EP3344858A1 - Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks - Google Patents

Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks

Info

Publication number
EP3344858A1
EP3344858A1 EP16778264.8A EP16778264A EP3344858A1 EP 3344858 A1 EP3344858 A1 EP 3344858A1 EP 16778264 A EP16778264 A EP 16778264A EP 3344858 A1 EP3344858 A1 EP 3344858A1
Authority
EP
European Patent Office
Prior art keywords
steam
gas
exhaust gas
supplied
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16778264.8A
Other languages
English (en)
French (fr)
Inventor
Stefan Becker
Vladimir Danov
Uwe Lenk
Erich Schmid
Jochen SCHÄFER
Alexander Tremel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3344858A1 publication Critical patent/EP3344858A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/04Steam accumulators for storing steam in a liquid, e.g. Ruth's type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/008Use of steam accumulators of the Ruth type for storing steam in water; Regulating thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/14Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having both steam accumulator and heater, e.g. superheating accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/24Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for operating a gas and steam combined cycle power plant according to the preamble of claim 1.
  • a method for operating a gas and steam combined cycle power plant and such a gas and steam combined cycle power plant are already well known from the general state of the art.
  • the gas and steam power plant is also referred to as a combined cycle power plant and comprises at least one turbine device, at least one generator that can be driven by the turbine device for providing electric power and at least one gas turbine.
  • the generator driven by the turbine means the generator can transform mechanical energy into electrical energy or electricity, and this electrical energy or electrical power be ⁇ riding filters.
  • the electrical current can then be fed, for example, into a power grid.
  • the gas turbine thereby provides exhaust gas, by means of which hot steam is generated.
  • the gas turbine is a fuel, in particular a gaseous fuel such as natural gas supplied, wherein the fuel is burned with ⁇ means of the gas turbine.
  • the gas turbine is supplied in addition to the fuel oxygen or air, so that from the air and the fuel, a fuel ⁇ air mixture is formed.
  • This fuel-air mixture is burned, resulting in exhaust gas of the gas turbine results.
  • ⁇ means of the exhaust gas for example, a liquid, in particular water, heated and thereby evaporated, resulting in hot steam.
  • the hot steam is generated by means of the exhaust gas of the gas turbine such that by means of the hot exhaust gas of the gas turbine, a liquid as in ⁇ example water is evaporated.
  • the steam is supplied to the turbine device, so that the turbine device is driven by means of the steam.
  • the generator is driven via the turbine device or by means of the turbine device.
  • the gas and steam combined cycle power plant also referred to as gas and steam combined cycle power plant, is a power plant combining the principles of a gas turbine power plant and a steam power plant.
  • the gas turbine or its exhaust gas serves as a heat source for a nachgeschal ⁇ ended steam generator, by means of which the steam for the turbine device or for driving the turbine device is generated.
  • the turbine means is thus designed as steam turbines ⁇ ne.
  • Steam generator produces hot steam, by means of which the tur ⁇ binen articulate and the turbine means of the generator for providing electrical power is driven. Furthermore, the exhaust gas supplied to the steam generator is at least partially removed from the steam generator.
  • the gas-and-steam-power plant Kombina ⁇ tion during a time during which the gas and steam combined cycle power plant is switched off to keep warm.
  • the gas-and-steam combined cycle power plant is kept warm by means of steam.
  • This steam for keeping warm is usually produced by means of a boiler, in particular a gas boilers.
  • a liquid such as water is evaporated, for which purpose a fuel ⁇ is used.
  • the steam generated by the boiler is passed through at least part of the gas and steam combined cycle power plant to keep it warm.
  • the gas-and-steam combination ⁇ power plant after a shutdown of the same can be started as part of a warm start, since the gas-and-steam Kombina ⁇ tion power plant then already sufficiently high temperature at which it can be started has.
  • Object of the present invention is to develop a method of the type mentioned in such a way that a particularly efficient operation can be realized.
  • This heat which is contained in the exhaust gas downstream of the steam generator or after the steam generator, is used to effect the endothermic chemical reaction.
  • the heat contained in the exhaust gas of the endothermic chemical Reacti ⁇ on or educts of the endothermic chemical reaction is supplied.
  • at least part of the heat supplied to the endothermic chemical reaction is stored in products of the endothermic chemical reaction, so that a thermochemical storage, in particular a thermochemical heat storage, can be created.
  • the heat contained in the exhaust gas of the gas turbine downstream of the steam generator can be at least partially stored, wherein the heat stored in the products can be used for example at a later time and / or for other purposes.
  • the invention is particularly based on the idea of heat contained in the exhaust of the gas turbine to the steam generator, wel ⁇ che usually is lost without to use to least save some of the heat contained in the exhaust gas downstream of the steam generator to ⁇ , particularly in the products the endothermic chemical reaction.
  • the heat can be stored for district heating purposes.
  • an exothermic chemical reaction that is to say a chemical heat-emitting reaction
  • the products of the endothermic chemical reaction being precursors of the exothermic chemical reaction or being used as starting materials of the exothermic reaction.
  • heat is released, with- means of which it can be warmed ⁇ a medium particularly efficient water.
  • Products of the exothermic reaction can be, for example, than the reactants of the endothermic reaction ge ⁇ uses.
  • the thermochemical heat storage can be used to realize a particularly high degree of flexibility with regard to the realization of district heating.
  • thermochemical heat store it is possible to store heat or energy in the thermochemical heat store, so that, in particular at high heat requirements, a medium, in particular water, can be effectively heated by means of the heat stored in the thermochemical heat store. Since this is used ⁇ energy zeugers contained in the exhaust downstream of the steamer, a particularly high efficiency can be realized.
  • the heat stored in the products of the endothermic reaction and released during the exothermic reaction is transferred to the medium, for example, to heat the medium. Then the medium can be used for example for heating purposes, in particular for the realization of district heating.
  • At least the part of the heat contained in the exhaust gas downstream of the steam generator is transferred via a heat exchanger to reactants of the endothermic chemical reaction.
  • the starting materials used are the exothermic chemical reactants. be used on products of the endothermic chemical reaction.
  • the turbine device the heated steam is supplied to drive the turbine device, the gas-and-steam combined power plant from a first Lastb rich start up in a relation to the first load range, second load range.
  • the endothermic chemical reaction is effected in the second load range.
  • the invention also includes a gas-and-steam combination ⁇ power plant which is designed for performing a method of the invention.
  • Advantageous embodiments of the method according to the invention are to be regarded as advantageous Ausgestal ⁇ tions of the gas-and-steam combination power ⁇ plant and vice versa.
  • the drawing shows in the single figure is a schematic representation of a combined cycle gas-and-steam power plant, in which a thermochemical heat storage is used to realize a particularly high efficiency.
  • the single FIGURE shows a schematic representation of a designated as a whole with 10 gas-and-steam combination ⁇ power plant, which is also referred to as combined cycle power plant or - for better readability - as a power plant.
  • the power plant comprises at least one gas turbine 12, which play as fuel is supplied at ⁇ as part of a method for operating the power plant. This supply of fuel to the gas turbine 12 is illustrated in the figure by a directional arrow 14.
  • the fuel is, in particular a gaseous fuel such as natural gas at ⁇ game.
  • the gas turbine 12 is supplied with air ⁇ , which is illustrated in the figure by a directional arrow 16.
  • the fuel is burned, resulting in exhaust gas of the gas turbine 12 results.
  • the gas turbine 12 provides the exhaust gas, which is illustrated in the figure by a directional arrow 18.
  • the gas turbine 12 for example, forms a mixture of the fuel and the air, this mixture is burned. This results in the exhaust gas of the gas turbine 12.
  • the exhaust gas is supplied to a steam generator 20 of the power plant.
  • the steam generator 20 is also referred to as a boiler or evaporator.
  • the steam generator 20 a liquid, in particular in the form of water supplied.
  • a heat transfer from the exhaust gas of the gas turbine 12 to the water whereby the water is heated and evaporated. This will generate steam from the water.
  • steam from the steam generator 20 supplied water (liquid) is generated.
  • the exhaust gas is cooled, so that it is discharged at ⁇ example, with a first temperature Tl of the steam generator 20.
  • the first temperature Tl is at least substantially 90 ° C (degrees Celsius).
  • the power plant furthermore comprises a turbine device, denoted as a whole by 22, which in the present case is a first turbine 24 and a second turbine 26 includes.
  • the turbine 24 is designed for example as a high-pressure turbine, wherein the turbine 26 is currentlybil ⁇ det as medium-pressure and low-pressure turbine.
  • the steam generated by the exhaust gas of the gas turbine 12 and medium help of the steam generator 20 is supplied to the turbine ⁇ device 22, so that the turbine means 22, in particular the turbines 24 and 26, driven by means of the generated hot vapor.
  • the Turbinenein ⁇ device 22 does not include, for example, in the figure shown a ⁇ individual turbine wheels, which steam is supplied. As a result, the turbine wheels are driven by means of the steam.
  • the turbine wheels are rotatably connected to the shaft 28 so that the shaft 28 is driven by the turbine wheels when the turbine wheels are driven by the steam.
  • the power plant further comprises at least one generator 30, which is driven or driven by the turbine device 22 via the shaft 28.
  • the generator 30, the shaft 28 provided on the mechanical Ener ⁇ energy is thus supplied, wherein by means of the generator 30, at least a part of the supplied mechanical energy into electrical
  • the Genera ⁇ gate 30 can provide this electrical power, which can be fed, for example, in a power grid.
  • the steam is removed from the turbine device 22 and fed to a heat exchanger 32, which acts as a capacitor or is formed. By means of the heat exchanger 32, the steam is cooled, whereby the steam condenses. As a result, the steam is again to the aforementioned water, which can be supplied to the steam generator 20 again.
  • the heat exchanger 32 In order to cool the steam by means of the heat exchanger 32, the heat exchanger 32, for example, a cooling medium, in particular dere a cooling liquid supplied. It can be carried out, a heat ⁇ transition from the vapor to the cooling liquid, whereby the steam is cooled and condensed in the sequence.
  • the power plant has a plurality of lines, not shown in the figure, through which respective flows of the vapor generated by means of the exhaust gas of the gas turbine 12 flow. These flows can have different temperatures.
  • different tem- are temperatures T2, T3 and T4 of the illustrated means of the exhaust gas of the Gasturbi ⁇ ne 12 generated steam, the temperature T2, for example 595 ° C, the temperature T3 360 ° C and the Tempe ⁇ temperature T4 240 ° C is.
  • the water leaves the condenser, for example, at a temperature T5, which is for example 40 ° C.
  • the power plant is activated, that is turned on, and deactivated, ie switched off. For example, the power plant is switched off with only a small power requirement. If the power requirement increases, the power plant is switched on again after switching off.
  • This switching which is connected in time to a shutdown of the power plant, preferably takes place as a warm start to turn on the power plant quickly and energy-efficient.
  • the power plant after shutdown and during a time during which the power plant is switched off kept warm or heated to excessive cooling ⁇ off or cooling of the To avoid power plant.
  • the gas turbine 12 provides its exhaust ⁇ ready, which is supplied to the steam generator 20. Further, the steam generator 20, the water is supplied. By means of the steam generator supplied to the exhaust gas of the gas turbine 12 and by means of the steam generator 20, the water is at least partially ⁇ heated and evaporated, whereby steam is generated. FER ner the steam generator 20, the steam generator 20 supplied exhaust gas of the gas turbine 12 is at least partially removed.
  • the power plant comprises a thermochemical heat accumulator 34, which is formed for example by at least one reactor or comprises at least one reactor. Since the Ab ⁇ gas of the gas turbine 12 - relative to a flow direction of exhaust gas of the gas turbine 12 - downstream of the steam generator 20, that is, after the steam generator 20 having the temperature T is contained in the exhaust gas of the gas turbine 12 downstream of the steam ⁇ generator 20 heat , At least part of this heat contained in the exhaust gas of the gas turbine 12 downstream of the steam generator 20 is - as shown in the figure by a directional arrow 36 - the thermochemical heat storage 34 (reactor) supplied.
  • thermochemical heat storage 34 supplied heat is used to an endothermic chemical reaction to Be Farming ⁇ ken.
  • an endothermic chemical reac ⁇ tion by means of the thermo-chemical heat accumulator 34 supplied heat causes of the discharged exhaust gas 20 from the steam generator.
  • the heat supplied to the thermochemical heat accumulator 34 or at least a portion of the heat supplied to the thermochemical heat accumulator 34 is stored in products of the endothermic chemical reaction, the stored heat can be used as needed.
  • thermochemi ⁇ cal heat storage 34 in particular the endothermic chemical reaction or educts of the endothermic chemical reaction see example supplied via at least one dressingtau ⁇ shear 38, by which at least a part of the off ⁇ gas flows.
  • the heat exchanger 38 is downstream of the steam generator 20 ⁇ assigns.
  • the exhaust gas is suit ⁇ cooled.
  • the exhaust gas which is supplied to the heat exchanger 38 is, for example - as shown in the figure by a direction arrow 40 - the heat exchanger 38 and discharged downstream of the heat exchanger 38 example ⁇ a temperature T6, which is 70 ° C and clotting ⁇ ger than the temperature Tl is.
  • the exhaust gas may have a mass flow of 884 kg / s and a pressure of one bar.
  • at least a portion of the effluent from the steam generator 20 exhaust gas to the heat exchanger 38 and the thermochemical heat storage 34, respectively.
  • the endothermic chemical reaction is, for example, a forward reaction of a chemical equilibrium reaction. As part of the forward reaction arise from the starting materials of the endothermic chemical reaction products of the endothermic chemical reaction (forward reaction).
  • This chemical equilibrium reaction also includes a back reaction which is formed as an exothermic chemical reaction.
  • the products of the forward reaction are starting materials of the reverse reaction, products of the reverse reaction being the starting materials of the forward reaction.
  • the forward reaction and / or the reverse reaction take place, for example, in the reactor, that is to say in the thermochemical heat store 34.
  • heat is released.
  • This released as part of the reverse reaction or frge ⁇ put heat can be used for heating purposes, in particular Fernumblezwe ⁇ bridge.
  • the heat released in the reverse reaction is used for heating purposes, in particular district heating purposes.
  • a fluid is heated, in particular in the form of water.
  • the water is supplied to a further heat exchanger 42 of the thermochemical heat accumulator, which is illustrated in the figure by a directional arrow 44.
  • the heat released in the reverse reaction is supplied to the heat exchanger 42 through which the water flows through the heat exchanger 42, whereby the water is heated.
  • the heated water is removed from the heat exchanger 42, which is illustrated in the figure by a directional arrow 46.
  • the water has a mass flow of 1100 kg / s (kilograms per second).
  • the water is, for example, with a
  • the heat exchanger 42 is supplied.
  • the water is heated to a temperature T8 he ⁇ , wherein the temperature T7, for example, 65 ° C (degrees Celsius) and the temperature is 100 ° C T8.
  • the temperature Tem ⁇ T8 is greater than the temperature T7, the water having the temperature T7 upstream of the heat exchanger 42 and the tempera ture ⁇ T8 downstream of the heat exchanger 42nd
  • the water has a pressure of 14.5 bar, wherein the water is provided with this pressure and the temperature T7 and the heat exchanger 42 is supplied.
  • thermochemical heat storage 34 Since the forward reaction is effected at 90 ° C of the exhaust gas, the thermochemical heat storage is loaded at 90 ° C. Since the water is heated to 130 ° C by means of the thermochemical heat accumulator 34, the thermochemical heat storage 34 is discharged at 130 ° C.
  • the heat exchanger 38 Through the use of the heat exchanger 38, a spatial separation of the educts of the forward reaction of the exhaust gas can be realized, so that the exhaust gas does not touch the educts of the forward reaction di ⁇ rect. Alternatively, it is conceivable that the exhaust gas directly touches the educts of the forward reaction and thereby flows against or flows around it.
  • thermochemical heat storage 34 water can be used, for example, to supply households with hot water and / or to heat households.
  • a particularly efficient process can be achieved overall.
  • thermochemical Heat accumulator 34 it is conceivable that only a portion of the exhaust gas downstream of the steam generator 20, the heat exchanger 38 and / or only a portion of the water to the heat exchanger 42, in particular an at least substantially continuous heating of the water by means of thermochemical Heat accumulator 34 to ensure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Gas-und-Dampf-Kombinationskraftwerks (10), bei welchem von einer Gasturbine (12) Abgas bereitgestellt wird, welches einem Dampferzeuger (20) zugeführt wird, wobei mittels des dem Dampferzeuger (20) zugeführten Abgases und mittels des Dampferzeugers (20) heißer Dampf erzeugt wird, mittels welchem über wenigstens eine Turbineneinrichtung (22) wenigstens ein Generator (30) zum Bereitstellen von elektrischem Strom angetrieben wird, und wobei das dem Dampferzeuger (20) zugeführte Abgas dem Dampferzeuger (20) abgeführt wird, wobei zumindest ein Teil von in dem Abgas stromab des Dampferzeugers (20) enthaltener Wärme zum Bewirken einer endothermen chemischen Reaktion genutzt wird.

Description

Beschreibung
Verfahren zum Betreiben eines Gas-und-Dampf-Kombinations¬ kraftwerks
Die Erfindung betrifft ein Verfahren zum Betreiben eines Gas- und-Dampf-Kombinationskraftwerks gemäß dem Oberbegriff vom Patentanspruch 1. Ein solches Verfahren zum Betreiben eines Gas-und-Dampf- Kombinationskraftwerks sowie ein solches Gas-und-Dampf- Kombinationskraftwerk (GuD-Kraftwerk) sind aus dem allgemeinen Stand der Technik bereits hinlänglich bekannt. Das Gas- und-Dampf-Kraftwerk wird auch als Combined Cycle Power Plant bezeichnet und umfasst wenigstens eine Turbineneinrichtung, wenigstens einen von der Turbineneinrichtung antreibbaren Generator zum Bereitstellen von elektrischem Strom und wenigstens eine Gasturbine. Wir der Generator von der Turbineneinrichtung angetrieben, so kann der Generator mechanische Ener- gie in elektrische Energie bzw. elektrischen Strom umwandeln und diese elektrische Energie bzw. den elektrischen Strom be¬ reitstellen. Der elektrische Strom kann dann beispielsweise in ein Stromnetz eingespeist werden. Die Gasturbine stellt dabei Abgas bereit, mittels welchem heißer Dampf erzeugt wird. Beispielsweise wird der Gasturbine ein Brennstoff, insbesondere ein gasförmiger Brennstoff wie beispielsweise Erdgas, zugeführt, wobei der Brennstoff mit¬ tels der Gasturbine verbrannt wird. Insbesondere wird der Gasturbine zusätzlich zu dem Brennstoff Sauerstoff bzw. Luft zugeführt, sodass aus der Luft und dem Brennstoff ein Brenn¬ stoff-Luft-Gemisch entsteht. Dieses Brennstoff-Luft-Gemisch wird verbrannt, woraus Abgas der Gasturbine resultiert. Mit¬ tels des Abgases wird beispielsweise eine Flüssigkeit, insbe- sondere Wasser, erwärmt und dadurch verdampft, woraus heißer Dampf resultiert. Dies bedeutet, dass der heiße Dampf mittels des Abgases der Gasturbine derart erzeugt wird, dass mittels des heißen Abgases der Gasturbine eine Flüssigkeit wie bei¬ spielsweise Wasser verdampft wird.
Der Dampf wird der Turbineneinrichtung zugeführt, sodass die Turbineneinrichtung mittels des Dampfs angetrieben wird. Wie bereits beschrieben, wird über die Turbineneinrichtung bzw. mittels der Turbineneinrichtung der Generator angetrieben. Das Gas-und-Dampf-Kombinationskraftwerk, welches auch als Gas-und-Dampf-Kombikraftwerk bezeichnet wird, ist ein Kraft- werk, in dem die Prinzipien eines Gasturbinenkraftwerks und eines Dampfkraftwerks kombiniert werden. Die Gasturbine bzw. ihr Abgas dient dabei als Wärmequelle für einen nachgeschal¬ teten Dampferzeuger, mittels welchem der Dampf für die Turbineneinrichtung bzw. zum Antreiben der Turbineneinrichtung er- zeugt wird. Die Turbineneinrichtung ist somit als Dampfturbi¬ ne ausgebildet.
Dies bedeutet, dass die Gasturbine ihr Abgas bereitstellt, welches dem Dampferzeuger zugeführt wird. Somit wird mittels des dem Dampferzeuger zugeführten Abgases und mittels des
Dampferzeugers heißer Dampf erzeugt, mittels welchem die Tur¬ bineneinrichtung und über die Turbineneinrichtung der Generator zum Bereitstellen von elektrischem Strom angetrieben wird. Ferner wird das dem Dampferzeuger zugeführte Abgas dem Dampferzeuger zumindest zum Teil wieder abgeführt.
Es hat sich gezeigt, dass ein solches Gas-und-Dampf-Kombina¬ tionskraftwerk (GuD-Kraftwerk) , insbesondere je nach Strombedarf, abgeschaltet werden muss, sodass der Generator keinen elektrischen Strom bereitstellt und beispielsweise nicht an¬ getrieben wird und sodass mittels des GuD-Kraftwerks kein Strom in das Stromnetz eingespeist wird. Infolge des Abschal- tens kann das Gas-und-Dampf-Kombinationskraftwerk auskühlen, woraufhin ein erneutes Anschalten bzw. ein Hochfahren des Gas-und-Dampf-Kombinationskraftwerks eine besonders lange
Zeit und einen besonders hohen Energiebedarf erfordert. Daher ist es üblicherweise vorgesehen, das Gas-und-Dampf-Kombina¬ tionskraftwerk während einer Zeit, während welcher das Gas- und-Dampf-Kombinationskraftwerk abgeschaltet ist, warm zu halten. Dabei wird das Gas-und-Dampf-Kombinationskraftwerk mittels Dampf warmgehalten. Dieser dampf zum Warmhalten wird üblicherweise mittels eines Boilers, insbesondere eines Gas- boilers, erzeugt. Mittels des Boilers wird eine Flüssigkeit wie beispielsweise Wasser verdampft, wobei hierzu ein Brenn¬ stoff zum Einsatz kommt. Der mittels des Boilers erzeugte Dampf wird zumindest durch einen Teil des Gas-und-Dampf- Kombinationskraftwerks geleitet, um dieses warm zu halten bzw. zu erwärmen. Dann kann das Gas-und-Dampf-Kombinations¬ kraftwerk nach einem Abschalten desselben im Rahmen eines Warmstarts gestartet werden, da das Gas-und-Dampf-Kombina¬ tionskraftwerk dann eine bereits hinreichend hohe Temperatur, bei welcher es gestartet werden kann, aufweist. Jedoch ist mit zunehmender Zeit, die das Gas-und-Dampf-Kombinations¬ kraftwerk abgeschaltet ist, eine zunehmende Menge an Dampf zum Warmhalten bzw. Erwärmen des Gas-und-Dampf-Kombinations¬ kraftwerks erforderlich, da dieses sukzessive auskühlt. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der eingangs genannten Art derart weiterzuentwickeln, dass sich ein besonders effizienter Betrieb realisieren lässt.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Um ein Verfahren der im Oberbegriff des Patentanspruchs 1 an- gegebenen Art derart weiterzuentwickeln, dass sich ein besonders effizienter Betrieb realisieren lässt, ist es erfindungsgemäß vorgesehen, dass zumindest ein Teil von in dem Ab¬ gas der Gasturbine stromab des Dampferzeugers enthaltener Wärme zum Bewirken einer endothermen chemischen Reaktion, das heißt einer chemischen Wärme aufnehmenden Reaktion genutzt wird. Dies bedeutet, dass das beispielsweise aus dem Dampfer¬ zeuger ausströmende Abgas - in Strömungsrichtung des Abgases der Gasturbine - stromab des Dampferzeugers eine Temperatur aufweist, sodass in dem Abgas der Gasturbine stromab des Dampferzeugers, das heißt nach dem Erzeugen des Dampfes, Wär¬ me in dem Abgas der Gasturbine enthalten ist. Diese Wärme, die in dem Abgas stromab des Dampferzeugers beziehungsweise nach dem Dampferzeuger enthalten ist, wird genutzt, um die endotherme chemische Reaktion zu bewirken. Hierzu wird die in dem Abgas enthaltene Wärme der endothermen chemischen Reakti¬ on beziehungsweise Edukten der endothermen chemischen Reaktion zugeführt. Dadurch wird zumindest ein Teil der der endo- thermen chemischen Reaktion zugeführten Wärme in Produkten der endothermen chemischen Reaktion gespeichert, sodass ein thermochemischer Speicher, insbesondere ein thermochemischer Wärmespeicher, geschaffen werden kann. In den Produkten der endothermen chemischen Reaktion kann die im Abgas der Gasturbine stromab des Dampferzeugers enthaltene Wärme zumindest zum Teil gespeichert werden, wobei die in den Produkten gespeicherte Wärme beispielsweise zu einem späteren Zeitpunkt und/oder für andere Zwecke genutzt werden kann.
Der Erfindung liegt insbesondere die Idee zugrunde, im Abgas der Gasturbine nach dem Dampferzeuger enthaltene Wärme, wel¬ che üblicherweise ungenutzt verloren geht, zu nutzen, um zu¬ mindest einen Teil der im Abgas stromab des Dampferzeugers enthaltenen Wärme zu speichern, insbesondere in den Produkten der endothermen chemischen Reaktion.
Insbesondere kann die Wärme für Fernwärmezwecke gespeichert werden. Beispielsweise kann eine exotherme chemische Reakti- on, das heißt eine chemische Wärme abgebende Reaktion bewirkt werden, wobei die Produkte der endothermen chemischen Reaktion Edukte der exothermen chemischen Reaktion sind bzw. als Edukte der exothermen Reaktion genutzt werden. Im Rahmen der exothermen chemischen Reaktion wird Wärme freigesetzt, mit- tels welcher ein Medium, insbesondere Wasser effizient er¬ wärmt werden kann. Produkte der exothermen Reaktion können beispielsweise als die Edukte der endothermen Reaktion ge¬ nutzt werden. Der thermochemische Wärmespeicher kann genutzt werden, um eine besonders hohe Flexibilität hinsichtlich der Realisierung von Fernwärme zu realisieren. Insbesondere ist es möglich, in dem thermochemischen Wärmespeicher Wärme beziehungsweise Energie zu speichern, so dass insbesondere bei hohen Wärmebe- darfen ein Medium, insbesondere Wasser, mittels der in den thermochemischen Wärmespeicher gespeicherten Wärme effektiv erwärmt werden kann. Da hierzu im Abgas stromab des Dampfer¬ zeugers enthaltene Energie genutzt wird, kann eine besonders hohe Effizienz realisiert werden. Die in den Produkten der endothermen Reaktion gespeicherte und bei der exothermen Reaktion freiwerdende Wärme wird beispielsweise an das Medium übertragen, um das Medium zu erwärmen. Dann kann das Medium beispielsweise für Heizzwecke, insbesondere zur Realisierung von Fernwärme, genutzt werden.
Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass zumindest der Teil der in dem Abgas stromab des Dampferzeugers enthaltenen Wärme über einen Wärmetauscher an Edukte der endothermen chemischen Reaktion übertragen wird .
Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass zumindest ein Teils des mittels des Dampfer¬ zeugers erzeugten Dampfes abgezweigt und in einem Dampfspei¬ cher gespeichert wird. Ferner wird zumindest ein Teil des in dem DampfSpeicher gespeicherten Dampfes aus dem DampfSpeicher abgeführt. Der aus dem DampfSpeicher abgeführte Dampf wird mittels Wärme, welche bei der exothermen chemischen Reaktion freigesetzt wird, erwärmt. Ferner wird der erwärmte Dampf zu der Turbineneinrichtung geführt, welche mittels des zugeführten erwärmten Dampfes angetrieben, insbesondere beschleunigt, wird .
Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass als Edukte der exothermen chemischen Reakti- on Produkte der endothermen chemischen Reaktion verwendet werden .
Bei einer vorteilhaften Ausführungsform der Erfindung ist e vorgesehen, dass der Turbineneinrichtung der erwärmte Dampf zum Antreiben der Turbineneinrichtung zugeführt wird, das Gas-und-Dampf-Kombinationskraftwerk von einem ersten Lastb reich in einen gegenüber dem ersten Lastbereich höheren, zweiten Lastbereich hochzufahren.
Bei einer vorteilhaften Ausführungsform der Erfindung ist es vorgesehen, dass die endotherme chemische Reaktion in dem zweiten Lastbereich bewirkt wird.
Zur Erfindung gehört auch ein Gas-und-Dampf-Kombinations¬ kraftwerk, welches zum Durchführen eines erfindungsgemäßen Verfahrens ausgebildet ist. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind als vorteilhafte Ausgestal¬ tungen des erfindungsgemäßen Gas-und-Dampf-Kombinationskraft¬ werks anzusehen und umgekehrt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vor¬ stehend in der Beschreibung genannten Merkmale und Merkmals¬ kombinationen sowie die nachfolgend in der Figurenbeschrei¬ bung genannten und/oder in der einzigen Figur alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in der einzigen Figur eine schematische Darstellung eines Gas-und-Dampf-Kombinationskraftwerks , bei welchem ein thermochemischer Wärmespeicher zum Einsatz kommt, um eine besonders hohe Effizienz zu realisieren. Die einzige Figur zeigt in einer schematischen Darstellung ein im Ganzen mit 10 bezeichnetes Gas-und-Dampf-Kombinations¬ kraftwerk, welches auch als GuD-Kraftwerk oder - der besseren Lesbarkeit wegen - als Kraftwerk bezeichnet wird. Das Kraft- werk umfasst wenigstens eine Gasturbine 12, welcher bei¬ spielsweise im Rahmen eines Verfahrens zum Betreiben des Kraftwerks Brennstoff zugeführt wird. Diese Zuführung von Brennstoff zu der Gasturbine 12 ist in der Figur durch einen Richtungspfeil 14 veranschaulicht. Bei dem Brennstoff handelt es sich insbesondere um einen gasförmigen Brennstoff wie bei¬ spielsweise Erdgas. Ferner wird der Gasturbine 12 Luft zuge¬ führt, was in der Figur durch einen Richtungspfeil 16 veranschaulicht ist. Mittels der Gasturbine 12 wird der Brennstoff verbrannt, woraus Abgas der Gasturbine 12 resultiert. Somit stellt die Gasturbine 12 das Abgas bereit, was in der Figur durch einen Richtungspfeil 18 veranschaulicht ist. In der Gasturbine 12 bildet sich beispielsweise ein Gemisch aus dem Brennstoff und der Luft, wobei dieses Gemisch verbrannt wird. Daraus resultiert das Abgas der Gasturbine 12.
Anhand des Richtungspfeils 18 ist erkennbar, dass das Abgas einem Dampferzeuger 20 des Kraftwerks zugeführt wird. Der Dampferzeuger 20 wird auch als Boiler oder Verdampfer bezeichnet. Ferner wird dem Dampferzeuger 20 eine Flüssigkeit, insbesondere in Form von Wasser, zugeführt. Dabei erfolgt ein Wärmeübergang von dem Abgas der Gasturbine 12 an das Wasser, wodurch das Wasser erwärmt und verdampft wird. Dadurch wird aus dem Wasser Dampf erzeugt. Dies bedeutet, dass mittels des Abgases der Gasturbine 12 und mittels des Dampferzeugers 20 Dampf aus dem dem Dampferzeuger 20 zugeführten Wasser (Flüssigkeit) erzeugt wird. Infolge dieses Wärmeübergangs von dem Abgas an das Wasser wird das Abgas gekühlt, sodass es bei¬ spielsweise mit einer ersten Temperatur Tl von dem Dampferzeuger 20 abgeführt wird. Die erste Temperatur Tl beträgt beispielsweise zumindest im Wesentlichen 90°C (Grad Celsius).
Das Kraftwerk umfasst ferner eine im Ganzen mit 22 bezeichne¬ te Turbineneinrichtung, welche vorliegend eine erste Turbine 24 und eine zweite Turbine 26 umfasst. Die Turbine 24 ist beispielsweise als Hochdruckturbine ausgebildet, wobei die Turbine 26 als Mitteldruck- und Niederdruckturbine ausgebil¬ det ist. Der mittels des Abgases der Gasturbine 12 und mit- hilfe des Dampferzeugers 20 erzeugte Dampf wird der Turbinen¬ einrichtung 22 zugeführt, sodass die Turbineneinrichtung 22, insbesondere die Turbinen 24 und 26, mittels des erzeugten heißen Dampfs angetrieben werden. Mittels der Turbineneinrichtung 22 wird in dem heißen Dampf enthaltene Energie in mechanische Energie umgewandelt, wobei die mechanische Ener¬ gie über eine Welle 28 bereitgestellt wird. Die Turbinenein¬ richtung 22 umfasst beispielsweise in der Figur nicht im Ein¬ zelnen dargestellte Turbinenräder, denen der Dampf zugeführt wird. Dadurch werden die Turbinenräder mittels des Dampfs an- getrieben. Die Turbinenräder sind beispielsweise drehfest mit der Welle 28 verbunden, sodass die Welle 28 von den Turbinenrädern angetrieben wird, wenn die Turbinenräder mittels des Dampfs angetrieben werden. Das Kraftwerk umfasst ferner wenigstens einen Generator 30, welcher über die Welle 28 von der Turbineneinrichtung 22 antreibbar ist bzw. angetrieben wird. Dem Generator 30 wird somit die über die Welle 28 bereitgestellte mechanische Ener¬ gie zugeführt, wobei mittels des Generators 30 zumindest ein Teil der zugeführten mechanischen Energie in elektrische
Energie bzw. elektrischen Strom umgewandelt wird. Der Genera¬ tor 30 kann diesen elektrischen Strom bereitstellen, welcher beispielsweise in ein Stromnetz eingespeist werden kann. Der Dampf wird von der Turbineneinrichtung 22 abgeführt und einem Wärmetauscher 32 zugeführt, welcher als Kondensator fungiert bzw. ausgebildet ist. Mittels des Wärmetauschers 32 wird der Dampf gekühlt, wodurch der Dampf kondensiert. Hierdurch wird der Dampf wieder zu dem zuvor genannten Wasser, das dem Dampferzeuger 20 wieder zugeführt werden kann.
Um den Dampf mittels des Wärmetauschers 32 zu kühlen, wird dem Wärmetauscher 32 beispielsweise ein Kühlmedium, insbeson- dere eine Kühlflüssigkeit, zugeführt. Dabei kann ein Wärme¬ übergang von dem Dampf an die Kühlflüssigkeit erfolgen, wodurch der Dampf gekühlt wird und in der Folge kondensiert. Das Kraftwerk weist eine Mehrzahl von in der Figur nicht näher dargestellten Leitungen auf, durch welche jeweilige Strömungen des mittels des Abgases der Gasturbine 12 erzeugten Dampfs strömen. Diese Strömungen können unterschiedliche Temperaturen aufweisen. In der Figur sind unterschiedliche Tem- peraturen T2, T3 und T4 des mittels des Abgases der Gasturbi¬ ne 12 erzeugten Dampfs dargestellt, wobei die Temperatur T2 beispielsweise 595°C, die Temperatur T3 360°C und die Tempe¬ ratur T4 240°C beträgt. Das Wasser verlässt den Kondensator beispielsweise mit einer Temperatur T5, welche beispielsweise 40°C beträgt.
Je nach Strombedarf, d.h. je nach Menge an elektrischem
Strom, welche von dem Stromnetz bereitgestellt werden muss, wird das Kraftwerk aktiviert, d.h. angeschaltet, und deakti- viert, d.h. abgeschaltet. Beispielsweise wird das Kraftwerk bei nur geringem Strombedarf abgeschaltet. Steigt der Strombedarf, so wird das Kraftwerk nach dem Abschalten wieder angeschaltet. Dieses Anschalten, das sich zeitlich an ein Abschalten des Kraftwerks anschließt, erfolgt vorzugsweise als ein Warmstart, um das Kraftwerk schnell und energiegünstig anschalten zu können. Zur Realisierung dieses Warmstarts, insbesondere zur Realisierung eines besonders energiegünsti¬ gen Warmstarts, wird das Kraftwerk nach dem Abschalten und während einer Zeit, während welcher das Kraftwerk abgeschal- tet ist, warmgehalten bzw. erwärmt, um ein übermäßiges Aus¬ kühlen bzw. Abkühlen des Kraftwerks zu vermeiden.
Es ist erkennbar, dass die Gasturbine 12 ihr Abgas bereit¬ stellt, welches dem Dampferzeuger 20 zugeführt wird. Ferner wird dem Dampferzeuger 20 das Wasser zugeführt. Mittels des dem Dampferzeuger zugeführten Abgases der Gasturbine 12 und mittels des Dampferzeugers 20 wird das Wasser zumindest teil¬ weise erwärmt und verdampft, wodurch Dampf erzeugt wird. Fer- ner wird dem Dampferzeuger 20 das dem Dampferzeuger 20 zugeführte Abgas der Gasturbine 12 zumindest teilweise abgeführt.
Um nun eine besonders hohe Effizienz beziehungsweise einen besonders effizienten Betrieb zu realisieren, umfasst das Kraftwerk einen thermochemischen Wärmespeicher 34, welcher beispielsweise durch wenigstens einen Reaktor gebildet ist beziehungsweise wenigstens einen Reaktor umfasst. Da das Ab¬ gas der Gasturbine 12 - bezogen auf eine Strömungsrichtung des Abgas der Gasturbine 12 - stromab des Dampferzeugers 20, das heißt nach dem Dampferzeuger 20 die Temperatur Tl aufweist, ist in dem Abgas der Gasturbine 12 stromab des Dampf¬ erzeugers 20 Wärme enthalten. Zumindest ein Teil dieser in dem Abgas der Gasturbine 12 stromab des Dampferzeugers 20 enthaltenen Wärme wird - wie in der Figur durch einen Richtungspfeil 36 veranschaulicht ist - dem thermochemischen Wärmespeicher 34 (Reaktor) zugeführt. Diese dem thermochemischen Wärmespeicher 34 zugeführte Wärme wird genutzt, um eine endotherme chemische Reaktion zu bewir¬ ken. Mit anderen Worten wird eine endotherme chemische Reak¬ tion mittels der dem thermochemischen Wärmespeicher 34 zugeführten Wärme aus dem vom Dampferzeuger 20 abgeführten Abgas bewirkt. Dadurch wird die dem thermochemischen Wärmespeicher 34 zugeführte Wärme beziehungsweise zumindest ein Teil der dem thermochemischen Wärmespeicher 34 zugeführten Wärme in Produkten der endothermen chemischen Reaktion gespeichert, wobei die gespeicherte Wärme bedarfsgerecht genutzt werden kann .
Zumindest der Teil der in dem Abgas der Gasturbine 12 stromab des Dampferzeugers 20 enthaltenen Wärme wird dem thermochemi¬ schen Wärmespeicher 34, insbesondere der endothermen chemischen Reaktion beziehungsweise Edukten der endothermen chemi- sehen Reaktion beispielsweise über wenigstens einen Wärmetau¬ scher 38 zugeführt, durch welchen zumindest ein Teil des Ab¬ gases strömt. Hierbei erfolgt ein Wärmeübergang von dem Abgas über den Wärmetauscher 38 an Edukte der endothermen chemi- sehen Reaktion. Bezogen auf die Strömungsrichtung des Abgases ist der Wärmetauscher 38 stromab des Dampferzeugers 20 ange¬ ordnet .
Infolge des beschriebenen Wärmeübergangs wird das Abgas abge¬ kühlt. Das Abgas, welches dem Wärmetauscher 38 zugeführt wird, wird beispielsweise - wie in der Figur durch einen Richtungspfeil 40 veranschaulicht ist - dem Wärmetauscher 38 abgeführt und weist stromab des Wärmetauschers 38 beispiels¬ weise eine Temperatur T6 auf, welche 70°C beträgt und gerin¬ ger als die Temperatur Tl ist. Ferner kann das Abgas einen Massenstrom von 884 kg/s und einen Druck von einem bar aufweisen. Darüber wird zumindest ein Teil des aus dem Dampferzeuger 20 ausströmenden Abgases dem Wärmetauscher 38 beziehungsweise dem thermochemischen Wärmespeicher 34 zugeführt.
Die endotherme chemische Reaktion ist beispielsweise eine Hinreaktion einer chemischen Gleichgewichtsreaktion. Im Rahmen der Hinreaktion entstehen aus den Edukten der endothermen chemischen Reaktion Produkte der endothermen chemischen Reaktion (Hinreaktion) .
Diese chemische Gleichgewichtsreaktion umfasst auch eine Rückreaktion, welche als eine exotherme chemische Reaktion ausgebildet ist. Dabei sind die Produkte der Hinreaktion Edukte der Rückreaktion, wobei Produkte der Rückreaktion die Edukte der Hinreaktion sind. Die Hinreaktion und/oder die Rückreaktion erfolgt beispielsweise in dem Reaktor, das heißt in dem thermochemischen Wärmespeicher 34.
Im Rahmen der Rückreaktion wird Wärme freigesetzt. Diese im Rahmen der Rückreaktion freiwerdende beziehungsweise freige¬ setzte Wärme kann für Heizzwecke, insbesondere Fernwärmezwe¬ cke, genutzt werden. Beispielsweise ist es denkbar, mittels der im Rahmen der Rückreaktion freigesetzten Wärme Dampf zu erzeugen und/oder bereitgestellten Dampf zu erhitzen, insbesondere zu überhitzen, um mittels des erzeugten beziehungs¬ weise erhitzten Dampfes beispielsweise zumindest einen Teil des Kraftwerks zu erwärmen oder aber die Turbineneinrichtung 22 anzutreiben, insbesondere zu beschleunigen, so dass beispielsweise das Kraftwerk aus einem ersten Lastbereich in einem dem gegenüber höheren, zweiten Lastbereich hochgefahren werden kann.
Vorliegend wird die bei der Rückreaktion freigesetzte Wärme jedoch zu Heizzwecken, insbesondere Fernwärmezwecken, genutzt. Mittels der bei der Rückreaktion freiwerdenden Wärme wird beispielsweise ein Fluid insbesondere in Form von Wasser erwärmt. Das Wasser wird einem weiteren Wärmetauscher 42 des thermochemischen Wärmespeichers zugeführt, was in der Figur durch einen Richtungspfeil 44 veranschaulicht ist. Die bei der Rückreaktion frei werdende Wärme wird dem den Wärmetau- scher 42 durchströmenden Wasser über den Wärmetauscher 42 zugeführt, wodurch das Wasser erwärmt wird. Das erwärmte Wasser wird dem Wärmetauscher 42 abgeführt, was in der Figur durch einen Richtungspfeil 46 veranschaulicht ist. Beispielsweise weist das Wasser einen Massenstrom von 1100 kg/s (Kilogramm pro Sekunde) auf. Das Wasser wird beispielsweise mit einer
Temperatur T7 bereitgestellt, wobei das Wasser mit der Tempe¬ ratur T7 den Wärmetauscher 42 zugeführt wird. Mittels des Wärmetauschers 42 wird das Wasser auf eine Temperatur T8 er¬ wärmt, wobei die Temperatur T7 beispielsweise 65°C (Grad Cel- sius) und die Temperatur T8 100°C beträgt. Somit ist die Tem¬ peratur T8 größer als die Temperatur T7, wobei das Wasser die Temperatur T7 stromauf des Wärmetauschers 42 und die Tempera¬ tur T8 stromab des Wärmetauschers 42 aufweist. Ferner ist es beispielsweise vorgesehen, dass das Wasser einen Druck von 14,5 bar aufweist, wobei das Wasser mit diesem Druck und der Temperatur T7 bereitgestellt und dem Wärmetauscher 42 zugeführt wird.
Da die Hinreaktion bei 90°C des Abgases bewirkt wird, wird der thermochemische Wärmespeicher bei 90 °C beladen. Da das Wasser mittels des thermochemischen Wärmespeichers 34 auf 130 °C aufgeheizt wird, wird der thermochemische Wärmespeicher 34 bei 130°C entladen. Durch den Einsatz des Wärmetauschers 38 kann eine räumliche Trennung der Edukte der Hinreaktion von dem Abgas realisiert werden, sodass das Abgas die Edukte der Hinreaktion nicht di¬ rekt berührt. Alternativ ist es denkbar, dass das Abgas die Edukte der Hinreaktion direkt berührt und dabei anströmt bzw. umströmt. Dann entfällt beispielsweise der Wärmetauscher 38. Dies ist auch auf die Rückreaktion übertragbar: Durch den Einsatz des Wärmetauschers 42 kann eine räumliche Trennung der Edukte und/oder Produkte der Rückreaktion von dem Wasser, welches mittels der freigesetzten Wärme erwärmt wird, reali¬ siert werden, sodass das Wasser die Edukte und/oder Produkte der Rückreaktion nicht direkt berührt. Alternativ ist es denkbar, dass das Wasser die Edukte und/oder Produkte der Rückreaktion direkt berührt und dabei anströmt bzw. umströmt. Dann entfällt beispielsweise der Wärmetauscher 42.
Das mittels des thermochemischen Wärmespeichers 34 erwärmte Wasser kann beispielsweise genutzt werden, um Haushalte mit Warmwasser zu versorgen und/oder um Haushalte zu beheizen. Hierdurch kann ein besonders effizienter Prozess insgesamt realisiert werden. Ferner ist es möglich, eine besonders hohe Flexibilität der Wärmeversorgung zu realisieren. Insbesondere ist es denkbar, Spitzenlasten beziehungsweise hohe Wärmebe- darfe mittels des thermochemischen Wärmespeichers 34 auf energiegünstige Weise abzudecken, da zum Erwärmen des Wassers zumindest ein Teil der im Abgas stromab des Dampferzeugers 20 enthaltenen Energie, zumindest mittelbar, genutzt wird. Je nach Massenstrom des Abgases und des Wassers ist es denkbar, lediglich einen Teil des Abgases stromab des Dampferzeugers 20 den Wärmetauscher 38 und/oder lediglich ein Teil des Wassers dem Wärmetauscher 42 zuzuführen, um insbesondere ein zumindest im Wesentlichen kontinuierliches Erwärmen des Wassers mittels des thermochemischen Wärmespeichers 34 sicherstellen zu können.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Gas-und-Dampf-Kombinations¬ kraftwerks (10), bei welchem von einer Gasturbine (12) Abgas bereitgestellt wird, welches einem Dampferzeuger (20) zuge¬ führt wird, wobei mittels des dem Dampferzeuger (20) zuge¬ führten Abgases und mittels des Dampferzeugers (20) heißer Dampf erzeugt wird, mittels welchem über wenigstens eine Tur¬ bineneinrichtung (22) wenigstens ein Generator (30) zum Be- reitstellen von elektrischem Strom angetrieben wird, und wobei das Abgas dem Dampferzeuger (20) zugeführte Abgas dem Dampferzeuger (20) abgeführt wird,
dadurch gekennzeichnet, dass
zumindest ein Teil von in dem Abgas stromab des Dampferzeu- gers (20) enthaltener Wärme zum Bewirken einer endothermen chemischen Reaktion genutzt wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
zumindest der Teil der in dem Abgas stromab des Dampferzeu¬ gers (20) enthaltenen Wärme über einen Wärmetauscher (38) an Edukte der endothermen chemischen Reaktion übertragen wird.
3. Verfahren nach Anspruch 1 oder 2,
gekennzeichnet durch die Schritte:
- Abzweigen zumindest eines Teils des mittels des Dampferzeu¬ gers (20) erzeugten Dampfes und Speichern des abgezweigten Dampfes in einem DampfSpeicher (34);
- Abführen zumindest eines Teils des in dem DampfSpeicher
(34) gespeicherten Dampfes aus dem DampfSpeicher (34);
- Erwärmen des aus dem DampfSpeicher (34) abgeführten Dampfes mittels Wärme, welche bei einer exothermen chemischen Reaktion freigesetzt wird; und
- Führen des erwärmten Dampfes zu der Turbineneinrichtung
(22), welche mittels des zugeführten erwärmten Dampfes angetrieben wird.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass
als Edukte der exothermen chemischen Reaktion Produkte der endothermen chemischen Reaktion verwendet werden.
5. Verfahren nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
der Turbineneinrichtung (22) der erwärmte Dampf zum Antreiben der Turbineneinrichtung (22) zugeführt wird, um das Gas-und- Dampf-Kombinationskraftwerk (10) von einem ersten Lastbereich in einen gegenüber dem ersten Lastbereich höheren, zweiten Lastbereich hochzufahren.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass
die endotherme chemische Reaktion in dem zweiten Lastbereich bewirkt wird.
7. Gas-und-Dampf-Kombinationskraftwerk (10), welches zum Durchführen eines Verfahrens nach einem der vorhergehenden
Ansprüche ausgebildet ist.
EP16778264.8A 2015-10-07 2016-09-26 Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks Withdrawn EP3344858A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015219403.5A DE102015219403A1 (de) 2015-10-07 2015-10-07 Verfahren zum Betreiben eines Gas-und-Dampf-Kombinationskraftwerks
PCT/EP2016/072847 WO2017060114A1 (de) 2015-10-07 2016-09-26 Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks

Publications (1)

Publication Number Publication Date
EP3344858A1 true EP3344858A1 (de) 2018-07-11

Family

ID=57113288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16778264.8A Withdrawn EP3344858A1 (de) 2015-10-07 2016-09-26 Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks

Country Status (7)

Country Link
US (1) US20180340451A1 (de)
EP (1) EP3344858A1 (de)
JP (1) JP6741758B2 (de)
KR (1) KR102159718B1 (de)
CN (1) CN108138601A (de)
DE (1) DE102015219403A1 (de)
WO (1) WO2017060114A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020201068A1 (de) * 2020-01-29 2021-07-29 Siemens Aktiengesellschaft Anlage mit thermischem Energiespeicher, Verfahren zum Betreiben und Verfahren zur Modifikation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633610A5 (de) * 1978-05-19 1982-12-15 Bbc Brown Boveri & Cie Kombiniertes gas/dampfturbinenkraftwerk mit gegendruckturbine, insbesondere fuer industriezwecke.
JPH01273807A (ja) * 1988-04-27 1989-11-01 Hitachi Ltd 高効率コンバインドプラント
JPH086608B2 (ja) * 1989-08-11 1996-01-29 株式会社日立製作所 熱回収装置およびその運転方法
JPH08260912A (ja) * 1995-03-20 1996-10-08 Toshiba Corp コンバインドサイクル発電プラント
JPH11117713A (ja) * 1997-10-09 1999-04-27 Hitachi Ltd 化学蓄熱式吸気冷却装置
US20140116063A1 (en) * 2011-07-11 2014-05-01 Hatch Ltd. Advanced combined cycle systems and methods based on methanol indirect combustion
EP2865045B1 (de) * 2012-08-14 2016-09-28 Siemens Aktiengesellschaft Kraftwerksanordnung mit hochtemperatur-speichereinheit
EP2796671A1 (de) * 2013-04-26 2014-10-29 Siemens Aktiengesellschaft Kraftwerkssystem mit thermochemischem Speicher
WO2015043949A1 (de) * 2013-09-24 2015-04-02 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbinenanlage
DE102014202266A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Energiespeichers

Also Published As

Publication number Publication date
DE102015219403A1 (de) 2017-04-13
KR20180059938A (ko) 2018-06-05
WO2017060114A1 (de) 2017-04-13
KR102159718B1 (ko) 2020-09-24
JP6741758B2 (ja) 2020-08-19
US20180340451A1 (en) 2018-11-29
CN108138601A (zh) 2018-06-08
JP2018534464A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
DE69927925T2 (de) Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf
DE102014105237B3 (de) Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
AT517535B1 (de) Dampfkraftwerk
EP3344857B1 (de) Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks
DE102013217607B4 (de) Verfahren zum Bereitstellen von Dampf, Verfahren zum Speichern und späteren Bereitstellen von Energie, Dampfbereitstellungsvorrichtungund Verwendung einer Dampfbereitstellungsvorrichtung
WO2022112063A1 (de) System und verfahren zur speicherung und abgabe von elektrischer energie mit deren speicherung als wärmeenergie
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
EP3232023B1 (de) Verfahren und anlage zur energieumwandlung von druckenergie in elektrische energie
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP3344858A1 (de) Verfahren zum betreiben eines gas-und-dampf-kombinationskraftwerks
WO2011045047A2 (de) (o) rc-verfahren für die abwärmenachverstromung bei biomasseverbrennung, sowie entsprechende einrichtung
DE202004013299U1 (de) Vorrichtung zum Ausführen eines verbesserten ORC-Prozesses
DE102015219398A1 (de) Verfahren zum Betreiben eines Gas-und-Dampf-Kombinationskraftwerks sowie Gas-und-Dampf-Kombinationskraftwerk
DE202017003690U1 (de) Wasserstoff-Dampf-Kraft-Werk
DE102009040300A1 (de) Verfahren und Einrichtung zur Energieerzeugung insbesondere aus Biomasse oder Biomasseenergieträgern
DE102010048292A1 (de) Verfahren zum Betrieb eines Niedertemperaturkraftwerks
WO2022218841A1 (de) Erzeugung von elektrischer energie aus wasserstoff und sauerstoff
DE102021112050A1 (de) Verfahren zum Betreiben einer Speicheranlage, Speicheranlage, Steuerungsprogramm und computerlesbares Medium
WO2020143860A1 (de) Wasserstoff-dampf-kraft-werk
EP2443321A2 (de) Verfahren und einrichtung zur stromgewinnung aus wärme
WO2016162272A1 (de) Turbinenanlage und verfahren zum betreiben einer turbinenanlage
DE102010028819A1 (de) Verfahren zur Umwandlung von Energie kohlenstoffhaltiger Einsatzstoffe in Nutzenergie sowie Gasmotor- und Dampf-Kombikraftwerk und Brennstoffzellen- und Dampf-Kombikraftwerk zur Durchführung des Verfahrens
DE2526884A1 (de) Verfahren und einrichtung zur stromerzeugung und zum wiedervergasen von verfluessigtem gas
WO2013160161A2 (de) Niedertemperatur-kreislauf für eine gas- und dampfturbinenanlage mit wasserstofffeuerung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210804

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211215