EP3323576B1 - Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources - Google Patents

Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources Download PDF

Info

Publication number
EP3323576B1
EP3323576B1 EP17201181.9A EP17201181A EP3323576B1 EP 3323576 B1 EP3323576 B1 EP 3323576B1 EP 17201181 A EP17201181 A EP 17201181A EP 3323576 B1 EP3323576 B1 EP 3323576B1
Authority
EP
European Patent Office
Prior art keywords
flame retardant
mats
mixture
fibers
fire retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17201181.9A
Other languages
German (de)
French (fr)
Other versions
EP3323576A1 (en
Inventor
Hossein Ehsaei
Warda Khamis
Ulrich Fehrenbach
Alexander Dr. Kirsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUTEX Holzfaserplattenwerk H Henselmann GmbH and Co KG
Original Assignee
GUTEX Holzfaserplattenwerk H Henselmann GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60327102&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3323576(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GUTEX Holzfaserplattenwerk H Henselmann GmbH and Co KG filed Critical GUTEX Holzfaserplattenwerk H Henselmann GmbH and Co KG
Priority to PL17201181T priority Critical patent/PL3323576T3/en
Publication of EP3323576A1 publication Critical patent/EP3323576A1/en
Application granted granted Critical
Publication of EP3323576B1 publication Critical patent/EP3323576B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N9/00Arrangements for fireproofing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • B27N3/12Moulding of mats from fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks

Definitions

  • the present invention relates to a method for producing a fire-retardant insulating panel or mat and a corresponding blow-in insulating material made from fibers based on renewable raw materials.
  • DIN 4102 with the designation "Fire behavior of building materials and components” represents a standard for the fire behavior of building materials and components.
  • the building materials and components are assigned to building material classes or fire resistance classes.
  • a national classification according to DIN 4102-1 of building materials and components is divided into classes A1 and A2, which are classified as “non-flammable", in class B1, which is classified as “hardly inflammable”, in class B2, which is classified as “normally flammable” and in class B3, which is classified as "easily flammable”.
  • Insulating materials based on renewable raw materials in general and insulating materials containing lignocellulose in particular are now classified in Class B2 according to DIN 4102 and in Class E for "normally flammable” according to DIN EN 13501-1, the standard for the classification of building products and building types in terms of their fire behavior " classified.
  • the afterglow which decisively prevents the classification in the "hardly flammable” area, is to be evaluated particularly critically. Fire loads in the magnitude of the fire test prescribed by the standard ensure such a high energy input into the product that afterglow and continued glowing cannot be prevented.
  • the aim is to expand the use of bio-based insulating materials to applications that are not possible or permitted due to their "normally flammable" properties. This applies in particular to the use of such insulating materials in higher building classes. This lays another cornerstone for the industrial and sustainable production of insulation materials from renewable raw materials. The consumption of fossil resources (minerals, hard coal, oil and natural gas) can thus be further reduced.
  • a generic method for producing a fire-retardant wood-based panel from a mixture of lignocellulose-containing chips and expandable graphite is from DE 10 2009 005 155 B4 or the EP 2 208 594 B1 known.
  • Wood-based panels are becoming more widespread due to their technical properties and are among the fastest growing wood-based products worldwide. Thicknesses of 2 mm to 60 mm with a density of 600 kg/m 3 to 1000 kg/m 3 are usually commercially available.
  • a method for the production of fire-retardant wood-based panels is also from U.S. 2004/258898 A1 known.
  • intumescent flame retardants are chemical fire retardants. Intumescent systems inflate into foams, which are used to protect combustible materials from the effects of heat and fire. Basically, the flame retardant effect is due to the use of synergistic mechanisms. With their help, the combustion process of the wood fibers is prevented both chemically and physically.
  • Phosphate compounds are the main components of the chemically active substances. Their water solubility is a prerequisite for the use of wood fibers. Phosphate compounds can also serve as a reactive flame retardant solution, chemically binding the flame retardant to the wood fiber.
  • the physical effect of acid intercalated types of graphite is used. In this case, the expandable graphite is present as a separate particle in the wood fiber matrix.
  • insulating boards or mats made from fibers based on renewable raw materials have significantly lower densities of up to 300 kg/m 3 . Due to the different densities, insulation fiber boards differ significantly from wood-based panels in terms of fire behavior. Insulation boards made of fibers based on renewable raw materials have significantly larger internal spaces and significantly lower thermal conductivity than wood-based panels. On the one hand, these circumstances produce the desired insulating effect, but on the other hand - particularly in the event of a fire - lead to the disadvantageous effect that heat present in the insulating board is dissipated extremely poorly. So can the residual heat stored in the insulation board can lead to the insulation material smoldering and smoldering even after a fire has supposedly been over.
  • the object of the present invention is to provide fire-retardant insulating materials based on renewable raw materials that achieve class B1 according to DIN EN 4102 and, in the case of flame exposure, reduce the critical heat input in order to effectively prevent afterglow.
  • the object of the invention is achieved by the subject matter of claim 1, relating to a method for producing fire-retardant insulation boards/mats from a mixture containing fibers based on renewable raw materials and a physical and/or chemical fire protection agent.
  • the insulation panels / mats are made from a mixture which fibers based on renewable raw materials such.
  • a chemically active fire retardant can be applied to the surface of the wood fiber in such a way that it partially penetrates into the molecular structure of the wood fiber and is fixed or chemically modified (thereby binding the flame retardant to the fibre).
  • the surface of the wood fibers can be modified using various chemical additives and the surface tension of the fire retardant can also be reduced.
  • the achievement of class B1 according to DIN EN 4102 is ensured by the equipment of the bio-based insulating materials according to the invention.
  • the physical flame retardant forms an insulating layer in the event of flaming and thus reduces the critical heat input so that afterglow - triggered by a pyrolysis effect - is prevented.
  • a chemically active fire retardant such as B. a chemical compound based on phosphorus can be used. Through various, e.g. B. physically and chemically acting fire retardant types synergistic effects can be achieved.
  • intumescence refers to expansion or swelling, ie an increase in volume of the fire protection agent, preferably when exposed to heat above the so-called activation temperature.
  • An intumescent fire retardant preferably forms an insulating layer with low thermal conductivity when it expands. This effect is used within the scope of the invention in order to prevent the fibers or other components of the insulating board from igniting.
  • Insulation boards or mats made from fibers based on renewable raw materials in particular insulation boards containing lignocellulose fibers or wood fiber insulation boards, sometimes also called soft wood fiber boards or softwood fiber boards, are a type of fiber boards, namely panel insulation materials made from fibers based on renewable raw materials, which are mostly used for thermal insulation of the outer shell surfaces of a building . They counteract the passage of heat. Sometimes they are also used in dry construction for the construction of internal building parts (wall, floor). They are among the oldest industrially produced ones Natural insulating materials and were already being produced in this way in the first half of the 20th century.
  • Wood fiber insulation boards usually consist of approx. 90 to 95% dry weight of wood fibers. Softwoods are preferred as the starting material because of their higher fiber quality.
  • Wood fiber insulation boards are particularly suitable for roof insulation and exterior wall insulation outdoors, indoors as floor insulation, insulation of ceilings and interior walls and in cavities (intermediate rafters, partition walls, beam layers).
  • wood fiber insulation boards are also suitable for soundproofing indoors and outdoors and for footfall soundproofing even of apartment dividing ceilings with increased requirements.
  • Round wood (trunks), wood chips, slabs, possibly waste wood, residual rolls from rotary cut veneer production, veneer residues and sawdust are preferably used as the fibrous, renewable raw material for the production of the insulating fiber boards according to the invention.
  • the raw material is preferably debarked and mechanically crushed, sorted or sieved and cleaned.
  • Foreign matter is preferably removed from the raw material by machine, preferably in a so-called “dry cleaning” or a so-called “wet cleaning".
  • dry cleaning the raw material is cleaned with the help of a gaseous medium, e.g. B. air, from heavy bodies freed.
  • wet cleaning stones, sand and metals are separated from the raw material in a liquid medium, e.g. e.g. water.
  • the raw material Before defibration, the raw material usually goes into a pre-steaming tank for hydrothermal pre-treatment, where it is pre-steamed at up to 100°C. This treatment softens the central lamella, favoring both the compressibility of the raw material and subsequent defibration.
  • the partially plasticized raw material reaches z. B. via a vibratory discharge floor or via a stuffing screw in a cooker.
  • the hydrothermal pre-treatment is not absolutely necessary, so that the raw material can also be fed directly into the digester.
  • the stuffing screw has an increasing gradient towards the downstream end and compresses the raw material into a relatively pressure-tight plug, whereby the so-called squeeze water is squeezed out.
  • the plug forms a seal with the digester.
  • the raw material is boiled at a steam pressure of preferably between 6 and 16 bar, with the steam pressure varying depending on the type of wood and the requirements placed on the fibers.
  • the raw material After a residence time in the digester of preferably one to eight minutes, the raw material preferably passes through a conveyor screw and via the feed screw into the refiner (defiberer).
  • the refiner the raw material is defibrated between grinding discs and blown out of the refiner via a controllable valve through a "blow line” (or blow line).
  • the steam pressure in the refiner is preferably in the range from 6 to 16 bar, with the steam forming the means of transport for the fibers on their way through the blow line into the dryer.
  • the fibers obtained are preferably dried in a stream dryer with simultaneous conveyance by hot air in the drying tunnel, so that the fibers with about 8 to 12% moisture (based on the dry mass of the fibers) are separated from the air stream in cyclones.
  • the fibers can optionally be dried down to approx. 2% (based on the dry mass of the lignocellulose fibres), provided the fibers are not further processed with the existing wood moisture.
  • the inherent binding forces of the fibers based on renewable raw materials are used by the fibrous raw material being defibrated and bonded in the form of a fiber cake under the action of heat.
  • lignin is released, which takes on the function of an otherwise necessary binding agent when the fiber cake sets.
  • the use of a separate binder can therefore be omitted.
  • the fire retardant is preferably only added in step B3.
  • the fibers based on renewable raw materials are preferably dried directly after defibration in step A to the residual moisture required for gluing (approx. 8% based on the dry mass of the fibers) and then preferably in one Glue channel or tower or mixer glued with the binder.
  • Steps C1 and/or C2 and/or C4 drying, gluing and spreading of the fibers
  • the fire retardant can be distributed very evenly over the fibers in order to achieve an advantageous fire protection effect over the entire cross section of the insulation board/mat.
  • a chemically active fire retardant can partially penetrate into the molecular structure of the wood fiber and be fixed or chemically modified thereon, as a result of which the fire retardant is bonded to the fiber.
  • the surface of the wood fibers can be modified by various chemical additives and the surface tension of the fire retardant can also be reduced.
  • Another aspect of the invention relates to an insulating board/mat made from a mixture containing fibers based on renewable raw materials and a physical and/or chemical fire protection agent, preferably using the method according to one of the preceding statements.
  • blow-in insulation material produced from a mixture containing fibers based on renewable raw materials and a physical and/or a chemical fire protection agent, preferably according to the method according to one of the preceding statements, the blow-in insulation material preferably having a density in the range of 20 to 60 kg/m 3 , particularly preferably a density in the range from 28 to 40 kg/m 3 .
  • fire-retardant insulating boards/mats are made from a mixture which contains fibers based on renewable raw materials, such as e.g. B. lignocellulose fibers, and a physical and / or chemical fire retardant, such as. B. contains an intumescent fire retardant.
  • renewable raw materials such as e.g. B. lignocellulose fibers
  • a physical and / or chemical fire retardant such as. B. contains an intumescent fire retardant.
  • the lignocellulose fibers are obtained according to the process steps described above from lignocellulose-containing raw material, in particular wood, mixed with the intumescent fire retardant and processed into the fire-retardant, lignocellulose-fiber-containing insulation boards/mats, for example in a wet process or dry process.
  • lignocellulose fibers fibers based on other renewable raw materials such. B. hemp and / or other fire retardants can be used instead of the intumescent fire retardant.
  • the exemplary embodiments disclosed within the scope of the invention differ primarily in the form in which the fire retardant is administered and the point in time or the method step in which the fire retardant is mixed with the fibers.
  • the preferred dosage forms can vary of the fire retardant and the selection of the preferred point in time for mixing the fire retardant with the fibers.
  • the flame retardant used in the process according to the invention is, for example, an effective and environmentally friendly intumescent flame retardant based on a modified and intercalated mineral made from pure carbon as a halogen-free intumescent agent.
  • modified graphites in question, which expand when heated to temperatures above 150 ° C.
  • Such graphites are known and commercially available. They can contain stored acids as blowing agents. Acid-intercalated expandable graphites are preferred.
  • Expandable graphite which is produced by chemical treatment of graphite, contains particularly effective intumescent components.
  • graphite is treated with substances, mostly strong acids and/or oxidizing agents such as hydrogen peroxide or potassium permanganate.
  • the acids and/or oxidizing agents are incorporated into the lattice structure of the graphite. This incorporation into the graphite structure widens the interlayer spacing of the graphite layers. Under the effect of heat, a graphite pretreated in this way will expand with a large increase in volume in the event of a fire.
  • Expandable graphite is suitable as a flame retardant additive because a protective intumescent layer forms on the surface when exposed to heat, slowing down the spread of fire and counteracting the spread of toxic gases and smoke.
  • the expandable graphite z. B. as a flaky or flaky powder, as granules or in the form of preformed particles. Mixtures of expandable graphites of different shapes and/or types are also possible.
  • the expandable graphite can also be partially expanded before it is used.
  • the intumescence preferably starts at the lowest possible temperatures in order to ensure faster response behavior of the equipped building components in the event of a fire.
  • the intumescent fireproofing agent preferably has an activation temperature between 100°C and 1000°C.
  • a mixing ratio between small and large inflation volumes has proven particularly advantageous.
  • the particle sizes of the graphite are to be selected according to the expansion volumes to be achieved and can range predominantly between 1 and 1000 ⁇ m, preferably between 150 and 700 ⁇ m.
  • the surface of the fire retardant is pH-neutral, with a pH value of up to 10 (alkaline/basic).
  • the effectiveness of the fire retardant can be significantly improved by admixing specially tailored additives, preferably inorganic fire retardants, preferably a chemical compound based on phosphorus, and/or starch-based organic substances with the function of enclosing the wood fibers (encapsulation effect), preferably based on plants.
  • specially tailored additives preferably inorganic fire retardants, preferably a chemical compound based on phosphorus, and/or starch-based organic substances with the function of enclosing the wood fibers (encapsulation effect), preferably based on plants.
  • the invention envisages special application methods or forms of administration in connection with application locations that make sense in terms of production technology. These are described in more detail below, including the necessary chemical adjustments to the fire retardant.
  • the fire retardant can be introduced into the process in pure form as a powder or as a mixture, incorporated in an emulsion, a foam, a gel or a binder.
  • Possible application locations for the fire retardant are in the refiner, in the preheater, in the stuffing screw between the preheater and grinding disks), in the blowline (between the refiner and flash dryer), in the glue tower (area of dry gluing of the fibers), during the spreading process, in the mixing chest (for the wet process production).
  • the first embodiment of the invention relates in the first variant to a process for the production of fire-retardant, lignocellulose fiber-containing insulation panels/mats in the wet process according to steps A and B from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being dry and is added in pure form as a powder in step B1 and/or B2 and/or B3 (in the mixing chest), for example exclusively in step B3.
  • the second variant of the first exemplary embodiment of the invention relates to a method for producing fire-retardant insulating panels/mats containing lignocellulose fibers using a dry method after steps A and C of a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being dry and in pure form as a powder in step C2 (in the glue tower) or in step C4 (directly in the spreading process), for example exclusively in Step C2, is brought into the process.
  • the fire retardant which is usually in powder form, pumpable and sprayable, it can be bound in an emulsion as a carrier material.
  • An emulsifier (bifunctional or bifunctional silanes or ether-based synthetic oils) is added to the water to form the emulsion.
  • the second exemplary embodiment of the invention relates to a method for producing fire-retardant, lignocellulose-fiber-containing insulating boards/mats in the wet process according to steps A and B from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being incorporated in an emulsion is added as carrier material in at least one of steps A1, A2, A3 or A4 (preheating until defibration) and/or in step B1 and/or B2 and/or B3 (in the mixing chest).
  • the second variant of the second exemplary embodiment of the invention relates to a method for producing fire-retardant insulation boards/mats containing lignocellulose fibers in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being incorporated in a Emulsion is introduced into the process as a carrier material in at least one of steps A1, A2, A3 or A4 (preheating until defibration) and/or in step C2 (in the gluing tower) and/or in step C4 (directly in the spreading process).
  • the advantages of supplying the intumescent fire retardant integrated in an emulsion as a carrier material lie in the good distribution when mixed with lignocellulose fibers.
  • This dosage form works particularly well in the shredder or refiner because the flame retardant is very finely distributed by the mechanical work of the shredder or refiner and, when bound in the emulsion, can adhere very well to the lignocellulose fibers.
  • the fire retardant which is usually in powder form, is embedded in a stable foam and applied.
  • water and anionic/cationic additives are mixed in a special unit and a foam is formed.
  • the foam can also be formed using water with the addition of a foaming siliceous binder.
  • the foam structure must be additionally stabilized.
  • an ether-based surface-active additive or a carboxymethylcellulose-containing additive is used as a foam stabilizer.
  • a surface modifier is used that reduces the surface tension. This results in better binding power between the fire retardant and lignocellulose fibers.
  • the third exemplary embodiment of the invention accordingly relates to a method for producing fire-retardant, lignocellulose fiber-containing insulating panels/mats in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in foam as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).
  • the advantages of supplying the intumescent fire retardant integrated in foam as a carrier material lie in the very small amount of water added, good distribution when mixed with lignocellulose fibers, and protection of the structure of the fire retardant.
  • the fire retardant which is usually in powder form, is bound in a gel and fed to the lignocellulose fibers embedded in this carrier material.
  • the gel water glass and a Silica dispersion (as a so-called nanosol) mixed in a special unit and the gel formed.
  • a starch-based cellulose ether is added to modify the rheology of the gel structure.
  • the gel serves as an adhesion promoter between the fire retardant and lignocellulose fibers.
  • the fourth exemplary embodiment of the invention accordingly relates to a method for producing fire-retardant insulating boards/mats containing lignocellulose fibers in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in gel as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).
  • the advantages of supplying the intumescent fire retardant bound in gel as a carrier material are the very small amount of water added, the good distribution when mixed with lignocellulose fibers and the protection of the structure of the fire retardant.
  • the fire retardant is premixed or admixed directly into the binder system.
  • the binder system can be diluted in order to ensure better mixing and later distribution to the lignocellulose fibers.
  • Adhesive systems based on isocyanates, synthetic resins, PVAC, proteins (e.g. caseins, enzymatic proteins) and starch are preferably used as binder systems.
  • the combination with adhesive systems on an aqueous, nanostructured, silicate basis is conceivable.
  • the fifth exemplary embodiment of the invention consequently relates to a method for producing fire-retardant, lignocellulose-fiber-containing insulating boards/mats in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in a binder as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).
  • the fire retardant to form a mixture such as an aerosol.
  • the (expandable) graphite is modified by means of an organic compound, e.g. based on phosphorus, which also fulfills the function of a flame retardant. This reduces the surface tension of the graphite particles. The lower surface tension of the particles increases their ability to flow or pour. This is the prerequisite for forming a heterogeneous mixture (dispersion) of solid suspended particles in a gas, with the result that the modified graphite is present as aerosol particles or aerosol particles.
  • the particle mixture is then applied to the fiber flow in the channel by means of negative or positive pressure.
  • the dry mixture can be applied to the fibers together with a liquid flame retardant.
  • the fire retardant to form a mixture of expandable graphite and a nanosol, consisting and premixed of water glass (sodium or potassium silicate) and preferably 10% silicic acid sols.
  • This mixture is preferably added in the refiner or in the blowline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer brandhemmenden Dämmplatte bzw. -matte und eines entsprechenden Einblasdämmstoffs aus Fasern auf Basis nachwachsender Rohstoffe.The present invention relates to a method for producing a fire-retardant insulating panel or mat and a corresponding blow-in insulating material made from fibers based on renewable raw materials.

Eine Norm zum Brandverhalten von Baustoffen und Bauteilen stellt DIN 4102 mit der Bezeichnung "Brandverhalten von Baustoffen und Bauteilen" dar. Dabei erfolgt eine Zuordnung der Baustoffe und Bauteile zu Baustoffklassen beziehungsweise Feuerwiderstandsklassen. Eine nationale Klassifizierung nach DIN 4102-1 der Baustoffe und Bauteile findet dabei in die Klassen A1 und A2, welche als "nicht brennbar" eingestuft sind, in die Klasse B1, welche als "schwer entflammbar" eingestuft ist, in die Klasse B2, welche als "normal entflammbar" eingestuft ist, und in die Klasse B3, welche als "leicht entflammbar" eingestuft ist, statt. Dämmstoffe auf Basis nachwachsender Rohstoffe im Allgemeinen und lignocellulosehaltige Dämmstoffe im Besonderen sind heute nach DIN 4102 in die Klasse B2 und nach DIN EN 13501-1, der Norm für die Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten, in die Klasse E für "normal entflammbar" eingestuft. Besonders kritisch ist das Nachglimmen zu bewerten, welches maßgebend die Einstufung in den Bereich "schwer entflammbar" verhindert. Brandlasten in der Größenordnung des normativ vorgeschriebenen Brandtests sorgen für einen derart hohen Energieeintrag in das Produkt, dass ein Nach- und Weiterglimmen nicht zu verhindern ist.DIN 4102 with the designation "Fire behavior of building materials and components" represents a standard for the fire behavior of building materials and components. The building materials and components are assigned to building material classes or fire resistance classes. A national classification according to DIN 4102-1 of building materials and components is divided into classes A1 and A2, which are classified as "non-flammable", in class B1, which is classified as "hardly inflammable", in class B2, which is classified as "normally flammable" and in class B3, which is classified as "easily flammable". Insulating materials based on renewable raw materials in general and insulating materials containing lignocellulose in particular are now classified in Class B2 according to DIN 4102 and in Class E for "normally flammable" according to DIN EN 13501-1, the standard for the classification of building products and building types in terms of their fire behavior " classified. The afterglow, which decisively prevents the classification in the "hardly flammable" area, is to be evaluated particularly critically. Fire loads in the magnitude of the fire test prescribed by the standard ensure such a high energy input into the product that afterglow and continued glowing cannot be prevented.

Ziel ist es, die Nutzung biobasierter Dämmstoffmaterialien auf Anwendungen auszuweiten, die aufgrund der bisher nur "normal entflammbaren" Eigenschaften nicht möglich bzw. erlaubt sind. Dies betrifft insbesondere die Nutzung solcher Dämmstoffe in höheren Gebäudeklassen. Damit wird ein weiterer Grundstein gelegt für eine industrielle und nachhaltige Herstellung von Dämmstoffmaterialen aus nachwachsenden Rohstoffen. Der Verbrauch an fossilen Ressourcen (Mineralien, Steinkohle, Erdöl und Erdgas) kann damit weiter reduziert werden.The aim is to expand the use of bio-based insulating materials to applications that are not possible or permitted due to their "normally flammable" properties. This applies in particular to the use of such insulating materials in higher building classes. This lays another cornerstone for the industrial and sustainable production of insulation materials from renewable raw materials. The consumption of fossil resources (minerals, hard coal, oil and natural gas) can thus be further reduced.

Ein gattungsgemäßes Verfahren zur Herstellung einer brandhemmenden Holzwerkstoffplatte aus einem Gemisch aus lignocellulosehaltigen Spänen und Blähgraphit ist aus der DE 10 2009 005 155 B4 oder der EP 2 208 594 B1 bekannt. Holzwerkstoffplatten erfahren aufgrund ihrer technischen Eigenschaften eine zunehmende Verbreitung und zählen weltweit zu den am stärksten wachsenden Holzwerkstoffprodukten. Im Handel sind üblicherweise Dicken von 2 mm bis 60 mm mit einer Dichte von 600 kg/m3 bis 1000 kg/m3 erhältlich. Ein Verfahren zur Herstellung von brandhemmenden Holzwerkstoffplatten ist ebenfalls aus der US 2004/258898 A1 bekannt.A generic method for producing a fire-retardant wood-based panel from a mixture of lignocellulose-containing chips and expandable graphite is from DE 10 2009 005 155 B4 or the EP 2 208 594 B1 known. Wood-based panels are becoming more widespread due to their technical properties and are among the fastest growing wood-based products worldwide. Thicknesses of 2 mm to 60 mm with a density of 600 kg/m 3 to 1000 kg/m 3 are usually commercially available. A method for the production of fire-retardant wood-based panels is also from U.S. 2004/258898 A1 known.

Nach dem Handbuch "Kunststoff Additive" (ISBN-13: 978-3-446-43291-8) gehören intumeszierende Flammschutzmittel zu den chemischen Brandschutzmitteln. Intumeszierende Systeme blähen zu Schäumen auf, welche Verwendung finden um brennbare Materialien gegen die Einwirkung von Wärme und Feuer zu schützen. Grundsätzlich liegt die Flammschutzwirkung in dem Zunutze machen synergistisch wirkender Mechanismen begründet. Mit deren Hilfe wird der Verbrennungsprozess der Holzfasern sowohl chemisch als auch physikalisch unterbunden. Phosphatverbindungen stellen dabei die Hauptkomponenten der chemisch wirkenden Substanzen dar. Deren Wasserlöslichkeit ist eine Voraussetzung für die Holzfaser-Anwendung. Phosphatverbindungen können ferner als reaktive Flammschutzlösung dienen, wobei das Flammschutzmittel chemisch an die Holzfaser angebunden wird. Additional wird die physikalische Wirkung Säure interkalierter Graphitarten ausgenutzt. Der Blähgraphit liegt in diesem Fall als separates Partikel in der Holzfasermatrix vor.According to the "Plastic Additives" handbook (ISBN-13: 978-3-446-43291-8), intumescent flame retardants are chemical fire retardants. Intumescent systems inflate into foams, which are used to protect combustible materials from the effects of heat and fire. Basically, the flame retardant effect is due to the use of synergistic mechanisms. With their help, the combustion process of the wood fibers is prevented both chemically and physically. Phosphate compounds are the main components of the chemically active substances. Their water solubility is a prerequisite for the use of wood fibers. Phosphate compounds can also serve as a reactive flame retardant solution, chemically binding the flame retardant to the wood fiber. In addition, the physical effect of acid intercalated types of graphite is used. In this case, the expandable graphite is present as a separate particle in the wood fiber matrix.

Dämmplatten oder -matten aus Fasern auf Basis nachwachsender Rohstoffe weisen dagegen wesentlich geringere Dichten von bis zu 300 kg/m3 auf. Aufgrund der unterschiedlichen Dichten unterscheiden sich Dämmstofffaserplatten von Holzwerkstoffplatten erheblich im Hinblick auf das Brandverhalten. So verfügen Dämmplatten aus Fasern auf Basis nachwachsender Rohstoffe gegenüber Holzwerkstoffplatten über wesentlich größere innere Zwischenräume und eine wesentlich geringere Wärmeleitfähigkeit. Diese Umstände erzeugen einerseits die erwünschte Dämmwirkung, führen aber andererseits - insbesondere im Brandfall - zu dem nachteiligen Effekt, dass eine in der Dämmplatte vorhandene Hitze extrem schlecht abgeleitet wird. So kann die in der Dämmplatte gespeicherte Restwärme selbst nach einem vermeintlich bereits überwundenen Brandereignis zu einem Nach- und Weiterglimmen des Dämmstoffs führen.In contrast, insulating boards or mats made from fibers based on renewable raw materials have significantly lower densities of up to 300 kg/m 3 . Due to the different densities, insulation fiber boards differ significantly from wood-based panels in terms of fire behavior. Insulation boards made of fibers based on renewable raw materials have significantly larger internal spaces and significantly lower thermal conductivity than wood-based panels. On the one hand, these circumstances produce the desired insulating effect, but on the other hand - particularly in the event of a fire - lead to the disadvantageous effect that heat present in the insulating board is dissipated extremely poorly. So can the residual heat stored in the insulation board can lead to the insulation material smoldering and smoldering even after a fire has supposedly been over.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, brandhemmende Dämmstoffe auf Basis nachwachsender Rohstoffe bereitzustellen, die die Klasse B1 nach DIN EN 4102 erreichen und im Falle der Beflammung den kritischen Wärmeeintrag reduzieren, um damit das Nachglimmen effektiv zu unterbinden.The object of the present invention is to provide fire-retardant insulating materials based on renewable raw materials that achieve class B1 according to DIN EN 4102 and, in the case of flame exposure, reduce the critical heat input in order to effectively prevent afterglow.

Die Aufgabe der Erfindung wird gelöst durch den Gegenstand des Anspruchs 1, betreffend ein Verfahren zur Herstellung von brandhemmenden Dämmplatten/-matten aus einem Gemisch, enthaltend Fasern auf Basis nachwachsender Rohstoffe sowie ein physikalisches und/oder ein chemisches Brandschutzmittel.The object of the invention is achieved by the subject matter of claim 1, relating to a method for producing fire-retardant insulation boards/mats from a mixture containing fibers based on renewable raw materials and a physical and/or chemical fire protection agent.

Nach dem erfindungsgemäßen Verfahren werden die Dämmplatten/-matten aus einem Gemisch hergestellt, welches Fasern auf Basis nachwachsender Rohstoffe, wie z. B. Lignocellulosefasern bzw. zerfasertes lignocellulosehaltiges Material, und physikalische und/oder chemische Brandschutzmittel, wie z. B. ein intumeszierendes Brandschutzmittel enthält. Demnach wird das Brandschutzmittel unmittelbar mit den aufgeschlossenen Fasern vermengt, sodass eine bessere Durchmischung sowie Bindung zwischen den Fasern einerseits und dem Brandschutzmittel andererseits erreicht wird, mit dem Ergebnis, dass der Brandschutz des Dämmstoffs erheblich verbessert wird. Zusätzlich kann ein chemisch wirksames Brandschutzmittel auf die Oberfläche der Holzfasern so aufgebracht werden, dass es teilweise in die Molekularstruktur der Holzfaser eindringt und darauf fixiert bzw. chemisch modifiziert wird (wodurch das Flammschutzmittel mit der Faser verbunden wird). Um die Diffusion des Brandschutzmittels in die amorphen Strukturen der Holzfasern zu erhöhen, kann die Oberfläche der Holzfasern durch verschiedene chemische Additive modifiziert und auch die Oberflächenspannung des Brandschutzmittels herabgesetzt werden.According to the method of the invention, the insulation panels / mats are made from a mixture which fibers based on renewable raw materials such. B. lignocellulose fibers or shredded lignocellulosic material, and physical and / or chemical fire retardants such. B. contains an intumescent fire retardant. Accordingly, the fire retardant is mixed directly with the broken down fibers, so that better mixing and bonding between the fibers on the one hand and the fire retardant on the other is achieved, with the result that the fire protection of the insulating material is significantly improved. In addition, a chemically active fire retardant can be applied to the surface of the wood fiber in such a way that it partially penetrates into the molecular structure of the wood fiber and is fixed or chemically modified (thereby binding the flame retardant to the fibre). In order to increase the diffusion of the fire retardant into the amorphous structures of the wood fibers, the surface of the wood fibers can be modified using various chemical additives and the surface tension of the fire retardant can also be reduced.

Durch die erfindungsgemäße Ausrüstung der biobasierten Dämmstoffe wird das Erreichen der Klasse B1 nach DIN EN 4102 sichergestellt. Das physikalische Brandschutzmittel bildet im Falle der Beflammung eine Isolationsschicht und reduziert somit den kritischen Wärmeeintrag, damit das Nachglimmen - ausgelöst durch einen Pyrolyseeffekt - verhindert wird. Alternativ oder zusätzlich kann ein chemisch wirksames Brandschutzmittel wie z. B. eine chemische Verbindung auf Phosphorbasis eingesetzt werden. Durch verschiedene, z. B. physikalisch und chemisch wirkende Brandschutzmitteltypen können synergetische Effekte erreicht werden.The achievement of class B1 according to DIN EN 4102 is ensured by the equipment of the bio-based insulating materials according to the invention. The physical flame retardant forms an insulating layer in the event of flaming and thus reduces the critical heat input so that afterglow - triggered by a pyrolysis effect - is prevented. Alternatively or additionally, a chemically active fire retardant such. B. a chemical compound based on phosphorus can be used. Through various, e.g. B. physically and chemically acting fire retardant types synergistic effects can be achieved.

Begriffe und Definitionenterms and definitions

Intumeszenz bezeichnet im Rahmen der Erfindung eine Ausdehnung oder eine Anschwellung, also eine Volumenzunahme des Brandschutzmittels, vorzugsweise bei Einwirkung von Hitze oberhalb der sogenannten Aktivierungstemperatur. Ein intumeszierendes Brandschutzmittel bildet bei Ausdehnung bzw. Expansion vorzugsweise eine Isolationsschicht mit niedriger Wärmeleitfähigkeit. Diese Wirkung wird im Rahmen der Erfindung ausgenutzt, um das Entzünden der Fasern oder sonstiger Bestandteile der Dämmplatte zu verhindern.In the context of the invention, intumescence refers to expansion or swelling, ie an increase in volume of the fire protection agent, preferably when exposed to heat above the so-called activation temperature. An intumescent fire retardant preferably forms an insulating layer with low thermal conductivity when it expands. This effect is used within the scope of the invention in order to prevent the fibers or other components of the insulating board from igniting.

Durch die Intumeszenz wird eine Isolationsschicht gebildet, die die Strecke zum Feuer erhöht und eine Selbstentzündung auf der feuerabgewandten Seite verhindert. Im Rahmen der Erfindung bezeichnet der Begriff Intumeszenz demnach das zweckdienliche "Schwellen" bzw. Aufschäumen des Brandschutzmittels in Verbindung mit der chemischen Reaktion eines zusätzlichen Brandschutzmittels. Ein intumeszentes bzw. intumeszierendes Brandschutzmittel nimmt unter Hitzeeinwirkung an Volumen zu und entsprechend an Dichte ab und erzielt dabei vorzugsweise folgende Wirkungen:

  • Aufschäumen, d. h. das Formen einer leichten Isolierungsschicht als Hitzebremse. Eingebrachte Stoffe (z. B. expandierbares Graphit / Blähgraphit) setzen bei Wärmeeinwirkung Gase frei. Zusammen mit dem veraschenden Isolierungsmaterial entsteht eine "geschäumte" Ascheschicht, welche die Sauerstoffzufuhr - und somit die Flammenausbreitung - behindert.
  • Endotherme Wirkung durch Hydrate, die durch Wasserdampffreisetzung kühlen.
  • Expansionsdruck aufbringen, z. B. um Hohlräume, durch welche Luftzufuhr möglich ist, im Brandfall zu versiegeln.
The intumescence forms an insulating layer that increases the distance to the fire and prevents self-ignition on the side facing away from the fire. In the context of the invention, the term intumescence accordingly designates the expedient "swelling" or foaming of the fire protection agent in connection with the chemical reaction of an additional fire protection agent. An intumescent or intumescent fire retardant increases in volume under the effect of heat and correspondingly decreases in density and preferably achieves the following effects:
  • Foaming, ie forming a light insulation layer as a heat barrier. Substances introduced (e.g. expandable graphite / expandable graphite) release gases when exposed to heat. Together with the ashing insulation material, a "foamed" layer of ash is created, which impedes the supply of oxygen - and thus the spread of the flame.
  • Endothermic effect due to hydrates that cool by releasing water vapor.
  • Apply expansion pressure, e.g. B. cavities through which air supply is possible to seal in case of fire.

Dämmplatte/-matteinsulation panel/mat

Dämmplatten oder -matten aus Fasern auf Basis nachwachsender Rohstoffe, insbesondere lignocellulosefaserhaltige Dämmplatten oder Holzfaserdämmplatten, gelegentlich auch Holzweichfaserplatten oder Weichholzfaserplatten genannt, sind eine Art von Faserplatten, nämlich aus Fasern auf Basis nachwachsender Rohstoffe hergestellte Plattendämmstoffe, die meist zur Wärmedämmung der Außenhüllflächen eines Gebäudes eingesetzt werden. Sie wirken dem Durchgang von Wärme entgegen. Teilweise werden sie auch im Trockenbau für die Konstruktion innerer Gebäudeteile (Wand, Boden) eingesetzt. Sie gehören zu den ältesten industriell hergestellten Naturdämmstoffen und wurden so bereits in der ersten Hälfte des 20. Jahrhunderts hergestellt.Insulation boards or mats made from fibers based on renewable raw materials, in particular insulation boards containing lignocellulose fibers or wood fiber insulation boards, sometimes also called soft wood fiber boards or softwood fiber boards, are a type of fiber boards, namely panel insulation materials made from fibers based on renewable raw materials, which are mostly used for thermal insulation of the outer shell surfaces of a building . They counteract the passage of heat. Sometimes they are also used in dry construction for the construction of internal building parts (wall, floor). They are among the oldest industrially produced ones Natural insulating materials and were already being produced in this way in the first half of the 20th century.

Holzfaserdämmplatten bestehen in der Regel zu ca. 90 bis 95 % Trockengewicht aus Holzfasern. Als Ausgangsmaterial werden Nadelhölzer wegen ihrer höheren Faserqualität bevorzugt.Wood fiber insulation boards usually consist of approx. 90 to 95% dry weight of wood fibers. Softwoods are preferred as the starting material because of their higher fiber quality.

Holzfaserdämmplatten sind insbesondere geeignet für Dachdämmung und Außenwanddämmung im Außenbereich, im Inneren als Fußbodendämmung, Dämmung von Decken und Innenwänden sowie in Hohlräumen (Zwischensparren, Trennwände, Balkenlagen). Darüber hinaus eignen sich Holzfaserdämmplatten auch zur Schalldämmung im Innen- wie Außenbereich und zur Trittschalldämmung selbst von Wohnungstrenndecken bei erhöhten Anforderungen.Wood fiber insulation boards are particularly suitable for roof insulation and exterior wall insulation outdoors, indoors as floor insulation, insulation of ceilings and interior walls and in cavities (intermediate rafters, partition walls, beam layers). In addition, wood fiber insulation boards are also suitable for soundproofing indoors and outdoors and for footfall soundproofing even of apartment dividing ceilings with increased requirements.

Vorteilhafte Weiterbildungen sind Gegenstände der Unteransprüche.Advantageous developments are the subject matter of the dependent claims.

Es kann sich als hilfreich erweisen, wenn in einem Schritt A des Verfahrens das Bereitstellen von Fasern auf Basis nachwachsender Rohstoffe erfolgt, vorzugsweise unter Ausführung wenigstens eines der folgenden Teilschritte:

  • Schritt A1: Bereitstellen eines faserhaltigen, nachwachsenden Rohstoffs, vorzugsweise Sägereste, bevorzugt Schwarte, Spreißel, und/oder Hackschnitzel, bevorzugt aus Nadelholz.
  • Schritt A2: Vorwärmen des faserhaltigen, nachwachsenden Rohstoffs, vorzugsweise in einem Vorwärmer.
  • Schritt A3: Fördern und/oder Pressen und/oder Kochen des faserhaltigen, nachwachsenden Rohstoffs, vorzugsweise mit einer Stopfschnecke und/oder in einem Kocher.
  • Schritt A4: Zerfaserung des faserhaltigen, nachwachsenden Rohstoffs, vorzugsweise in einem Refiner, zur Gewinnung der Fasern auf Basis des nachwachsenden Rohstoffs.
It can prove helpful if fibers based on renewable raw materials are provided in step A of the method, preferably by carrying out at least one of the following sub-steps:
  • Step A1: Provision of a fibrous, renewable raw material, preferably sawdust, preferably rind, splinters, and/or wood chips, preferably made of softwood.
  • Step A2: preheating of the fibrous, renewable raw material, preferably in a preheater.
  • Step A3: Conveying and/or pressing and/or cooking of the fibrous, renewable raw material, preferably with a stuffing screw and/or in a cooker.
  • Step A4: defibration of the fibrous, renewable raw material, preferably in a refiner, to obtain the fibers based on the renewable raw material.

Als faserhaltiger, nachwachsender Rohstoff für die Herstellung der erfindungsgemäßen Dämmstofffaserplatten werden vorzugsweise Rundholz (Stammholz), Hackschnitzel, Schwarten, ggf. Altholz, Restrollen der Schälfurnierherstellung, Furnierreste und Sägespäne verwendet.Round wood (trunks), wood chips, slabs, possibly waste wood, residual rolls from rotary cut veneer production, veneer residues and sawdust are preferably used as the fibrous, renewable raw material for the production of the insulating fiber boards according to the invention.

Der Rohstoff wird vorzugsweise entrindet und mechanisch zerkleinert, sortiert bzw. gesiebt und gereinigt. Die Reinigung des Rohstoffs von Fremdstoffen erfolgt vorzugsweise maschinell, bevorzugt in einer sog. "Trockenreinigung" oder einer sog. "Nassreinigung". In der Trockenreinigung wird der Rohstoff unter Zuhilfenahme eines gasförmigen Mediums, z. B. Luft, von Schwerkörpern befreit. In der Nassreinigung erfolgt die Trennung von Steinen, Sand und Metallen von dem Rohstoff in einem flüssigen Medium, z. B. Wasser.The raw material is preferably debarked and mechanically crushed, sorted or sieved and cleaned. Foreign matter is preferably removed from the raw material by machine, preferably in a so-called "dry cleaning" or a so-called "wet cleaning". In dry cleaning, the raw material is cleaned with the help of a gaseous medium, e.g. B. air, from heavy bodies freed. In wet cleaning, stones, sand and metals are separated from the raw material in a liquid medium, e.g. e.g. water.

Vor der Zerfaserung gelangt der Rohstoff üblicherweise zur hydrothermischen Vorbehandlung in einen Vordämpfbehälter, um dort bei bis zu 100°C vorgedämpft zu werden. Diese Behandlung erweicht die Mittellamelle und begünstigt sowohl die Kompressionsfähigkeit des Rohstoffs als auch die spätere Zerfaserung. Der teilweise plastifizierte Rohstoff gelangt z. B. über einen Vibrationsaustragsboden oder über eine Stopfschnecke in einen Kocher. Die hydrothermische Vorbehandlung ist jedoch nicht zwingend erforderlich, sodass der Rohstoff auch direkt in den Kocher gegeben werden kann. Die Stopfschnecke hat zum stromabwärts gelegenen Ende eine zunehmende Steigung und komprimiert den Rohstoff zu einem relativ druckdichten Pfropfen, wobei das sogenannte Quetschwasser ausgepresst wird. Der Pfropfen bildet eine Abdichtung zum Kocher. Im Kocher wird der Rohstoff bei einem Dampfdruck von vorzugsweise zwischen 6 und 16 bar gekocht, wobei der Dampfdruck je nach Holzart und Anforderung an die Fasern variieren kann. Nach einer Verweildauer im Kocher von vorzugsweise einer bis acht Minuten gelangt der Rohstoff bevorzugt durch eine Förderschnecke und über die Einspeiseschnecke in den Refiner (Zerfaserer). Im Refiner wird der Rohstoff zwischen Mahlscheiben zerfasert und über ein regelbares Ventil durch eine "Blasleitung" (bzw. Blowline) aus dem Refiner herausgeblasen. Im Refiner herrscht vorzugsweise ein Dampfdruck im Bereich von 6 bis 16 bar, wobei der Dampf das Transportmittel für die Fasern auf ihrem Weg durch die Blasleitung in den Trockner bildet.Before defibration, the raw material usually goes into a pre-steaming tank for hydrothermal pre-treatment, where it is pre-steamed at up to 100°C. This treatment softens the central lamella, favoring both the compressibility of the raw material and subsequent defibration. The partially plasticized raw material reaches z. B. via a vibratory discharge floor or via a stuffing screw in a cooker. However, the hydrothermal pre-treatment is not absolutely necessary, so that the raw material can also be fed directly into the digester. The stuffing screw has an increasing gradient towards the downstream end and compresses the raw material into a relatively pressure-tight plug, whereby the so-called squeeze water is squeezed out. The plug forms a seal with the digester. In the cooker, the raw material is boiled at a steam pressure of preferably between 6 and 16 bar, with the steam pressure varying depending on the type of wood and the requirements placed on the fibers. After a residence time in the digester of preferably one to eight minutes, the raw material preferably passes through a conveyor screw and via the feed screw into the refiner (defiberer). In the refiner, the raw material is defibrated between grinding discs and blown out of the refiner via a controllable valve through a "blow line" (or blow line). The steam pressure in the refiner is preferably in the range from 6 to 16 bar, with the steam forming the means of transport for the fibers on their way through the blow line into the dryer.

Nach der Zerfaserung werden die erhaltenen Fasern vorzugsweise in einem Stromtrockner bei gleichzeitiger Förderung durch Heißluft im Trocknungskanal getrocknet, sodass die Fasern mit etwa 8 bis 12 % Feuchte (bezogen auf die Trockenmasse der Fasern) in Zyklonen vom Luftstrom abgeschieden werden. Bei der Trockenbeleimung können die Fasern optional bis auf ca. 2 % (bezogen auf die Trockenmasse der Lignocellulosefasern) getrocknet werden, sofern die Fasern nicht mit der vorhandenden Holzfeuchte weiterverarbeitet werden.After defibration, the fibers obtained are preferably dried in a stream dryer with simultaneous conveyance by hot air in the drying tunnel, so that the fibers with about 8 to 12% moisture (based on the dry mass of the fibers) are separated from the air stream in cyclones. In the case of dry sizing, the fibers can optionally be dried down to approx. 2% (based on the dry mass of the lignocellulose fibres), provided the fibers are not further processed with the existing wood moisture.

Es kann sinnvoll sein, wenn in Schritt B die Herstellung der Dämmplatten/-matten im Nassverfahren erfolgt, vorzugsweise unter Ausführung wenigstens eines der folgenden Teilschritte:

  • Schritt B1: Verrühren der Fasern mit Wasser zu einem Brei, vorzugsweise mit einem Anteil von bis zu 98 % Wasser.
  • Schritt B2: Beigabe von Zusatzstoffen zu dem Brei, vorzugsweise harz- oder bitumenhaltige Stoffe, bevorzugt zur Erhöhung der Festigkeit und/oder zur Vermittlung von wasserabweisenden Eigenschaften.
  • Schritt B3: Zwischenlagerung des Breis, vorzugsweise in Bütten auf einer Formmaschine.
  • Schritt B4: Formen des Breis zu einem Faserkuchen.
  • Schritt B5: Entwässern des Faserkuchens, vorzugsweise durch mechanisches Auspressen des im Faserkuchen enthaltenen Wassers.
  • Schritt B6: Zuschneiden des Faserkuchens.
  • Schritt B7: Trocknen des Faserkuchenzuschnitts, vorzugsweise in einem Trockenkanal, bevorzugt bei Temperaturen zwischen 110 und 220 °C.
  • Schritt B8: Verkleben mehrerer Faserkuchenzuschnitte zu einer mehrschichtigen Dämmplatte/-matte.
  • Schritt B9: Zuschneiden der Dämmplatte/-matte.
It can be useful if, in step B, the insulation boards/mats are produced using the wet process, preferably using at least one of the following sub-steps:
  • Step B1: Mixing the fibers with water to form a paste, preferably with a proportion of up to 98% water.
  • Step B2: Addition of additives to the pulp, preferably substances containing resin or bitumen, preferably to increase the strength and/or to impart water-repellent properties.
  • Step B3: intermediate storage of the pulp, preferably in vats on a molding machine.
  • Step B4: Forming the pulp into a fiber cake.
  • Step B5: Dewatering of the fiber cake, preferably by mechanically squeezing out the water contained in the fiber cake.
  • Step B6: Cutting the fiber cake.
  • Step B7: Drying of the fiber cake blank, preferably in a drying tunnel, preferably at temperatures between 110 and 220°C.
  • Step B8: Gluing several fiber cake cuts to form a multi-layer insulation panel/mat.
  • Step B9: Cutting the insulation board/mat.

Bei der Herstellung der erfindungsgemäßen Dämmplatten/-matten im Nassverfahren werden die eigenen Bindungskräfte der Fasern auf Basis nachwachsender Rohstoffe genutzt, indem der faserhaltige Rohstoff zerfasert und in Form eines Faserkuchens unter Einwirkung von Wärme abgebunden wird. Im Falle von Holz, welches Lignocellulose enthält, wird Lignin freigesetzt, welches beim Abbinden des Faserkuchens die Funktion eines ansonsten erforderlichen Bindemittels übernimmt. Der Einsatz eines gesonderten Bindemittels kann demnach entfallen. Um eine ungewollte Verdünnung des Brandschutzmittels durch das zur Bildung des Breis verwendete Wasser zu vermeiden, wird das Brandschutzmittel vorzugsweise erst in Schritt B3 zugegeben.In the manufacture of the insulating boards/mats according to the invention in the wet process, the inherent binding forces of the fibers based on renewable raw materials are used by the fibrous raw material being defibrated and bonded in the form of a fiber cake under the action of heat. In the case of wood containing lignocellulose, lignin is released, which takes on the function of an otherwise necessary binding agent when the fiber cake sets. The use of a separate binder can therefore be omitted. In order to avoid unwanted dilution of the fire retardant by the water used to form the slurry, the fire retardant is preferably only added in step B3.

Es kann nützlich sein, wenn in Schritt C die Herstellung der Dämmplatten/-matten im Trockenverfahren erfolgt, vorzugsweise unter Ausführung wenigstens eines der folgenden Teilschritte:

  • Schritt C1: Trocknen der Fasern, vorzugsweise unmittelbar nach Schritt A4, wobei das Material bevorzugt mittels einer Blowline in einen Stromtrockner eingebracht wird, vorzugsweise auf einen Feuchtegehalt im Bereich von 2 bis 12 %, bevorzugt auf einen Feuchtegehalt im Bereich von 3 bis 10 %, besonders bevorzugt auf einen Feuchtegehalt im Bereich von 4 bis 9 %, ganz besonders bevorzugt auf einen Feuchtegehalt im Bereich von 7 bis 9 %, jeweils bezogen auf die Trockenmasse der Fasern.
  • Schritt C2: Vermischen der Fasern mit Bindemittel, vorzugsweise durch Mischerbeleimung, Blowline-Beleimung und/oder Trockenbeleimung, bevorzugt in einem Beleimturm, in einer Blowline oder in einer Trockenbeleimungsvorrichtung.
  • Schritt C3: Zugabe von synthetischen Textilfasern oder Fasern auf Basis nachwachsender Rohstoffe zur Erhöhung der Faserflexibilität sowie diversen Zusätzen zur Verbesserung weiterer Eigenschaften.
  • Schritt C4: Herstellen einer Streuung aus Fasern, ggf. Bindemittel und/oder weiteren Zugaben, vorzugsweise in einer Streumaschine.
  • Schritt C5: Verpressen der Streuung zu Dämmplatten/-matten, vorzugsweise durch eine Kalibrier- und Aushärteeinheit.
  • Schritt C6: Härten der Dämmplatten/-matten, vorzugsweise durch ein Gemisch aus Dampf und Luft.
  • Schritt C7: Zuschneiden der Dämmplatten/-matten.
It can be useful if, in step C, the insulation boards/mats are produced using a dry process, preferably using at least one of the following sub-steps:
  • Step C1: Drying of the fibers, preferably immediately after step A4, with the material preferably being introduced into a flow dryer by means of a blowline, preferably to a moisture content in the range from 2 to 12%, preferably to a moisture content in the range from 3 to 10%, particularly preferably to a moisture content in the range from 4 to 9%, very particularly preferably to a moisture content in the range from 7 to 9%, in each case based on the dry matter of the fibers.
  • Step C2: Mixing of the fibers with binder, preferably by mixer sizing, blowline sizing and/or dry sizing, preferably in a sizing tower, in a blowline or in a dry sizing device.
  • Step C3: Addition of synthetic textile fibers or fibers based on renewable raw materials to increase fiber flexibility and various additives to improve other properties.
  • Step C4: Production of a scattering of fibers, optionally binders and/or other additions, preferably in a scattering machine.
  • Step C5: Pressing the scattering into insulation panels/mats, preferably using a calibration and curing unit.
  • Step C6: Hardening of the insulation boards/mats, preferably by a mixture of steam and air.
  • Step C7: Cutting the insulation panels/mats.

Zur Herstellung der erfindungsgemäßen Dämmplatten/-matten im Trockenverfahren werden die Fasern auf Basis nachwachsender Rohstoffe vorzugsweise direkt nach der Zerfaserung in Schritt A auf die für die Beleimung erforderliche Restfeuchte (ca. 8 % bezogen auf die Trockenmasse der Fasern) getrocknet und anschließend vorzugsweise in einem Beleimkanal oder -turm oder Mischer mit dem Bindemittel beleimt. Zur Behandlung der Fasern mit dem Brandschutzmittel eignen sich insbesondere die Schritte C1 und/oder C2 und/oder C4 (Trocknung, Beleimung und Streuung der Fasern), um das Gemisch zu bilden, aus welchem die erfindungsgemäßen Dämmplatten/-matten hergestellt werden. Dabei kann das Brandschutzmittel sehr gleichmäßig auf die Fasern verteilt werden, um eine vorteilhafte Brandschutzwirkung über den gesamten Querschnitt der Dämmplatte/-matte zu erzielen. Beispielsweise kann ein chemisch wirksames Brandschutzmittel teilweise in die Molekularstruktur der Holzfaser eindringen und darauf fixiert bzw. chemisch modifiziert werden, wodurch das Brandschutzmittel mit der Faser verbunden wird. Zur Erhöhung der Diffusion des Brandschutzmittels in die amorphen Strukturen der Holzfasern kann die Oberfläche der Holzfasern durch verschiedene chemische Additive modifiziert und auch die Oberflächenspannung des Brandschutzmittels herabgesetzt werden.To produce the insulating boards/mats according to the invention in a dry process, the fibers based on renewable raw materials are preferably dried directly after defibration in step A to the residual moisture required for gluing (approx. 8% based on the dry mass of the fibers) and then preferably in one Glue channel or tower or mixer glued with the binder. Steps C1 and/or C2 and/or C4 (drying, gluing and spreading of the fibers) are particularly suitable for treating the fibers with the fire retardant in order to form the mixture from which the insulating boards/mats according to the invention are produced. The fire retardant can be distributed very evenly over the fibers in order to achieve an advantageous fire protection effect over the entire cross section of the insulation board/mat. For example, a chemically active fire retardant can partially penetrate into the molecular structure of the wood fiber and be fixed or chemically modified thereon, as a result of which the fire retardant is bonded to the fiber. To increase the diffusion of the fire retardant into the amorphous structures of the wood fibers, the surface of the wood fibers can be modified by various chemical additives and the surface tension of the fire retardant can also be reduced.

Es kann sich als hilfreich erweisen, wenn zur Bildung des Gemisches ein Brandschutzmittel mit wenigstens einem der folgenden Merkmale verwendet wird:

  • Das Brandschutzmittel ist ein intumeszierendes Brandschutzmittel oder umfasst eine intumeszierende Brandschutzmittel-Komponente.
  • Das Brandschutzmittel ist ein chemisches oder chemisch wirkendes Brandschutzmittel oder umfasst eine chemische oder chemisch wirkende Brandschutzmittel-Komponente, bevorzugt eine chemische Verbindung auf Phosphorbasis.
  • Die Aktivierungstemperatur des Brandschutzmittels (d. h. die Temperatur, bei der das Brandschutzmittel zu blähen beginnt), vorzugsweise des intumeszierenden Brandschutzmittels oder der intumeszierenden Brandschutzmittel-Komponente, liegt im Bereich von 100°C bis 1000°C, vorzugsweise im Bereich von 100°C bis 300°C.
  • Das Brandschutzmittel umfasst verschiedene Komponenten, vorzugsweise wenigstens zwei intumeszierende Komponenten mit unterschiedlichen Blähvolumina, wobei bevorzugt das Blähvolumen einer ersten intumeszierenden Komponente bei 1000°C 0,01 bis 0,5 mal, vorzugsweise 0,1 bis 0,5 mal das Blähvolumen der zweiten intumeszierenden Komponente bei 1000°C ist, wobei das Blähvolumen der ersten intumeszierenden Komponente bei 1000°C beispielsweise im Bereich von 60 cm3/g bis 200 cm3/g und das Blähvolumen der zweiten intumeszierenden Komponente bei 1000°C beispielsweise im Bereich von 400 bis 700 cm3/g liegt, wobei besonders bevorzugt das Mischverhältnis der ersten zur zweiten intumeszierenden Komponente im Bereich von 1:1 bis 1:2 liegt, insbesondere bei 1:1,5.
  • Das Brandschutzmittel umfasst überwiegend Partikel mit Partikelgrößen im Bereich von 1 µm bis 1000 µm, vorzugsweise im Bereich von 40 µm bis 700 µm, bevorzugt im Bereich von 150 µm bis 400 µm
  • Das Brandschutzmittel weist einen pH-Wert im Bereich von 3 (sauer) bis 10 (leicht alkalisch/basisch), vorzugsweise im Bereich von 7 bis 9 auf.
  • Das Brandschutzmittel enthält ein Treibmittel, vorzugsweise eingelagert in die Molekülstruktur.
  • Das Brandschutzmittel umfasst wenigstens eines der folgenden Additive, vorzugsweise in einer Zudosierung von bis zu 20 %, bevorzugt im Bereich von 2 bis 8 %:
    • ∘ Anorganische Brandhemmer, vorzugsweise in Form einer chemischen Verbindung auf Phosphorbasis.
    • ∘ Stärkebasierende, organische Substanzen mit Funktion zum Einschluss der Faser (Kapseleffekt), vorzugsweise auf pflanzlicher Basis.
    • ∘ Synergetische Additive.
  • Das Brandschutzmittel ist oder enthält Graphit, vorzugsweise Blähgraphit, bevorzugt säureinterkalierte Blähgraphite.
  • Das Brandschutzmittel ist modifiziert und/oder interkaliert und/oder kohlenstoffhaltig.
  • Das Brandschutzmittel ist durch chemische Behandlung mit starken Säuren und/oder Oxidationsmittel wie Wasserstoffperoxid oder Kaliumpermanganat hergestellt.
  • Das Brandschutzmittel ist vorhanden in einer Dosierung von 3 bis 30 Gewichtsprozent, vorzugsweise 5 bis 20 Gewichtsprozent, bevorzugt 10 bis 18 Gewichtsprozent bezogen auf eine Trockenmasse der Fasern.
It may be helpful if a fire retardant having at least one of the following characteristics is used to form the mixture:
  • The fire retardant is an intumescent fire retardant or includes an intumescent fire retardant component.
  • The fire retardant is a chemical or chemically acting fire retardant or includes a chemical or chemically acting fire retardant component, preferably a chemical compound based on phosphorus.
  • The activation temperature of the fire retardant (ie the temperature at which the fire retardant starts to expand), preferably the intumescent fire retardant or the intumescent fire retardant component, is in the range from 100°C to 1000°C, preferably in the range from 100°C to 300 °C
  • The fire retardant comprises various components, preferably at least two intumescent components with different expansion volumes, the expansion volume of a first intumescent component at 1000° C. preferably being 0.01 to 0.5 times, preferably 0.1 to 0.5 times the expansion volume of the second intumescent component component at 1000°C, the expansion volume of the first intumescent component at 1000°C, for example, in the range from 60 cm 3 /g to 200 cm 3 /g and the expansion volume of the second intumescent component at 1000°C, for example in the range from 400 to 700 cm 3 /g, with the mixing ratio of the first to the second intumescent component particularly preferably being in the range from 1:1 to 1:2, in particular 1:1.5.
  • The fire retardant predominantly comprises particles with particle sizes in the range from 1 μm to 1000 μm, preferably in the range from 40 μm to 700 μm, preferably in the range from 150 μm to 400 μm
  • The fire retardant has a pH in the range from 3 (acidic) to 10 (slightly alkaline/basic), preferably in the range from 7 to 9.
  • The fire retardant contains a propellant, preferably embedded in the molecular structure.
  • The fire retardant comprises at least one of the following additives, preferably in a dosage of up to 20%, preferably in the range from 2 to 8%:
    • ∘ Inorganic fire retardants, preferably in the form of a phosphorus-based chemical compound.
    • ∘ Starch-based, organic substances with the function of enclosing the fibers (encapsulation effect), preferably based on plants.
    • ∘ Synergic additives.
  • The flame retardant is or contains graphite, preferably expandable graphite, preferably acid-intercalated expandable graphite.
  • The flame retardant is modified and/or intercalated and/or contains carbon.
  • The fire retardant is produced by chemical treatment with strong acids and/or oxidizing agents such as hydrogen peroxide or potassium permanganate.
  • The flame retardant is present in a dosage of 3 to 30 percent by weight, preferably 5 to 20 percent by weight, preferably 10 to 18 percent by weight, based on a dry weight of the fibers.

Es kann sinnvoll sein, wenn das Brandschutzmittel in wenigstens einem der folgenden Zustände mit den Fasern zu einem Gemisch vermengt wird:

  • Das Brandschutzmittel weist einen Zustand noch nicht begonnener oder teilweiser erfolgter Intumeszenz auf.
  • Das Brandschutzmittel ist pulverförmig oder kugelförmig, bevorzugt schuppig oder flockig, granular und/oder partikelförmig.
  • Das Brandschutzmittel ist ein Gemisch, vorzugsweise eine Emulsion, ein Gel, ein Schaum, ein Aerosol, eine Suspension oder ein Gemenge.
  • Das Brandschutzmittel ist in einer Emulsion als Trägermaterial eingebunden, wobei die Emulsion vorzugsweise gebildet wird aus Wasser und einem Emulgator, bevorzugt bifunktionale bzw. bifunktionelle Silane oder auf Ether basierende synthetische Öle.
  • Das Brandschutzmittel ist in Schaum als Trägermaterial eingebunden, vorzugsweise unter Ausführung wenigstens eines der folgenden Teilschritte:
    • ∘ Bildung eines Schaums, vorzugsweise aus Wasser und anionischen/kationischen Additiven und/oder einer schäumenden Chemikalie als Schaumbildner.
    • ∘ Stabilisierung der Schaumstruktur, vorzugsweise unter Einsatz eines auf Ether basierenden oberflächenaktiven Additivs und/oder eines carboxymetylcellulosehaltigen Additivs als Schaumstabilisator.
    • ∘ Oberflächenmodifizierung des Brandschutzmittels zur Herabsetzung der Oberflächenspannung, um eine bessere Bindekraft zu den Fasern zu erzielen.
    • o Einbinden des Brandschutzmittels in den Schaum.
  • Das Brandschutzmittel ist in Gel als Trägermaterial eingebunden, vorzugsweise unter Ausführung wenigstens eines der folgenden Teilschritte:
    • ∘ Bildung des Gels, vorzugsweise durch Vermischen von Wasserglas und einer Silziumdioxiddispersion (als sogenanntes Nanosol).
    • ∘ Modifizieren der Rheologie der Gelstruktur, vorzugsweise durch Zugabe eines stärkebasierenden Celluloseethers, wobei das Gel bevorzugt als Haftvermittler zwischen dem Blähgraphit und den Fasern dient.
    • ∘ Einbinden des Brandschutzmittels in das Gel.
  • Das Brandschutzmittel bildet ein Gemisch mit Bindemittel, vorzugsweise mit einem Bindemittel, das wenigstens einen der folgenden Bestandteile aufweist:
    • ∘ Einen Klebstoff, vorzugsweise einen Klebstoff auf Basis von Isocyanaten, Kunstharzen, PVAC, Proteinen (z.B. Kaseine, enzymatische Proteine) und Stärke, bevorzugt in Kombination mit Klebstoffsystemen auf wässriger nanostrukturierter silikatischer Basis.
    • ∘ Einen Leim, vorzugsweise einen natürlichen Leim, bevorzugt auf Basis von Kasein und/oder Stärke.
  • Das Brandschutzmittel bildet ein Gemisch, wobei das Brandschutzmittel vorzugsweise in Partikelform vorliegt und mittels einer organischen Verbindung modifiziert wird (z.B. chemische Verbindung auf Phosphorbasis), welche auch die Funktion als Flammschutzmittel erfüllt), sodass die Oberflächenspannung der Partikel herabgesetzt und deren Fließ- bzw. Rieselfähigkeit erhöht wird, um ein heterogenes Gemisch (Dispersion) aus festen Schwebeteilchen in einem Gas zu bilden.
It can be useful if the fire retardant is mixed with the fibers to form a mixture in at least one of the following states:
  • The fire retardant is in a state where intumescence has not yet started or has partially taken place.
  • The flame retardant is in the form of a powder or spheres, preferably flaky or flaky, granular and/or particulate.
  • The fire retardant is a mixture, preferably an emulsion, a gel, a foam, an aerosol, a suspension or a mixture.
  • The flame retardant is bound in an emulsion as a carrier material, the emulsion preferably being formed from water and an emulsifier, preferably bifunctional or bifunctional silanes or ether-based synthetic oils.
  • The fire retardant is integrated into foam as a carrier material, preferably with at least one of the following sub-steps being carried out:
    • ∘ Formation of a foam, preferably from water and anionic/cationic additives and/or a foaming chemical as a foaming agent.
    • ∘ Stabilization of the foam structure, preferably using an ether-based surface-active additive and/or a carboxymethylcellulose-containing additive as foam stabilizer.
    • ∘ Surface modification of the fire retardant to reduce the surface tension in order to achieve better binding power to the fibers.
    • o Incorporation of the fire retardant into the foam.
  • The fire retardant is incorporated in gel as a carrier material, preferably with at least one of the following sub-steps being carried out:
    • ∘ Formation of the gel, preferably by mixing water glass and a silicon dioxide dispersion (as a so-called nanosol).
    • ∘ Modifying the rheology of the gel structure, preferably by adding a starch-based cellulose ether, with the gel preferably serving as an adhesion promoter between the expandable graphite and the fibers.
    • ∘ Binding of the fire retardant in the gel.
  • The fire retardant forms a mixture with a binder, preferably with a binder, which has at least one of the following components:
    • ∘ An adhesive, preferably an adhesive based on isocyanates, synthetic resins, PVAC, proteins (eg caseins, enzymatic proteins) and starch, preferably in combination with adhesive systems based on aqueous nanostructured silicates.
    • ∘ A glue, preferably a natural glue, preferably based on casein and/or starch.
  • The fire retardant forms a mixture, with the fire retardant preferably being in particle form and modified by means of an organic compound (e.g. chemical compound based on phosphorus), which also fulfills the function as a flame retardant), so that the surface tension of the particles is reduced and their flowability or pourability reduced is increased to form a heterogeneous mixture (dispersion) of suspended solid particles in a gas.

Es kann sich als nützlich erweisen, wenn das Brandschutzmittel in wenigstens einem der folgenden Verfahrensschritte mit den Fasern zu einem Gemisch vermengt wird:

  • In Schritt A, vorzugsweise in wenigstens einem der Teilschritte A1, A2, A3, A4 und/oder zwischen zweien dieser Teilschritte, bevorzugt ausschließlich in Teilschritt A4.
  • In Schritt B, vorzugsweise in wenigstens einem der Teilschritte B1, B2, B3, B4, B5, B6, B7, B8, B9, insbesondere B1 und/oder B2 und/oder B3, und/oder zwischen zweien dieser Teilschritte, bevorzugt ausschließlich in Teilschritt B3.
  • In Schritt C, vorzugsweise in wenigstens einem der Teilschritte C1, C2, C3, C4, C5, C6, C7, insbesondere C1 und/oder C2 und/oder C4, und/oder zwischen zweien dieser Teilschritte, bevorzugt ausschließlich in Teilschritt C2.
  • Zwischen den Schritten A und B und/oder zwischen den Schritten A und C.
It may prove useful if the fire retardant is mixed with the fibers into a mixture in at least one of the following process steps:
  • In step A, preferably in at least one of the sub-steps A1, A2, A3, A4 and/or between two of these sub-steps, preferably exclusively in sub-step A4.
  • In step B, preferably in at least one of the sub-steps B1, B2, B3, B4, B5, B6, B7, B8, B9, in particular B1 and/or B2 and/or B3, and/or between two of these sub-steps, preferably exclusively in Substep B3.
  • In step C, preferably in at least one of the sub-steps C1, C2, C3, C4, C5, C6, C7, in particular C1 and/or C2 and/or C4, and/or between two of these sub-steps, preferably exclusively in sub-step C2.
  • Between steps A and B and/or between steps A and C.

Ein weiterer Aspekt der Erfindung betrifft eine Dämmplatte/-matte, hergestellt aus einem Gemisch, enthaltend Fasern auf Basis nachwachsender Rohstoffe sowie ein physikalisches und/oder ein chemisches Brandschutzmittel, vorzugsweise nach dem Verfahren gemäß einer der vorangehenden Ausführungen.Another aspect of the invention relates to an insulating board/mat made from a mixture containing fibers based on renewable raw materials and a physical and/or chemical fire protection agent, preferably using the method according to one of the preceding statements.

Es kann von Vorteil sein, wenn die Dämmplatte/-matte in einer der folgenden Ausführungen ausgebildet ist:

  • Als Holzfaserdämmplatte, hergestellt im Nassverfahren, vorzugsweise nach Schritt B, wobei die Holzfaserdämmplatte bevorzugt wenigstens eines der folgenden Merkmale aufweist:
    • ∘ Die Dicke der Holzfaserdämmplatte liegt im Bereich von 4 bis 250 mm, vorzugsweise im Bereich von 40 bis 200 mm, bevorzugt im Bereich von 50 bis 200 mm.
    • ∘ Die Dichte der Holzfaserdämmplatte liegt im Bereich von 80 bis 300 kg/m3, vorzugsweise im Bereich von 110 bis 250 kg/m3, bevorzugt im Bereich von 160 bis 220 kg/m3.
  • Als Holzfaserdämmplatte, hergestellt im Trockenverfahren, vorzugsweise nach Schritt C, wobei die Holzfaserdämmplatte bevorzugt wenigstens eines der folgenden Merkmale aufweist:
    • ∘ Die Dicke der Holzfaserdämmplatte liegt im Bereich von 10 bis 300 mm, vorzugsweise im Bereich von 60 bis 240 mm,
    • ∘ Die Dichte der Holzfaserdämmplatte liegt im Bereich von 80 bis 300 kg/m3, vorzugsweise im Bereich von 100 bis 250 kg/m3, bevorzugt im Bereich von 140 bis 180 kg/m3.
  • Als flexible Holzfaserdämmmatte, wobei die Holzfaserdämmmatte vorzugsweise wenigstens eines der folgenden Merkmale aufweist:
    • ∘ Die Dicke der Holzfaserdämmmatte liegt im Bereich von 10 bis 400 mm, vorzugsweise im Bereich von 50 bis 300 mm, bevorzugt im Bereich von 100 bis 200 mm.
    • ∘ Die Dichte der Holzfaserdämmmatte liegt im Bereich von 35 bis 80 kg/m3, vorzugsweise im Bereich von 40 bis 75 kg/m3, bevorzugt im Bereich von 40 bis 55 kg/m3.
It can be an advantage if the insulation board/mat is designed in one of the following ways:
  • As a wood fiber insulation board, produced in a wet process, preferably after step B, the wood fiber insulation board preferably having at least one of the following features:
    • ∘ The thickness of the wood fiber insulation board is in the range from 4 to 250 mm, preferably in the range from 40 to 200 mm, preferably in the range from 50 to 200 mm.
    • ∘ The density of the wood fiber insulation panel is in the range from 80 to 300 kg/m 3 , preferably in the range from 110 to 250 kg/m 3 , preferably in the range from 160 to 220 kg/m 3 .
  • As a wood fiber insulation board, produced in a dry process, preferably after step C, the wood fiber insulation board preferably having at least one of the following features:
    • ∘ The thickness of the wood fiber insulation board is in the range of 10 to 300 mm, preferably in the range of 60 to 240 mm,
    • ∘ The density of the wood fiber insulation board is in the range from 80 to 300 kg/m 3 , preferably in the range from 100 to 250 kg/m 3 , preferably in the range from 140 to 180 kg/m 3 .
  • As a flexible wood fiber insulation mat, the wood fiber insulation mat preferably having at least one of the following features:
    • ∘ The thickness of the wood fiber insulating mat is in the range from 10 to 400 mm, preferably in the range from 50 to 300 mm, preferably in the range from 100 to 200 mm.
    • ∘ The density of the wood fiber insulation mat is in the range from 35 to 80 kg/m 3 , preferably in the range from 40 to 75 kg/m 3 , preferably in the range from 40 to 55 kg/m 3 .

Ein weiterer Aspekt der Erfindung betrifft einen Einblasdämmstoff, hergestellt aus einem Gemisch, enthaltend Fasern auf Basis nachwachsender Rohstoffe sowie ein physikalisches und/oder ein chemisches Brandschutzmittel, vorzugsweise nach dem Verfahren gemäß einer der vorangehenden Ausführungen, wobei der Einblasdämmstoff bevorzugt eine Dichte im Bereich von 20 bis 60 kg/m3 aufweist, besonders bevorzugt eine Dichte im Bereich von 28 bis 40 kg/m3.Another aspect of the invention relates to a blow-in insulation material, produced from a mixture containing fibers based on renewable raw materials and a physical and/or a chemical fire protection agent, preferably according to the method according to one of the preceding statements, the blow-in insulation material preferably having a density in the range of 20 to 60 kg/m 3 , particularly preferably a density in the range from 28 to 40 kg/m 3 .

Weitere bevorzugte Weiterbildungen ergeben sich durch beliebige Kombinationen der hierin offenbarten Merkmale.Further preferred developments result from any combination of the features disclosed herein.

Detaillierte Beschreibung der bevorzugten AusführungsbeispieleDetailed description of the preferred embodiments

Nach dem erfindungsgemäßen Verfahren werden brandhemmende Dämmplatten/-matten aus einem Gemisch hergestellt, welches Fasern auf Basis nachwachsender Rohstoffe, wie z. B. Lignocellulosefasern, sowie ein physikalisches und/oder ein chemisches Brandschutzmittel, wie z. B. ein intumeszierendes Brandschutzmittel enthält.According to the process of the invention, fire-retardant insulating boards/mats are made from a mixture which contains fibers based on renewable raw materials, such as e.g. B. lignocellulose fibers, and a physical and / or chemical fire retardant, such as. B. contains an intumescent fire retardant.

Die Lignocellulosefasern werden nach den oben beschriebenen Verfahrensschritten aus lignocellulosehaltigem Rohstoff, insbesondere Holz, gewonnen, mit dem intumeszierenden Brandschutzmittel vermischt und beispielsweise im Nassverfahren oder Trockenverfahren zu den brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten verarbeitet. Natürlich können anstelle der Lignocellulosefasern auch Fasern auf Basis anderer nachwachsender Rohstoffe wie z. B. Hanf und/oder anstelle des intumeszierenden Brandschutzmittels andere Brandschutzmittel eingesetzt werden.The lignocellulose fibers are obtained according to the process steps described above from lignocellulose-containing raw material, in particular wood, mixed with the intumescent fire retardant and processed into the fire-retardant, lignocellulose-fiber-containing insulation boards/mats, for example in a wet process or dry process. Of course, instead of the lignocellulose fibers, fibers based on other renewable raw materials such. B. hemp and / or other fire retardants can be used instead of the intumescent fire retardant.

Die im Rahmen der Erfindung offenbarten Ausführungsbeispiele unterscheiden sich vorwiegend in der Darreichungsform des Brandschutzmittels und dem Zeitpunkt bzw. Verfahrensschritt der Vermengung des Brandschutzmittels mit den Fasern. In Abhängigkeit der gewählten Verarbeitung der Fasern (im Nassverfahren oder Trockenverfahren) können sich die bevorzugten Darreichungsformen des Brandschutzmittels sowie die Auswahl des bevorzugten Zeitpunkts der Vermengung des Brandschutzmittels mit den Fasern unterscheiden.The exemplary embodiments disclosed within the scope of the invention differ primarily in the form in which the fire retardant is administered and the point in time or the method step in which the fire retardant is mixed with the fibers. Depending on the selected processing of the fibers (in the wet process or dry process), the preferred dosage forms can vary of the fire retardant and the selection of the preferred point in time for mixing the fire retardant with the fibers.

Das im erfindungsgemäßen Verfahren zur Anwendung kommende Brandschutzmittel ist beispielsweise ein effektives und umweltverträgliches, intumeszierendes Flammschutzmittel auf Basis eines modifizierten und interkalierten Minerals aus reinem Kohlenstoff als halogenfreier Intumeszenzbildner.The flame retardant used in the process according to the invention is, for example, an effective and environmentally friendly intumescent flame retardant based on a modified and intercalated mineral made from pure carbon as a halogen-free intumescent agent.

Als modifizierte interkalierte, kohlenstoffhaltige Flammschutzmittel kommen z. B. modifizierte Graphite in Frage, die beim Erhitzen auf Temperaturen von über 150°C expandieren. Solche Graphite sind bekannt und im Handel erhältlich. Sie können als Treibmittel Säuren eingelagert enthalten. Bevorzugt sind säureinterkalierte Blähgraphite.As modified intercalated, carbonaceous flame retardants such. B. modified graphites in question, which expand when heated to temperatures above 150 ° C. Such graphites are known and commercially available. They can contain stored acids as blowing agents. Acid-intercalated expandable graphites are preferred.

Besonders wirksame intumeszierende Bestandteile enthält Blähgraphit, der durch chemische Behandlung von Graphit hergestellt wird. Hierbei wird Graphit mit Substanzen behandelt, meistens starke Säuren und/oder Oxidationsmittel wie Wasserstoffperoxid oder Kaliumpermanganat. Die Säuren und/oder Oxidationsmittel lagern sich in die Gitterstruktur des Graphits ein. Durch diese Einlagerung in die Graphitstruktur werden die Schichtabstände der Graphitschichten aufgeweitet. Unter Hitzeeinwirkung wird sich ein so vorbehandelter Graphit im Brandfall unter großer Volumenzunahme ausdehnen.Expandable graphite, which is produced by chemical treatment of graphite, contains particularly effective intumescent components. Here, graphite is treated with substances, mostly strong acids and/or oxidizing agents such as hydrogen peroxide or potassium permanganate. The acids and/or oxidizing agents are incorporated into the lattice structure of the graphite. This incorporation into the graphite structure widens the interlayer spacing of the graphite layers. Under the effect of heat, a graphite pretreated in this way will expand with a large increase in volume in the event of a fire.

Blähgraphit eignet sich als Flammschutzadditiv, da bei Hitzeeinwirkung eine schützende Intumeszenzschicht auf der Oberfläche entsteht, die Brandausweitung verlangsamt und der Ausbreitung toxischer Gase und Rauch entgegengewirkt wird.Expandable graphite is suitable as a flame retardant additive because a protective intumescent layer forms on the surface when exposed to heat, slowing down the spread of fire and counteracting the spread of toxic gases and smoke.

Der Blähgraphit kann z. B. als schuppiges oder flockiges Pulver, als Granulat oder in Form vorgeformter Partikel eingesetzt werden. Es kommen auch Mischungen von Blähgraphiten verschiedener Formen und/oder Arten in Frage. Der Blähgraphit kann auch schon teilweise expandiert sein, bevor er eingesetzt wird.The expandable graphite z. B. as a flaky or flaky powder, as granules or in the form of preformed particles. Mixtures of expandable graphites of different shapes and/or types are also possible. The expandable graphite can also be partially expanded before it is used.

Vorzugsweise setzt die Intumeszenz bei möglichst niedrigen Temperaturen ein, um im Brandfall ein schnelleres Ansprechverhalten der ausgerüsteten Gebäudebauteile sicherzustellen. Das intumeszierende Brandschutzmittel weist vorzugsweise eine Aktivierungstemperatur zwischen 100°C und 1.000°C auf. Als besonders vorteilhaft hat sich ein Mischverhältnis zwischen kleinen und großen Blähvolumina erwiesen. Entsprechend der zu erzielenden Blähvolumina sind die Partikelgrößen des Graphits auszuwählen und können sich überwiegend zwischen 1 und 1.000 µm, bevorzugt zwischen 150 und 700 µm, bewegen. Die Oberfläche des Brandschutzmittels ist pH-neutral, wobei der pH-Wert bis 10 (alkalisch/basisch) reichen kann. Die Wirksamkeit des Brandschutzmittels kann durch Zumischungen speziell abgestimmter Additive, vorzugsweise anorganischer Brandhemmer, bevorzugt einer chemischen Verbindung auf Phosphorbasis, und/oder stärkebasierende organische Substanzen mit Funktion zum Einschluss der Holzfaser (Kapseleffekt), vorzugsweise auf pflanzlicher Basis, erheblich verbessert werden. Die Erfindung sieht spezielle Applikationsmethoden bzw. Darreichungsformen in Verbindung mit produktionstechnisch sinnvollen Applikationsorten vor. Diese werden im Folgenden inklusive der dazu notwendigen chemischen Anpassungen des Brandschutzmittels näher beschrieben.The intumescence preferably starts at the lowest possible temperatures in order to ensure faster response behavior of the equipped building components in the event of a fire. The intumescent fireproofing agent preferably has an activation temperature between 100°C and 1000°C. A mixing ratio between small and large inflation volumes has proven particularly advantageous. The particle sizes of the graphite are to be selected according to the expansion volumes to be achieved and can range predominantly between 1 and 1000 μm, preferably between 150 and 700 μm. The surface of the fire retardant is pH-neutral, with a pH value of up to 10 (alkaline/basic). The effectiveness of the fire retardant can be significantly improved by admixing specially tailored additives, preferably inorganic fire retardants, preferably a chemical compound based on phosphorus, and/or starch-based organic substances with the function of enclosing the wood fibers (encapsulation effect), preferably based on plants. The invention envisages special application methods or forms of administration in connection with application locations that make sense in terms of production technology. These are described in more detail below, including the necessary chemical adjustments to the fire retardant.

Applikationsmethodenapplication methods Darreichungsformen des BrandschutzmittelsDosage forms of the fire retardant

Das Brandschutzmittel kann in Reinform als Pulver in den Prozess eingebracht werden oder als Gemisch, eingebunden in einer Emulsion, einen Schaum, ein Gel oder Bindemittel.The fire retardant can be introduced into the process in pure form as a powder or as a mixture, incorporated in an emulsion, a foam, a gel or a binder.

Mögliche Applikationsorte des Brandschutzmittels sind im Refiner, im Vorwärmer, in die Stopfschnecke zwischen Vorwärmer und Mahlscheiben), in der Blowline (zwischen Refiner und Stromtrockner), im Beleimturm (Bereich der Trockenbeleimung der Fasern), während des Streuprozesses, in der Mischbütte (für die Produktion im Nassverfahren).Possible application locations for the fire retardant are in the refiner, in the preheater, in the stuffing screw between the preheater and grinding disks), in the blowline (between the refiner and flash dryer), in the glue tower (area of dry gluing of the fibers), during the spreading process, in the mixing chest (for the wet process production).

Die möglichen Darreichungsformen und Applikationsverfahren bzw. Zeitpunkte der Einbringung sind u. a. in folgenden Ausführungsbeispielen realisierbar:
Erstes Ausführungsbeispiel - Pulver
The possible dosage forms and application methods or times of introduction can be implemented in the following exemplary embodiments, among others:
First Embodiment - Powder

Variante 1 - NassverfahrenVariant 1 - wet process

Das erste Ausführungsbeispiel der Erfindung betrifft in der ersten Variante ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Nassverfahren gemäß den Schritten A und B aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit trocken und in Reinform als Pulver in Schritt B1 und/oder B2 und/oder B3 (in der Mischbütte), beispielsweise ausschließlich in Schritt B3, zugegeben wird.The first embodiment of the invention relates in the first variant to a process for the production of fire-retardant, lignocellulose fiber-containing insulation panels/mats in the wet process according to steps A and B from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being dry and is added in pure form as a powder in step B1 and/or B2 and/or B3 (in the mixing chest), for example exclusively in step B3.

Variante 2 - TrockenverfahrenVariant 2 - dry process

Die zweite Variante des ersten Ausführungsbeispiels der Erfindung betrifft ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Trockenverfahren nach den Schritten A und C aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit trocken und in Reinform als Pulver in Schritt C2 (im Beleimturm) oder in Schritt C4 (direkt im Streuprozess), beispielsweise ausschließlich in Schritt C2, in den Prozess eingebracht wird.The second variant of the first exemplary embodiment of the invention relates to a method for producing fire-retardant insulating panels/mats containing lignocellulose fibers using a dry method after steps A and C of a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being dry and in pure form as a powder in step C2 (in the glue tower) or in step C4 (directly in the spreading process), for example exclusively in Step C2, is brought into the process.

Die Vorteile der pulverförmigen Zuführung des intumeszierenden Brandschutzmittels liegen in dem geringen Aufwand bei der Materialvorbereitung, da das Brandschutzmittel nicht zusätzlich modifiziert werden muss.The advantages of supplying the intumescent fire retardant in powder form lie in the low cost of preparing the material, since the fire retardant does not have to be additionally modified.

Zweites Ausführungsbeispiel - Zuführung des Brandschutzmittels eingebunden in EmulsionSecond embodiment - feeding the fire retardant integrated in emulsion

Um das i.d.R. pulverförmige Brandschutzmittel pump- und sprühfähig zu machen, kann es in einer Emulsion als Trägermaterial eingebunden werden. Zur Bildung der Emulsion wird dem Wasser ein Emulgator (bifunktionale bzw. bifunktionelle Silane oder auf Ether basierende synthetische Öle) zugegeben.In order to make the fire retardant, which is usually in powder form, pumpable and sprayable, it can be bound in an emulsion as a carrier material. An emulsifier (bifunctional or bifunctional silanes or ether-based synthetic oils) is added to the water to form the emulsion.

Variante 1 - NassverfahrenVariant 1 - wet process

Das zweite Ausführungsbeispiel der Erfindung betrifft nach der ersten Variante ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Nassverfahren gemäß den Schritten A und B aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit eingebunden in einer Emulsion als Trägermaterial in wenigstens einem der Schritte A1, A2, A3 oder A4 (Vorwärmung bis zur Zerfaserung) und/oder in Schritt B1 und/oder B2 und/oder B3 (in der Mischbütte) zugegeben wird.According to the first variant, the second exemplary embodiment of the invention relates to a method for producing fire-retardant, lignocellulose-fiber-containing insulating boards/mats in the wet process according to steps A and B from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being incorporated in an emulsion is added as carrier material in at least one of steps A1, A2, A3 or A4 (preheating until defibration) and/or in step B1 and/or B2 and/or B3 (in the mixing chest).

Variante 2 - TrockenverfahrenVariant 2 - dry process

Die zweite Variante des zweiten Ausführungsbeispiels der Erfindung betrifft ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Trockenverfahren gemäß den Schritten A und C aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit eingebunden in einer Emulsion als Trägermaterial in wenigstens einem der Schritte A1, A2, A3 oder A4 (Vorwärmung bis zur Zerfaserung) und/oder in Schritt C2 (im Beleimturm) und/oder in Schritt C4 (direkt im Streuprozess) in den Prozess eingebracht wird.The second variant of the second exemplary embodiment of the invention relates to a method for producing fire-retardant insulation boards/mats containing lignocellulose fibers in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite being incorporated in a Emulsion is introduced into the process as a carrier material in at least one of steps A1, A2, A3 or A4 (preheating until defibration) and/or in step C2 (in the gluing tower) and/or in step C4 (directly in the spreading process).

Die Vorteile der Zuführung des intumeszierenden Brandschutzmittels eingebunden in einer Emulsion als Trägermaterial liegen in der guten Verteilung bei der Mischung mit Lignocellulosefasern. Diese Darreichungsform funktioniert im Zerfaserer bzw. Refiner besonders gut, weil das Brandschutzmittel durch die mechanische Arbeit des Zerfaserers bzw. Refiners sehr fein verteilt wird und in der Emulsion eingebunden sehr gut an den Lignocellulosefasern haften kann.The advantages of supplying the intumescent fire retardant integrated in an emulsion as a carrier material lie in the good distribution when mixed with lignocellulose fibers. This dosage form works particularly well in the shredder or refiner because the flame retardant is very finely distributed by the mechanical work of the shredder or refiner and, when bound in the emulsion, can adhere very well to the lignocellulose fibers.

Drittes Ausführungsbeispiel -Zuführung des Brandschutzmittels eingebunden in SchaumThird exemplary embodiment - supply of the fire protection agent integrated in foam

Insbesondere zur Gewährleistung einer optimalen Verteilung wird das i.d.R. pulverförmige Brandschutzmittel in einen stabilen Schaum eingebettet appliziert. Zur Schaumherstellung werden Wasser und anionische/kationische Additive (Schaumbildner) in einem speziellen Aggregat gemischt und ein Schaum gebildet. Alternativ kann der Schaum auch mittels Wasser unter der Zugabe eines schäumenden silikatischen Bindemittels gebildet werden. Um zu verhindern, dass der Schaum nach einer gewissen Zeit zusammenfällt, ist die Schaumstruktur zusätzlich zu stabilisieren. Dazu wird ein auf Ether basierendes oberflächenaktives oder ein carboxymetylcellulosehaltigen Additiv als Schaumstabilisator eingesetzt. Zusätzlich kommt ein Oberflächenmodifizierer zum Einsatz, der die Oberflächenspannung herabsetzt. Daraus resultiert eine bessere Bindekraft zwischen dem Brandschutzmittel und Lignocellulosefasern.In particular, to ensure optimal distribution, the fire retardant, which is usually in powder form, is embedded in a stable foam and applied. To produce the foam, water and anionic/cationic additives (foaming agents) are mixed in a special unit and a foam is formed. Alternatively, the foam can also be formed using water with the addition of a foaming siliceous binder. In order to prevent the foam from collapsing after a certain time, the foam structure must be additionally stabilized. For this purpose, an ether-based surface-active additive or a carboxymethylcellulose-containing additive is used as a foam stabilizer. In addition, a surface modifier is used that reduces the surface tension. This results in better binding power between the fire retardant and lignocellulose fibers.

Das dritte Ausführungsbeispiel der Erfindung betrifft demnach ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Trockenverfahren gemäß den Schritten A und C aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit eingebunden in Schaum als Trägermaterial in Schritt C2 (in der Blowline oder im Beleimturm) und/oder in Schritt C4 (direkt im Streuprozess) in den Prozess eingebracht wird.The third exemplary embodiment of the invention accordingly relates to a method for producing fire-retardant, lignocellulose fiber-containing insulating panels/mats in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in foam as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).

Die Vorteile der Zuführung des intumeszierenden Brandschutzmittels eingebunden in Schaum als Trägermaterial liegen in der sehr geringen Zugabemenge an Wasser, der guten Verteilung bei der Mischung mit Lignocellulosefasern, sowie dem Schutz der Struktur des Brandschutzmittels.The advantages of supplying the intumescent fire retardant integrated in foam as a carrier material lie in the very small amount of water added, good distribution when mixed with lignocellulose fibers, and protection of the structure of the fire retardant.

Viertes Ausführungsbeispiel - Zuführung des Brandschutzmittels eingebunden in Gel Insbesondere zur Gewährleistung einer optimalen Verteilung wird das i.d.R. pulverförmige Brandschutzmittel in ein Gel eingebunden und eingebettet in dieses Trägermaterial den Lignocellulosefasern zugeführt. Zur Gelherstellung werden Wasserglas und eine Silziumdioxiddispersion (als sogenanntes Nanosol) in einem speziellen Aggregat gemischt und das Gel gebildet. Um die Rheologie der Gelstruktur zu modifizieren wird ein stärkebasierender Celluloseether zugegeben. Des Weiteren dient das Gel als Haftvermittler zwischen dem Brandschutzmittel und Lignocellulosefasern.Fourth exemplary embodiment—supply of the fire retardant bound in gel In particular to ensure optimal distribution, the fire retardant, which is usually in powder form, is bound in a gel and fed to the lignocellulose fibers embedded in this carrier material. To produce the gel, water glass and a Silica dispersion (as a so-called nanosol) mixed in a special unit and the gel formed. A starch-based cellulose ether is added to modify the rheology of the gel structure. Furthermore, the gel serves as an adhesion promoter between the fire retardant and lignocellulose fibers.

Das vierte Ausführungsbeispiel der Erfindung betrifft demnach ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Trockenverfahren gemäß den Schritten A und C aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit eingebunden in Gel als Trägermaterial in Schritt C2 (in der Blowline oder im Beleimturm) und/oder in Schritt C4 (direkt im Streuprozess) in den Prozess eingebracht wird.The fourth exemplary embodiment of the invention accordingly relates to a method for producing fire-retardant insulating boards/mats containing lignocellulose fibers in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in gel as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).

Vorteile des vierten AusführungsbeispielsAdvantages of the fourth embodiment

Die Vorteile der Zuführung des intumeszierenden Brandschutzmittels eingebunden in Gel als Trägermaterial liegen in der sehr geringen Zugabemenge an Wasser, der guten Verteilung bei der Mischung mit Lignocellulosefasern sowie dem Schutz der Struktur des Brandschutzmittels.The advantages of supplying the intumescent fire retardant bound in gel as a carrier material are the very small amount of water added, the good distribution when mixed with lignocellulose fibers and the protection of the structure of the fire retardant.

Fünftes Ausführungsbeispiel - Zuführung des Brandschutzmittels eingebunden in Bindemittel Gemäß dem fünften Ausführungsbeispiel der Erfindung wird das Brandschutzmittel direkt in das Bindemittelsystem vor- bzw. zugemischt. Dazu kann das Bindemittelsystem verdünnt werden, um eine bessere Einmischung und spätere Verteilung auf die Lignocellulosefasern zu gewährleisten. Als Bindemittelsysteme kommen vorzugsweise Klebstoffsysteme auf Basis von Isocyanaten, Kunstharzen, PVAC, Proteinen (z.B. Kaseine, enzymatische Proteine) und Stärke zum Einsatz. Darüber hinaus ist die Kombination mit Klebstoffsystemen auf wässriger nanostrukturierter silikatischer Basis denkbar.FIFTH EMBODIMENT—Supplying the fire retardant integrated in the binder According to the fifth embodiment of the invention, the fire retardant is premixed or admixed directly into the binder system. For this purpose, the binder system can be diluted in order to ensure better mixing and later distribution to the lignocellulose fibers. Adhesive systems based on isocyanates, synthetic resins, PVAC, proteins (e.g. caseins, enzymatic proteins) and starch are preferably used as binder systems. In addition, the combination with adhesive systems on an aqueous, nanostructured, silicate basis is conceivable.

Das fünfte Ausführungsbeispiel der Erfindung betrifft folglich ein Verfahren zur Herstellung von brandhemmenden, lignocellulosefaserhaltigen Dämmplatten/-matten im Trockenverfahren gemäß den Schritten A und C aus einem Gemisch, enthaltend Lignocellulosefasern und intumeszierendes Brandschutzmittel, wobei das intumeszierende Brandschutzmittel in Form von Blähgraphit eingebunden in Bindemittel als Trägermaterial in Schritt C2 (in der Blowline oder im Beleimturm) und/oder in Schritt C4 (direkt im Streuprozess) in den Prozess eingebracht wird.The fifth exemplary embodiment of the invention consequently relates to a method for producing fire-retardant, lignocellulose-fiber-containing insulating boards/mats in a dry process according to steps A and C from a mixture containing lignocellulose fibers and intumescent fire retardant, the intumescent fire retardant in the form of expandable graphite incorporated in a binder as the carrier material introduced into the process in step C2 (in the blow line or in the gluing tower) and/or in step C4 (directly in the forming process).

Die Vorteile der Zuführung des intumeszierenden Brandschutzmittels eingebunden in Bindemittel als Trägermaterial liegen in dem relativ geringen Eingriff in den bisherigen Applikationsprozess und der guten Verteilung bei der Mischung mit Lignocellulosefasern.The advantages of supplying the intumescent fire retardant integrated in a binder as a carrier material lie in the relatively low intervention in the previous application process and the good distribution when mixed with lignocellulose fibers.

Es liegt auch im Rahmen der Erfindung, dass das Brandschutzmittel ein Gemisch wie z.B. ein Aerosol bildet. Dabei wird das (Bläh-)Graphit mittels einer organischen Verbindung, z.B. auf Phosphorbasis, welche auch die Funktion eines Flammschutzmittels erfüllt, modifiziert. Dadurch wird die Oberflächenspannung der Graphitpartikel herabgesetzt. Die geringere Oberflächenspannung der Partikel erhöht deren Fließ- bzw. Rieselfähigkeit. Damit sind die Voraussetzungen gegeben, ein heterogenes Gemisch (Dispersion) aus festen Schwebeteilchen in einem Gas zu bilden, womit das modifizierte Graphit als Aerosolpartikel oder Aerosolteilchen vorliegt.It is also within the scope of the invention for the fire retardant to form a mixture such as an aerosol. The (expandable) graphite is modified by means of an organic compound, e.g. based on phosphorus, which also fulfills the function of a flame retardant. This reduces the surface tension of the graphite particles. The lower surface tension of the particles increases their ability to flow or pour. This is the prerequisite for forming a heterogeneous mixture (dispersion) of solid suspended particles in a gas, with the result that the modified graphite is present as aerosol particles or aerosol particles.

Die Platzierung des Brandschutzmittels in der Darreichungsform als Aerosol erfolgt vorzugsweise in der Blowline oder in der Trockenbeleimung. In einem Hochleistungsmixer werden die Pulverkomponenten, beispielsweise Blähgraphit und Aluminiumtrihydroxid bzw. alternativ pyrogenes Siliziumdioxid (Aerosil), vorzugsweise in optimaler Gleichverteilung gemischt. Das gleichverteilte Gemisch kann mittels Unter- oder Überdruck in ein spezielles Behältnis befördert werden. Das Behältnis hat vorzugsweise rundum Lufteinlässe, in die über eingebaute Ventile Luft einge-blasen wird. Über jedem Ventil ist vorzugsweise eine elastische Lippe angeordnet, die eine Luftvibration erzeugt. Die Kombination aus Rundum-Lufteinblasen und erzeugter Luftvibrationen hält sämtliche Partikel in Bewegung und verhindert Anhaftungen zwischen einzelnen Partikeln. Dadurch kann folgendes Ergebnis erreicht werden:

  • Optimale Gleichverteilung der Partikel
  • Optimale Rieselfähigkeit
  • Verstopfungs- und störungsfreie Zudosierung des Partikelgemischs
The placement of the fire retardant in the dosage form as an aerosol is preferably carried out in the blow line or in the dry gluing. The powder components, for example expandable graphite and aluminum trihydroxide or alternatively pyrogenic silicon dioxide (Aerosil), are mixed in a high-performance mixer, preferably in an optimally uniform distribution. The evenly distributed mixture can be conveyed into a special container by means of negative or positive pressure. The container preferably has air inlets all around, into which air is blown via built-in valves. A resilient lip is preferably placed over each valve to create air vibration. The combination of all-round air injection and generated air vibrations keeps all particles moving and prevents adhesions between individual particles. This can achieve the following result:
  • Optimum even distribution of the particles
  • Optimum pourability
  • Blockage and trouble-free dosing of the particle mixture

Anschließend wird das Partikelgemisch mittels Unter- oder Überdruck auf den im Kanal befindlichen Faserfluss appliziert.The particle mixture is then applied to the fiber flow in the channel by means of negative or positive pressure.

In der Blowline kann das Trockengemisch zusammen mit einem flüssigen Brandschutzmittel auf die Fasern appliziert werden.In the blowline, the dry mixture can be applied to the fibers together with a liquid flame retardant.

Weitere DarreichungsformOther dosage form

Es liegt auch im Rahmen der Erfindung, dass das Brandschutzmittel ein Gemisch aus Blähgraphit und einer Nanosole, bestehend und vorgemischt aus Wasserglas (Natrium- oder Kaliumsilikat) und vorzugsweise 10 % Kieselsäuresole, bildet. Dieses Gemisch wird vorzugsweise im Refiner oder in der Blowline zugegeben.It is also within the scope of the invention for the fire retardant to form a mixture of expandable graphite and a nanosol, consisting and premixed of water glass (sodium or potassium silicate) and preferably 10% silicic acid sols. This mixture is preferably added in the refiner or in the blowline.

Vier unterschiedliche Holzfaserdämm-Produkttypen können im Einklang mit der Erfindung aus dem Gemisch, enthaltend Fasern auf Basis nachwachsender Rohstoffe, wie z. B. Lignocellulosefasern, sowie ein physikalisches und/oder ein chemisches Brandschutzmittel hergestellt werden, nämlich:

  • Holzfaserdämmplatte im Trockenverfahren:
    • ∘ Dicke: 10 bis 300 mm
    • ∘ Dichte: 80 bis 300 kg/m3
  • Holzfaserdämmplatte im Nassverfahren:
    • ∘ Dicke: 4 bis 250 mm
    • ∘ Dichte: 80 bis 300 kg/m3
  • Flexible Holzfaserdämmmatte:
    • ∘ Dicke: 10 bis 400 mm vorzugsweise bis 300 mm
    • ∘ Dichte: 35 bis 80 kg/m3
  • Einblasdämmung:
    • ∘ Dicke: je nach Bauteildicke
    • ∘ Dichte: Einblasrohdichten 20 bis 60 kg/m3
Four different wood fiber insulation product types can be used in accordance with the invention from the mixture containing fibers based on renewable raw materials such. B. lignocellulose fibers, and a physical and / or chemical fire retardant are produced, namely:
  • Wood fiber insulation board in the dry process:
    • ∘ Thickness: 10 to 300 mm
    • ∘ density: 80 to 300 kg / m 3
  • Wood fiber insulation board in the wet process:
    • ∘ Thickness: 4 to 250 mm
    • ∘ density: 80 to 300 kg / m 3
  • Flexible wood fiber insulation mat:
    • ∘ Thickness: 10 to 400 mm, preferably up to 300 mm
    • ∘ density: 35 to 80 kg / m 3
  • blow-in insulation:
    • ∘ Thickness: depending on component thickness
    • ∘ Density: Blow-in raw densities 20 to 60 kg/m 3

Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt. Sinnvolle Weiterbildungen der Erfindungen ergeben sich für den Fachmann durch Kombinationen der in der Beschreibung, den Ansprüchen und den Zeichnungen offenbarten Merkmale.The invention is not limited to the exemplary embodiments described. Meaningful further developments of the invention result for the person skilled in the art through combinations of the features disclosed in the description, the claims and the drawings.

Claims (7)

  1. A method for manufacturing fire-retardant insulating boards/mats, wherein the insulating boards/mats are produced from a mixture containing fibres based on renewable raw materials and a physical and/or a chemical flame retardant,
    characterized in that
    as an insulating board/mat, a wood fibre insulating board is produced from the mixture by a wet process with a thickness in the range from 4 to 250 mm and a density in the range from 80 to 250 kg/m3 or a wood fibre insulating board is produced from the mixture by a dry process with a thickness in the range from 10 to 300 mm and a density in the range from 80 to 300 kg/m3 or a flexible wood fibre insulating mat is produced from the mixture by a dry process with a thickness in the range from 10 to 400 mm and a density in the range from 35 to 80 kg/m3, wherein
    the wet process is carried out by stirring the fibres with water to form a slurry, adding additives and the flame retardant to the slurry, forming the slurry into a pressed fibre mat, dewatering the pressed fibre mat, cutting the pressed fibre mat to size and drying the pressed fibre mat blank,
    the drying process is carried out by producing a dispersion from the fibres, the flame retardant and a binder and/or further additives, pressing the dispersion to form insulating boards/mats and curing the insulating boards/mats, and
    the flame retardant is an intumescent flame retardant or comprises an intumescent flame retardant component.
  2. The method according to claim 1, characterized in that, in a step A of the method, fibers based on renewable raw materials are provided by carrying out at least one of the following substeps:
    a. Step A1: providing a fibrous, renewable raw material.
    b. Step A2: preheating the fibrous, renewable raw material.
    c. Step A3: conveying and/or pressing and/or cooking the fibrous, renewable raw material.
    d. Step A4: defibering the fibrous, renewable raw material to obtain the fibres.
  3. The method according to claim 1 or 2, characterized in that, in a step B of the method the manufacture of the insulating boards/mats is carried out by means of a wet process, by executing at least one of the following substeps:
    a. Step B1: stirring the fibres with water to form a slurry with a water content of up to 98 %.
    b. Step B2: adding resinous or bituminous additives to the slurry.
    c. Step B3: temporarily storing the slurry.
    d. Step B5: dewatering the pressed fibre mat by mechanically squeezing out the water contained in the pressed fibre mat.
    e. Step B7: drying the pressed fibre mat blank at temperatures between 110 and 220 °C.
    f. Step B8: bonding a plurality of pressed fibre mat blanks to form a multi-layer insulating board/mat.
    g. Step B9: cutting the insulating board/mat to size.
  4. The method according to claim 1 or 2, characterized in that, in a step C of the method the manufacture of the insulating boards/mats is carried out by means of a dry process, by executing at least one of the following substeps:
    a. Step C1: drying the fibres.
    b. Step C2: mixing the fibers with the binder by mixer gluing, blowline gluing and/or dry gluing.
    c. Step C3: adding synthetic textile fibres or fibres based on renewable raw materials to increase fibre flexibility as well as various additives for enhancing other properties.
    d. Step C4: preparing the dispersion in a dispersing machine.
    e. Step C5: pressing the dispersion to insulating boards/mats by a calibration and curing unit.
    f. Step C6: curing the insulating boards/mats using a mixture of steam and air.
    g. Step C7: cutting the insulating boards/mats to size.
  5. The method according to any one of the preceding claims, characterized in that a flame retardant having at least one of the following characteristics is used to form the mixture:
    a. The flame retardant is a chemical or chemically acting flame retardant or comprises a chemical or chemically acting flame retardant component.
    b. The activation temperature of the flame retardant is in the range of 100 °C to 1000 °C.
    c. The flame retardant comprises various components.
    d. The flame retardant comprises particles with particle sizes ranging from 1 µm to 1.000 µm.
    e. The flame retardant has a pH value in the range of 3 (acidic) to 10 (alkaline/basic).
    f. The flame retardant contains a blowing agent.
    g. The flame retardant comprises at least one of the following additives, in an addition of up to 20 %:
    i. inorganic fire retardants.
    ii. starch-based, organic substances for enclosing the fibre
    iii. synergistic additives.
    h. The flame retardant consists of or contains graphite.
    i. The flame retardant is modified and/or intercalated and/or carbonaceous.
    j. The flame retardant is produced by means of chemical treatment with strong acids and/or oxidizing agents such as hydrogen peroxide or potassium permanganate.
    k. The flame retardant is present in a ratio of 3 to 30 percent by weight based on dry weight of the fibres.
  6. The method according to any one of the preceding claims, characterized in that the flame retardant is mixed with the fibers in at least one of the following states for forming a mixture:
    a. The flame retardant is in a state of intumescence that has not yet started or has been partially completed.
    b. The flame retardant is in pulverulent or spherical form.
    c. The flame retardant is a mixture.
    d. The flame retardant is incorporated into an emulsion as a carrier medium, the emulsion being formed from water and an emulsifier.
    e. The flame retardant is incorporated into foam as a carrier medium by means of at least one of the following substeps:
    i. preparation of a foam from water and anionic/cationic additives and/or a foaming silicate binder as a foaming agent.
    ii. stabilization of the foam structure using an ether-based surfactant additive and/or a carboxymetyl cellulose-containing additive as a foam stabilizer.
    iii. surface modification of the flame retardant to reduce the surface tension in order to achieve better binding power to the fibres.
    iv. incorporation of the flame retardant into the foam.
    f. The flame retardant is incorporated into gel as a carrier medium by means of at least one of the following substeps:
    i. preparation of the gel by mixing water glass and a silicon dioxide dispersion (as a so-called nanosol).
    ii. modification of the rheology of the gel structure by adding a starch-based cellulose ether.
    iii. incorporation of the flame retardant into the gel.
    g. The flame retardant forms a mixture with a binder containing at least one of the following ingredients:
    i. An adhesive based on isocyanates, synthetic resins, PVAC, proteins (e.g. caseins, enzymatic proteins) and/or starch in combination with adhesive systems based on aqueous nanostructured silicates.
    ii. a glue based on casein and/or starch.
    h. The flame retardant forms an aerosol wherein the flame retardant is present in particulate form and is modified by means of an organic compound so that the surface tension of the particles is reduced and their flowability is increased to form a heterogeneous mixture of solid suspended particles in a gas.
  7. The method according to any one of the preceding claims, characterized in that the flame retardant is mixed with the fibers in at least one of the following method steps for forming a mixture:
    a. In step A, in at least one of the substeps A1, A2, A3, A4 and/or between two of these substeps.
    b. In step B, in at least one of the substeps B1, B2 or B3 and/or between two of these substeps.
    c. In step C, in at least one of the substeps C1, C2, or C4 and/or between two of these substeps.
    d. Between steps A and B and/or between steps A and C.
EP17201181.9A 2016-11-10 2017-11-10 Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources Active EP3323576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17201181T PL3323576T3 (en) 2016-11-10 2017-11-10 Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016121590.2A DE102016121590A1 (en) 2016-11-10 2016-11-10 Process for the production of fire-retardant insulation boards / mats and fire-retardant blowing insulation made from fibers based on renewable raw materials

Publications (2)

Publication Number Publication Date
EP3323576A1 EP3323576A1 (en) 2018-05-23
EP3323576B1 true EP3323576B1 (en) 2022-01-26

Family

ID=60327102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17201181.9A Active EP3323576B1 (en) 2016-11-10 2017-11-10 Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources

Country Status (3)

Country Link
EP (1) EP3323576B1 (en)
DE (1) DE102016121590A1 (en)
PL (1) PL3323576T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121590A1 (en) 2016-11-10 2018-05-17 Gutex Holzfaserplattenwerk H. Henselmann Gmbh + Co. Kg Process for the production of fire-retardant insulation boards / mats and fire-retardant blowing insulation made from fibers based on renewable raw materials
DE102019204436A1 (en) 2019-03-29 2020-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite panel, process for its production and uses thereof

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009109B1 (en) 1978-09-26 1981-09-30 Chemie Linz Aktiengesellschaft Thermoexpandable sealing material for cracks, interstices or the like and process for sealing walls or doors in case of fire
DE19618444A1 (en) 1996-05-08 1997-11-13 Isofloc Oekologische Bautechni Hardly flammable cellulose loose fibre
DE19635410A1 (en) 1996-08-31 1998-03-05 Siempelkamp Gmbh & Co Maschine Prodn of biodegradable insulation board
DE10028607A1 (en) * 1999-06-10 2001-04-26 Yamaha Corp Process for the production of wood material
EP0694372B1 (en) 1994-07-29 2002-02-20 Ucar Carbon Technology Corporation Fire retardant oriented strand board structural element
DE29724768U1 (en) 1996-11-15 2004-02-19 Fritz Homann Gmbh & Co. Kg Anchoring pin for railway sleeper - extends from through-bore in centre of sleeper to blind bore in hard bituminous substrate and has metal pin surrounded by elastic material
JP2006015677A (en) * 2004-07-05 2006-01-19 Achilles Corp Fire-retardant woody board
EP1650370A2 (en) * 2004-10-20 2006-04-26 Peter Bucher Insulation and fire resistant panel and method for installing the same
EP1674633A2 (en) 2004-12-21 2006-06-28 Kronotec Ag Wood fiber insulating panel or mat
DE102004062649B4 (en) 2004-12-21 2006-09-07 Kronotec Ag Process for the production of a wood fiber insulation board or mats and wood fiber insulation boards or mats produced by this process
EP2208594A1 (en) 2009-01-15 2010-07-21 Fritz Egger GmbH & Co. OG Method for manufacturing a fire retardant wooden work surface
WO2012048860A1 (en) 2010-10-13 2012-04-19 TDH - GmbH Technischer Dämmstoffhandel Intumescent heat-insulating fire-proof moulded part
EP2514731A1 (en) * 2011-04-20 2012-10-24 Knauf Insulation Wood wool lightweight construction element
DE10066343B4 (en) 2000-06-02 2013-01-03 Steico Se Process for producing a flexible wood-fiber insulating mat and insulating mat produced by this process
DE102015103893A1 (en) * 2015-03-17 2016-09-22 Svt Brandschutz Vertriebsgesellschaft Mbh International Fire protection for wood-based panels
DE102015210569A1 (en) * 2015-06-09 2016-12-15 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Increasing the reactivity of isocyanate adhesives by amine / ammonium compounds
WO2017118765A1 (en) * 2016-01-09 2017-07-13 Fernando Tahmouresinia Flame or fire protection agent and production and use thereof in particular for wood-, cellulose-, and polyolefin-based products
EP3055348B1 (en) 2013-10-08 2019-04-10 Covestro Deutschland AG Fibre compound material, use of same and method for its production
DE102019001693A1 (en) * 2018-05-01 2019-11-07 Jackon Applications GmbH EPS products with flame retardant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245870A (en) * 1964-05-14 1966-04-12 Aguinaldo Dev Corp Process of producing a water-resistant and fire-retardant lignocellulosic product
US4418031A (en) * 1981-04-06 1983-11-29 Van Dresser Corporation Moldable fibrous mat and method of making the same
US7354503B2 (en) * 2003-06-20 2008-04-08 Sierra Pine Ltd. Fire retardant composite panel product and a method and system for fabricating same
DE102015119558A1 (en) 2015-11-12 2017-05-18 Fernando Tahmouresinia Flame or fire retardant and its preparation and use
DE102016121590A1 (en) 2016-11-10 2018-05-17 Gutex Holzfaserplattenwerk H. Henselmann Gmbh + Co. Kg Process for the production of fire-retardant insulation boards / mats and fire-retardant blowing insulation made from fibers based on renewable raw materials

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009109B1 (en) 1978-09-26 1981-09-30 Chemie Linz Aktiengesellschaft Thermoexpandable sealing material for cracks, interstices or the like and process for sealing walls or doors in case of fire
EP0694372B1 (en) 1994-07-29 2002-02-20 Ucar Carbon Technology Corporation Fire retardant oriented strand board structural element
DE19618444A1 (en) 1996-05-08 1997-11-13 Isofloc Oekologische Bautechni Hardly flammable cellulose loose fibre
DE19635410A1 (en) 1996-08-31 1998-03-05 Siempelkamp Gmbh & Co Maschine Prodn of biodegradable insulation board
DE29724768U1 (en) 1996-11-15 2004-02-19 Fritz Homann Gmbh & Co. Kg Anchoring pin for railway sleeper - extends from through-bore in centre of sleeper to blind bore in hard bituminous substrate and has metal pin surrounded by elastic material
DE10028607A1 (en) * 1999-06-10 2001-04-26 Yamaha Corp Process for the production of wood material
DE10066343B4 (en) 2000-06-02 2013-01-03 Steico Se Process for producing a flexible wood-fiber insulating mat and insulating mat produced by this process
JP2006015677A (en) * 2004-07-05 2006-01-19 Achilles Corp Fire-retardant woody board
EP1650370A2 (en) * 2004-10-20 2006-04-26 Peter Bucher Insulation and fire resistant panel and method for installing the same
EP1674633A2 (en) 2004-12-21 2006-06-28 Kronotec Ag Wood fiber insulating panel or mat
DE102004062649B4 (en) 2004-12-21 2006-09-07 Kronotec Ag Process for the production of a wood fiber insulation board or mats and wood fiber insulation boards or mats produced by this process
EP2208594A1 (en) 2009-01-15 2010-07-21 Fritz Egger GmbH & Co. OG Method for manufacturing a fire retardant wooden work surface
WO2012048860A1 (en) 2010-10-13 2012-04-19 TDH - GmbH Technischer Dämmstoffhandel Intumescent heat-insulating fire-proof moulded part
EP2514731A1 (en) * 2011-04-20 2012-10-24 Knauf Insulation Wood wool lightweight construction element
EP3055348B1 (en) 2013-10-08 2019-04-10 Covestro Deutschland AG Fibre compound material, use of same and method for its production
DE102015103893A1 (en) * 2015-03-17 2016-09-22 Svt Brandschutz Vertriebsgesellschaft Mbh International Fire protection for wood-based panels
DE102015210569A1 (en) * 2015-06-09 2016-12-15 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Increasing the reactivity of isocyanate adhesives by amine / ammonium compounds
WO2017118765A1 (en) * 2016-01-09 2017-07-13 Fernando Tahmouresinia Flame or fire protection agent and production and use thereof in particular for wood-, cellulose-, and polyolefin-based products
DE102019001693A1 (en) * 2018-05-01 2019-11-07 Jackon Applications GmbH EPS products with flame retardant

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
" HOLZBAU HANDBUCH", 1 August 2012, article ANONYMOUS –: "Holzfaserdämmstoffe VERBAND HOLZFASER DÄMMSTOFFE", XP055980237
"Holzwerk Gebr. Schneider Gmbh ", 6 September 2016, article ANONYMOUS: "Produktdatenblatt HOLZFASERDÄMMPLATTEN", XP055980256
"STEICO", 1 December 2015, article ANONYMOUS: "STEICOtherm STABILE WÄRMEDÄMMUNG", XP055980251
"STEICO", 1 March 2016, article ANONYMOUS: "STEICOflex FLEXIBLE WÄRMEDÄMMUNG", XP055980246
ANONYMOUS: "STEICOuniversal Unterdeck- und Wandbauplatte", STEICO, 1 September 2016 (2016-09-01), XP055980243, [retrieved on 20221111]

Also Published As

Publication number Publication date
DE102016121590A1 (en) 2018-05-17
PL3323576T3 (en) 2022-05-23
EP3323576A1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
US8425717B2 (en) Phosphate bonded composites and methods
DE60219443T2 (en) FIBER REINFORCED CEMENT MATERIALS USING CHEMICALLY MODIFIED FIBERS WITH IMPROVED MIXABILITY
EP3400272B1 (en) Flame or fire protection agent and production and use thereof in particular for wood-, cellulose-, and polyolefin-based products
EP3362235B1 (en) Cellulose-based insulation and methods of making the same
DD202836A5 (en) Fibrous materials and their preparation and use
EP3323576B1 (en) Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources
EP1525264B1 (en) Method for the production of fire-resistant moulded wood fibre pieces
EP3946858A1 (en) Composite panel, method for the production thereof and uses thereof
EP0351670B1 (en) Poorly inflammable construction parts, especially boards, and process for their manufacture
EP0033391B1 (en) Process for preparing flame retardant or non-combustible products based on fibrous materials
WO2018116500A1 (en) Cement material reinforcing fiber
DE102019107982A1 (en) Flame, fire and glow-protected natural fiber insulation materials and their production and use, in particular for natural fiber insulation products
EP2963198B1 (en) Method for producing flame-retarding panels of insulating material
DE10140480C1 (en) Production of building material, e.g. lightweight board, plaster, adhesive or insulation, involves suspending crushed renewable cellulose raw material in water and incorporating more solid during rotary mechanical treatment
JP2023548963A (en) Insulating materials, insulating products, layered structures, buildings, and methods of manufacturing insulating materials
EP1203845A1 (en) Process for manufacturing an insulation
EP3461801B1 (en) Method for the preparation of plant fibre insulation materials for injected or poured in insulation
EP1680547A2 (en) Novel paper-,cardboard- or pulp board-based material
KR101489902B1 (en) Eco-friendly non-flammable mineral containing paper board and method of manufacturing the same
DE202005004879U1 (en) Insulating material, for blowing into hollow walls and other building elements, is obtained from damp grass by decomposing it and separating fibers with a cellulose or hemicellulose content from the rest
PL231391B1 (en) The pulp which is a mixture of natural wood fibers and cellulose fibers derived from recovered paper processing and lignocellulosic biomass crop and its method for manufacture
EP0908571A2 (en) Insulating material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIRSCH, ALEXANDER DR.

Inventor name: EHSAEI, HOSSEIN

Inventor name: KHAMIS, WARDA

Inventor name: FEHRENBACH, ULRICH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181024

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIRSCH, ALEXANDER DR.

Inventor name: FEHRENBACH, ULRICH

Inventor name: EHSAEI, HOSSEIN

Inventor name: KHAMIS, WARDA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20190521

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/94 20060101ALI20210916BHEP

Ipc: E04B 1/74 20060101ALI20210916BHEP

Ipc: E04B 1/76 20060101ALI20210916BHEP

Ipc: B27N 3/04 20060101ALI20210916BHEP

Ipc: B27N 3/12 20060101ALI20210916BHEP

Ipc: B27N 3/00 20060101ALI20210916BHEP

Ipc: B27N 9/00 20060101AFI20210916BHEP

INTG Intention to grant announced

Effective date: 20211015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1464917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012508

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017012508

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

26 Opposition filed

Opponent name: STEICO SE

Effective date: 20221026

Opponent name: TAHMOURESINIA, FERNANDO

Effective date: 20221025

R26 Opposition filed (corrected)

Opponent name: STEICO SE

Effective date: 20221026

Opponent name: TAHMOURESINIA, FERNANDO

Effective date: 20221025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: STEICO SE

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231129

Year of fee payment: 7

Ref country code: FR

Payment date: 20231124

Year of fee payment: 7

Ref country code: DE

Payment date: 20231129

Year of fee payment: 7

Ref country code: CH

Payment date: 20231202

Year of fee payment: 7

Ref country code: AT

Payment date: 20231124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231023

Year of fee payment: 7

Ref country code: BE

Payment date: 20231127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126