in einer ersten Verstärkungseinstellung arbeitet, und dass sie die vorbestimmte erste elektrische Last nicht aktiviert oder eine vorbestimmte zweite elektrische Last aktiviert, wenn die integrierte Verstärkerschaltung in einer zweiten Verstärkungseinstellung arbeitet.
  5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4,
    wobei die Signalisierungsschaltung so konfiguriert ist, dass sie ein erstes Steuersignal bereitstellt, um eine erste Verstärkungseinstellung für eine erste vorbestimmte Zeitspanne anzuzeigen, wenn die integrierte Verstärkerschaltung in einen Betriebsmodus geschaltet wird, der die erste Verstärkungseinstellung verwendet, und ein zweites Steuersignal bereitstellt, um eine zweite Verstärkungseinstellung für eine zweite vorbestimmte Zeitspanne anzuzeigen, wenn die integrierte Verstärkerschaltung in einen Betriebsmodus geschaltet wird, der die zweite Verstärkungseinstellung verwendet.
  6. Schaltungsanordnung nach einem der Ansprüche 1 bis 4,
    wobei die Signalisierungsschaltung so konfiguriert ist, dass sie ein erstes Steuersignal liefert, um eine erste Verstärkungseinstellung anzuzeigen, solange die integrierte Verstärkerschaltung unter Verwendung der ersten Verstärkungseinstellung arbeitet, und dass sie das erste Steuersignal nicht liefert oder ein zweites Steuersignal liefert, um eine zweite Verstärkungseinstellung anzuzeigen, solange die integrierte Verstärkerschaltung unter Verwendung der zweiten Verstärkungseinstellung arbeitet.
  7. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, die ferner einen einstellbaren Verstärker (126) umfasst, der so konfiguriert ist, dass er mit einer von mehreren unterschiedlichen Verstärkungseinstellungen betrieben werden kann.
  8. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, die ferner einen Vorspannungsgenerator umfasst, der so konfiguriert ist, dass er mit einer von mehreren unterschiedlichen Mikrofon-Vorspannungseinstellungen betrieben werden kann.
  9. Schaltungsanordnung nach einem der vorhergehenden Ansprüche,
    wobei der Signalstärkedetektor so konfiguriert ist, dass er einen Schalldruckpegel des Audiosignals bestimmt.
  10. Verfahren zum Betreiben der Schaltungsanordnung (200) nach einem der Ansprüche 1 bis 9, wobei das Verfahren Folgendes umfasst:
    - Erfassen, durch den Signalstärkedetektor, einer Signalstärke des ersten Analogsignals, das von der Signalquelle (110) bereitgestellt wird;
    - Auswählen der Verstärkungseinstellung auf der Grundlage der erkannten Signalstärke;
    - Verstärken, durch die Verstärkerschaltung, des bereitgestellten ersten Analogsignals auf der Grundlage der Verstärkungseinstellung, und Bereitstellen des verstärkten Signals an die Signalverarbeitungsvorrichtung; und
    - Anzeigen, durch die Signalisierungsschaltung, der Verstärkungseinstellung an dem mindestens einen Versorgungsspannungsanschluss (262) der Verstärkerschaltung, indem eine Leistungsaufnahme der Verstärkerschaltung geändert wird;
    - Bestimmen, durch die Lasterfassungsschaltung, eines Verbrauchsstroms (Idd) durch die Verstärkerschaltung auf der Grundlage eines Spannungsabfalls über dem Erfassungswiderstand;
    - Bereitstellen, durch die Lasterfassungsschaltung, eines Steuersignals, das die Verstärkungseinstellung der Verstärkerschaltung angibt, an die Signalverarbeitungsvorrichtung.
EP15759808.7A 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon Active EP3347985B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18166857.5A EP3367565B9 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/070401 WO2017041822A1 (en) 2015-09-07 2015-09-07 Integrated circuit, circuit assembly and a method for its operation

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18166857.5A Division EP3367565B9 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon
EP18166857.5A Division-Into EP3367565B9 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon

Publications (2)

Publication Number Publication Date
EP3347985A1 EP3347985A1 (de) 2018-07-18
EP3347985B1 true EP3347985B1 (de) 2023-07-19

Family

ID=54064361

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18166857.5A Active EP3367565B9 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon
EP15759808.7A Active EP3347985B1 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18166857.5A Active EP3367565B9 (de) 2015-09-07 2015-09-07 Integrierte schaltung, schaltungsanordnung und verfahren zum betrieb davon

Country Status (5)

Country Link
US (2) US10581397B2 (de)
EP (2) EP3367565B9 (de)
JP (1) JP2018530223A (de)
CN (2) CN108028630A (de)
WO (1) WO2017041822A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718079B1 (ko) * 2016-08-26 2017-03-20 주식회사 에이디텍 마이크로폰 시스템
CN113347534A (zh) * 2021-05-25 2021-09-03 朱成超 话筒的音频开关的控制方法及控制电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457020A (en) * 1982-12-27 1984-06-26 Rockwell International Corporation Signal processing device for use on radio links
US4944024A (en) * 1989-02-02 1990-07-24 Amaf Industries, Inc. Method and apparatus for reducing noise in a linked compressor-expander telecommunications system
WO2001078446A1 (en) * 2000-04-07 2001-10-18 Microtronic Nederland B.V. Microphone with range switching
US7031476B1 (en) * 2000-06-13 2006-04-18 Sharp Laboratories Of America, Inc. Method and apparatus for intelligent speaker
US20070184796A1 (en) * 2006-02-03 2007-08-09 Quantance, Inc. Amplifier compression controller circuit
US20120250893A1 (en) * 2009-05-06 2012-10-04 Audyne, Inc. Hybrid permanent/reversible dynamic range control system
WO2015038475A1 (en) * 2013-09-12 2015-03-19 Dolby Laboratories Licensing Corporation Dynamic range control for a wide variety of playback environments
EP2890155A1 (de) * 2013-12-27 2015-07-01 GN Resound A/S Hörgerät mit schaltbarer Stromversorgungsspannung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773175B2 (ja) 1987-04-16 1995-08-02 松下電器産業株式会社 自動利得制御装置
JPH09271086A (ja) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp 骨伝導マイク
JP2000022465A (ja) * 1998-06-29 2000-01-21 Nec Corp 高速agc回路とその制御方法
JP3915257B2 (ja) 1998-07-06 2007-05-16 ヤマハ株式会社 カラオケ装置
US6173056B1 (en) * 1998-08-25 2001-01-09 Ericsson Inc. Methods for adjusting audio signals responsive to changes in a power supply level and related communications devices
JP2001060836A (ja) * 1999-08-20 2001-03-06 Matsushita Electric Ind Co Ltd マイク装置
JP2002009566A (ja) * 2000-04-17 2002-01-11 Rohm Co Ltd オーディオ信号増幅回路およびこの増幅回路を用いる携帯型の電話機および携帯型電子機器
JP2003142968A (ja) * 2001-11-01 2003-05-16 Murata Mfg Co Ltd 増幅回路
EP1493303B1 (de) * 2002-04-10 2007-08-22 Sonion A/S Mikrofonbaugruppe mit einem hilfsanalogeingang
JP2004363743A (ja) * 2003-06-03 2004-12-24 Fujitsu Ltd 無線通信装置
JP2005072983A (ja) 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd 音声信号増幅装置及び音響装置
US7411438B2 (en) 2003-10-10 2008-08-12 That Corporation Low-power integrated-circuit signal processor with wide dynamic range
JP2005223831A (ja) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd 増幅装置および音響システム
JP4312103B2 (ja) 2004-05-31 2009-08-12 パナソニック株式会社 音響装置
TWI232024B (en) 2004-06-28 2005-05-01 Realtek Semiconductor Corp Amplifying circuit with variable supply voltage
US7652528B2 (en) * 2008-02-06 2010-01-26 Infineon Technologies Ag Analog switch controller
JP5556074B2 (ja) 2008-07-30 2014-07-23 ヤマハ株式会社 制御装置
JP5083290B2 (ja) * 2009-10-23 2012-11-28 富士通株式会社 記憶システム
US20120281863A1 (en) 2009-11-04 2012-11-08 Kenji Iwano Hearing aid
EP2405675B1 (de) * 2010-07-09 2013-03-06 ST-Ericsson SA Lautsprecherimpedanzmessung
JP5872687B2 (ja) * 2011-06-01 2016-03-01 エプコス アーゲーEpcos Ag アナログデータ処理ユニットを備えるアセンブリ及び当該アセンブリを使用する方法
WO2013099543A1 (ja) * 2011-12-28 2013-07-04 株式会社村田製作所 高周波信号処理装置および無線通信装置
JP5749391B1 (ja) * 2013-12-27 2015-07-15 ジーエヌ リザウンド エー/エスGn Resound A/S 切替可能な電源電圧を備える聴覚装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457020A (en) * 1982-12-27 1984-06-26 Rockwell International Corporation Signal processing device for use on radio links
US4944024A (en) * 1989-02-02 1990-07-24 Amaf Industries, Inc. Method and apparatus for reducing noise in a linked compressor-expander telecommunications system
WO2001078446A1 (en) * 2000-04-07 2001-10-18 Microtronic Nederland B.V. Microphone with range switching
US7031476B1 (en) * 2000-06-13 2006-04-18 Sharp Laboratories Of America, Inc. Method and apparatus for intelligent speaker
US20070184796A1 (en) * 2006-02-03 2007-08-09 Quantance, Inc. Amplifier compression controller circuit
US20120250893A1 (en) * 2009-05-06 2012-10-04 Audyne, Inc. Hybrid permanent/reversible dynamic range control system
WO2015038475A1 (en) * 2013-09-12 2015-03-19 Dolby Laboratories Licensing Corporation Dynamic range control for a wide variety of playback environments
EP2890155A1 (de) * 2013-12-27 2015-07-01 GN Resound A/S Hörgerät mit schaltbarer Stromversorgungsspannung

Also Published As

Publication number Publication date
CN108028630A (zh) 2018-05-11
EP3367565B9 (de) 2023-07-05
JP2018530223A (ja) 2018-10-11
EP3347985A1 (de) 2018-07-18
CN109245738A (zh) 2019-01-18
US20180262173A1 (en) 2018-09-13
EP3367565B1 (de) 2023-04-19
US10581397B2 (en) 2020-03-03
WO2017041822A1 (en) 2017-03-16
US20180269843A1 (en) 2018-09-20
US10622957B2 (en) 2020-04-14
EP3367565A1 (de) 2018-08-29

Similar Documents

Publication Publication Date Title
US9071214B2 (en) Audio signal controller
US9270238B2 (en) Digital condenser microphone having preamplifier with variable input impedance and method of controlling variable input impedance of preamplifier
US9083288B2 (en) High level capable audio amplification circuit
US9794669B2 (en) Devices and methods for headphone speaker impedance detection
JP5872687B2 (ja) アナログデータ処理ユニットを備えるアセンブリ及び当該アセンブリを使用する方法
CN101383595B (zh) 电子音量调节器装置和使用它的音频设备、异常检测方法
US10404248B2 (en) Calibration of a dual-path pulse width modulation system
US10622957B2 (en) Integrated circuit, circuit assembly and a method for its operation
JP2008311832A (ja) 電気音響変換器
US6806766B2 (en) BTL amplifying system
US8085954B2 (en) Microphone amplification arrangement and integrated circuit therefor
JP4721859B2 (ja) オーディオアンプ
US9560455B2 (en) Offset calibration in a multiple membrane microphone
US9571046B2 (en) Amplifier circuit for a two-wire interface
JP6721872B2 (ja) 集積回路、回路アセンブリおよびその動作方法
JP2013098714A (ja) 音声出力アンプ
US8773198B2 (en) Auto-zero amplifier and sensor module using same
US20180146286A1 (en) Phase correcting system and a phase correctable transducer system
CN211352368U (zh) 音响设备及其功放系统、静音电路
JP2017175415A (ja) 電流検出装置
CN117857984A (zh) 差动放大电路
JP2009171068A (ja) スピーカ接続状態検出方法
KR20030004655A (ko) 통신 단말기의 음성 출력 장치
JP2004146949A (ja) 増幅装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015084654

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1590498

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT