WO2018116500A1 - Cement material reinforcing fiber - Google Patents

Cement material reinforcing fiber Download PDF

Info

Publication number
WO2018116500A1
WO2018116500A1 PCT/JP2017/020895 JP2017020895W WO2018116500A1 WO 2018116500 A1 WO2018116500 A1 WO 2018116500A1 JP 2017020895 W JP2017020895 W JP 2017020895W WO 2018116500 A1 WO2018116500 A1 WO 2018116500A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
lignocellulose
cement material
fibers
cement
Prior art date
Application number
PCT/JP2017/020895
Other languages
French (fr)
Japanese (ja)
Inventor
朋 柿谷
友紀子 島川
Original Assignee
住友林業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017011715A external-priority patent/JP6745227B2/en
Priority claimed from JP2017031592A external-priority patent/JP6864493B2/en
Priority claimed from JP2017086713A external-priority patent/JP6791804B2/en
Application filed by 住友林業株式会社 filed Critical 住友林業株式会社
Publication of WO2018116500A1 publication Critical patent/WO2018116500A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/02Cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers

Definitions

  • the present invention relates to a method for producing a fiber for cement material reinforcement, a fiber-mixed cement material, and a fiber-reinforced cement material.
  • the present invention also relates to a method for producing a compression-molded body of lignocellulose fibers, a compression-molded body produced by the production method, a method for using the same, and the like.
  • Cement is an important social infrastructure material that is inexpensive, has excellent strength and durability, and can be molded freely. Therefore, it is widely used for buildings, structures, building materials, etc. in the field of construction and civil engineering as materials having various characteristics and shapes such as concrete, mortar, cement board, foamed concrete and the like.
  • problems with cement materials there are some problems with cement materials. Among them, the following two can be cited as typical examples.
  • the first problem is that the cement material itself is extremely poor in tensile resistance, so that it easily breaks against tensile stress associated with generation of external force such as drying shrinkage or earthquake. Once a crack occurs, the crack not only causes an appearance problem, but also causes rainwater intrusion and stress concentration.
  • lignocellulosic resources derived from biomass, wood and non-wood plants accumulate carbon dioxide during plant growth and are recognized as carbon neutral materials that do not emit excess carbon dioxide when used or disposed of.
  • Lignocellulose resources obtained from wood and non-wood plants are composed of lignocellulose fibers. Lignocellulosic fiber breaks and unravels the intermediate layer that binds the fibers in an adhesive manner by mechanically, thermomechanically, chemically, chemically mechanically or chemically thermomechanically treating the lignocellulose resources. Can be obtained.
  • the lignocellulosic fiber thus obtained is mainly used as pulp as a paper raw material or fiber as a fiberboard raw material.
  • the cement material has a drawback of exhibiting brittle properties.
  • research has been carried out to improve tensile stress and shock absorption by adding glass fibers and synthetic polymer fibers to cement materials.
  • these fibers have an unfavorable aspect in that carbon dioxide is released due to the use of petroleum resources as a raw material, is not decomposed in the environment, or increases in weight.
  • using a plant-derived lignocellulose fiber to reinforce the cement material has also been limited to cement materials produced in factories.
  • Patent Documents 1 to 7 describe a method of reinforcing a cement material using pulp or wood fiber.
  • lignocellulose fiber cellulose, which is a constituent unit of the molecular chain of the fiber, has a plurality of highly polar hydroxyl groups, so it easily aggregates due to hydrogen bonding between fibers, and in addition, lignocellulose fiber is flexible. Due to its high nature, it tends to be a dull so-called fiber ball that is intricately entangled, and these have the disadvantage that they are not easily loosened. Therefore, when adding lignocellulosic fiber to cement material, it has to be performed using a device (for example, a device called a pulper) that breaks a special fiber at a factory. In other words, lignocellulosic fibers could not be added in the case of a cement material that is usually kneaded with a simple device at the time of transportation to and from the site such as concrete and mortar.
  • a device for example, a device called a pulper
  • lignocellulosic fibers could not be added to cement materials that are kneaded with a simple device at the time of transportation to the field, such as concrete and mortar.
  • lignocellulosic fibers when lignocellulosic fibers are added during cement material preparation, that is, when kneading cement and water, the fibers remain agglomerated or become lumps and cannot be dispersed. If the fiber is not dispersed in the cement material, it does not show a reinforcing effect, but the portion becomes a defect and the physical properties of the material are lowered. Therefore, while using lignocellulosic fiber, there is no way to disperse it in the material without making this fiber lumpy, so adding lignocellulosic fiber to concrete or mortar to reinforce the material so far could not.
  • Patent Document 8 proposes a lignocellulose fiber-reinforced cement material.
  • the dispersibility of lignocellulosic fibers can be improved by adding potato starch or corn starch which is a cationic polymer that can be adsorbed or bound to the fiber material.
  • This is a method usually used for improving the strength of paper, and it is empirically known that it has an effect of preventing aggregation of loose lignocellulose fibers. However, it does not help disperse the lignocellulose in a flocculated or damped state.
  • Patent Document 8 does not disclose anything about the result of improving the dispersibility and the physical properties of the molded product by the addition, and the effect of the addition is only expected. Therefore, it is reasonable to interpret that it is not a scientific indication of whether it actually has an effect, and if it is, what kind of effect it is, and that it does not suggest a solution to the problem. .
  • Patent Document 9 cellulose fibers are treated with a cationic surfactant, a quaternary ammonium salt, and the aggregation of cellulose fibers is eliminated by canceling the polarity of the negatively charged cellulose hydroxyl groups.
  • a water reducing agent is often added to materials such as cement and concrete, and since this is anionic, it cannot be used simultaneously with a cationic substance.
  • quaternary ammonium salts are known to be corrosive to metals, which increases the possibility of corroding reinforcing bars, steel frames and other metal fasteners.
  • this technology is intended to be used only when dewatering a slurry of cement, cellulose fibers, and water in a subsequent process by dispersing cellulose fibers using a large amount of water in a factory. It cannot be applied to mortar, concrete, etc., which cannot be dehydrated because it mainly involves kneading on site. Further, according to the method disclosed in this document, the composite material containing cement and cellulose fiber is heat-cured using an autoclave, and in that respect, mortar or concrete that cannot perform such a process. Etc. are different. Therefore, this patent document can be applied only to a very limited method under very limited conditions, and can be said to be different from the method to be solved in the present invention. Further, Non-Patent Document 1 describes that the bending strength of mortar is improved by adding wood strips, but there is no mention of resistance to cracking.
  • An object of the present invention is to provide a fiber for reinforcing a cement material that uses plant-derived lignocellulose fibers and can effectively reinforce the cement material.
  • the subject of this invention is providing the fiber mixing cement material which can manufacture the high performance fiber reinforced molded object reinforced with the plant-derived lignocellulose fiber.
  • the subject of this invention provides the manufacturing method of the fiber reinforced cement material which can manufacture efficiently the fiber reinforced cement material which can form the high performance fiber reinforced molded object reinforced with the lignocellulose fiber derived from a plant. Is.
  • fiber agglomeration and lumps can be easily loosened in water by treating lignocellulose fibers with an antistatic agent.
  • one of the reasons why fiber aggregation and lumps are not unraveled is that electricity is not conducted and lignocellulosic fibers with a large specific surface area are rubbed together during the drying process, resulting in static electricity on the fiber surface.
  • lignocellulosic fiber which is originally hydrophilic, apparently behaves hydrophobicly without attracting water, so that it does not become familiar with water and inhibits the hydrophilicity and dispersion process of the fiber. It is a thing.
  • the aggregation due to the high affinity between hydroxyl groups which is another cause, improves the hydrophilicity of the fibers by improving the charging of the fibers, and utilizes an antistatic agent having a surface-active action (or By adding a surfactant separately), it is possible to loosen agglomeration and lumps in water.
  • the present inventors have newly found that it can be effectively dispersed without using a strong cation such as a quaternary ammonium salt.
  • the lignocellulosic fibers can be agglomerated or damaged in the cement material without adding a special kneading device or an excessive amount of water (and then dehydrating). It was found that it can be uniformly dispersed in the absence of water.
  • the present invention has been completed based on the above findings and further studies.
  • the present invention provides a fiber for reinforcing a cement material, comprising a lignocellulose fiber to which an antistatic agent is attached.
  • the present invention also provides a fiber-mixed cement material comprising lignocellulose fibers, an antistatic agent and cement.
  • the present invention also provides a fiber-mixed cement material comprising lignocellulosic fibers to which an antistatic agent is attached, and cement.
  • the present invention also includes a kneading step of mixing lignocellulosic fiber, antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step, and a method for producing a fiber reinforced cement material Is to provide.
  • the present invention also provides a method for producing a fiber-reinforced cement material, characterized in that lignocellulose fibers and lignocellulosic material cutting pieces are added to the cement material (hereinafter, the present invention is referred to as the second method invention). Also called).
  • this invention provides the fiber reinforced cement structure characterized by including the said fiber for cement material reinforcement.
  • this invention provides the manufacturing method of a fiber reinforced cement structure characterized by including the kneading process which mixes lignocellulose fiber, an antistatic agent, cement, and water.
  • lignocellulosic fibers basically have a hollow cylindrical shape, and because of this shape, they exhibit high elastic behavior even if light.
  • cement crystals gradually grow inside the hollow body (referred to as mineralization).
  • lignocellulosic fibers lose their elastic properties and instead develop brittle properties. That is, the various physical property improvement effects based on the elastic properties of the lignocellulose fibers imparted by adding the lignocellulose fibers are reduced.
  • Non-Patent Document 2 discloses a method of treating lignocellulose fibers with a specific silane coupling agent.
  • silane coupling agents are very expensive and difficult to handle.
  • Another object of the present invention is to provide a fiber for reinforcing a cement material that uses plant-derived lignocellulosic fibers, can effectively reinforce the cement material, and is excellent in durability of the reinforcing effect.
  • Another object of the present invention is to provide a fiber-mixed cement material that is reinforced with plant-derived lignocellulosic fibers and that can produce a fiber-reinforced molded article having excellent water resistance and durability.
  • Another object of the present invention is to provide a method for producing a fiber reinforced cement material capable of producing a fiber reinforced cement material reinforced with plant-derived lignocellulose fibers and capable of forming a fiber reinforced molded article having excellent water resistance and durability. To do.
  • the present inventors have used a lignocellulosic fiber in which a resin is attached to a lignocellulosic fiber, preferably treated with a resin and cured with the resin component, Alternatively, the cellulose nanofiber and / or the lignocellulose nanofiber attached to the lignocellulose fiber is treated with the fiber, preferably the cellulose nanofiber and / or the lignocellulose nanofiber, and the cellulose nanofiber and / or the lignocellulose nanofiber is dried. It has been found that the use of the lignocellulose fiber thus produced greatly improves not only the initial water resistance / durability of the cement material but also the long-term water resistance / durability.
  • the present invention has been completed based on the above findings and further studies. That is, the present invention comprises lignocellulose fibers to which a fiber surface coating agent is adhered, and the fiber surface coating agent is at least one selected from the group consisting of a resin, lignocellulose nanofibers and cellulose nanofibers.
  • a fiber for reinforcing a cement material is provided.
  • the present invention is a method for producing a fiber for reinforcing a cement material, wherein the fiber surface coating agent is a cellulose nanofiber and / or a lignocellulose nanofiber, A liquid containing cellulose nanofibers and / or lignocellulose nanofibers is dried in a state where the liquid is in contact with the lignocellulose fibers, whereby lignocellulose fibers having the cellulose nanofibers and / or lignocellulose nanofibers attached to the surface are dried.
  • the manufacturing method of the fiber for cement material reinforcement obtained is provided.
  • the present invention also provides a fiber-mixed cement material comprising the above-described cement material reinforcing fiber or the cement material reinforcing fiber obtained by the above method, and cement.
  • the present invention includes a kneading step of mixing the cement material reinforcing fiber or the cement material reinforcing fiber obtained by the method, cement and water, and does not include a dehydrating step after the kneading step.
  • the present invention provides a method for producing a fiber-reinforced cement material.
  • lignocellulose resources obtained from wood and non-wood plants are composed of lignocellulose fibers, which are mechanical, thermomechanical, chemical, and chemical mechanical. Alternatively, it can be obtained by breaking and unraveling the intermediate layer that bundles the fibers in an adhesive manner by chemical thermomechanical treatment.
  • the lignocellulosic fiber thus obtained is mainly used as pulp as a paper raw material or fiber as a fiberboard raw material. This is because lignocellulose fibers are lightweight, have high strength, and are highly elastic.
  • lignocellulosic fibers In order to solve environmental problems represented by global warming in recent years, the use of lignocellulosic fibers is expected as an alternative to glass fibers, synthetic resin fibers, metal fibers and asbestos fibers, which have been used in the past. Has been.
  • lignocellulose fibers are very bulky and typically have a bulk density of 30 to 50 kg / m 3 , so that they cannot be efficiently transported as they are.
  • dust when mixed with the material to be reinforced as it is, dust easily rises, which may cause problems such as deterioration of the working environment and contamination of other materials and equipment.
  • Patent Documents 10 to 12 disclose that a thermoplastic resin is added to lignocellulosic fibers, and the compression of the cellulose fibers is performed using a hot press method using the thermoplastic resin as a binder. A method is disclosed in which, after a plate is formed, the compressed plate is mechanically cut into small pieces and small grains called pellets or dies.
  • Patent Documents 10 to 12 require large-scale equipment such as a hot press, and the pellets produced by the method are subjected to heat higher than the melting point of the resin used as the binder. There is a problem that it must be remelted and plasticized and not redispersed at room temperature. On the other hand, if a binder such as a thermoplastic resin is not added, the problem of difficulty in redispersion can be solved.
  • lignocellulosic fibers have a very high elastic force or a strong elastic recovery force. However, when the fiber mass is simply compressed, when released from the compressive force, the fiber mass will elastically recover until it reaches a certain low bulk density.
  • Patent Document 14 a molding die is provided on the surface of two pairs of rollers, called a briquette manufacturing apparatus, and a powdery substance is introduced between the two pairs of rollers.
  • a granulating apparatus is known in which a powdery substance is compressed and molded between rollers by applying pressure while rotating in a meshing direction. According to this method, since the shearing force applied to the lignocellulose fiber at the time of compression molding is small, the lignocellulose fiber can be compression molded without being excessively powdered.
  • lignocellulosic fibers the bulk density is typically 30 ⁇ 40kg / m 3 and very bulky, lighter, and since the fibers are long and flexible, forming a fiber ball fibers are intertwined Most of them do. For this reason, it is difficult to drop fibers or fiber bundles between rollers by gravity. There arises a problem that the toner is not supplied between the rollers of the roller, or is not supplied without some assistance. Therefore, it was difficult to continuously produce briquettes from lignocellulose fibers.
  • the lignocellulosic fiber is granulated by continuously compressing and molding without using a binder added from the outside in order to substantially bond the fibers, and without making the fiber as powdery as possible. How to do it is required.
  • the object of the present invention is to compress lignocellulosic fibers, which can efficiently compress and mold lignocellulose fibers derived from plants such as wood and non-wood, without substantially using a binder added from the outside. It is providing the manufacturing method of a molded object.
  • “without substantially using a binder” means that a resin binder intended to bind fibers is not added, and a resin or the like for treating lignocellulosic fibers for another purpose. Addition (for example, coating, etc.) means to allow.
  • Another object of the present invention is to provide a compression-molded body of lignocellulosic fibers that can be transported, stored and handled efficiently and economically and is excellent in the effect of improving the strength of a material to be reinforced.
  • Another object of the present invention is to provide a fiber-reinforced composite material that can efficiently blend lignocellulosic fibers derived from wood or non-wood plants with respect to the material to be reinforced, and that is excellent in improving the strength of the material to be reinforced.
  • An object of the present invention is to provide a method for producing a fiber-reinforced composite material that can be efficiently produced.
  • Another object of the present invention is to provide a fiber-reinforced composite material that is reinforced with lignocellulosic fibers derived from wood or non-wood plants and is excellent in strength and durability.
  • the present inventors have developed a multi-screw extruder that rotates lignocellulosic fibers so that multi-shaft bladed screws arranged in a housing mesh with each other. It was found that the above-mentioned problems can be solved by compressing and transferring the lignocellulosic fibers and discharging them from the discharge holes provided in the die.
  • the present invention has been further studied and completed the following inventions such as a compression molded product of lignocellulose fiber, a method for producing a fiber-reinforced composite material, and a fiber-reinforced composite material.
  • the present invention relates to a method for producing a compression molded product of lignocellulosic fibers used in a fiber-reinforced composite material, wherein the lignocellulosic fibers are introduced into a multi-screw extruder equipped with two or more screws, Cellulose fibers are forcibly transferred and compressed toward a die by screw blades meshing with each other in a plurality of screws, and the compressed product is discharged from a plurality of discharge holes provided in the die.
  • the present invention provides a method for producing a compression molded product of lignocellulose fiber.
  • this invention provides the compression molding body of the lignocellulose fiber manufactured by the said method. Further, the present invention provides a fiber reinforced cement material as a fiber reinforced composite material by mixing a compression molded product of lignocellulose fiber produced by the above method with cement and water. A method for producing a reinforced composite material is provided. Further, the present invention is characterized in that a compression-molded body of lignocellulose fibers produced by the above method is unraveled with a defibrating device and then mixed with a material to be reinforced to produce a fiber-reinforced composite material. The present invention provides a method for producing a fiber-reinforced composite material.
  • the present invention is characterized by producing a fiber reinforced resin composition as a fiber reinforced composite material by kneading a compression molded body of lignocellulose fiber produced by the above method and a molten resin.
  • the present invention provides a method for producing a fiber-reinforced composite material.
  • this invention provides the fiber reinforced composite material characterized by being reinforced using the compression molding body of the lignocellulose fiber manufactured by the said method.
  • FIG. 1 is a schematic view of an in-plane shear tester used in an in-plane shear test.
  • FIG. 2 is a schematic view showing a multi-screw extruder which is an example of the multi-screw extruder used in the present invention.
  • FIG. 3 is a perspective plan view of the two screws arranged in parallel with each other when viewed from above with the barrel omitted.
  • FIG. 4 is an enlarged view showing a state in which the downstream surface of the die of the multi-screw extruder is viewed from the direction of arrow D in FIG.
  • the fiber for reinforcing a cement material according to the present invention is made of lignocellulose fiber to which an antistatic agent is attached.
  • the fiber-mixed cement material of the present invention includes lignocellulose fibers, an antistatic agent and cement.
  • the manufacturing method of the fiber reinforced cement material of the present invention includes a kneading step of mixing lignocellulosic fiber, antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step.
  • the lignocellulosic fiber used in the present invention can be obtained by bonding a fiber by treating mechanically, thermomechanically, chemically, chemically mechanically, or chemically thermomechanically a wood or non-wood plant-derived lignocellulose material. It is a fiber that breaks and unravels the intermediate layers that are bound together. Such lignocellulosic fibers can be used without particular limitation.
  • the wood may be coniferous or hardwood.
  • non-wood plant-derived lignocellulose fibers include walla pulp, bagasse pulp, reed pulp, kenaf pulp, linen pulp, ramie pulp, hemp pulp and the like.
  • lignocellulosic fibers used in the present invention for example, dissolving pulp, sulfite pulp, kraft pulp, semichemical pulp, chemiground pulp, refiner ground pulp, thermomechanical pulp, and groundwood pulp can be preferably used.
  • mechanical pulp or fiberboard fiber from the viewpoint of production efficiency and physical properties.
  • mechanical pulp include refiner ground pulp, thermomechanical pulp, and groundwood pulp. From the same viewpoint, thermomechanical pulp is more preferable.
  • Thermomechanical pulp also includes fiberboard fibers.
  • the fiberboard fiber is a thermomechanical pulp in a broad sense, and is a relatively coarse fiber in a narrow sense.
  • Lignocellulose fibers unlike bleached (deligenized) pulp, all contain lignin.
  • a lignocellulose fiber may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a method for converting lignocellulosic material into lignocellulosic fibers known methods can be used without particular limitation. For example, a conventional method for producing pulp, a conventional method for producing fiber for fiberboard, and the like are appropriately used. Can do. As an example of a method for converting lignocellulosic material into lignocellulosic fiber, lignocellulosic material is crushed into chips and then steamed with a preheater or a press steamer while applying a pressure of about 1 to 10 Bar.
  • the lignocellulose fiber used in the present invention has a width of preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, and a length of preferably 0.1 to 50 mm, more preferably 1 to 5 mm.
  • the length and width of such a fiber can be appropriately adjusted to a desired length and width by adjusting operating conditions such as a refiner disk interval.
  • Lignocellulose fibers are efficiently produced through the hydrothermal process as described above, and the resulting fibers are less damaged.
  • lignocellulosic fibers are dried for the purpose of improving transportation, storage, storage and handling.
  • known methods can be used without any particular limitation. For example, wet lignocellulosic fibers are discharged onto a roller or wire as is done in the paper and pulp industry. Then, after dehydrating by suction or pressurization, the air flow in the tube where hot air is passed through the wet lignocellulosic fiber as is done in the method of heat drying or the production of fiber for fiberboard The method of heat-drying under can be mentioned.
  • Such drying of lignocellulose fibers is preferably performed at 60 to 200 ° C., for example, more preferably 80 to 160 ° C., and still more preferably 100 to 140 ° C.
  • Antistatic agent As the “antistatic agent” used in the present invention, those having an antistatic effect can be used without particular limitation. Antistatic effect is the effect of attracting moisture in the air to form a conductive water molecule layer, and the degree of antistatic effect is known methods such as surface resistivity, charged half-life, dirt chamber test, etc. Can be evaluated.
  • the antistatic agent preferably has an antistatic agent that satisfies the following criteria (1) or (2).
  • the surface specific resistance defined in ASTM D257 is 10 14 ⁇ or less.
  • the surface resistivity defined in ASTM D257 is more preferably 10 12 ⁇ or less, and further preferably 10 11 ⁇ or less.
  • the charged voltage half-life defined in JIS L1094 is 30 seconds or less.
  • the charged half-life defined in JIS L1094 is more preferably 10 seconds or less, and even more preferably 5 seconds or less.
  • antistatic agent used in the present invention examples include anionic and nonionic agents.
  • anionic refers to an anion (anionic) compound as the type of ion when dissolved in water
  • nonionic refers to a nonionic compound that does not become an ion.
  • an antistatic agent various compounds marketed as an antistatic agent, a surfactant having an antistatic effect, particularly a highly hydrophilic surfactant can be used.
  • a quaternary ammonium salt which is a typical cationic compound, is not preferable because of its strong metal corrosiveness.
  • an anionic compound such as a water reducing agent is added to the cement material, a cationic material cannot be used at the same time.
  • the antistatic agent used in the present invention is preferably a surfactant type and not a cationic type, more specifically, an anionic or nonionic surfactant type.
  • Antistatic agents are preferred, and nonionic surfactants are more preferred.
  • cationized starch has been suitably used for lignocellulosic fibers and that strong cation is selected in Patent Document 9, other than cationic It is clear that this compound was practically not an option in improving the dispersibility of lignocellulosic fibers.
  • antistatic agents can be used either water-based or water-insoluble, but in combination with other water-based additives, considering the processing efficiency when processing lignocellulosic fibers at a time, they may be water-based. preferable. However, even a water-insoluble antistatic agent can be used in combination with other aqueous additives by performing treatment such as emulsification.
  • anionic surfactant examples include alkyl sulfonates, alkyl benzene sulfonates, and alkyl phosphates.
  • nonionic surfactant examples include glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyldiethanolamine, hydroxyalkylmonoethanolamine, Examples include polyoxyethylene alkylamines, polyoxyethylene alkylamine fatty acid esters, polyoxyethylene sorbitan fatty acid esters, alkyl diethanolamides, and the like.
  • Polyoxyethylene sorbitan fatty acid esters are preferably mono-, di- or triesterized 1,4-, 1,5- or 3,6-sorbitan, ethylene oxide (EO), or ethylene oxide (EO) and propylene oxide. (PO) is obtained by addition condensation.
  • polyoxyethylene sorbitan fatty acid esters examples include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan dilaurate, polyoxyethylene sorbitan trilaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan dipalmitate, Polyoxyethylene sorbitan tripalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan distearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan diolate, polyoxyethylene sorbitan Triolate, polyoxyethylene sorbitan monoisostearate, polyoxyethylene sorbitan Isostearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan esters of mixed fatty acids, and the like.
  • polyoxyethylene sorbitan mixed fatty acid ester examples include sorbitan coconut oil fatty acid ester, monopalmitic acid polyoxyethylene sorbitan, and the like.
  • polyoxyethylene sorbitan fatty acid esters for example, polyoxyethylene sorbitan monolaurate is preferably used.
  • the above-mentioned antistatic agents may be used alone or in combination of two or more.
  • Polyoxyethylene sorbitan fatty acid esters are preferred as antistatic agents, and are preferably attached to lignocellulose fibers regardless of whether they are antistatic agents.
  • a method for using the antistatic agent either a method in which lignocellulose fibers are treated with an antistatic agent in advance or a method in which lignocellulosic fibers are kneaded with cement and water can be used.
  • a method of treating lignocellulosic fibers with an antistatic agent in advance a method of spraying an antistatic agent on wet lignocellulose fibers carried out from a defibrating apparatus (for example, a refiner) and then drying, or Examples thereof include a method in which wet lignocellulose fibers are immersed in a solution containing an antistatic agent and then dried.
  • the method of spraying an antistatic agent or immersing in the solution containing an antistatic agent etc. can also be employ
  • the amount of the antistatic agent attached to the lignocellulosic fiber is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of the solid content of the antistatic agent relative to the dry lignocellulose fiber. More preferably, it is 0.5 to 2% by mass.
  • the cement material reinforcing fiber according to the present invention is preferably in a state where an antistatic agent is partially attached to the surface of the fiber.
  • the cement material reinforcing fiber of the present invention comprising lignocellulose fibers with an antistatic agent attached thereto can be obtained.
  • the cement material reinforcing fiber of the present invention may be sold alone or as a fiber-mixed cement material containing lignocellulose fiber, antistatic agent and cement.
  • Cement material reinforcing fiber or fiber-mixed cement material is produced at the factory, and it is transported to the construction and civil engineering work sites in each region, where it is kneaded with other materials and water such as mortar and concrete. It is also preferable to use a reinforced cement material from the standpoint that a high-quality fiber-reinforced molded body can be produced while suppressing conveyance costs.
  • the fiber-mixed cement material has a moisture content of 15% by mass or less.
  • the mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less.
  • the mortar mix contains fine aggregates such as lignocellulosic fibers, antistatic agents and sand, and the concrete mix contains coarse aggregates such as lignocellulosic fibers, antistatic agents and gravel.
  • the fiber-mixed cement material preferably contains lignocellulosic fibers to which an antistatic agent is attached as a lignocellulose fiber and an antistatic agent.
  • known ones such as those defined in JIS A 1102 can be used.
  • cement material The cement material in the present invention is not particularly limited as long as it contains cement. Specific examples include concrete, mortar, and cement molding material. Examples of the cement molding material include wood piece cement board, wood wool cement board, siding board, slate board, and foamed concrete.
  • the meaning of cement material and fiber reinforced cement material is not only the final product after water addition, but also the powder used as the raw material for producing the product (for example, water-free concrete mix powder mixture, water-free mortar Mixed powder mixture etc.). Furthermore, fly ash and blast furnace slag that are often used in recent years may be included.
  • the fiber-mixed cement material and the fiber-reinforced cement material of the present invention include preservatives, insecticides, fungicides, water repellents, ultraviolet absorbers, flame retardants, fillers, cups as long as the effects of the present invention are not impaired.
  • Various additives such as a ring agent, an elastomer, a polymer, an antifoaming agent, a lubricant, a pigment, a dye, a water reducing agent, a swelling agent, and a shrinkage reducing agent can be added. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • glass fibers, synthetic resin fibers, carbon fibers, cellulose nanofibers, lignocellulose nanofibers, cellulose nanocrystals, carbon nanotubes, other nanofibers, and the like can be added as long as the object of the present invention is not impaired. This is because, in general, it is empirically known that when a plurality of types of fibers having different characteristics and shapes are combined, a preferable effect can be obtained as compared with the case where any one of them is used alone.
  • the method for producing a fiber-reinforced cement material of the present invention includes a kneading step of mixing lignocellulose fibers, an antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step.
  • a kneading step it is preferable to knead small pieces obtained by cutting a lignocellulosic material described later in addition to the cement material reinforcing fiber, cement and water.
  • high-performance fiber reinforcement reinforced with plant-derived lignocellulose fibers by curing the mixture (fiber-reinforced cement material) after the kneading process at room temperature.
  • a molded body can be manufactured.
  • the fiber-reinforced molded body may be a plate-shaped molded body or a molded body having a three-dimensional solid form.
  • the molded product obtained by using the method for producing a fiber for reinforcing a cement material, a fiber-mixed cement material or a fiber-reinforced cement material according to the present invention corresponds to a fiber-reinforced molded product.
  • the plate-like fiber reinforced molded body include wood chip cement board, wood wool cement board, siding board, slate board, foamed concrete, and other concrete secondary products.
  • the fiber reinforced molded body having a three-dimensional solid form may be a part of a building, for example, a concrete primary product such as a wall or floor of a concrete building, a conventional shaft assembly method or a two-by-four method. It may be a mortar wall in a wooden building.
  • the wall of the building may be a wall having an opening for a window or a door.
  • the fiber reinforced molded body may be a fiber reinforced cement structure.
  • the fiber reinforced cement structure may be a structure including fine aggregate and coarse aggregate, or may be a structure not including coarse aggregate.
  • the fiber reinforced cement structure includes a primary concrete product made by pouring ready-mixed concrete at a construction site, a secondary concrete product made in a factory using concrete as a material, and the like. Examples of primary concrete products include the entire concrete building and parts thereof (walls and floors), concrete tunnels, and the like. Secondary concrete products include utility poles, expressway columns and side grooves, wave-dissipating blocks, manholes, concrete piles, box culverts, segments used for tunnel inner walls, poles for traffic lights and distribution lines.
  • the cement material reinforcing fiber of the present invention (as well as the second cement material reinforcing fiber) is preferably used in combination with a small piece obtained by cutting a lignocellulosic material.
  • the fiber-mixed cement material of the present invention preferably contains small pieces obtained by cutting the lignocellulosic material in addition to the lignocellulosic fiber, antistatic agent and cement, preferably cement material reinforcing fiber and cement.
  • a piece obtained by cutting the lignocellulose material is used. It is preferable to mix.
  • the small piece which cut lignocellulose fiber and lignocellulose material is added to cement material.
  • lignocellulosic fibers In addition to lignocellulosic fibers, the addition of small pieces of lignocellulosic material cut from lignocellulosic materials, so-called flakes, wafers, strands, etc., improves the brittleness of the fiber reinforced molded product, etc. As compared with the case where lignocellulosic fiber is added alone, it can be greatly improved.
  • the “small piece of lignocellulosic material cut” used in the present invention (hereinafter referred to as lignocellulosic material-cut small piece) is produced with a flaker, a ring type or a disk type strand production device using wood or a plant other than wood as a raw material. Those that have been used can be used without particular limitation.
  • lignocellulosic material cutting pieces flakes for party quill boards, strands for wafer boards, and strands for oriented strand boards can be preferably used.
  • One type of these lignocellulosic material cutting pieces may be used alone, or two or more types may be used in combination.
  • the width is preferably 1 to 50 mm, more preferably 2 to 20 mm.
  • the length is preferably 1 to 50 mm, more preferably 2 to 20 mm.
  • the thickness is preferably 0.2 to 1.0 mm, more preferably 0.3 to 0.6 mm.
  • the overall shape of the lignocellulosic material cutting piece is that the length of the fiber direction is the length and the direction perpendicular to the fiber direction is the width. From the standpoint of performance, it is preferable.
  • the shape of such a cutting piece can be appropriately adjusted to a desired shape by adjusting the operating conditions of the flaker and the strand manufacturing apparatus.
  • the size of the lignocellulose fiber cutting piece is appropriately changed depending on the purpose of use. For example, when added to mortar, the mortar composite material is applied to a reticulated base metal called a lath net. In this case, since the physical entanglement between the lath net and the mortar is important, the size of the lignocellulosic material cutting piece is determined by the size of the opening of the lath net.
  • the same can be said for concrete, reinforcing bars and reinforcing wire mesh.
  • the lignocellulosic material cutting pieces are not treated with an antistatic agent, do not become lumps, and do not agglomerate, so the necessity of treatment is arbitrary.
  • the lignocellulosic fiber and the lignocellulosic material cutting piece may be added to the cement material at separate stages or may be added at the same stage.
  • the case of adding together is preferable because the process can be simplified.
  • lignocellulose fibers and lignocellulose material cutting pieces are mixed in a desired ratio in advance, and it may be added, More preferably, it is more preferable to add a mixture obtained by compression solidification or granulation such as pellets in order to improve lightness, workability, and work environment.
  • the present invention comprises a lignocellulosic fiber to which a fiber surface coating agent is attached as a fiber for reinforcing a cement material, and the fiber surface coating agent is selected from the group consisting of a resin, lignocellulose nanofiber and cellulose nanofiber.
  • the present invention provides the second fiber for reinforcing a cement material, which is one or more kinds.
  • the lignocellulose fiber in the second cement material reinforcing fiber may be a lignocellulose fiber to which the above-mentioned antistatic agent is not attached, but is preferably a lignocellulose fiber to which the above-mentioned antistatic agent is attached. . That is, in addition to the antistatic agent described above, lignocellulosic fibers to which the fiber surface coating agent is attached are preferred.
  • the cement material reinforcing fiber of the first embodiment is made of lignocellulosic fiber to which a fiber surface coating agent is attached, and the fiber surface coating agent is a resin.
  • the fiber for reinforcing cement material according to the second embodiment of the second embodiment is composed of lignocellulose fibers to which a fiber surface coating agent is attached, and the fiber surface coating agent is cellulose nanofiber and / or lignocellulose nanofiber.
  • the resin, lignocellulose nanofiber, cellulose nanofiber, and the like used for the second cement material reinforcing fiber will be described.
  • the resin as the fiber surface coating agent improves the durability of the reinforcing effect of the cement material, and expresses one or more of the following (1) and (2), more preferably both functions.
  • (1) A material that adheres to the surface of lignocellulosic fibers and can suppress swelling of the lignocellulose fibers due to water absorption or moisture absorption.
  • the resin as the fiber surface coating agent is a thermosetting resin from the viewpoint of improving the durability of the reinforcing effect, and is preferably attached to the fiber surface in a cured state.
  • the resin as the fiber surface coating agent is a water-soluble thermosetting resin, and the lignocellulosic fiber is efficiently attached to the thermosetting resin in a state of an aqueous solution by various methods such as spraying. This is preferable.
  • the resin used as the fiber surface coating agent is preferably at least one selected from the group consisting of amino resins, polyacrylamide resins, and polyacrylamide resin derivatives from the viewpoint of improving the durability of the reinforcing effect. These resins are water-soluble thermosetting resins.
  • an amino resin is a general term for resins obtained by a condensation reaction between a compound containing an amino group and an aldehyde.
  • amino resins include urea-formaldehyde resins, melamine-formaldehyde resins, melamine-urea-formaldehyde resins, and derivatives thereof.
  • the resin used as the fiber surface coating agent is preferably a polyacrylamide resin or a derivative thereof from the viewpoint of durability.
  • the hydroxyl group of an lignocellulose fiber is anionic, when a polyacrylamide resin is used, it is preferable to use a cationic one because of its high adhesion and residual strength to the lignocellulose fiber.
  • anionic means that it is an anionic (anionic) compound as a kind of ions when dissolved in water.
  • Resin can be used individually by 1 type or in combination of 2 or more.
  • Method of processing resin into fibers As a method of treating lignocellulosic fibers with a resin (a method of attaching a resin to lignocellulosic fibers), a solution containing a resin is sprayed on wet lignocellulose fibers carried out from a defibrating apparatus (for example, a refiner), The method of drying after that, or the method of immersing the lignocellulose fiber in a wet state in a solution containing a resin and then drying it may be mentioned. Or the method of spraying the liquid containing resin, or immersing in the solution containing resin after drying the lignocellulose fiber carried out from the defibrating apparatus can also be mentioned.
  • a defibrating apparatus for example, a refiner
  • the solution containing the resin is preferably an aqueous solution in which the solvent is water, but the solvent may be a mixture of water and another liquid such as alcohol, or may be a liquid other than water such as alcohol. good. Examples of the alcohol include methanol, ethanol, and denatured alcohol. Further, instead of the solution containing the resin, the lignocellulosic fiber may be brought into contact with the dispersion containing the resin by spraying, dipping, or the like.
  • the solvent or dispersion medium is preferably a liquid containing 50% by mass or more of water, and more preferably water.
  • a cement material reinforcing fiber By contacting the lignocellulosic fiber with a resin-containing solution and then drying, a cement material reinforcing fiber firmly adhered to the surface of the fiber in a cured state of the resin is obtained.
  • a fiber for reinforcing a cement material is further excellent in sustainability of the reinforcing effect of the cement material.
  • the resin is a thermosetting resin, it is more excellent in sustainability of the cement material reinforcing effect when the resin is heated to a temperature higher than the curing temperature of the thermosetting resin when the solution is dried or after the solution is dried.
  • the drying temperature is set to be equal to or higher than the curing temperature of the thermosetting resin, and the solution drying and the resin thermosetting are simultaneously performed.
  • the adhesion amount of the resin to the lignocellulose varies depending on the resin, a desired adhesion amount can be appropriately selected.
  • the amount of the resin is preferably 0. It is 1 to 20% by mass, more preferably 0.2 to 10% by mass, and still more preferably 0.5 to 2% by mass.
  • the cement material reinforcing fiber of the first embodiment may be entirely coated with a resin, or may be partially covered with a resin.
  • Cellulose nanofibers, lignocellulose nanofibers are made from a material such as pulp containing cellulose fibers by nano-fabrication into nanofibers having a fiber size of nanosize level (less than 1 micron).
  • the miniaturization treatment can be performed by any method selected from, for example, a high-pressure homogenizer, a grinder, a grinder, a refiner, and the like.
  • Cellulose nanofibers are nanofibers obtained from materials that do not contain lignin, such as kraft pulp, and are substantially free of lignin.
  • lignocellulose nanofibers are nanofibers produced from pulp containing lignin without delignification or by adjusting the amount of lignin contained, and contain lignin.
  • the cellulose nanofiber has a lignin content of preferably less than 10% by mass, more preferably less than 5% by mass, and the lignocellulose nanofiber has a lignin content of preferably 10% by mass or more.
  • the amount is preferably 10 to 50% by mass.
  • both cellulose nanofibers and lignocellulose nanofibers may be used as the fiber surface covering material, and both cellulose nanofibers and lignocellulose nanofibers may be used.
  • the resin described above can be used in combination with cellulose nanofibers and / or lignocellulose nanofibers.
  • both cellulose nanofibers and lignocellulose nanofibers are collectively referred to as (ligno) cellulose nanofibers.
  • the (ligno) cellulose nanofiber used in the present invention has an average fiber diameter of preferably 1 to 500 nm, more preferably 10 to 100 nm, still more preferably 20 to 50 nm.
  • the average fiber length of the (ligno) cellulose nanofiber is preferably 1 to 5000 ⁇ m, more preferably 2 to 4000 ⁇ m, still more preferably 3 to 3000 ⁇ m.
  • the (ligno) cellulose nanofiber as the fiber surface coating agent improves the sustainability of the cement material reinforcing effect, and expresses one or more of the following (1) and (2), preferably both functions. .
  • (1) A material that adheres to the surface of lignocellulosic fibers and can suppress swelling of the lignocellulose fibers due to water absorption or moisture absorption.
  • (2) A material that adheres to the surface of the lignocellulose fiber and can prevent the cement component from entering the hollow portion of the lignocellulose fiber.
  • the lignocellulose fiber-containing liquid of (ligno) cellulose nanofiber that is brought into contact with the lignocellulose fiber by spraying, dipping or the like is usually a dispersion of cellulose nanofiber and / or lignocellulose nanofiber.
  • the dispersion medium of the lignocellulose nanofiber and / or lignocellulose nanofiber dispersion is preferably water, but is a mixture of water and another liquid such as alcohol, or a liquid other than water such as alcohol. Also good.
  • the dispersion medium is preferably a liquid containing 50% by mass or more of water, and more preferably water. Examples of the alcohol include methanol, ethanol, and denatured alcohol.
  • the lignocellulose fiber is brought into contact with the liquid containing the (ligno) cellulose nanofiber and then dried to obtain a cement material reinforcing fiber in which the (ligno) cellulose nanofiber is firmly attached to the surface of the fiber.
  • a fiber for reinforcing a cement material is further excellent in sustainability of the reinforcing effect of the cement material.
  • the amount of (ligno) cellulose nanofiber attached to the lignocellulose fiber is preferably 0.1 to 10% by mass in terms of the solid content of the (ligno) cellulose nanofiber, based on the mass of the lignocellulose fiber in the dry state. More preferably, it is 0.2 to 5% by mass, and still more preferably 0.5 to 2% by mass.
  • the entire fiber surface may be coated with (ligno) cellulose nanofibers, or the fiber surface is partially coated with (ligno) cellulose nanofibers. It may be in the state.
  • cement material reinforcing fiber using second cement material reinforcing fiber By adopting the above-mentioned method for treating lignocellulose fibers with a resin, or the above-mentioned method for treating lignocellulose fibers with cellulose nanofibers and / or lignocellulose nanofibers, fibers, cellulose nanofibers and lignocellulose nanofibers can be used.
  • a second cement material reinforcing fiber made of lignocellulosic fibers to which at least one selected from the group is attached is obtained.
  • the fiber-mixed cement material has a moisture content of 15% by mass or less.
  • the mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less.
  • the mortar mix contains fine aggregates such as sand in addition to the cement material reinforcing fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to the cement material reinforcing fibers and cement.
  • the fiber-mixed cement material preferably includes a cement material reinforcing fiber to which an antistatic agent is attached as a cement material reinforcing fiber.
  • the second reinforcing fiber for cement material is that the antistatic agent is attached to the lignocellulose fiber in addition to the resin, cellulose nanofiber, and fiber surface coating agent that is at least one of cellulose nanofiber. It is preferable from the viewpoint of improving the dispersibility of water and the like during material preparation, and improving the strength and durability of the fiber-reinforced cement material and the fiber-reinforced molded body.
  • One antistatic agent may be used alone, or two or more antistatic agents may be used in combination.
  • Polyoxyethylene sorbitan fatty acid esters are preferable as antistatic agents, and it is preferable to adhere to lignocellulosic fibers in addition to the fiber surface coating agent, regardless of whether or not they are antistatic agents.
  • the method of using the antistatic agent is a method of treating the above lignocellulose fiber with a resin or a method of treating the above lignocellulose fiber with (ligno) cellulose nanofiber, and spraying and dipping a liquid containing a fiber surface coating agent.
  • an antistatic agent is preferably contained in the liquid.
  • the amount of the antistatic agent attached to the lignocellulosic fiber is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of the solid content of the antistatic agent relative to the dry lignocellulose fiber. More preferably, it is 0.5 to 2% by mass.
  • the second cement material reinforcing fiber eliminates the aggregation of lignocellulosic fiber by using the cement material reinforcing fiber to which an antistatic agent is attached in addition to the fiber surface coating agent. It becomes easy to uniformly disperse the fiber for reinforcing the cement material into the cement material.
  • the fiber reinforced cement material is made efficient without going through a dehydration process from the slurry.
  • the objective can be achieved without using a normal concrete mixer or mortar mixer, which is not a special stirring device, without going through a dehydration step from the slurry.
  • the lignocellulose fiber is a multi-screw extruder described below.
  • lignocellulose fibers those described above as the lignocellulose fiber used in the present invention can be used, and the above description is also applied to preferable lignocellulose fibers.
  • Multi-screw extruder In the present invention, a multi-screw extruder equipped with two or more screws is used to obtain a compression molded product of lignocellulose fibers.
  • the multi-screw extruder in the present invention includes a twin-screw extruder having two screws and a multi-screw extruder having three or more screws.
  • FIG. 2 shows a multi-screw extruder 1 that is an example of a multi-screw extruder preferably used in the present invention.
  • a plurality of screws 3 are arranged in a barrel 2A so as to be rotatable in parallel with screw shafts 31 as rotation axes thereof being parallel to each other.
  • the multi-screw extruder 1 includes, for example, an electric motor as a drive source 4 for the plurality of screws 3. Power is transmitted from the drive source 4 to the screw shafts 31 of the plurality of screws 3 such as a gear mechanism. Each of the plurality of screw shafts 31 is rotated by being transmitted through the system 5.
  • lignocellulosic fibers derived from wood or non-wood plants are transferred and compressed using the multi-screw extruder 1 equipped with two or more screws, and the compression is performed.
  • the lignocellulosic fiber is efficiently compressed and molded without substantially using a binder added from the outside, A compression molded body of lignocellulose fibers can be obtained.
  • the multi-screw extruder 1 when the lignocellulose fiber is compressed efficiently, the multi-screw extruder 1 The bulk density is greatly reduced as compared with that before being put in, and it has a shape formed as a compression-molded body, making it difficult for the fibers to scatter. Further, as described above, since the lignocellulosic fiber can be compressed and molded without excessive fiber breakage, the performance as a reinforcing material is not greatly deteriorated.
  • the compression molded product obtained by the method for producing a compression molded product of lignocellulose fiber of the present invention and the compression molded product of lignocellulose fiber of the present invention can be transported, stored and handled economically and efficiently. Moreover, it is excellent in performance as a reinforcing material, and a high-performance fiber-reinforced composite material or a cured product thereof can be obtained.
  • the multi-screw extruder 1 may be provided with three or more screws 3, but in consideration of economic and technical convenience, it may be a twin-screw extruder. preferable.
  • Multi-screw extruders include a counter-rotating extruder in which the screw shaft rotates in a different direction and a co-rotating extruder in which the screw shaft rotates in the same direction.
  • the multi-screw extruder used in the present invention is preferably a counter-rotating extruder, more preferably a counter-rotating twin-screw extruder.
  • a meshing portion of two screw blades is present immediately below the raw material charging unit 6, and in each of the meshing portions, each of the two screw blades is viewed from above. It is preferable to move downward.
  • the two screws 3 have a distance between the two adjacent screw shafts 31 directly below the raw material charging unit 6 in the other part, preferably downstream (see FIG. It is preferable to have the biting introduction part 33 wider than the part located in the middle left). By having such a bite introducing part 33, the lignocellulose fiber can be taken into the multi-screw extruder 1 more smoothly.
  • the mechanism may have an inclined structure in which the distance between the two adjacent screw shafts 31 is gradually or stepwise narrowed so that the raw material charging unit 6 is wide and the discharge unit is narrowed.
  • the compression-molded body of lignocellulose fibers to be produced preferably has a bulk density of 100 to 800 kg / m 3 and 200 to 500 kg / m 3 from the viewpoint of improving transportation, storage and handling properties. Further preferred. Moreover, the bulk density of the lignocellulosic fiber to be produced is 2 in comparison with the bulk density of the lignocellulosic fiber before compression molding, that is, the bulk density of the lignocellulose fiber before being fed into the multi-screw extruder. It is preferably 5 to 20 times, and more preferably 5 to 12.5 times.
  • a bulky thing can be used as a lignocellulosic fiber used as the raw material of the compression molding body of a lignocellulose fiber, for example, the bulk density of the lignocellulosic fiber before compression molding is less than 100 kg / m ⁇ 3 >, for example. And preferably 10 to 60 kg / m 3 .
  • the bulk density before compression molding of the lignocellulose fiber (bulk density of the raw material) and the bulk density of the compression molded product of lignocellulose fiber are measured by the following methods, for example.
  • Method for measuring bulk density After the lignocellulosic fiber is put into a graduated cylinder having a capacity of 50 ml, the graduated cylinder is lifted by about 50 mm and dropped by its own weight, so that the contents are settled so as to fill a gap in the graduated cylinder. While repeating this operation 10 times, the upper part of the fiber is made flat using a glass rod or the like. When the fiber capacity reaches 50 ml, the mass of the fiber is measured and divided by 50 ml to obtain the bulk density.
  • the fibers should be removed or added and adjusted accordingly. It is desirable to calculate the average value by repeating the same operation a plurality of times (for example, three times). Note that the bulk density is determined by the same operation for the compression molded body. However, when the size of the compression molded body is larger than the 50 ml graduated cylinder, it is desirable to change the size of the graduated cylinder.
  • the lignocellulosic fiber can be introduced into a multi-screw extruder alone without substantially using a binder added from the outside.
  • a compression-molded body having excellent retentivity is obtained.
  • “singlely without substantially using a binder” means that a resin binder intended to bind fibers is not added as described above, and lignocellulosic fibers are treated for another purpose. Addition of resin or the like (for example, coating) is permitted.
  • the content of the type of resin not originally contained in the lignocellulosic fiber is 10% by mass or less based on the total mass of all materials (excluding moisture) of the compression-molded body to be charged into the multi-screw extruder. Is preferable, and it is more preferable that it is 5 mass% or less.
  • a multi-screw extruder The lignocellulosic fiber charged into the water content is preferably 1% or more, more preferably 5% or more.
  • the water content of the lignocellulose fiber to be input is preferably 1 to 100%, more preferably 5 to 50% or less.
  • the water content of the lignocellulose fiber (the water content of the raw material) is measured by the following method.
  • the multi-screw extruder may be one having a heater on the outer peripheral portion of the barrel, and the lignocellulosic fiber in the barrel is produced when the compression molded product of lignocellulose fiber according to the present invention is produced. It can also be heated from the outside. However, as described above, the lignocellulosic fiber is heated by the frictional heat generated in the barrel, so that it is not necessary to perform external heating by the heater. Regardless of whether or not external heating is performed, lignocellulosic fibers are compressed in a multi-screw extruder from the viewpoint of obtaining a compression-molded article excellent in softening of lignocellulosic fibers and shape retention in a compressed state.
  • the maximum temperature reached by the cellulose fibers is preferably 40 to 190 ° C., particularly 50 to 100 ° C., from the viewpoint of obtaining a compression-molded article excellent in softening of the lignocellulose fibers and excellent shape retention.
  • the lignocellulosic fiber compressed in the multi-screw extruder can be adjusted by turning on / off the heater, the output of the heater, the rotational speed of the screw, the cross-sectional area of the discharge hole 71, and the like.
  • the multi-screw extruder 1 shown in FIG. 2 is provided with a compression molded body of lignocellulose fiber discharged from the discharge hole 71 of the die 7 on the downstream side of the die 7.
  • a compression molded body B of lignocellulose fibers having a size adjusted by cutting by the cutting mechanism 8 can be obtained.
  • the cutting mechanism 8 various known cutting mechanisms that can achieve the object can be used without particular limitation.
  • a rotary cutter mechanism as shown in FIG. 4 is simple and preferable.
  • the 4 includes a plurality of cutting blades 81 that rotate along a plane orthogonal to the screw axis, and each of the cutting blades 81 is discharged from a plurality of discharge holes 71 provided in the die 7.
  • the substantially cylindrical compression molded body is cut while rotating.
  • the dice 7 may be block-shaped instead of plate-shaped.
  • the discharge hole 71 shown in FIG. 2 has a cylindrical discharge-side opening protruding from the downstream surface 72 of the die 7, but the discharge side of the discharge hole 71 is formed on the downstream surface of the die 7. The opening may be open.
  • each compression-molded body whose size is adjusted is in the form of pellets.
  • pellet-like means that the aggregate of lignocellulosic fibers has a small lump-like form (regardless of regular shape or irregular shape).
  • the compression molded product of lignocellulosic fibers preferably has some space between the fibers in terms of dispersibility in the material to be reinforced.
  • reference numeral 73 denotes a bolt for fixing the die plate (die).
  • the compression-molded body of lignocellulosic fiber is variously reinforced with lignocellulosic fiber by blending into a reinforcing material such as cement material or resin composition having a known composition except that the lignocellulose fiber is not blended.
  • the fiber-reinforced composite material can be obtained.
  • the fiber-reinforced composite material of the present invention is not particularly limited as long as it is produced using a compression molded body of lignocellulose fiber.
  • Specific examples of the fiber reinforced composite material include a fiber reinforced cement material, a fiber reinforced asphalt composite material, and a fiber reinforced resin material.
  • fiber reinforced cement materials include concrete composite materials, mortar composite materials, and cement-molded composite materials.
  • cement-molded composite materials examples include wood chip cement boards, wood wool cement boards, siding boards, slate boards, and foamed concrete. Is mentioned.
  • the composite material not only the final product but also the raw material for manufacturing the product, such as a mixture of cement powder and the present lignocellulose fiber pellet, a mixture of resin pellet and the present lignocellulose fiber pellet, etc. Needless to say.
  • the utilization method which makes a composite material a component for example, the wall structure of fiber reinforced concrete and mortar, the roadbed structure of fiber reinforced asphalt, and the molding of fiber reinforced resin are also included.
  • any method capable of mixing both can be used without particular limitation.
  • a fiber reinforced cement material as a fiber reinforced composite material is produced using a compression molded body of lignocellulose fiber
  • the compression molded body of lignocellulose fiber may be mixed with cement and water.
  • a mixing method thereof for example, stirring by a mixer or the like can be used.
  • any method that can mix lignocellulose fibers with an asphalt material or a resin can be used without particular limitation.
  • the compression-molded body of lignocellulose fibers may be kneaded with a molten resin.
  • a method of kneading a compression molded product of lignocellulose fibers and a resin in a molten state the compression molded product of lignocellulose fibers and resin pellets are introduced into a single-screw or multi-screw extruder or kneader.
  • the compression molded product of lignocellulose fibers produced by the production method of the present invention or the compression molded product of lignocellulose fibers of the present invention may be sold alone, or a fiber mixed cement material containing lignocellulose fibers and cement. May be sold as.
  • Lignocellulosic fiber compression moldings or fiber-mixed cement materials are produced in factories, transported to local construction and civil engineering sites, where they are kneaded with mortar, other concrete materials and water. It is also preferable to use a fiber-reinforced cement material from the standpoint that a high-quality fiber-reinforced molded body can be produced while suppressing the conveyance cost.
  • the fiber-mixed cement material has a moisture content of 15% by mass or less.
  • the mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less.
  • the mortar mix contains fine aggregates such as sand in addition to lignocellulose fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to lignocellulose fibers and cement.
  • the fiber-mixed cement material has a moisture content of 15% by mass or less.
  • the mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less.
  • the mortar mix contains fine aggregates such as sand in addition to lignocellulose fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to lignocellulose fibers and cement.
  • the lignocellulosic fiber according to the present invention includes preservatives, insecticides, fungicides, water repellents, ultraviolet absorbers, flame retardants, fillers, coupling agents, elastomers, antifoams as long as the effects of the present invention are not impaired.
  • Various additives such as an agent, a lubricant, a pigment, a dye, an antifoaming agent, a water reducing agent, a swelling agent, and a shrinkage reducing agent can be added. These may be used individually by 1 type and may be used in combination of 2 or more type. These additives can be appropriately blended at an arbitrary stage.
  • the fiber reinforced composite material includes glass fibers, synthetic resin fibers, carbon fibers, cellulose nanofibers, lignocellulose nanofibers, cellulose nanocrystals, carbon nanotubes, other nanofibers and the like within a range not impairing the object of the present invention. Can be added. This is because, in general, it is empirically known that when a plurality of types of fibers having different characteristics and shapes are combined, a preferable effect can be obtained as compared with the case where any one of them is used alone.
  • the compression molded body of lignocellulose fiber is mixed with cement and water in the presence of a dispersion aid. It is preferable to improve the uniform dispersibility of the lignocellulosic fibers and obtain a fiber-reinforced cement material excellent in strength and durability and a cured product thereof.
  • a dispersion aid nonionic surfactants are preferable.
  • glycerin fatty acid ester polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyl diethanolamine, hydroxyalkyl monoethanolamine, polyoxyethylene alkylamine, polyoxyethylene alkylamine, Examples thereof include oxyethylene alkylamine fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and alkyldiethanol amides.
  • Polyoxyethylene sorbitan fatty acid esters are preferably mono-, di- or triesterized 1,4-, 1,5- or 3,6-sorbitan, ethylene oxide (EO), or ethylene oxide (EO) and propylene oxide. (PO) is obtained by addition condensation.
  • polyoxyethylene sorbitan fatty acid esters examples include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan dilaurate, polyoxyethylene sorbitan trilaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan dipalmitate, Polyoxyethylene sorbitan tripalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan distearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan diolate, polyoxyethylene sorbitan Triolate, polyoxyethylene sorbitan monoisostearate, polyoxyethylene sorbitan Isostearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan esters of mixed fatty acids, and the like.
  • polyoxyethylene sorbitan mixed fatty acid ester examples include sorbitan coconut oil fatty acid ester, monopalmitic acid polyoxyethylene sorbitan, and the like.
  • polyoxyethylene sorbitan fatty acid esters for example, polyoxyethylene sorbitan monolaurate is preferably used.
  • the nonionic surfactant mentioned above may be used individually by 1 type, and can also be used in combination of 2 or more type.
  • Standard preparation method Preparation of lignocellulose fiber
  • the lignocellulosic fiber for fiberboard manufactured using the pressure type refiner in the fiberboard factory was used as lignocellulose fiber as it was.
  • the fiber length was about 3 mm, and the fiber width was about 30 ⁇ m.
  • lignocellulose fibers for insulation boards in particular, referred to as crude lignocellulose fibers
  • the fiber length was approximately 15 mm and the fiber width was approximately 300 ⁇ m.
  • Example 2 Cement material preparation method of Example and Comparative Example [Example 1] A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the following lignocellulose fiber A.
  • Lignocellulosic fiber A Polyoxyethylene (20) sorbitan monolaurate, which is a nonionic surfactant having an antistatic effect, has an adhesion amount (in terms of solid content) of 1% by mass with respect to dry lignocellulose fiber. After the spray treatment as described above, the cement material reinforcing fiber was dried by a hot air dryer at 105 ° C.
  • Example 2 A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 2% by mass of the lightweight mortar mix was replaced with the following lignocellulose fiber B.
  • Lignocellulosic fiber B Polyoxyethylene coconut alkylamine, which is a nonionic surfactant having an antistatic effect, is attached to lignocellulose fiber in a dry state (in terms of solid content) so as to be 2.5% by mass. After being sprayed on, the fiber for reinforcing cement material dried by a hot air dryer at 105 ° C.
  • Example 3 The cement material was adjusted according to the standard adjustment method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the following crude lignocellulose fiber C.
  • Crude lignocellulosic fiber C The amount of adhering polyoxyethylene (20) sorbitan monolaurate, which is a nonionic surfactant having an antistatic effect, to dry lignocellulose fiber (in terms of solid content) is 1% by mass.
  • the cement material reinforcing fiber was dried by a hot air dryer at 105 ° C.
  • Comparative Example 1 The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material (control) of Comparative Example 1 was prepared according to a standard preparation method.
  • Comparative Example 2 A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 0.5 wt% of the lightweight mortar mix was replaced with the following cellulose nanofiber.
  • Cellulose nanofiber “Cellulose nanofiber (standard)” manufactured by Sugino Machine
  • the upper limit was made 0.5 mass%.
  • the cement materials prepared in Examples and Comparative Examples were subjected to a bending toughness test.
  • the bending toughness test is a method of calculating and evaluating the area under the load-displacement curve obtained when performing a bending test as the energy required for bending fracture. If the bending toughness is large, the evaluation becomes preferable.
  • (2-1) Test Method The prepared cement material was put into a mold and formed into a shape having a width of 75 mm, a length of 150 mm, and a thickness of 15 mm. After 24 hours, the mold was removed, and after curing at 20 ° C.-65% for 28 days, a bending toughness test was performed using the specimen.
  • Example 3 the bending toughness was remarkably improved as compared with Comparative Example 1 (control). That is, it was clearly shown that the brittleness of the cement material is improved and the reinforcing effect is exhibited by adding lignocellulose fibers treated with an antistatic agent. Comparative Example 3 is an example in the case of containing lignocellulose fibers but not containing an antistatic agent. Aggregation and lumps of lignocellulosic fibers that were clearly visible were observed in the prepared specimens. Moreover, it was clearly shown from the test results that the reinforcing effect was not effectively exhibited.
  • Example 4 A cement material was prepared in the same manner as in Example 1.
  • Example 5 A cement material was prepared in the same manner as in Example 2.
  • Comparative Example 4 The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material of Comparative Example 4 was prepared according to a standard preparation method.
  • the ring test is performed by pouring and molding the cement material into a ring-shaped test jig and utilizing the fact that the shrinkage stress generated by the hardening of the cement material differs between the inside and outside of the ring, and cracking occurs in the cement material. It is a method to evaluate.
  • (2-1) Test method The prepared cement material is put into a mold, and a test body is made in a ring-shaped mold having an inner circle of 50 mm, an outer circle of 150 mm, and a height of 50 mm. The bag was completely sealed and cured at 20 ° C. for 5 days. Thereafter, the bag and the outer circle were removed and placed in a dryer at 60 ° C. to evaluate the occurrence of cracks over time. Three test specimens were prepared and evaluated using the worst results.
  • Examples 4 and 5 showed a clear improvement effect as compared with Comparative Examples 4 to 7.
  • no cracks were observed in Example 5, and cracks occurred in Example 4.
  • the level of the cracks was slight and remained only on the surface in the thickness direction of the specimen.
  • Comparative Example 7 due to the reinforcing effect by the glass cloth, the occurrence of cracks was kept light in the width direction, but penetrated in the thickness direction.
  • Comparative Examples 8 to 12 when a wood cutting piece is used alone, a large amount of addition is necessary, and problems such as cost, workability, and fluidity must be considered.
  • Example 13 Instead of using the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the above lignocellulose fiber A, and 3% by mass was replaced with the above lignocellulosic material cutting pieces A. Prepared cement material according to standard preparation methods.
  • Comparative Example 21 The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material (control) of Comparative Example 21 was prepared according to a standard preparation method.
  • Example 14 A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the lignocellulose fiber A described above.
  • Example 15 A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 2% by mass of the lightweight mortar mix was replaced with the lignocellulose fiber A described above. [Comparative Examples 22 to 25] Instead of the above-mentioned commercially available lightweight mortar mix, one in which 1% by mass, 2% by mass, 3% by mass or 4% by mass of the lightweight mortar mix is replaced with the above-mentioned lignocellulosic material cutting pieces A is used.
  • a cement material was prepared according to a standard preparation method.
  • Comparative Example 26 As in Comparative Example 7 described above, the above-mentioned commercially available lightweight mortar mix is used as it is to prepare a cement material, and a glass cloth made by knitting glass fibers on the surface of the ring-shaped test body is used. I made something with it. In the ring test, the glass cloth reinforced was evaluated. The bending toughness test was not performed.
  • Example 12 content 3% by weight
  • Comparative Example 24 content 3% by weight
  • Example 13 content 4% by weight
  • Comparative Example 25 Content 4% by weight
  • Examples 11 to 13 are superior to Comparative Examples 23 to 25 each using a lignocellulosic material cutting piece alone, and the results of the ring test are also compared with Examples 11 to 13, respectively. Superior to Examples 23-25. Further, the result was superior to the reinforcing effect of the glass cloth of Comparative Example 26.
  • the lignocellulose fibers and the lignocellulose material cutting pieces are both made from lignocellulose material, and the lignocellulose material alone is also excellent in that such excellent effects can be obtained.
  • Example 16 and Comparative Example 27 were subjected to an in-plane shear test.
  • the in-plane shear test is a method for evaluating the crack resistance of a specimen by measuring the total length of cracks generated when a load is applied in the horizontal direction to the upper part of a wall-like specimen.
  • This in-plane shear test conforms to the in-plane shear test (B) (when tie rods are not used) of JIS A 1414 “Performance test method for building components (panels) and structural parts thereof”. .
  • FIG. 1 shows a schematic diagram of the in-plane shear tester 1 used in the in-plane shear test.
  • a rectangular frame 20 composed of a base 21, a pair of columns 22, 22 and a beam 23 is formed using a 105 mm square wooden square, and a 18 mm thick small plate (not shown) is formed on one side of the frame 20.
  • the frame body 20 has its base 21 fastened to the force frame 11 of the in-plane shear tester 1 using hexagon bolts (M12), and the column base of the column 22 is fixed to the base 21 using hole-down hardware. .
  • a rectangular test wall 2A having a length of 1400 mm and a width of 1450 mm was formed.
  • the cement material prepared in Example 16 and Comparative Example 27 was applied to the surface of a lath net (not shown) of the test wall 2A so as to have a thickness of 18 mm, and cured for one month or longer. It was created.
  • the window frame was arrange
  • a load was applied to the beam 23 of the frame body 20 in the horizontal direction (X, Y direction) by the force jack 12, and the frame body 20 and the test body 3 were subjected to shear deformation to the deformation angles shown in Table 4.
  • Example 16 had a remarkable crack suppression effect because the total length of cracks when shear deformation was applied was shorter than that of Comparative Example 27. That is, it was clearly shown that the brittleness of the cement material was improved by adding the lignocellulosic material cutting pieces together with the lignocellulosic fiber to the cement material, and high crack resistance against external force was exhibited.
  • [Second fiber for cement material reinforcement] Preparation of lignocellulosic fiber
  • the lignocellulose fiber for fiberboard manufactured using the pressure type refiner in the fiberboard factory was used as lignocellulose fiber as it was.
  • the fiber length was about 3 mm, and the fiber width was about 30 ⁇ m.
  • Example 32 With respect to the dried lignocellulose fiber obtained as described above, a melamine / urea / formaldehyde resin (molar ratio 1.15, melamine content 1% by mass) is attached to the dried lignocellulose fiber (in terms of solid content). ) was appropriately diluted with water so as to be 10% by mass and sprayed, followed by drying and thermosetting treatment in an oven at 105 ° C. for 5 minutes.
  • polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, the cement material reinforcing fiber of Example 32 was obtained.
  • Example 33 With respect to the dry lignocellulose fiber obtained as described above, an aqueous dispersion of cellulose nanofiber (“Binfiss” manufactured by Sugino Machine Co., Ltd.) is attached to the dry lignocellulose fiber in an amount of 1 mass (solid content conversion). % was appropriately diluted with water and sprayed, and then dried in an oven at 105 ° C. for 10 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, a cement material reinforcing fiber of Example 33 was obtained.
  • Example 34 With respect to the dry lignocellulose fiber obtained as described above, an aqueous dispersion of lignocellulose nanofibers is appropriately water so that the amount of adhesion (in terms of solid content) to the dry lignocellulose fiber is 1% by mass. After diluting with and spraying, it was dried in an oven at 105 ° C. for 10 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, the cement material reinforcing fiber of Example 34 was obtained.
  • Comparative Example 31 The dried lignocellulose fibers obtained as described above were used without being treated with a resin. However, in order to ensure dispersibility, polyoxyethylene (20) sorbitan monolaurate is applied as an antistatic agent so that the amount of adhesion (in terms of solid content) to dry lignocellulose fibers is 1% by mass. I let you. Thus, the cement material reinforcing fiber of Comparative Example 31 was obtained.
  • lignocellulosic fiber has high water absorption, so by adding lignocellulose fiber, apparent moisture is insufficient, kneading becomes difficult and water may be required. Water was added to the extent that the desired working efficiency could be ensured.
  • Test Method The prepared cement material was put into a mold and formed into a shape having a width of 75 mm, a length of 150 mm, and a thickness of 15 mm. After 24 hours, the mold was removed, and after curing at 20 ° C.-65% for 28 days, a bending toughness test was performed using the specimen. In addition, as accelerated deterioration treatment, 8 hours of immersion in 20 ° C. water and 16 hours of drying in a dryer at 60 ° C. are defined as 1 cycle, and after repeating 0 cycle and 10 cycles, a bending toughness test is performed. The initial strength and the long-term durability of the strength were evaluated. All six test specimens were prepared, and the average was calculated for evaluation. 4-2. Results Table 5 shows the test results. In addition, the test result set the comparative example 31 (control) to 100, and represented the other result by ratio (%) with respect to the value of the comparative example 31 (control).
  • both Examples 31 and 32 showed an effect of maintaining the bending toughness after the accelerated deterioration treatment with respect to Comparative Examples 31 and 32. That is, by blending the cement material reinforcing fiber of the present invention consisting of lignocellulosic fiber with a resin as a fiber surface coating agent attached to the cement material, the brittleness of the cement material is improved more than before, and for a longer period of time. It was clarified that the reinforcing effect was exhibited across. Further, from the results shown in Table 5, in Example 33, the bending toughness was remarkably improved and the sustaining effect was excellent as compared with Comparative Examples 31 and 32. Also in Example 34, the effect of improving the bending toughness was recognized.
  • the cellulose nanofiber is treated with the fiber for reinforcing a cement material of the present invention, particularly cellulose nanofiber and / or lignocellulose nanofiber, which is composed of lignocellulose fiber to which (ligno) cellulose nanofiber is attached.
  • Addition of lignocellulosic fibers obtained by drying and hardening lignocellulose nanofibers to the cement material improves the brittleness of the cement material more than before, and at the same time exerts a reinforcing effect for a longer period of time. It was revealed.
  • Example 34 10 cycles of measurement were not performed. However, as in Example 33, it is presumed that the effect of improving the bending toughness is excellent.
  • Examples of compression molded product of lignocellulose fiber [Examples of compression molded product of lignocellulose fiber] 1. Manufacture of compression molded body of lignocellulose fiber The diameter of the discharge nozzle (discharge hole) of the die plate part (die) of the biaxial volume reduction solidification device (DP-3S) manufactured by Oguma Steel Corporation is 20 mm or 11 mm, and the fiber Lignocellulose fiber (13% moisture content) manufactured from fiberboard wood manufactured at a board factory is used as a raw material, and it is put into the device alone from the raw material input section, and the lignocellulose fiber pellets (compression molded product). Manufactured. As a result, a compression molded product of lignocellulose fibers having a bulk density of 420 to 440 kg / m 3 could be obtained from lignocellulose fibers having a bulk density of 40 kg / m 3 .
  • Lignocellulose fiber pellets having a diameter of about 11 mm and a length of about 5 mm together with resin pellets are placed in a biaxial kneading-type extruder for resin compound production set at 180 ° C.
  • the disintegration / dispersion of the cellulose fiber pellet was evaluated.
  • the lignocellulose fiber pellets were easily disintegrated and dispersed in a biaxial kneading apparatus, and a resin compound containing lignocellulose fibers was obtained without problems.
  • lignocellulosic fibers can be transported, stored and handled economically and efficiently. Furthermore, when the lignocellulose fiber compressed pellets were mixed with mortar mix and resin pellets, in any case, they could be uniformly dispersed in the dispersion without causing lumps. This confirms that lignocellulosic fibers can be suitably dispersed in different types of dispersions (dispersion medium: for example, water in the case of cement-based materials and molten liquid resin in the case of resin-based materials). It can be said that it can be used for various purposes as a reinforcing fiber for a fiber-reinforced composite material.
  • dispersions for example, water in the case of cement-based materials and molten liquid resin in the case of resin-based materials
  • the fiber for reinforcing cement material of the present invention uses plant-derived lignocellulosic fibers, which is preferable from the viewpoint of consideration for the environment and can effectively reinforce the cement material.
  • a high-performance fiber-reinforced molded body reinforced with plant-derived lignocellulose fibers can be produced.
  • a fiber-reinforced cement material capable of forming a high-performance fiber-reinforced molded body reinforced with plant-derived lignocellulose fibers can be efficiently produced.
  • the fiber-reinforced cement structure and the method for producing a fiber-reinforced cement structure of the present invention it is possible to easily obtain a high-strength fiber-reinforced cement structure in which the brittleness of the cement material is improved.
  • the fiber for reinforcing a cement material according to the present invention uses lignocellulosic fiber derived from a plant, which is preferable from the viewpoint of consideration for the environment, and can effectively reinforce the cement material, and also has a sustained reinforcing effect. Are better.
  • the fiber-mixed cement material of the present invention it is possible to produce a fiber-reinforced molded body that is reinforced with plant-derived lignocellulose fibers and has excellent water resistance and durability.
  • a fiber-reinforced cement material that is reinforced with plant-derived lignocellulosic fibers and can form a fiber-reinforced molded article having excellent water resistance and durability is efficiently produced. Is possible.
  • a cement composite material having excellent physical properties can be obtained, and carbon neutral emission can be suppressed by using carbon neutral lignocellulosic fiber. As a result, during the period when the cement material is used, It becomes possible to stock carbon dioxide.
  • the fiber reinforced cement material obtained by the present invention has improved brittleness, is resistant to drying shrinkage and tensile stress, and is excellent in impact absorption. As a result, long-term durability can be exhibited, the life cycle of the cement material can be extended, and the effect is great both economically and environmentally.
  • the lignocellulose fiber is efficiently compressed and molded without substantially using a binder added from the outside, and the compression molding of the lignocellulose fiber is performed. You can get a body. Moreover, the compression molded body of the lignocellulose fiber manufactured can be transported, stored and handled efficiently and economically because the lignocellulose fiber is compressed as an aggregate. In addition, since it is compressed and molded without excessive fiber breakage, when used in a fiber-reinforced composite material, it exhibits an excellent reinforcing effect of the material to be reinforced, and a high-performance fiber-reinforced composite material or The cured product can be obtained.
  • the cut length in the length direction of the compression molded body can be adjusted as desired when discharging from the discharge hole, and can be made into a short cylindrical shape. It is also possible.
  • the lignocellulosic fiber into a compression-molded body, in particular by adjusting the size to a desired length and adjusting the size, the meterability, feedability, and uniform mixing with other materials are improved. It will be easier to deploy to various applications.
  • a fiber-reinforced composite material for example, a material that can be efficiently blended with a material to be reinforced and whose physical properties such as strength and durability are greatly improved (for example, , Cement, asphalt and resin composite materials).
  • the fiber-reinforced composite material includes both the composition before curing and the cured product after curing.
  • the material to be reinforced is reinforced with lignocellulosic fibers derived from plants such as wood or non-wood, and is excellent in strength and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement material reinforcing fiber of the present invention is made up of a lignocellulose fiber to which an antistatic agent is attached. Another cement material reinforcing fiber of the present invention is made up of a lignocellulose fiber to which a fiber surface coating agent is attached, the fiber surface coating agent being selected from the group consisting of a resin, a cellulose nanofiber, and a lignocellulose nanofiber. A fiber mixed cement material of the present invention comprises either one of said cement material reinforcing fibers and cement. This fiber mixed cement material preferably comprises small pieces of chopped lignocellulose material.

Description

セメント材料補強用繊維Cement material reinforcement fiber
 本発明は、セメント材料補強用繊維、繊維混合セメント材料、及び繊維強化セメント材料の製造方法に関する。 The present invention relates to a method for producing a fiber for cement material reinforcement, a fiber-mixed cement material, and a fiber-reinforced cement material.
 また、本発明は、リグノセルロース繊維の圧縮成形体の製造方法、その製造方法により製造された圧縮成形体、及びその利用方法等に関する。 The present invention also relates to a method for producing a compression-molded body of lignocellulose fibers, a compression-molded body produced by the production method, a method for using the same, and the like.
 セメントは、安価で強度や耐久性に優れ、自由に成型できる重要な社会的インフラ材料である。そのため、コンクリート、モルタル、セメント板、発泡コンクリート等の、様々な特徴や形状を有した材料として、建築や土木分野等において、建築物、構造物、建材等に幅広く使用されている。
 しかしながら、セメント材料には、幾つか問題があり、その中でも特に次の二つを代表例として挙げることができる。
 一つ目は、セメント材料それ自体は、耐引っ張り性能に著しく乏しいために、乾燥収縮や地震等の外力の発生に伴う引っ張り応力に対して割れやすいという欠点である。一旦、割れが発生すると、その割れが外観の問題を生じるだけでなく、雨水の浸入や応力集中の原因となる。雨水の浸入は、コンクリート構造物における鉄筋、鉄骨その他の構造材料の腐食やコンクリートの中性化の進行の原因となり、応力集中は、再度応力が発生した場合に欠損が拡張するといったといった問題の原因になってしまう。
 二つ目は、環境問題への対応である。近年は地球温暖化等の環境問題への適切な対応がますます重要になってきており、二酸化炭素を排出するセメント材料には厳しい目が注がれるようになってきている。すなわち、セメント材料についても、二酸化炭素の排出を抑制する、或いは使用時において二酸化炭素を、その材中に何らかの形で長期間蓄えるような工夫が求められるようになってきている。
Cement is an important social infrastructure material that is inexpensive, has excellent strength and durability, and can be molded freely. Therefore, it is widely used for buildings, structures, building materials, etc. in the field of construction and civil engineering as materials having various characteristics and shapes such as concrete, mortar, cement board, foamed concrete and the like.
However, there are some problems with cement materials. Among them, the following two can be cited as typical examples.
The first problem is that the cement material itself is extremely poor in tensile resistance, so that it easily breaks against tensile stress associated with generation of external force such as drying shrinkage or earthquake. Once a crack occurs, the crack not only causes an appearance problem, but also causes rainwater intrusion and stress concentration. Rainwater intrusion causes corrosion of rebars, steel frames and other structural materials in concrete structures and the progress of neutralization of concrete, and stress concentration causes problems such as expansion of defects when stress occurs again Become.
The second is the response to environmental problems. In recent years, appropriate responses to environmental issues such as global warming have become increasingly important, and strict attention has been paid to cement materials that emit carbon dioxide. That is, the cement material is required to be devised to suppress the discharge of carbon dioxide or to store carbon dioxide in the material in some form for a long time at the time of use.
 他方、バイオマス、木材や非木材の植物に由来するリグノセルロース資源は、植物の生長過程において二酸化炭素を蓄積しており、その使用や廃棄に際しては余剰の二酸化炭素を排出しないカーボンニュートラルな材料として認識されている。
 木材や非木材の植物から得られるリグノセルロース資源は、リグノセルロース繊維で構成されている。リグノセルロース繊維は、リグノセルロース資源を機械的、熱機械的、化学的、化学機械的、又は化学熱機械的に処理することで、繊維を接着剤的に束ねている中間層を破壊し、解きほぐすことで得られる。このようにして得られたリグノセルロース繊維は、主に紙原料としてのパルプやファイバーボード原料としての繊維として使用されている。
On the other hand, lignocellulosic resources derived from biomass, wood and non-wood plants accumulate carbon dioxide during plant growth and are recognized as carbon neutral materials that do not emit excess carbon dioxide when used or disposed of. Has been.
Lignocellulose resources obtained from wood and non-wood plants are composed of lignocellulose fibers. Lignocellulosic fiber breaks and unravels the intermediate layer that binds the fibers in an adhesive manner by mechanically, thermomechanically, chemically, chemically mechanically or chemically thermomechanically treating the lignocellulose resources. Can be obtained. The lignocellulosic fiber thus obtained is mainly used as pulp as a paper raw material or fiber as a fiberboard raw material.
 上述したようにセメント材料は、脆性的な性質を示す欠点がある。その改善のために、セメント材料に、ガラス繊維や合成高分子繊維を添加し、引っ張り応力や衝撃吸収性を改善する研究が行われてきた。しかし、これらの繊維は、原料となる石油資源の使用によって二酸化炭素の放出を招いたり、環境中で分解されなかったり、或いは、重量の増加を招いたり、といった好ましくない面を抱えている。
 これに対して、植物由来のリグノセルロース繊維を用いて、セメント材料を補強するということも工場生産されるセメント材料に限定されて行われてきた。
 例えば、特許文献1~7にはパルプや木質繊維を用いてセメント材料を補強する方法が述べられている。
As described above, the cement material has a drawback of exhibiting brittle properties. In order to improve this, research has been carried out to improve tensile stress and shock absorption by adding glass fibers and synthetic polymer fibers to cement materials. However, these fibers have an unfavorable aspect in that carbon dioxide is released due to the use of petroleum resources as a raw material, is not decomposed in the environment, or increases in weight.
On the other hand, using a plant-derived lignocellulose fiber to reinforce the cement material has also been limited to cement materials produced in factories.
For example, Patent Documents 1 to 7 describe a method of reinforcing a cement material using pulp or wood fiber.
特許1947309号公報Japanese Patent No. 1947309 特許2659806号公報Japanese Patent No. 2659806 特許2587306号公報Japanese Patent No. 2587306 特許1853706号公報Japanese Patent No. 1853706 特許1955557号公報Japanese Patent No. 1955557 特許2121236号公報Japanese Patent No. 2121236 特許2121258号公報Japanese Patent No. 2121258 US2002/0160174A1US2002 / 0160174A1 特許4384411号公報Japanese Patent No. 4384411 特許5481066号公報Japanese Patent No. 5481066 特許5279125号公報Japanese Patent No. 5279125 特表2012-532040号Special table 2012-532040 特開2012-161275号JP 2012-161275 A 特開2009-051985号JP 2009-051985
 しかしながら、リグノセルロース繊維は繊維の分子鎖の構成単位であるセルロースが極性の高い水酸基を複数有しているために、繊維間の水素結合によって非常に凝集し易く、加えて、リグノセルロース繊維は柔軟性が高いために、複雑に絡みあったファイバーボールと呼ばれるダマにもなり易く、これらは何れも容易にはほぐれないという欠点を有している。
 そのため、リグノセルロース繊維をセメント材料に添加する際には、工場で特別な専用の繊維を解す装置(例えば、パルパーと呼ばれる装置等)を用いて行われなければならなかった。つまり、コンクリートやモルタルといった現場や現場までの輸送時において、簡便な装置で混練することを通常的に行うセメント材料の場合には、リグノセルロース繊維を添加することはできなかった。
However, in lignocellulose fiber, cellulose, which is a constituent unit of the molecular chain of the fiber, has a plurality of highly polar hydroxyl groups, so it easily aggregates due to hydrogen bonding between fibers, and in addition, lignocellulose fiber is flexible. Due to its high nature, it tends to be a dull so-called fiber ball that is intricately entangled, and these have the disadvantage that they are not easily loosened.
Therefore, when adding lignocellulosic fiber to cement material, it has to be performed using a device (for example, a device called a pulper) that breaks a special fiber at a factory. In other words, lignocellulosic fibers could not be added in the case of a cement material that is usually kneaded with a simple device at the time of transportation to and from the site such as concrete and mortar.
 また、凝集、或いは、絡み合った繊維を水中で機械的に強攪拌することでほぐすことができる場合もある。しかしその場合は、繊維量に対して過剰量の水が必要であり、コンクリートやモルタルのように、セメントに対して配合されるべき水の量が極めて少量に限定されている場合には、行うことができない操作であった。
 ここで、工場では過剰量の水を一旦添加し、その後の工程でセメント、ファイバー及び水から成るスラリーを脱水することによって、最適な水セメント比まで調整する(水を減らす)ことができる。これは所謂、Hatcheck法と呼ばれる、窯業材料を湿式工程で製造する方法である。しかし、この操作は建築や工事等の現場では行うことはできない。そのため、やはりコンクリートやモルタルといった現場や現場までの輸送時において簡便な装置で混練を行うセメント材料に、リグノセルロース繊維添加することはできなかった。
 ここで更に詳しく問題を述べると、セメント材料調製時、つまりセメントと水の混練時に、リグノセルロース繊維を添加すると、繊維は凝集したまま、或いは、ダマになってしまい、分散させることはできない。繊維が分散していない状態のままセメント材料中に存在すると、補強効果を示さないばかりか、その部位は欠点となってしまい、材料の物性を下げてしまうことになる。従って、リグノセルロース繊維を用いながらも、この繊維をダマにすることなく、材料中に分散する方法がないために、コンクリートやモルタルへリグノセルロース繊維を添加し、材料を補強するということはこれまでできなかった。
In addition, there are cases where the agglomerated or entangled fibers can be loosened by mechanically stirring strongly in water. However, in that case, an excessive amount of water is required with respect to the amount of fiber, and when the amount of water to be added to the cement is limited to a very small amount, such as concrete and mortar, it is performed. The operation was not possible.
Here, in a factory, an excessive amount of water is once added, and a slurry composed of cement, fiber, and water is dehydrated in a subsequent process, so that an optimum water-cement ratio can be adjusted (reduced water). This is a so-called Hatcheck method, which is a method for manufacturing ceramic materials in a wet process. However, this operation cannot be performed at the site of construction or construction. Therefore, lignocellulosic fibers could not be added to cement materials that are kneaded with a simple device at the time of transportation to the field, such as concrete and mortar.
To describe the problem in more detail here, when lignocellulosic fibers are added during cement material preparation, that is, when kneading cement and water, the fibers remain agglomerated or become lumps and cannot be dispersed. If the fiber is not dispersed in the cement material, it does not show a reinforcing effect, but the portion becomes a defect and the physical properties of the material are lowered. Therefore, while using lignocellulosic fiber, there is no way to disperse it in the material without making this fiber lumpy, so adding lignocellulosic fiber to concrete or mortar to reinforce the material so far could not.
 特許文献8には、リグノセルロース繊維補強セメント材料が提案されている。特許文献8の請求項や発明の詳細な説明には、繊維物質に吸着や結着可能なカチオン性のポリマーであるポテトスターチ又はコーンスターチを添加することでリグノセルロース繊維の分散性を改善できる可能性が述べられている(クレーム3、7、8、及び、センテンス32、33)。これは通常、紙の強度を改善する際に使用される方法であり、経験的にも、ほぐれたリグノセルロース繊維の凝集を防止する効果があることが知られている。しかし、ほぐされていない凝集やダマになった状態のリグノセルロースの分散を助けるものではない。加えて、特許文献8には、その添加により分散性や成型物の物性が改善された結果に関しては何ら開示されておらず、その添加による効果は期待的な記述のみに留まっている。故に、実際に効果があるのか、また、効果がある場合はどのような効果なのかを科学的に明示したものではなく、問題の解決の示唆にはなっていないと解釈するのが妥当である。 Patent Document 8 proposes a lignocellulose fiber-reinforced cement material. In the claims and the detailed description of the patent document 8, there is a possibility that the dispersibility of lignocellulosic fibers can be improved by adding potato starch or corn starch which is a cationic polymer that can be adsorbed or bound to the fiber material. ( Claims 3, 7, 8 and sentences 32, 33). This is a method usually used for improving the strength of paper, and it is empirically known that it has an effect of preventing aggregation of loose lignocellulose fibers. However, it does not help disperse the lignocellulose in a flocculated or damped state. In addition, Patent Document 8 does not disclose anything about the result of improving the dispersibility and the physical properties of the molded product by the addition, and the effect of the addition is only expected. Therefore, it is reasonable to interpret that it is not a scientific indication of whether it actually has an effect, and if it is, what kind of effect it is, and that it does not suggest a solution to the problem. .
 また、特許文献9にはセルロース繊維をカチオン性の界面活性剤である四級アンモニウム塩で処理を行い、負に帯電しているセルロースの水酸基の極性を打ち消すことで、セルロース繊維の凝集を解消する試みが開示されている。しかし、セメントやコンクリート等の材料には減水剤を加えることが多く、これはアニオン性であるために、カチオン性の物質と同時に用いることはできない。さらに、四級アンモニウム塩には金属腐食性が知られており、鉄筋、鉄骨、その他金属製の締結金物を腐食する可能性が高くなる。加えて、本技術は工場で大量の水を用いてセルロース繊維を分散し、その後の工程でセメント、セルロース繊維、及び、水のスラリーを脱水する時にのみ用いることを念頭に置いたものであり、現場での混錬作業が主となるために脱水を行うことができない、モルタルやコンクリート等に適用できるものではない。また、本文献に開示されている方法によれば、セメントやセルロース繊維を含む複合材料は、オートクレーブを用いて加熱硬化されており、その点でも、そのような工程を行うことができないモルタルやコンクリート等とは異なるものである。従って、本特許文献はごく限定された条件下で、ごく限定された方法にのみ適用できるものであり、本願発明において解決しようとする手法とは異なるものであるといえる。
 さらに、非特許文献1には木材細片を添加することで、モルタルの曲げ強さを向上させることが述べられているが、割れに対する抵抗性については何ら言及がない。
In Patent Document 9, cellulose fibers are treated with a cationic surfactant, a quaternary ammonium salt, and the aggregation of cellulose fibers is eliminated by canceling the polarity of the negatively charged cellulose hydroxyl groups. Attempts have been disclosed. However, a water reducing agent is often added to materials such as cement and concrete, and since this is anionic, it cannot be used simultaneously with a cationic substance. Furthermore, quaternary ammonium salts are known to be corrosive to metals, which increases the possibility of corroding reinforcing bars, steel frames and other metal fasteners. In addition, this technology is intended to be used only when dewatering a slurry of cement, cellulose fibers, and water in a subsequent process by dispersing cellulose fibers using a large amount of water in a factory. It cannot be applied to mortar, concrete, etc., which cannot be dehydrated because it mainly involves kneading on site. Further, according to the method disclosed in this document, the composite material containing cement and cellulose fiber is heat-cured using an autoclave, and in that respect, mortar or concrete that cannot perform such a process. Etc. are different. Therefore, this patent document can be applied only to a very limited method under very limited conditions, and can be said to be different from the method to be solved in the present invention.
Further, Non-Patent Document 1 describes that the bending strength of mortar is improved by adding wood strips, but there is no mention of resistance to cracking.
 本発明の課題は、植物由来のリグノセルロース繊維を用いており、セメント材料の効果的な補強が可能なセメント材料補強用繊維を提供することにある。また、本発明の課題は、植物由来のリグノセルロース繊維により補強された高性能の繊維強化成形体を製造可能な繊維混合セメント材料を提供することにある。また、本発明の課題は、植物由来のリグノセルロース繊維により補強された高性能の繊維強化成形体を形成可能な繊維強化セメント材料を効率的に製造可能な繊維強化セメント材料の製造方法を提供するものである。 An object of the present invention is to provide a fiber for reinforcing a cement material that uses plant-derived lignocellulose fibers and can effectively reinforce the cement material. Moreover, the subject of this invention is providing the fiber mixing cement material which can manufacture the high performance fiber reinforced molded object reinforced with the plant-derived lignocellulose fiber. Moreover, the subject of this invention provides the manufacturing method of the fiber reinforced cement material which can manufacture efficiently the fiber reinforced cement material which can form the high performance fiber reinforced molded object reinforced with the lignocellulose fiber derived from a plant. Is.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、リグノセルロース繊維を帯電防止剤で処理することで、繊維の凝集やダマが水中で容易にほぐれることを見出した。すなわち、繊維の凝集やダマがほぐれない原因の一つは、電気を通さず、比表面積の大きいリグノセルロース繊維が乾燥過程において、繊維同士がこすれあう結果、繊維表面に静電気が帯電してしまうことにより、本来は親水性であるリグノセルロース繊維が見かけ上、水を寄せ付けずに疎水的にふるまう事により、水と馴染まず、繊維の親水、分散プロセスを阻害していると、新しく知見するに至ったものである。また、もう一つの原因である水酸基同士の高い親和性による凝集は、上記、繊維の帯電が改善されることで繊維の親水性が高まり、界面活性作用を有する帯電防止剤を利用する(或いは、界面活性剤を別途添加する)ことによって水中での凝集やダマをほぐすことができる。すなわち、四級アンモニウム塩のような強カチオンを用いることなく、効果的に分散できることを、ここでも新しく見出したものである。更にまた、この知見をセメント、水及びファイバー混練時に適宜応用することによって、特別な混練装置や過剰量の水を添加(その後、脱水)することなく、セメント材料中にリグノセルロース繊維を凝集やダマの無い状態で均一に分散できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that fiber agglomeration and lumps can be easily loosened in water by treating lignocellulose fibers with an antistatic agent. In other words, one of the reasons why fiber aggregation and lumps are not unraveled is that electricity is not conducted and lignocellulosic fibers with a large specific surface area are rubbed together during the drying process, resulting in static electricity on the fiber surface. As a result, lignocellulosic fiber, which is originally hydrophilic, apparently behaves hydrophobicly without attracting water, so that it does not become familiar with water and inhibits the hydrophilicity and dispersion process of the fiber. It is a thing. In addition, the aggregation due to the high affinity between hydroxyl groups, which is another cause, improves the hydrophilicity of the fibers by improving the charging of the fibers, and utilizes an antistatic agent having a surface-active action (or By adding a surfactant separately), it is possible to loosen agglomeration and lumps in water. In other words, the present inventors have newly found that it can be effectively dispersed without using a strong cation such as a quaternary ammonium salt. Furthermore, by applying this knowledge as appropriate when kneading cement, water, and fibers, the lignocellulosic fibers can be agglomerated or damaged in the cement material without adding a special kneading device or an excessive amount of water (and then dehydrating). It was found that it can be uniformly dispersed in the absence of water.
 本発明は、上記知見に基づき、さらに検討を重ねて完成されたものである。
 本発明は、帯電防止剤を付着させたリグノセルロース繊維からなることを特徴とする、セメント材料補強用繊維を提供するものである。
 また、本発明は、リグノセルロース繊維、帯電防止剤及びセメントを含むことを特徴とする繊維混合セメント材料を提供するものである。また、本発明は、帯電防止剤を付着させたリグノセルロース繊維、及びセメントを含むことを特徴とする、繊維混合セメント材料を提供するものである。
 また、本発明は、リグノセルロース繊維、帯電防止剤、セメント及び水を混合する混錬工程を含み、該混錬工程後に脱水する工程を含まないことを特徴とする、繊維強化セメント材料の製造方法を提供するものである。
 また、本発明は、セメント材料に、リグノセルロース繊維及びリグノセルロース材料切削小片を添加することを特徴とする繊維強化セメント材料の製造方法を提供するものである(以下、この発明を第2方法発明ともいう)。
 また、本発明は、前記のセメント材料補強用繊維を含むことを特徴とする、繊維強化セメント構造体を提供するものである。
 また、本発明は、リグノセルロース繊維、帯電防止剤、セメント及び水を混合する混錬工程を含むことを特徴とする、繊維強化セメント構造体の製造方法を提供するものである。
The present invention has been completed based on the above findings and further studies.
The present invention provides a fiber for reinforcing a cement material, comprising a lignocellulose fiber to which an antistatic agent is attached.
The present invention also provides a fiber-mixed cement material comprising lignocellulose fibers, an antistatic agent and cement. The present invention also provides a fiber-mixed cement material comprising lignocellulosic fibers to which an antistatic agent is attached, and cement.
The present invention also includes a kneading step of mixing lignocellulosic fiber, antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step, and a method for producing a fiber reinforced cement material Is to provide.
The present invention also provides a method for producing a fiber-reinforced cement material, characterized in that lignocellulose fibers and lignocellulosic material cutting pieces are added to the cement material (hereinafter, the present invention is referred to as the second method invention). Also called).
Moreover, this invention provides the fiber reinforced cement structure characterized by including the said fiber for cement material reinforcement.
Moreover, this invention provides the manufacturing method of a fiber reinforced cement structure characterized by including the kneading process which mixes lignocellulose fiber, an antistatic agent, cement, and water.
 また特許文献1~7に記載の、パルプや木質繊維を用いて補強されたセメント材料に共通していえることは、何れも屋外で使用されることを前提に強固な表面塗装がなされていることであり、基材のセメント材料自体が直接水に晒される使い方がないという点である。その理由は、リグノセルロース繊維を含むセメント材料が吸水と乾燥の過程を繰り返すと、リグノセルロース繊維は膨潤と収縮を繰り返すのに対して、セメント材料はほとんど膨潤や伸縮しないため、両者の挙動の相違により、リグノセルロース繊維とセメントとの結合点が壊れてしまうためであると考えられる。 Moreover, what can be said in common to cement materials reinforced with pulp and wood fibers described in Patent Documents 1 to 7 is that a strong surface coating is applied on the premise that they are used outdoors. In other words, there is no use in which the base cement material itself is directly exposed to water. The reason is that when the cement material containing lignocellulose fiber repeats the process of water absorption and drying, the lignocellulose fiber repeats swelling and shrinking, whereas the cement material hardly swells and contracts. This is considered to be because the bonding point between the lignocellulose fiber and the cement is broken.
 また、別の問題として、リグノセルロース繊維は、基本的に中空円筒形状をしており、この形状ゆえに軽くても高い弾性挙動を示す。しかし、この中空体の内部に水がセメント成分と共に侵入すると、徐々にセメントの結晶が中空体内部で成長する(ミネラル化と呼ばれる)。その結果、リグノセルロース繊維は弾性的性質を失い、代わりに、脆性的な性質が発現してくる。つまり、リグノセルロース繊維を添加することで付与した、リグノセルロース繊維の弾性的性質に基づく種々の物性向上効果が低下してしまうことになる。 Also, as another problem, lignocellulosic fibers basically have a hollow cylindrical shape, and because of this shape, they exhibit high elastic behavior even if light. However, when water enters the inside of the hollow body together with the cement component, cement crystals gradually grow inside the hollow body (referred to as mineralization). As a result, lignocellulosic fibers lose their elastic properties and instead develop brittle properties. That is, the various physical property improvement effects based on the elastic properties of the lignocellulose fibers imparted by adding the lignocellulose fibers are reduced.
 モルタルやコンクリートの表面を、塗装等のように何らかの形で保護してセメント基材を直接の水から遮ることにより、リグノセルロース繊維の添加による物性向上効果の持続性を向上させることができると考えられる。
 しかし、セメント基材が水から遮られていない場合、或いは、水を遮る処置をしたとしても、水を遮る機能が経年的に失われ、それに対処するためのメンテナンス工事がされない場合などには、リグノセルロース繊維の物性が低下してしまうことになるため、これを防ぐことが求められる。
We think that the durability of the physical property improvement effect by adding lignocellulosic fiber can be improved by protecting the surface of mortar and concrete in some way, such as painting, and shielding the cement base from direct water. It is done.
However, when the cement base is not blocked from water, or even if measures are taken to block water, the function of blocking water is lost over time, and maintenance work to deal with it is not performed. Since the physical properties of lignocellulosic fibers are deteriorated, it is required to prevent this.
 非特許文献2には、特定のシランカップリング剤でリグノセルロース繊維を処理する方法が開示されている。しかしながら、シランカップリング剤は非常に高価である上に、取扱いが難しいという問題がある。 Non-Patent Document 2 discloses a method of treating lignocellulose fibers with a specific silane coupling agent. However, silane coupling agents are very expensive and difficult to handle.
 また、本発明の課題は、植物由来のリグノセルロース繊維を用いており、セメント材料の効果的な補強が可能で、補強効果の持続性に優れたセメント材料補強用繊維を提供することにある。また、本発明の課題は、植物由来のリグノセルロース繊維により補強され、耐水及び耐久性に優れた繊維強化成形体を製造可能な繊維混合セメント材料を提供することにある。また、本発明の課題は、植物由来のリグノセルロース繊維により補強され、耐水及び耐久性に優れた繊維強化成形体を形成可能な繊維強化セメント材料を製造可能な繊維強化セメント材料の製造方法を提供するものである。 Another object of the present invention is to provide a fiber for reinforcing a cement material that uses plant-derived lignocellulosic fibers, can effectively reinforce the cement material, and is excellent in durability of the reinforcing effect. Another object of the present invention is to provide a fiber-mixed cement material that is reinforced with plant-derived lignocellulosic fibers and that can produce a fiber-reinforced molded article having excellent water resistance and durability. Another object of the present invention is to provide a method for producing a fiber reinforced cement material capable of producing a fiber reinforced cement material reinforced with plant-derived lignocellulose fibers and capable of forming a fiber reinforced molded article having excellent water resistance and durability. To do.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、リグノセルロース繊維に樹脂が付着した繊維、好ましくは樹脂で処理し、当該樹脂成分を硬化させたリグノセルロース繊維を用いること、又はリグノセルロース繊維に、セルロースナノファイバー及び/又はリグノセルロースナノファイバーが付着した繊維、好ましくはセルロースナノファイバー及び/又はリグノセルロースナノファイバーで処理し、当該セルロースナノファイバー及び/又はリグノセルロースナノファイバーを乾燥させたリグノセルロース繊維を用いることで、セメント材料の初期耐水・耐久性のみならず、長期の耐水・耐久性を大きく向上させることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have used a lignocellulosic fiber in which a resin is attached to a lignocellulosic fiber, preferably treated with a resin and cured with the resin component, Alternatively, the cellulose nanofiber and / or the lignocellulose nanofiber attached to the lignocellulose fiber is treated with the fiber, preferably the cellulose nanofiber and / or the lignocellulose nanofiber, and the cellulose nanofiber and / or the lignocellulose nanofiber is dried. It has been found that the use of the lignocellulose fiber thus produced greatly improves not only the initial water resistance / durability of the cement material but also the long-term water resistance / durability.
 本発明は、上記知見に基づき、更に検討を重ねて完成されたものである。
 即ち、本発明は、繊維表面被覆剤が付着したリグノセルロース繊維からなり、前記繊維表面被覆剤が、樹脂、リグノセルロースナノファイバー及びセルロースナノファイバーからなる群から選択される1種以上であることを特徴とするセメント材料補強用繊維を提供するものである。
 また、本発明は、前記繊維表面被覆剤がセルロースナノファイバー及び/又はリグノセルロースナノファイバーであるセメント材料補強用繊維の製造方法であって、
 セルロースナノファイバー及び/又はリグノセルロースナノファイバーを含む液体を、リグノセルロース繊維に接触させた状態で、乾燥させることにより、該セルロースナノファイバー及び/又はリグノセルロースナノファイバーが表面に付着したリグノセルロース繊維を得る、セメント材料補強用繊維の製造方法を提供するものである。
 また、本発明は、前記のセメント材料補強用繊維又は前記の方法により得られたセメント材料補強用繊維、及びセメントを含むことを特徴とする、繊維混合セメント材料を提供するものである。
 また、本発明は、前記のセメント材料補強用繊維又は前記の方法により得られたセメント材料補強用繊維、セメント及び水を混合する混錬工程を含み、該混錬工程後に脱水する工程を含まないことを特徴とする、繊維強化セメント材料の製造方法を提供するものである。
The present invention has been completed based on the above findings and further studies.
That is, the present invention comprises lignocellulose fibers to which a fiber surface coating agent is adhered, and the fiber surface coating agent is at least one selected from the group consisting of a resin, lignocellulose nanofibers and cellulose nanofibers. A fiber for reinforcing a cement material is provided.
Further, the present invention is a method for producing a fiber for reinforcing a cement material, wherein the fiber surface coating agent is a cellulose nanofiber and / or a lignocellulose nanofiber,
A liquid containing cellulose nanofibers and / or lignocellulose nanofibers is dried in a state where the liquid is in contact with the lignocellulose fibers, whereby lignocellulose fibers having the cellulose nanofibers and / or lignocellulose nanofibers attached to the surface are dried. The manufacturing method of the fiber for cement material reinforcement obtained is provided.
The present invention also provides a fiber-mixed cement material comprising the above-described cement material reinforcing fiber or the cement material reinforcing fiber obtained by the above method, and cement.
Further, the present invention includes a kneading step of mixing the cement material reinforcing fiber or the cement material reinforcing fiber obtained by the method, cement and water, and does not include a dehydrating step after the kneading step. The present invention provides a method for producing a fiber-reinforced cement material.
 前述したように、木材や非木材の植物から得られるリグノセルロース資源は、リグノセルロース繊維で構成されており、リグノセルロース繊維は、リグノセルロース資源を機械的、熱機械的、化学的、化学機械的、又は化学熱機械的に処理することで、繊維を接着剤的に束ねている中間層を破壊し、解きほぐすことで得られる。
 このようにして得られたリグノセルロース繊維は、主に紙原料としてのパルプやファイバーボード原料としての繊維として使用されている。これはリグノセルロース繊維が、軽量で高強度、且つ、高弾性であるためである。
As described above, lignocellulose resources obtained from wood and non-wood plants are composed of lignocellulose fibers, which are mechanical, thermomechanical, chemical, and chemical mechanical. Alternatively, it can be obtained by breaking and unraveling the intermediate layer that bundles the fibers in an adhesive manner by chemical thermomechanical treatment.
The lignocellulosic fiber thus obtained is mainly used as pulp as a paper raw material or fiber as a fiberboard raw material. This is because lignocellulose fibers are lightweight, have high strength, and are highly elastic.
 近年の地球温暖化に代表されるような環境問題を解決するために、従来用いられてきたような、ガラス繊維や合成樹脂繊維、金属繊維やアスベスト繊維の代替として、リグノセルロース繊維の使用が期待されている。
 しかしながら、リグノセルロース繊維は非常に嵩高く、その嵩密度が典型的には30~50kg/mであるため、そのままでは効率的に輸送することはできない。それに加えて、そのままの状態で、被補強材と混合すると粉塵が舞い立ちやすく、作業環境の悪化、他材料や設備のコンタミネーション等の問題を引き起こす恐れがある。
 また、繊維を樹脂ペレットと混ぜて繊維強化複合材料を製造する場合、樹脂ペレットと混合する際に、リグノセルロース繊維がそのまま状態であると、繊維と樹脂の嵩密度が大きく相違するため、繊維を樹脂ペレットと均一に混合することができず、樹脂ペレットと繊維が分離してしまったり、双方を一定の比率で供給できなくなったりするなどにより、均質な繊維補強複合材料ができないという問題がある。
In order to solve environmental problems represented by global warming in recent years, the use of lignocellulosic fibers is expected as an alternative to glass fibers, synthetic resin fibers, metal fibers and asbestos fibers, which have been used in the past. Has been.
However, lignocellulose fibers are very bulky and typically have a bulk density of 30 to 50 kg / m 3 , so that they cannot be efficiently transported as they are. In addition, when mixed with the material to be reinforced as it is, dust easily rises, which may cause problems such as deterioration of the working environment and contamination of other materials and equipment.
In addition, when a fiber reinforced composite material is produced by mixing fibers with resin pellets, when mixing with resin pellets, if the lignocellulosic fibers are in the same state, the bulk density of the fibers and the resin is greatly different. There is a problem that a homogeneous fiber-reinforced composite material cannot be obtained because the resin pellets and fibers cannot be uniformly mixed with the resin pellets, or both cannot be supplied at a constant ratio.
 上記の問題を解決するには、リグノセルロース繊維を圧縮し、ペレットのような粒状にするのが好ましいと考えられる。
 リグノセルロース繊維をペレットのような粒状にする技術として、特許文献10~12には、熱可塑性樹脂をリグノセルロース繊維に添加し、熱可塑性樹脂をバインダーとして、熱プレス法を用いてセルロース繊維の圧縮板を成形した後、その圧縮板を、機械的にペレットやダイスと呼ばれる小片・小粒に切断する方法が開示されている。
 しかしながら、特許文献10~12に記載の方法は、熱プレスのような大規模な設備が必要になる上に、該方法で製造されたペレットは、バインダーとした樹脂の融点以上の熱を掛けて、再溶融・可塑化させなければならず、常温では、再分散されないという問題がある。他方、熱可塑性樹脂のようなバインダーを添加しなければ、再分散されにくい問題は解決され得るが、リグノセルロース繊維は、非常に高い弾性力、或いは強い弾性回復力を有するため、バインダーを用いることなく、その繊維塊を単純に圧縮した場合は、圧縮力から解放されると、繊維塊は、ある程度の低い嵩密度となるまで弾性回復してしまう。
In order to solve the above problem, it is considered preferable to compress the lignocellulosic fiber into a granular form such as a pellet.
As a technique for making lignocellulosic fibers into pellets, Patent Documents 10 to 12 disclose that a thermoplastic resin is added to lignocellulosic fibers, and the compression of the cellulose fibers is performed using a hot press method using the thermoplastic resin as a binder. A method is disclosed in which, after a plate is formed, the compressed plate is mechanically cut into small pieces and small grains called pellets or dies.
However, the methods described in Patent Documents 10 to 12 require large-scale equipment such as a hot press, and the pellets produced by the method are subjected to heat higher than the melting point of the resin used as the binder. There is a problem that it must be remelted and plasticized and not redispersed at room temperature. On the other hand, if a binder such as a thermoplastic resin is not added, the problem of difficulty in redispersion can be solved. However, lignocellulosic fibers have a very high elastic force or a strong elastic recovery force. However, when the fiber mass is simply compressed, when released from the compressive force, the fiber mass will elastically recover until it reaches a certain low bulk density.
 類似分野の従来技術として、例えば、特許文献13に示されているように、リグノセルロース物質の粉体の場合は、ペレッタイザーと呼ばれる装置でペレット化・造粒することが多い。しかし、ペレッタイザーはダイスプレートに設けられたノズルに被圧縮物を石臼のような機構で磨り潰しながら押し出していくために、せっかくの長さ方向に長いという特徴を有するリグノセルロース繊維は、長さが短く切断された木粉になり、補強材料として好ましくない。 As a conventional technique in a similar field, for example, as shown in Patent Document 13, in the case of a powder of lignocellulosic material, it is often pelletized and granulated by a device called a pelletizer. However, since the pelletizer pushes the object to be compressed to the nozzle provided on the die plate while grinding it with a mechanism like a stone mortar, the lignocellulosic fiber, which is long in the lengthwise direction, has a length. Becomes a wood powder cut short, which is not preferable as a reinforcing material.
 一方、特許文献14に示されているように、ブリケット製造装置と呼ばれる、二対のローラーの表面に成型金型を有し、その二対のローラー間に粉状物質を導入し、該ローラーを互いに噛み合う方向に回転させながら圧力を加えることで、粉状物質がローラー間で圧縮・成型される造粒装置が知られている。この方法によれば、圧縮成型時にリグノセルロース繊維に掛かるせん断力が少ないために、リグノセルロース繊維を過度に粉状にすることなく圧縮成型できる。
 しかしながら、リグノセルロース繊維は、その嵩密度が典型的には30~40kg/mと非常に嵩高く、軽く、また、繊維が長く柔軟であるため、繊維同士が複雑に絡み合ったファイバーボールを形成していることがほとんどである。そのため、ローラー間に、繊維、或いは繊維束を重力で落とし込むことは困難であり、被圧縮物を供給する供給装置の出口、或いは、圧縮ローラーの上部でブリッジと呼ばれる滞留現象を引きこし、当該装置のローラー間に供給されない、或いは、何らかの補助がなければ供給されないといった問題が生じる。そのため、リグノセルロース繊維から、連続してブリケットを製造することは困難であった。
On the other hand, as shown in Patent Document 14, a molding die is provided on the surface of two pairs of rollers, called a briquette manufacturing apparatus, and a powdery substance is introduced between the two pairs of rollers. 2. Description of the Related Art A granulating apparatus is known in which a powdery substance is compressed and molded between rollers by applying pressure while rotating in a meshing direction. According to this method, since the shearing force applied to the lignocellulose fiber at the time of compression molding is small, the lignocellulose fiber can be compression molded without being excessively powdered.
However, lignocellulosic fibers, the bulk density is typically 30 ~ 40kg / m 3 and very bulky, lighter, and since the fibers are long and flexible, forming a fiber ball fibers are intertwined Most of them do. For this reason, it is difficult to drop fibers or fiber bundles between rollers by gravity. There arises a problem that the toner is not supplied between the rollers of the roller, or is not supplied without some assistance. Therefore, it was difficult to continuously produce briquettes from lignocellulose fibers.
 そこで、リグノセルロース繊維を実質的にその繊維間を結合するために外部から添加する結合剤を用いずに、且つ、できるだけ繊維を粉状にしないで、連続的に圧縮・成型して、造粒する方法が求められる。 Therefore, the lignocellulosic fiber is granulated by continuously compressing and molding without using a binder added from the outside in order to substantially bond the fibers, and without making the fiber as powdery as possible. How to do it is required.
 従って、本発明の目的は、木材や非木材の植物由来のリグノセルロース繊維を、外部から添加する結合剤を実質的に用いずに、効率良く圧縮・成形することのできる、リグノセルロース繊維の圧縮成形体の製造方法を提供することにある。ここで「結合剤を実質的に用いずに、」とは、繊維同士を結合させる目的の樹脂結合剤を添加しないという意味であり、別の目的でリグノセルロース繊維を処理するための樹脂等の添加(例えば、コーティング等)は許容するという意味である。 Therefore, the object of the present invention is to compress lignocellulosic fibers, which can efficiently compress and mold lignocellulose fibers derived from plants such as wood and non-wood, without substantially using a binder added from the outside. It is providing the manufacturing method of a molded object. Here, “without substantially using a binder” means that a resin binder intended to bind fibers is not added, and a resin or the like for treating lignocellulosic fibers for another purpose. Addition (for example, coating, etc.) means to allow.
 また、本発明の目的は、効率的且つ経済的に輸送、保管、ハンドリング可能であり、また、被補強材の強度向上効果に優れる、リグノセルロース繊維の圧縮成形体を提供することにある。
 また、本発明の目的は、木材や非木材の植物由来のリグノセルロース繊維を、被補強材に対して効率よく配合することができ、被補強材の強度向上の効果に優れる繊維強化複合材料を効率よく製造することのできる、繊維強化複合材料の製造方法を提供することにある。
 また、本発明の目的は、木材や非木材の植物由来のリグノセルロース繊維により補強され、強度やその耐久性に優れた繊維強化複合材料を提供することにある。
Another object of the present invention is to provide a compression-molded body of lignocellulosic fibers that can be transported, stored and handled efficiently and economically and is excellent in the effect of improving the strength of a material to be reinforced.
Another object of the present invention is to provide a fiber-reinforced composite material that can efficiently blend lignocellulosic fibers derived from wood or non-wood plants with respect to the material to be reinforced, and that is excellent in improving the strength of the material to be reinforced. An object of the present invention is to provide a method for producing a fiber-reinforced composite material that can be efficiently produced.
Another object of the present invention is to provide a fiber-reinforced composite material that is reinforced with lignocellulosic fibers derived from wood or non-wood plants and is excellent in strength and durability.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、リグノセルロース繊維を、ハウジング内に並設された多軸の羽根付きスクリューが互いに噛み合うように回転する多軸スクリュー押出機を用いて、リグノセルロース繊維を圧縮及び移送し、ダイスに設けた排出孔より排出させることで、上記課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have developed a multi-screw extruder that rotates lignocellulosic fibers so that multi-shaft bladed screws arranged in a housing mesh with each other. It was found that the above-mentioned problems can be solved by compressing and transferring the lignocellulosic fibers and discharging them from the discharge holes provided in the die.
 本発明は、上記知見に基づき、更に検討を重ねて、以下の、リグノセルロース繊維の圧縮成形体、繊維強化複合材料の製造方法及び繊維強化複合材料等の発明を完成させた。
 本発明は、繊維強化複合材料に使用されるリグノセルロース繊維の圧縮成形体の製造方法であって、リグノセルロース繊維を、2本以上のスクリューを備えた多軸スクリュー押出機に導入し、該リグノセルロース繊維を、複数のスクリューにおける相互に噛み合うスクリュー羽根により強制的にダイスに向けて移送及び圧縮し、その圧縮物を、該ダイスに設けた複数個の排出孔から排出させることを特徴とする、リグノセルロース繊維の圧縮成形体の製造方法を提供するものである。
Based on the above findings, the present invention has been further studied and completed the following inventions such as a compression molded product of lignocellulose fiber, a method for producing a fiber-reinforced composite material, and a fiber-reinforced composite material.
The present invention relates to a method for producing a compression molded product of lignocellulosic fibers used in a fiber-reinforced composite material, wherein the lignocellulosic fibers are introduced into a multi-screw extruder equipped with two or more screws, Cellulose fibers are forcibly transferred and compressed toward a die by screw blades meshing with each other in a plurality of screws, and the compressed product is discharged from a plurality of discharge holes provided in the die. The present invention provides a method for producing a compression molded product of lignocellulose fiber.
 また、本発明は、前記の方法により製造されたリグノセルロース繊維の圧縮成形体を提供するものである。
 また、本発明は、前記の方法により製造されたリグノセルロース繊維の圧縮成形体を、セメント及び水と混合して、繊維強化複合材料としての繊維強化セメント材料を製造することを特徴とする、繊維強化複合材料の製造方法を提供するものである。
 また、本発明は、前記の方法により製造されたリグノセルロース繊維の圧縮成形体を、解繊装置で解きほぐした後に、被強化材料と混合して、繊維強化複合材料を製造することを特徴とする、繊維強化複合材料の製造方法を提供するものである。
 また、本発明は、前記の方法により製造されたリグノセルロース繊維の圧縮成形体と溶融状態の樹脂とを混錬して、繊維強化複合材料としての繊維強化樹脂組成物を製造することを特徴とする、繊維強化複合材料の製造方法を提供するものである。
 また、本発明は、前記の方法により製造されたリグノセルロース繊維の圧縮成形体を用いて強化されていることを特徴とする、繊維強化複合材料を提供するものである。
Moreover, this invention provides the compression molding body of the lignocellulose fiber manufactured by the said method.
Further, the present invention provides a fiber reinforced cement material as a fiber reinforced composite material by mixing a compression molded product of lignocellulose fiber produced by the above method with cement and water. A method for producing a reinforced composite material is provided.
Further, the present invention is characterized in that a compression-molded body of lignocellulose fibers produced by the above method is unraveled with a defibrating device and then mixed with a material to be reinforced to produce a fiber-reinforced composite material. The present invention provides a method for producing a fiber-reinforced composite material.
In addition, the present invention is characterized by producing a fiber reinforced resin composition as a fiber reinforced composite material by kneading a compression molded body of lignocellulose fiber produced by the above method and a molten resin. The present invention provides a method for producing a fiber-reinforced composite material.
Moreover, this invention provides the fiber reinforced composite material characterized by being reinforced using the compression molding body of the lignocellulose fiber manufactured by the said method.
図1は、面内せん断試験で用いた面内せん断試験機の概略図である。FIG. 1 is a schematic view of an in-plane shear tester used in an in-plane shear test. 図2は、本発明に用いられる多軸スクリュー押出機の一例である多軸スクリュー押出機を示す模式図である。FIG. 2 is a schematic view showing a multi-screw extruder which is an example of the multi-screw extruder used in the present invention. 図3は、互いに平行に配された2本のスクリューをバレルを省略して上方から視た透視平面図である。FIG. 3 is a perspective plan view of the two screws arranged in parallel with each other when viewed from above with the barrel omitted. 図4は、多軸スクリュー押出機のダイスの下流側の面を図2の矢印D方向から見た状態を示す拡大図である。FIG. 4 is an enlarged view showing a state in which the downstream surface of the die of the multi-screw extruder is viewed from the direction of arrow D in FIG.
 以下、本発明をその好ましい実施形態に基づいて詳細に説明する。
 本発明のセメント材料補強用繊維は、帯電防止剤を付着させたリグノセルロース繊維からなる。
 本発明の繊維混合セメント材料は、リグノセルロース繊維、帯電防止剤及びセメントを含む。
 本発明の繊維強化セメント材料の製造方法は、リグノセルロース繊維、帯電防止剤、セメント及び水を混合する混錬工程を含み、該混錬工程後に脱水する工程を含まない。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
The fiber for reinforcing a cement material according to the present invention is made of lignocellulose fiber to which an antistatic agent is attached.
The fiber-mixed cement material of the present invention includes lignocellulose fibers, an antistatic agent and cement.
The manufacturing method of the fiber reinforced cement material of the present invention includes a kneading step of mixing lignocellulosic fiber, antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step.
〔リグノセルロース繊維〕
 本発明で用いるリグノセルロース繊維は、木材又は非木材の植物由来のリグノセルロース材料を、機械的、熱機械的、化学的、化学機械的、又は化学熱機械的に処理することで、繊維を接着剤的に束ねている中間層を破壊し、解きほぐした繊維である。リグノセルロース繊維としては、そのようなものを特に制限なく用いることができる。木材は、針葉樹でも広葉樹でも良い。
 非木材の植物由来のリグノセルロース繊維としては、ワラパルプ、バガスパルプ、ヨシパルプ、ケナフパルプ、リネンパルプ、ラミーパルプ、ヘンプパルプ等が挙げられる。
[Lignocellulose fiber]
The lignocellulosic fiber used in the present invention can be obtained by bonding a fiber by treating mechanically, thermomechanically, chemically, chemically mechanically, or chemically thermomechanically a wood or non-wood plant-derived lignocellulose material. It is a fiber that breaks and unravels the intermediate layers that are bound together. Such lignocellulosic fibers can be used without particular limitation. The wood may be coniferous or hardwood.
Examples of non-wood plant-derived lignocellulose fibers include walla pulp, bagasse pulp, reed pulp, kenaf pulp, linen pulp, ramie pulp, hemp pulp and the like.
 本発明で用いるリグノセルロース繊維としては、例えば、溶解パルプ、サルファイトパルプ、クラフトパルプ、セミケミカルパルプ、ケミグランドパルプ、リファイナーグランドパルプ、サーモメカニカルパルプ、砕木パルプを好ましく用いることができる。リグノセルロース繊維としては、機械パルプ、又はファイバーボード用繊維を用いることが、製造効率や物理的性質の観点から好ましい。機械パルプとしては、リファイナーグランドパルプ、サーモメカニカルパルプ、砕木パルプ等が挙げられる。同様の観点から、更に好ましくはサーモメカニカルパルプである。サーモメカニカルパルプには、ファイバーボード用繊維も含まれる。ファイバーボード用繊維とは、広義にはサーモメカニカルパルプであり、狭義には、その中でも比較的粗大な繊維のことである。
 リグノセルロース繊維は、漂白(脱リグニン)されたパルプと異なり、何れもリグニンを含んでいる。リグノセルロース繊維は、1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
As lignocellulosic fibers used in the present invention, for example, dissolving pulp, sulfite pulp, kraft pulp, semichemical pulp, chemiground pulp, refiner ground pulp, thermomechanical pulp, and groundwood pulp can be preferably used. As lignocellulosic fiber, it is preferable to use mechanical pulp or fiberboard fiber from the viewpoint of production efficiency and physical properties. Examples of mechanical pulp include refiner ground pulp, thermomechanical pulp, and groundwood pulp. From the same viewpoint, thermomechanical pulp is more preferable. Thermomechanical pulp also includes fiberboard fibers. The fiberboard fiber is a thermomechanical pulp in a broad sense, and is a relatively coarse fiber in a narrow sense.
Lignocellulose fibers, unlike bleached (deligenized) pulp, all contain lignin. A lignocellulose fiber may be used individually by 1 type, and may be used in combination of 2 or more type.
 リグノセルロース材料をリグノセルロース繊維化する方法としては、公知の方法を特に制限なく用いることができ、例えば、パルプを製造する従来の方法やファイバーボード用繊維を製造する従来の方法等を適宜用いることができる。
 リグノセルロース材料をリグノセルロース繊維化する方法の一例としては、リグノセルロース材料をチップ状に破砕し、その後、プレヒーターやプレスチーマーで1~10Bar程度の圧力を掛けながら蒸煮することで、リグノセルロース材料の構成成分であるリグニンやヘミセルロースを軟化させた後、加圧型リファイナー内で圧力を掛けながらディスク式刃物を用いて、繊維或いは繊維束まで解繊して、所望の繊維を製造する方法を挙げることができる。
 本発明で用いるリグノセルロース繊維は、その幅が、好ましくは1~100μm、更に好ましくは10~50μmであり、その長さが、好ましくは0.1~50mm、更に好ましくは1~5mmである。このような繊維の長さや幅は、リファイナーのディスクの間隔等の運転条件を調整することで適宜所望の長さや幅に調整することができる。
As a method for converting lignocellulosic material into lignocellulosic fibers, known methods can be used without particular limitation. For example, a conventional method for producing pulp, a conventional method for producing fiber for fiberboard, and the like are appropriately used. Can do.
As an example of a method for converting lignocellulosic material into lignocellulosic fiber, lignocellulosic material is crushed into chips and then steamed with a preheater or a press steamer while applying a pressure of about 1 to 10 Bar. A method for producing desired fibers by softening lignin and hemicellulose, which are constituents of the above, and using a disk-type blade while applying pressure in a pressure refiner to defibrate fibers or fiber bundles. Can do.
The lignocellulose fiber used in the present invention has a width of preferably 1 to 100 μm, more preferably 10 to 50 μm, and a length of preferably 0.1 to 50 mm, more preferably 1 to 5 mm. The length and width of such a fiber can be appropriately adjusted to a desired length and width by adjusting operating conditions such as a refiner disk interval.
 リグノセルロース繊維は、前記のような水熱的な工程を経て製造されることが効率が良く、得られた繊維の損傷も少ない。また、多くの場合において、リグノセルロース繊維は、輸送や保存、貯蔵やハンドリングの向上の目的で乾燥される。
 リグノセルロース繊維の乾燥方法としては、公知の方法を特に制限なく用いることができるが、例えば、製紙・パルプ工業で行われているように、濡れた状態のリグノセルロース繊維をローラーやワイヤ上に吐出し、吸引や加圧により脱水した後に、熱乾燥させる方法や、ファイバーボード用の繊維の製造で行われているように、濡れた状態のリグノセルロース繊維を熱風を流している管の中の気流下で熱乾燥させる方法等を挙げることができる。このような、リグノセルロース繊維の乾燥は、例えば60~200℃で行うことが好ましく、より好ましくは80~160℃であり、更に好ましくは100~140℃である。
Lignocellulose fibers are efficiently produced through the hydrothermal process as described above, and the resulting fibers are less damaged. In many cases, lignocellulosic fibers are dried for the purpose of improving transportation, storage, storage and handling.
As a method for drying lignocellulosic fibers, known methods can be used without any particular limitation. For example, wet lignocellulosic fibers are discharged onto a roller or wire as is done in the paper and pulp industry. Then, after dehydrating by suction or pressurization, the air flow in the tube where hot air is passed through the wet lignocellulosic fiber as is done in the method of heat drying or the production of fiber for fiberboard The method of heat-drying under can be mentioned. Such drying of lignocellulose fibers is preferably performed at 60 to 200 ° C., for example, more preferably 80 to 160 ° C., and still more preferably 100 to 140 ° C.
〔帯電防止剤〕
 本発明で用いる「帯電防止剤」としては、帯電防止効果のあるものを特に制限無く用いることができる。帯電防止効果とは、空気中の水分を引き寄せ、導電性の水分子層を形成する効果であり、帯電防止効果の程度は、表面固有抵抗や帯電圧半減期、ダートチャンバーテスト等の公知の方法で評価することができる。
 帯電防止剤は、帯電防止剤の程度が、以下の基準(1)又は(2)を満たすものが好ましい。
(1)ASTM D257に規定される表面固有抵抗が1014Ω以下である。ASTM D257に規定される表面固有抵抗は、より好ましくは1012Ω以下であり、更に好ましくは1011Ω以下である。
(2)JIS L1094に規定される帯電圧半減期が30秒以下である。JIS L1094に規定される帯電圧半減期は、より好ましくは10秒以下、更に好ましくは5秒以下である。
[Antistatic agent]
As the “antistatic agent” used in the present invention, those having an antistatic effect can be used without particular limitation. Antistatic effect is the effect of attracting moisture in the air to form a conductive water molecule layer, and the degree of antistatic effect is known methods such as surface resistivity, charged half-life, dirt chamber test, etc. Can be evaluated.
The antistatic agent preferably has an antistatic agent that satisfies the following criteria (1) or (2).
(1) The surface specific resistance defined in ASTM D257 is 10 14 Ω or less. The surface resistivity defined in ASTM D257 is more preferably 10 12 Ω or less, and further preferably 10 11 Ω or less.
(2) The charged voltage half-life defined in JIS L1094 is 30 seconds or less. The charged half-life defined in JIS L1094 is more preferably 10 seconds or less, and even more preferably 5 seconds or less.
 本発明で用いる帯電防止剤の種類として、アニオン性又はノニオン性のものを挙げることができる。ここでいう、アニオン性とは、水に溶けた場合のイオンの種類としてアニオン(陰イオン)性の化合物であり、ノニオン性とは、イオンにならない非イオン性の化合物である。帯電防止剤としては、帯電防止剤として市販されている各種の化合物や、帯電防止効果を有する界面活性剤、特に親水性の高い界面活性剤を用いることができる。
 前述したように、代表的なカチオン性化合物である四級アンモニウム塩は金属腐食性が強く好ましくない。また、セメント材料に、減水剤のようなアニオン性の化合物を添加する場合、カチオン性のものは同時に使用できない。このような観点から、本発明で用いる帯電防止剤としては、界面活性剤型であって、カチオン性ではないものが好ましく、より具体的には、アニオン性又はノニオン性の界面活性剤型である帯電防止剤が好ましく、ノニオン性の界面活性剤が更に好ましい。
 従来の常識的な考えとしては、リグノセルロース系繊維に対してカチオン化デンプンが好適に用いられてきたこと、また、特許文献9で強カチオンが選択されていることから分かるように、カチオン性以外の化合物は、リグノセルロース系繊維の分散性を向上させる際に、事実上選択肢ではなかったことは明らかである。
Examples of the antistatic agent used in the present invention include anionic and nonionic agents. As used herein, anionic refers to an anion (anionic) compound as the type of ion when dissolved in water, and nonionic refers to a nonionic compound that does not become an ion. As an antistatic agent, various compounds marketed as an antistatic agent, a surfactant having an antistatic effect, particularly a highly hydrophilic surfactant can be used.
As described above, a quaternary ammonium salt, which is a typical cationic compound, is not preferable because of its strong metal corrosiveness. In addition, when an anionic compound such as a water reducing agent is added to the cement material, a cationic material cannot be used at the same time. From such a viewpoint, the antistatic agent used in the present invention is preferably a surfactant type and not a cationic type, more specifically, an anionic or nonionic surfactant type. Antistatic agents are preferred, and nonionic surfactants are more preferred.
As a conventional common sense, it can be seen from the fact that cationized starch has been suitably used for lignocellulosic fibers and that strong cation is selected in Patent Document 9, other than cationic It is clear that this compound was practically not an option in improving the dispersibility of lignocellulosic fibers.
 これら帯電防止剤は、水性でも水不溶性でも用いることができるが、他の水性の添加剤と併用して、一度にリグノセルロース繊維を処理する際の処理効率を考慮すれば、水性であることが好ましい。ただし、水不溶性の帯電防止剤であっても、乳化等の処理を行っておくことで、他の水性の添加剤と併用することも可能である。
 本発明で用いる帯電防止剤として使用することのできる「アニオン性の界面活性剤」としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルホスフェート等が挙げられる。
 本発明で用いる帯電防止剤として使用することのできる「ノニオン性の界面活性剤」としては、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルジエタノールアミン、ヒドロキシアルキルモノエタノールアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル類、アルキルジエタノールアマイド等が挙げられる。
 ポリオキシエチレンソルビタン脂肪酸エステル類は、好ましくは、モノ、ジ又はトリエステル化した1,4-、1,5-又は3,6-ソルビタンに、エチレンオキシド(EO)、又はエチレンオキシド(EO)及びプロピレンオキシド(PO)を付加縮合したものである。
These antistatic agents can be used either water-based or water-insoluble, but in combination with other water-based additives, considering the processing efficiency when processing lignocellulosic fibers at a time, they may be water-based. preferable. However, even a water-insoluble antistatic agent can be used in combination with other aqueous additives by performing treatment such as emulsification.
Examples of the “anionic surfactant” that can be used as the antistatic agent used in the present invention include alkyl sulfonates, alkyl benzene sulfonates, and alkyl phosphates.
Examples of the “nonionic surfactant” that can be used as the antistatic agent used in the present invention include glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyldiethanolamine, hydroxyalkylmonoethanolamine, Examples include polyoxyethylene alkylamines, polyoxyethylene alkylamine fatty acid esters, polyoxyethylene sorbitan fatty acid esters, alkyl diethanolamides, and the like.
Polyoxyethylene sorbitan fatty acid esters are preferably mono-, di- or triesterized 1,4-, 1,5- or 3,6-sorbitan, ethylene oxide (EO), or ethylene oxide (EO) and propylene oxide. (PO) is obtained by addition condensation.
 ポリオキシエチレンソルビタン脂肪酸エステル類としては、例えば、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンジラウレート、ポリオキシエチレンソルビタントリラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンジパルミテート、ポリオキシエチレンソルビタントリパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンジステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタンジオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタンモノイソステアレート、ポリオキシエチレンソルビタンジイソステアレート、ポリオキシエチレンソルビタントリイソステアレート、ポリオキシエチレンソルビタン混合脂肪酸エステル等が挙げられる。ポリオキシエチレンソルビタン混合脂肪酸エステルとしては、ソルビタンヤシ油脂肪酸エステル、モノパルミチン酸ポリオキシエチレンソルビタン等が挙げられる。ポリオキシエチレンソルビタン脂肪酸エステル類としては、例えば、ポリオキシエチレンソルビタンモノラウレートを用いることが好ましい。
 上述した帯電防止剤は、1種を単独で用いても良いし、2種以上を組み合わせて用いることもできる。なお、ポリオキシエチレンソルビタン脂肪酸エステル類は、帯電防止剤として好ましく、また、帯電防止剤であるか否かに関わらずに、リグノセルロース繊維に付着させることが好ましい。
Examples of polyoxyethylene sorbitan fatty acid esters include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan dilaurate, polyoxyethylene sorbitan trilaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan dipalmitate, Polyoxyethylene sorbitan tripalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan distearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan diolate, polyoxyethylene sorbitan Triolate, polyoxyethylene sorbitan monoisostearate, polyoxyethylene sorbitan Isostearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan esters of mixed fatty acids, and the like. Examples of the polyoxyethylene sorbitan mixed fatty acid ester include sorbitan coconut oil fatty acid ester, monopalmitic acid polyoxyethylene sorbitan, and the like. As the polyoxyethylene sorbitan fatty acid esters, for example, polyoxyethylene sorbitan monolaurate is preferably used.
The above-mentioned antistatic agents may be used alone or in combination of two or more. Polyoxyethylene sorbitan fatty acid esters are preferred as antistatic agents, and are preferably attached to lignocellulose fibers regardless of whether they are antistatic agents.
 帯電防止剤の使用方法は、予めリグノセルロース繊維を帯電防止剤で処理しておく方法と、リグノセルロース繊維をセメント及び水と混練する際に帯電防止剤で処理する方法の何れも用いることができる。
 予めリグノセルロース繊維を帯電防止剤で処理しておく方法としては、解繊装置(例えば、リファイナー)から搬出された濡れた状態のリグノセルロース繊維に帯電防止剤を吹き付け、その後乾燥させる方法、或いは、濡れた状態のリグノセルロース繊維を帯電防止剤を含む溶液に浸漬し、その後乾燥させる方法等が挙げられる。或いは、解繊装置から搬出されたリグノセルロース繊維を乾燥してから、帯電防止剤を吹き付けたり、帯電防止剤を含む溶液に浸漬する方法等を採用することもできる。
 一方、セメント材料や水と混練する際に、添加する方法としては、セメント材料、リグノセルロース繊維、水、帯電防止剤を全て混ぜ合わせることで処理することもできるが、リグノセルロース繊維への十分な処理を図る目的で、先に水、界面活性剤、リグノセルロース繊維を十分混合し、次にセメント材料を添加する方法が更に好ましい。
 帯電防止剤のリグノセルロース繊維への付着量は、乾燥状態のリグノセルロース繊維に対する帯電防止剤の固形分換算で、0.01~10質量%が好ましく、より好ましくは0.1~5質量%、更に好ましくは0.5~2質量%である。本発明に係るセメント材料補強用繊維は、繊維の表面に部分的に帯電防止剤が付着している状態であることが好ましい。
As a method for using the antistatic agent, either a method in which lignocellulose fibers are treated with an antistatic agent in advance or a method in which lignocellulosic fibers are kneaded with cement and water can be used. .
As a method of treating lignocellulosic fibers with an antistatic agent in advance, a method of spraying an antistatic agent on wet lignocellulose fibers carried out from a defibrating apparatus (for example, a refiner) and then drying, or Examples thereof include a method in which wet lignocellulose fibers are immersed in a solution containing an antistatic agent and then dried. Or after drying lignocellulose fiber carried out from the defibrating apparatus, the method of spraying an antistatic agent or immersing in the solution containing an antistatic agent etc. can also be employ | adopted.
On the other hand, when kneading with cement material or water, it can be treated by mixing all of cement material, lignocellulose fiber, water, and antistatic agent. For the purpose of processing, it is more preferable to first mix water, surfactant and lignocellulose fiber and then add cement material.
The amount of the antistatic agent attached to the lignocellulosic fiber is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of the solid content of the antistatic agent relative to the dry lignocellulose fiber. More preferably, it is 0.5 to 2% by mass. The cement material reinforcing fiber according to the present invention is preferably in a state where an antistatic agent is partially attached to the surface of the fiber.
 前述したリグノセルロース繊維を帯電防止剤で処理しておく方法を採用することによって、帯電防止剤を付着させたリグノセルロース繊維からなる、本発明のセメント材料補強用繊維が得られる。 By adopting the above-described method of treating lignocellulose fibers with an antistatic agent, the cement material reinforcing fiber of the present invention comprising lignocellulose fibers with an antistatic agent attached thereto can be obtained.
 なお、以下に説明する、帯電防止剤が付着したセメント材料補強用繊維、及びそれを用いた繊維混合セメント材料及び繊維強化セメント材料等に関する説明は、特に矛盾しない限り、後述する第2のセメント材料補強用繊維、及びそれを用いた繊維混合セメント材料及び繊維強化セメント材料等にも同様に適用される。 In addition, the description regarding the fiber for cement material reinforcement to which the antistatic agent is attached, and the fiber mixed cement material and the fiber reinforced cement material using the same, which will be described below, is a second cement material described later unless otherwise contradicted. The same applies to reinforcing fibers, and fiber mixed cement materials and fiber reinforced cement materials using the same.
 本発明のセメント材料補強用繊維は、単独で販売しても良いし、リグノセルロース繊維、帯電防止剤及びセメントを含む繊維混合セメント材料として販売しても良い。セメント材料補強用繊維又は繊維混合セメント材料を工場で生産し、それを各地の建築や土木工事の現場に搬入し、当該現場で、モルタルやコンクリートの他の材料や水と混錬して、繊維強化セメント材料とすることも、搬送コストを抑制しつつ高品質の繊維強化成形体を製造できる等の観点から好ましい。 The cement material reinforcing fiber of the present invention may be sold alone or as a fiber-mixed cement material containing lignocellulose fiber, antistatic agent and cement. Cement material reinforcing fiber or fiber-mixed cement material is produced at the factory, and it is transported to the construction and civil engineering work sites in each region, where it is kneaded with other materials and water such as mortar and concrete. It is also preferable to use a reinforced cement material from the standpoint that a high-quality fiber-reinforced molded body can be produced while suppressing conveyance costs.
 また、建築や土木工事の現場への繊維混合セメント材料の搬入の容易や、繊維混合セメント材料の搬送コストの削減等の観点から、繊維混合セメント材料は、水分の含有率が、15質量%以下のモルタルミックス又はコンクリートミックスであることが好ましく、さらに水分の含有率は、10質量%以下であることがより好ましい。モルタルミックスは、セメント以外に、リグノセルロース繊維、帯電防止剤、砂等の細骨材を含んでおり、コンクリートミックスは、セメント以外に、リグノセルロース繊維、帯電防止剤、砂利等の粗骨材を含んでいる。繊維混合セメント材料は、リグノセルロース繊維及び帯電防止剤として、帯電防止剤を付着させたリグノセルロース繊維を含むことが好ましい。細骨材及び粗骨材としては、JIS A 1102に規定されるものなど公知のものを用いることができる。 In addition, from the viewpoint of easy delivery of fiber-mixed cement material to the construction and civil engineering sites and reduction in the cost of transporting fiber-mixed cement material, the fiber-mixed cement material has a moisture content of 15% by mass or less. The mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less. In addition to cement, the mortar mix contains fine aggregates such as lignocellulosic fibers, antistatic agents and sand, and the concrete mix contains coarse aggregates such as lignocellulosic fibers, antistatic agents and gravel. Contains. The fiber-mixed cement material preferably contains lignocellulosic fibers to which an antistatic agent is attached as a lignocellulose fiber and an antistatic agent. As the fine aggregate and the coarse aggregate, known ones such as those defined in JIS A 1102 can be used.
〔セメント材料〕
 本発明におけるセメント材料は、セメントを含有するものであれば特に制限なく対象とすることができる。具体的には、コンクリート、モルタル、セメント成型材料を挙げることができる。セメント成型材料としては、例えば、木片セメント板、木毛セメント板、サイディング板、スレート板、発泡コンクリート等を挙げることができる。セメント材料及び繊維強化セメント材料の意には、水添加後の最終的な製品だけでなく、製品を製造する原料となる粉体(例えば、水を含まないコンクリートミックス粉末混合物、水を含まないモルタルミックス粉末混合物等)を含む。さらに、近年よく使用されるフライアッシュや高炉スラグを含んでいても良い。
[Cement material]
The cement material in the present invention is not particularly limited as long as it contains cement. Specific examples include concrete, mortar, and cement molding material. Examples of the cement molding material include wood piece cement board, wood wool cement board, siding board, slate board, and foamed concrete. The meaning of cement material and fiber reinforced cement material is not only the final product after water addition, but also the powder used as the raw material for producing the product (for example, water-free concrete mix powder mixture, water-free mortar Mixed powder mixture etc.). Furthermore, fly ash and blast furnace slag that are often used in recent years may be included.
〔その他添加剤〕
 本発明の繊維混合セメント材料及び繊維強化セメント材料には、その他に本発明の効果を損なわない範囲で防腐剤、防虫剤、防カビ剤、撥水剤、紫外線吸収剤、難燃剤、フィラー、カップリング剤、エラストマー、ポリマー、消泡剤、滑剤、顔料、色素、減水剤、膨張剤、収縮低減剤等の種々の添加剤を加えることが出来る。これらは、1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
 更に、本発明の目的を損なわない範囲で、ガラス繊維、合成樹脂繊維、炭素繊維、セルロースナノファイバー、リグノセルロースナノファイバー、セルロースナノクリスタル、カーボンナノチューブ、その他ナノファイバー等を添加することができる。一般的に、特性や形状の異なる、複数の種類の繊維を組み合わせると、何れかを単独で使用するよりも好ましい効果が得られることが経験的に知られているためである。
[Other additives]
The fiber-mixed cement material and the fiber-reinforced cement material of the present invention include preservatives, insecticides, fungicides, water repellents, ultraviolet absorbers, flame retardants, fillers, cups as long as the effects of the present invention are not impaired. Various additives such as a ring agent, an elastomer, a polymer, an antifoaming agent, a lubricant, a pigment, a dye, a water reducing agent, a swelling agent, and a shrinkage reducing agent can be added. These may be used individually by 1 type and may be used in combination of 2 or more type.
Furthermore, glass fibers, synthetic resin fibers, carbon fibers, cellulose nanofibers, lignocellulose nanofibers, cellulose nanocrystals, carbon nanotubes, other nanofibers, and the like can be added as long as the object of the present invention is not impaired. This is because, in general, it is empirically known that when a plurality of types of fibers having different characteristics and shapes are combined, a preferable effect can be obtained as compared with the case where any one of them is used alone.
〔混練方法〕
 リグノセルロース繊維とセメント材料を混合する方法としては、公知の混合方法、例えば、ミキサーによる攪拌等を用いることができる。
 本発明で特筆すべきことは、従来は過剰な水分の下で機械的に強力に攪拌するような装置を用いなければ、リグノセルロース繊維の凝集を解消し、セメント材料内へ均一に分散することができなかった。しかし、本発明においては、帯電防止剤が付着したセメント材料補強用繊維や、帯電防止剤の存在下に、リグノセルロースと水等とを混合することで、特別な攪拌装置ではない通常のコンクリートミキサーやモルタルミキサーを用いて、スラリーからの脱水工程を経由することなく目的を達することができる。
[Kneading method]
As a method of mixing the lignocellulosic fiber and the cement material, a known mixing method such as stirring by a mixer can be used.
What should be noted in the present invention is that aggregation of lignocellulosic fibers is eliminated and dispersed uniformly in the cement material unless a device that is mechanically vigorously stirred under excessive moisture is used. I could not. However, in the present invention, a cement material reinforcing fiber to which an antistatic agent is attached, or an ordinary concrete mixer that is not a special stirring device by mixing lignocellulose and water in the presence of the antistatic agent. The purpose can be achieved by using a mortar mixer without going through a dehydration step from the slurry.
 本発明の繊維強化セメント材料の製造方法は、リグノセルロース繊維、帯電防止剤、セメント及び水を混合する混錬工程を含み、該混錬工程後に脱水する工程を含まない。前記の混錬工程においては、セメント材料補強用繊維、セメント及び水に加えて、後述するリグノセルロース材料を切削した小片を混錬することが好ましい。本発明の繊維強化セメント材料の製造方法によれば、混錬工程後の混合物(繊維強化セメント材料)を、常温で硬化させることによって、植物由来のリグノセルロース繊維により補強された高性能の繊維強化成形体を製造可能である。また、混合物の混錬に、過剰な水分の下で機械的に強力に攪拌するような装置を用いたり、その後に、スラリーからの脱水工程を経由することなく、繊維強化セメント材料を効率的に製造可能である。 The method for producing a fiber-reinforced cement material of the present invention includes a kneading step of mixing lignocellulose fibers, an antistatic agent, cement and water, and does not include a step of dehydrating after the kneading step. In the kneading step, it is preferable to knead small pieces obtained by cutting a lignocellulosic material described later in addition to the cement material reinforcing fiber, cement and water. According to the method for producing a fiber-reinforced cement material of the present invention, high-performance fiber reinforcement reinforced with plant-derived lignocellulose fibers by curing the mixture (fiber-reinforced cement material) after the kneading process at room temperature. A molded body can be manufactured. In addition, for the kneading of the mixture, it is possible to efficiently use the fiber-reinforced cement material without using a device that mechanically and vigorously stirs under excessive moisture, or after going through the dehydration process from the slurry. It can be manufactured.
 繊維強化成形体は、板状の成形体であっても良く、3次元的な立体形態を有する成形体であっても良い。本発明のセメント材料補強用繊維、繊維混合セメント材料又は繊維強化セメント材料の製造方法を用いて得られた成形体は、繊維強化成形体に該当する。
 板状の繊維強化成形体としては、木片セメント板、木毛セメント板、サイディング板、スレート板、発泡コンクリート、その他のコンクリート二次製品等を挙げることができる。3次元的な立体形態を有する繊維強化成形体は、建築物の一部であっても良く、例えば、コンクリート造の建物の壁や床等のコンクリート一次製品、在来軸組工法やツーバイフォー工法の木造建築物におけるモルタル壁等であっても良い。また建築物の壁は、窓又はドア用の開口部を有する壁であっても良い。
The fiber-reinforced molded body may be a plate-shaped molded body or a molded body having a three-dimensional solid form. The molded product obtained by using the method for producing a fiber for reinforcing a cement material, a fiber-mixed cement material or a fiber-reinforced cement material according to the present invention corresponds to a fiber-reinforced molded product.
Examples of the plate-like fiber reinforced molded body include wood chip cement board, wood wool cement board, siding board, slate board, foamed concrete, and other concrete secondary products. The fiber reinforced molded body having a three-dimensional solid form may be a part of a building, for example, a concrete primary product such as a wall or floor of a concrete building, a conventional shaft assembly method or a two-by-four method. It may be a mortar wall in a wooden building. The wall of the building may be a wall having an opening for a window or a door.
 また、繊維強化成形体は繊維強化セメント構造体であっても良い。繊維強化セメント構造体は、細骨材及び粗骨材を含む構造体であっても良いし、粗骨材を含まない構造体であっても良い。
 繊維強化セメント構造体には、建設現場で生コンクリートを流し込んで作られるコンクリート一次製品、及びコンクリートを材料に工場で作られたコンクリート二次製品等が含まれる。
 コンクリート一次製品としては、コンクリート造の建物全体やその一部(壁や床)、コンクリート製のトンネル等が挙げられる。
 コンクリート二次製品としては、電柱、高速道路の支柱や側溝、消波ブロック、マンホール、コンクリートパイル、ボックスカルバート、トンネル内壁に使用されるセグメント、信号機や配電線用のポール等が挙げられる。
The fiber reinforced molded body may be a fiber reinforced cement structure. The fiber reinforced cement structure may be a structure including fine aggregate and coarse aggregate, or may be a structure not including coarse aggregate.
The fiber reinforced cement structure includes a primary concrete product made by pouring ready-mixed concrete at a construction site, a secondary concrete product made in a factory using concrete as a material, and the like.
Examples of primary concrete products include the entire concrete building and parts thereof (walls and floors), concrete tunnels, and the like.
Secondary concrete products include utility poles, expressway columns and side grooves, wave-dissipating blocks, manholes, concrete piles, box culverts, segments used for tunnel inner walls, poles for traffic lights and distribution lines.
〔リグノセルロース材料切削小片〕
 本発明のセメント材料補強用繊維(第2のセメント材料補強用繊維も同様)は、リグノセルロース材料を切削した小片と併用することが好ましい。また、本発明の繊維混合セメント材料は、リグノセルロース繊維、帯電防止剤及びセメント、好ましくはセメント材料補強用繊維及びセメントに加えて、リグノセルロース材料を切削した小片を含むことが好ましい。また、本発明の繊維強化セメント材料の製造方法においては、リグノセルロース繊維、帯電防止剤、セメント及び水、好ましくはセメント材料補強用繊維、セメント及び水に加えて、リグノセルロース材料を切削した小片を混合することが好ましい。また、第2方法発明の繊維強化セメント材料の製造方法においては、セメント材料に、リグノセルロース繊維及びリグノセルロース材料を切削した小片を添加する。
 リグノセルロース繊維に加えて、リグノセルロース材料を薄く切削したリグノセルロース材料切削小片、所謂、フレーク、ウェハー、ストランド等を添加することで、繊維強化成形体の脆性が向上する等、セメント材料の物性を、リグノセルロース繊維を単独で添加したときに比して大幅に向上させることができる。
[Lignocellulose material cutting piece]
The cement material reinforcing fiber of the present invention (as well as the second cement material reinforcing fiber) is preferably used in combination with a small piece obtained by cutting a lignocellulosic material. The fiber-mixed cement material of the present invention preferably contains small pieces obtained by cutting the lignocellulosic material in addition to the lignocellulosic fiber, antistatic agent and cement, preferably cement material reinforcing fiber and cement. Further, in the method for producing a fiber reinforced cement material of the present invention, in addition to lignocellulosic fiber, antistatic agent, cement and water, preferably cement material reinforcing fiber, cement and water, a piece obtained by cutting the lignocellulose material is used. It is preferable to mix. Moreover, in the manufacturing method of the fiber reinforced cement material of 2nd method invention, the small piece which cut lignocellulose fiber and lignocellulose material is added to cement material.
In addition to lignocellulosic fibers, the addition of small pieces of lignocellulosic material cut from lignocellulosic materials, so-called flakes, wafers, strands, etc., improves the brittleness of the fiber reinforced molded product, etc. As compared with the case where lignocellulosic fiber is added alone, it can be greatly improved.
 本発明で用いる「リグノセルロース材料を切削した小片」(以下、リグノセルロース材料切削小片という)としては、木材や木材以外の植物を原料として、フレーカーや、リング式又はディスク式のストランド製造装置で製造したもの等を特に制限なく用いることができる。
 このようなリグノセルロース材料切削小片の例としては、パーティクイルボード用のフレーク、ウェハーボード用のストランド、及び、オリエンテッドストランドボード用のストランドを好ましく用いることができる。これらのリグノセルロース材料切削小片は、1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
The “small piece of lignocellulosic material cut” used in the present invention (hereinafter referred to as lignocellulosic material-cut small piece) is produced with a flaker, a ring type or a disk type strand production device using wood or a plant other than wood as a raw material. Those that have been used can be used without particular limitation.
As examples of such lignocellulosic material cutting pieces, flakes for party quill boards, strands for wafer boards, and strands for oriented strand boards can be preferably used. One type of these lignocellulosic material cutting pieces may be used alone, or two or more types may be used in combination.
 リグノセルロース材料をリグノセルロース材料切削小片化する方法としては、公知の方法を特に制限なく用いることができ、例えば、パーティクルボードを製造する方法やオリエンテッドストランドボード、及び、ウェハーボード用の切削小片を製造する方法等を用いることができる。
 上記の一例としては、リグノセルロース材料をチップ状に粉砕し、その後、ナイフリングフレーカーで切削する方法、リグノセルロース材料をそのままリング式ストランド製造装置で切削する方法を挙げることができる。
 このようにして得られた切削小片の形状については、好ましくは、幅は1~50mm、更に好ましくは2~20mmを挙げることができる。また、長さは好ましくは1~50mm、更に好ましくは2~20mmを挙げることができる。また、厚さは好ましくは、0.2~1.0mm、更に好ましくは0.3~0.6mmを挙げることができる。
As a method of cutting lignocellulosic material into lignocellulosic material cutting pieces, known methods can be used without particular limitation. For example, a particle board manufacturing method, an oriented strand board, and a cutting piece for wafer board are used. A manufacturing method or the like can be used.
Examples of the above include a method in which the lignocellulose material is crushed into chips and then cut with a knife ring flaker, and a method in which the lignocellulose material is cut as it is with a ring-type strand manufacturing apparatus.
With respect to the shape of the cutting piece thus obtained, the width is preferably 1 to 50 mm, more preferably 2 to 20 mm. The length is preferably 1 to 50 mm, more preferably 2 to 20 mm. The thickness is preferably 0.2 to 1.0 mm, more preferably 0.3 to 0.6 mm.
 リグノセルロース材料切削小片の全体的な形状としては、繊維方向を長さ、繊維方向に直交する方向を幅としたときに、長さが幅に比して長いことが、リグノセルロース材料の力学的な性能の面からして好ましい。このような切削小片の形状はフレーカーやストランド製造装置の運転条件を調整することで適宜所望の形状に調整することができる。
 また、リグノセルロース繊維切削小片の大きさは、使用目的により適宜変更される。例えば、モルタルに添加する場合は、当該モルタル複合材料は、ラス網と呼ばれる網状の下地金物に塗付けられることになる。この場合、ラス網とモルタルとの物理的な絡み付きが重要となるため、リグノセルロース材料切削小片の大きさはラス網の目の開きの大きさにより決定される。また、同様のことが、コンクリートと鉄筋や補強金網の場合についても言える。
 なお、リグノセルロース材料切削小片は帯電防止剤で処理しなくとも、ダマにもならなければ、凝集も発生しないので、処理の要否は任意である。
The overall shape of the lignocellulosic material cutting piece is that the length of the fiber direction is the length and the direction perpendicular to the fiber direction is the width. From the standpoint of performance, it is preferable. The shape of such a cutting piece can be appropriately adjusted to a desired shape by adjusting the operating conditions of the flaker and the strand manufacturing apparatus.
Further, the size of the lignocellulose fiber cutting piece is appropriately changed depending on the purpose of use. For example, when added to mortar, the mortar composite material is applied to a reticulated base metal called a lath net. In this case, since the physical entanglement between the lath net and the mortar is important, the size of the lignocellulosic material cutting piece is determined by the size of the opening of the lath net. The same can be said for concrete, reinforcing bars and reinforcing wire mesh.
The lignocellulosic material cutting pieces are not treated with an antistatic agent, do not become lumps, and do not agglomerate, so the necessity of treatment is arbitrary.
 リグノセルロース繊維とリグノセルロース材料切削小片は、別々の段階でセメント材料と添加しても良いし、同じ段階で添加しても良い。一緒に添加する場合のほうが工程の簡略化が図られるため好ましく、その場合は、予めリグノセルロース繊維とリグノセルロース材料切削小片を所望の割合で混合しておき、それを添加しても良いし、更に望ましくは当該混合物をペレットのような圧縮固形化や造粒化を行ったものを添加するほうが、軽量性、作業容易性や作業環境性の向上のために好ましい。 The lignocellulosic fiber and the lignocellulosic material cutting piece may be added to the cement material at separate stages or may be added at the same stage. The case of adding together is preferable because the process can be simplified. In that case, lignocellulose fibers and lignocellulose material cutting pieces are mixed in a desired ratio in advance, and it may be added, More preferably, it is more preferable to add a mixture obtained by compression solidification or granulation such as pellets in order to improve lightness, workability, and work environment.
 また、本発明は、セメント材料補強用繊維として、繊維表面被覆剤が付着したリグノセルロース繊維からなり、前記繊維表面被覆剤が、樹脂、リグノセルロースナノファイバー及びセルロースナノファイバーからなる群から選択される1種以上であることを特徴とする第2のセメント材料補強用繊維を提供するものである。
 第2のセメント材料補強用繊維におけるリグノセルロース繊維は、前述した帯電防止剤が付着していないリグノセルロース繊維であっても良いが、前述した帯電防止剤が付着したリグノセルロース繊維であることが好ましい。すなわち、前述した帯電防止剤に加えて、前記の繊維表面被覆剤が付着したリグノセルロース繊維であることが好ましい。
Further, the present invention comprises a lignocellulosic fiber to which a fiber surface coating agent is attached as a fiber for reinforcing a cement material, and the fiber surface coating agent is selected from the group consisting of a resin, lignocellulose nanofiber and cellulose nanofiber. The present invention provides the second fiber for reinforcing a cement material, which is one or more kinds.
The lignocellulose fiber in the second cement material reinforcing fiber may be a lignocellulose fiber to which the above-mentioned antistatic agent is not attached, but is preferably a lignocellulose fiber to which the above-mentioned antistatic agent is attached. . That is, in addition to the antistatic agent described above, lignocellulosic fibers to which the fiber surface coating agent is attached are preferred.
 第2のセメント材料補強用繊維の実施形態としては例えば以下が挙げられる。
 第1実施形態のセメント材料補強用繊維は、繊維表面被覆剤が付着したリグノセルロース繊維からなり、前記繊維表面被覆剤が樹脂であるものである。
 第2実施形態の第2実施形態のセメント材料補強用繊維は、繊維表面被覆剤が付着したリグノセルロース繊維からなり、前記繊維表面被覆剤が、セルロースナノファイバー及び/又はリグノセルロースナノファイバーである。
Examples of the second cement material reinforcing fiber include the following.
The cement material reinforcing fiber of the first embodiment is made of lignocellulosic fiber to which a fiber surface coating agent is attached, and the fiber surface coating agent is a resin.
The fiber for reinforcing cement material according to the second embodiment of the second embodiment is composed of lignocellulose fibers to which a fiber surface coating agent is attached, and the fiber surface coating agent is cellulose nanofiber and / or lignocellulose nanofiber.
 第2のセメント材料補強用繊維に用いる樹脂、リグノセルロースナノファイバー及びセルロースナノファイバー等について説明する。
〔樹脂〕
 繊維表面被覆剤としての樹脂は、セメント材料の補強効果の持続性を向上させるもので、以下の(1)及び(2)の何れか1以上、より好ましくは両方の機能を発現する。
(1)リグノセルロース繊維の表面に付着して、該リグノセルロース繊維が吸水又は吸湿して膨潤することを抑制し得るもの。
(2)リグノセルロース繊維の表面に付着して、該リグノセルロース繊維の中空部に、セメント成分が侵入するのを抑制し得るもの。
The resin, lignocellulose nanofiber, cellulose nanofiber, and the like used for the second cement material reinforcing fiber will be described.
〔resin〕
The resin as the fiber surface coating agent improves the durability of the reinforcing effect of the cement material, and expresses one or more of the following (1) and (2), more preferably both functions.
(1) A material that adheres to the surface of lignocellulosic fibers and can suppress swelling of the lignocellulose fibers due to water absorption or moisture absorption.
(2) A material that adheres to the surface of the lignocellulose fiber and can prevent the cement component from entering the hollow portion of the lignocellulose fiber.
 繊維表面被覆剤としての樹脂は、補強効果の持続性の向上の観点から、熱硬化性樹脂であって、硬化した状態で繊維表面に付着していることが好ましい。
 また、繊維表面被覆剤としての樹脂は、水溶性の熱硬化性樹脂であることが、熱硬化性樹脂を、水溶液の状態で、スプレー等の多様な方法により効率的にリグノセルロース繊維を付着させることができるため好ましい。
 繊維表面被覆剤として用いる樹脂は、アミノ樹脂、ポリアクリルアミド樹脂、及び、ポリアクリルアミド樹脂誘導体からなる群から選択される1種以上であることが、補強効果の持続性の向上の観点から好ましい。これらの樹脂は、水溶性の熱硬化性樹脂である。
 アミノ樹脂は、アミノ基を含む化合物とアルデヒドの縮合反応によって得られる樹脂の総称である。アミノ樹脂の例としては、ユリア・ホルムアルデヒド樹脂、メラミン・ホルムアルデヒド樹脂、メラミン・ユリア・ホルムアルデヒド樹脂、及びこれらの誘導体を挙げることができる。
 また、セメント材料が、主に屋外で使用されることを考慮すると、耐久性の観点から、繊維表面被覆剤として用いる樹脂は、ポリアクリルアミド樹脂又はその誘導体であることが好ましい。
 また、リグノセルロース繊維はその水酸基がアニオン性であるため、ポリアクリルアミド系樹脂等を用いる場合は、カチオン性のものを用いるのが、リグノセルロース繊維への付着力や残存力の高さから好ましい。アニオン性や両イオン性のものを用いる場合は、硫酸アルミニウムのような展着剤を併用するのが好ましい。
 ここで、アニオン性とは、水に溶けた場合のイオンの種類としてアニオン(陰イオン)性の化合物であることを意味する。
 樹脂は、1種を単独で又は二以上を組み合わせて用いることができる。
The resin as the fiber surface coating agent is a thermosetting resin from the viewpoint of improving the durability of the reinforcing effect, and is preferably attached to the fiber surface in a cured state.
In addition, the resin as the fiber surface coating agent is a water-soluble thermosetting resin, and the lignocellulosic fiber is efficiently attached to the thermosetting resin in a state of an aqueous solution by various methods such as spraying. This is preferable.
The resin used as the fiber surface coating agent is preferably at least one selected from the group consisting of amino resins, polyacrylamide resins, and polyacrylamide resin derivatives from the viewpoint of improving the durability of the reinforcing effect. These resins are water-soluble thermosetting resins.
An amino resin is a general term for resins obtained by a condensation reaction between a compound containing an amino group and an aldehyde. Examples of amino resins include urea-formaldehyde resins, melamine-formaldehyde resins, melamine-urea-formaldehyde resins, and derivatives thereof.
Moreover, considering that the cement material is mainly used outdoors, the resin used as the fiber surface coating agent is preferably a polyacrylamide resin or a derivative thereof from the viewpoint of durability.
Moreover, since the hydroxyl group of an lignocellulose fiber is anionic, when a polyacrylamide resin is used, it is preferable to use a cationic one because of its high adhesion and residual strength to the lignocellulose fiber. When anionic or amphoteric ones are used, it is preferable to use a spreading agent such as aluminum sulfate in combination.
Here, anionic means that it is an anionic (anionic) compound as a kind of ions when dissolved in water.
Resin can be used individually by 1 type or in combination of 2 or more.
〔樹脂の繊維への処理方法〕
 リグノセルロース繊維を樹脂で処理する方法(リグノセルロース繊維に樹脂を付着させる方法)としては、解繊装置(例えば、リファイナー)から搬出された濡れた状態のリグノセルロース繊維に樹脂を含む溶液を吹き付け、その後乾燥させる方法、或いは、濡れた状態のリグノセルロース繊維を樹脂を含む溶液に浸漬し、その後乾燥させる方法等が挙げられる。或いは、解繊装置から搬出されたリグノセルロース繊維を乾燥してから、樹脂を含む液体を吹き付けたり、樹脂を含む溶液に浸漬する方法等も挙げることができる。樹脂を含む溶液は、溶媒が水である水溶液であることが好ましいが、溶媒は水とアルコール等の他の液体との混合物であっても良いし、アルコール等の水以外の液体であっても良い。アルコールとしては、例えばメタノール、エタノール、変性アルコール等が挙げられる。また、樹脂を含む溶液に代えて、リグノセルロース繊維に、樹脂を含む分散液を、吹き付け、浸漬等により接触させても良い。溶媒又は分散媒は、水を50質量%以上含む液体であることが好ましく、水であることが更に好ましい。
[Method of processing resin into fibers]
As a method of treating lignocellulosic fibers with a resin (a method of attaching a resin to lignocellulosic fibers), a solution containing a resin is sprayed on wet lignocellulose fibers carried out from a defibrating apparatus (for example, a refiner), The method of drying after that, or the method of immersing the lignocellulose fiber in a wet state in a solution containing a resin and then drying it may be mentioned. Or the method of spraying the liquid containing resin, or immersing in the solution containing resin after drying the lignocellulose fiber carried out from the defibrating apparatus can also be mentioned. The solution containing the resin is preferably an aqueous solution in which the solvent is water, but the solvent may be a mixture of water and another liquid such as alcohol, or may be a liquid other than water such as alcohol. good. Examples of the alcohol include methanol, ethanol, and denatured alcohol. Further, instead of the solution containing the resin, the lignocellulosic fiber may be brought into contact with the dispersion containing the resin by spraying, dipping, or the like. The solvent or dispersion medium is preferably a liquid containing 50% by mass or more of water, and more preferably water.
 リグノセルロース繊維を樹脂を含む溶液に接触した後、乾燥させることで、繊維の表面に、樹脂が硬化した状態で強固に付着したセメント材料補強用繊維が得られる。斯かるセメント材料補強用繊維は、セメント材料の補強効果の持続性に一層優れている。
 樹脂が熱硬化性樹脂である場合、溶液の乾燥時又は溶液の乾燥後に、熱硬化性樹脂の硬化温度以上に加熱する樹脂の硬化処理を行うことが、セメント材料補強効果の持続性に一層優れたセメント材料補強用繊維を得る観点から好ましく、更に乾燥温度を熱硬化樹脂の硬化温度以上として、溶液の乾燥と樹脂の熱硬化とを同時に行うことが、製造効率等の観点から更に好ましい。
 樹脂のリグノセルロースへの付着量は、樹脂により異なるので適宜所望の付着量を選択することができるが、例えば、乾燥状態のリグノセルロース繊維の質量に対して樹脂固形分換算で、好ましくは0.1~20質量%、より好ましくは0.2~10質量%、更に好ましくは0.5~2質量%である。第1実施形態のセメント材料補強用繊維は、繊維の表面の全体が樹脂で被覆されていても良いし、繊維の表面が部分的に樹脂で被覆されている状態でも良い。
By contacting the lignocellulosic fiber with a resin-containing solution and then drying, a cement material reinforcing fiber firmly adhered to the surface of the fiber in a cured state of the resin is obtained. Such a fiber for reinforcing a cement material is further excellent in sustainability of the reinforcing effect of the cement material.
When the resin is a thermosetting resin, it is more excellent in sustainability of the cement material reinforcing effect when the resin is heated to a temperature higher than the curing temperature of the thermosetting resin when the solution is dried or after the solution is dried. It is preferable from the viewpoint of obtaining fibers for reinforcing cement material, and it is further preferable from the viewpoint of production efficiency and the like that the drying temperature is set to be equal to or higher than the curing temperature of the thermosetting resin, and the solution drying and the resin thermosetting are simultaneously performed.
Since the adhesion amount of the resin to the lignocellulose varies depending on the resin, a desired adhesion amount can be appropriately selected. For example, the amount of the resin is preferably 0. It is 1 to 20% by mass, more preferably 0.2 to 10% by mass, and still more preferably 0.5 to 2% by mass. The cement material reinforcing fiber of the first embodiment may be entirely coated with a resin, or may be partially covered with a resin.
〔セルロースナノファイバー,リグノセルロースナノファイバー〕
 本発明で用いるセルロースナノファイバー及びリグノセルロースナノファイバーは、微細化処理により、セルロース繊維を含むパルプ等の材料を、繊維径がナノサイズレベル(1ミクロン未満)のナノファイバーとしたものである。微細化処理は、例えば、高圧ホモジナイザー、グラインダー、摩砕機、リファイナー等から選ばれる任意の方法で行うことができる。セルロースナノファイバーは、例えばクラフトパルプ等のリグニンを含まない材料から得られ、実質的にリグニンを含まないナノファイバーである。これに対して、リグノセルロースナノファイバーは、リグニンを含むパルプから、脱リグニンをすることなく又は含有リグニン量を調整して製造されるナノファイバーであり、リグニンを含んでいる。セルロースナノファイバーは、リグニンの含有量が、好ましくは10質量%未満、より好ましくは5質量%未満であり、リグノセルロースナノファイバーは、リグニンの含有量が、好ましくは10質量%以上であり、より好ましくは10~50質量%である。
[Cellulose nanofibers, lignocellulose nanofibers]
Cellulose nanofibers and lignocellulose nanofibers used in the present invention are made from a material such as pulp containing cellulose fibers by nano-fabrication into nanofibers having a fiber size of nanosize level (less than 1 micron). The miniaturization treatment can be performed by any method selected from, for example, a high-pressure homogenizer, a grinder, a grinder, a refiner, and the like. Cellulose nanofibers are nanofibers obtained from materials that do not contain lignin, such as kraft pulp, and are substantially free of lignin. On the other hand, lignocellulose nanofibers are nanofibers produced from pulp containing lignin without delignification or by adjusting the amount of lignin contained, and contain lignin. The cellulose nanofiber has a lignin content of preferably less than 10% by mass, more preferably less than 5% by mass, and the lignocellulose nanofiber has a lignin content of preferably 10% by mass or more. The amount is preferably 10 to 50% by mass.
 本発明においては、繊維表面被覆材として、セルロースナノファイバー及びリグノセルロースナノファイバーの一方のみを用いても良く、セルロースナノファイバー及びリグノセルロースナノファイバーの両方を用いることもできる。更には、前述した樹脂を、セルロースナノファイバー及び/又はリグノセルロースナノファイバーと併用することもできる。以下、セルロースナノファイバー及びリグノセルロースナノファイバーの両者を纏めて、(リグノ)セルロースナノファイバーともいう。
 本発明で用いる(リグノ)セルロースナノファイバーは、平均繊維径が、好ましくは1~500nmであり、より好ましくは10~100nm、更に好ましくは20~50nmである。
 (リグノ)セルロースナノファイバーの平均繊維長は、好ましくは1~5000μmであり、より好ましくは2~4000μm、更に好ましくは3~3000μmである。
In the present invention, only one of cellulose nanofibers and lignocellulose nanofibers may be used as the fiber surface covering material, and both cellulose nanofibers and lignocellulose nanofibers may be used. Furthermore, the resin described above can be used in combination with cellulose nanofibers and / or lignocellulose nanofibers. Hereinafter, both cellulose nanofibers and lignocellulose nanofibers are collectively referred to as (ligno) cellulose nanofibers.
The (ligno) cellulose nanofiber used in the present invention has an average fiber diameter of preferably 1 to 500 nm, more preferably 10 to 100 nm, still more preferably 20 to 50 nm.
The average fiber length of the (ligno) cellulose nanofiber is preferably 1 to 5000 μm, more preferably 2 to 4000 μm, still more preferably 3 to 3000 μm.
 繊維表面被覆剤としての(リグノ)セルロースナノファイバーは、セメント材料補強効果の持続性を向上させるもので、以下の(1)及び(2)の何れか1以上、好ましくは両方の機能を発現する。
(1)リグノセルロース繊維の表面に付着して、該リグノセルロース繊維が吸水又は吸湿して膨潤することを抑制し得るもの。
(2)リグノセルロース繊維の表面に付着して、該リグノセルロース繊維の中空部に、セメント成分が侵入するのを抑制し得るもの。
The (ligno) cellulose nanofiber as the fiber surface coating agent improves the sustainability of the cement material reinforcing effect, and expresses one or more of the following (1) and (2), preferably both functions. .
(1) A material that adheres to the surface of lignocellulosic fibers and can suppress swelling of the lignocellulose fibers due to water absorption or moisture absorption.
(2) A material that adheres to the surface of the lignocellulose fiber and can prevent the cement component from entering the hollow portion of the lignocellulose fiber.
〔(リグノ)セルロースナノファイバーの繊維への処理方法〕
 リグノセルロース繊維を(リグノ)セルロースナノファイバーで処理する方法(リグノセルロース繊維に(リグノ)セルロースナノファイバーを付着させる方法)としては、解繊装置(例えば、リファイナー)から搬出された濡れた状態のリグノセルロース繊維に、(リグノ)セルロースナノファイバーを含む液体を吹き付け、その後乾燥させる方法、或いは、濡れた状態のリグノセルロース繊維を(リグノ)セルロースナノファイバーを含む液体に浸漬し、その後乾燥させる方法等が挙げられる。或いは、解繊装置から搬出されたリグノセルロース繊維を乾燥してから、(リグノ)セルロースナノファイバーを含む液体を吹き付けたり、(リグノ)セルロースナノファイバーを含む液体を浸漬する方法等も挙げることができる。
 リグノセルロース繊維に、吹き付け、浸漬等により接触させる(リグノ)セルロースナノファイバーの含有液は、通常、セルロースナノファイバー及び/又はリグノセルロースナノファイバーの分散液である。
 リグノセルロースナノファイバー及び/又はリグノセルロースナノファイバーの分散液の分散媒は、水であることが好ましいが、水とアルコール等の他の液体との混合物や、アルコール等の水以外の液体であっても良い。分散媒は、水を50%質量%以上含む液体であることが好ましく、水であることが更に好ましい。アルコールとしては、例えばメタノール、エタノール、変性アルコール等が挙げられる。
[(Ligno) Cellulose Nanofiber Processing Method]
As a method of treating lignocellulose fibers with (ligno) cellulose nanofibers (method of attaching (ligno) cellulose nanofibers to lignocellulose fibers), wet lignocello carried out from a defibrating device (for example, a refiner) is used. A method of spraying a liquid containing (ligno) cellulose nanofibers on cellulose fibers and then drying, or a method of immersing a lignocellulose fiber in a wet state in a liquid containing (ligno) cellulose nanofibers and then drying the liquid Can be mentioned. Or after drying the lignocellulose fiber carried out from the defibrating apparatus, the method of spraying the liquid containing (ligno) cellulose nanofiber or immersing the liquid containing (ligno) cellulose nanofiber etc. can be mentioned. .
The lignocellulose fiber-containing liquid of (ligno) cellulose nanofiber that is brought into contact with the lignocellulose fiber by spraying, dipping or the like is usually a dispersion of cellulose nanofiber and / or lignocellulose nanofiber.
The dispersion medium of the lignocellulose nanofiber and / or lignocellulose nanofiber dispersion is preferably water, but is a mixture of water and another liquid such as alcohol, or a liquid other than water such as alcohol. Also good. The dispersion medium is preferably a liquid containing 50% by mass or more of water, and more preferably water. Examples of the alcohol include methanol, ethanol, and denatured alcohol.
 リグノセルロース繊維を(リグノ)セルロースナノファイバーを含む液体に接触した後、乾燥させることで、繊維の表面に、(リグノ)セルロースナノファイバーが強固に付着したセメント材料補強用繊維が得られる。斯かるセメント材料補強用繊維は、セメント材料の補強効果の持続性に一層優れている。
 (リグノ)セルロースナノファイバーのリグノセルロース繊維への付着量は、乾燥状態のリグノセルロース繊維の質量に対して、(リグノ)セルロースナノファイバーの固形分換算で、好ましくは0.1~10質量%、より好ましくは0.2~5質量%、更に好ましくは0.5~2質量%である。第2実施形態のセメント材料補強用繊維は、繊維の表面の全体が、(リグノ)セルロースナノファイバーで被覆されていても良いし、繊維の表面が部分的に(リグノ)セルロースナノファイバーで被覆されている状態でも良い。
The lignocellulose fiber is brought into contact with the liquid containing the (ligno) cellulose nanofiber and then dried to obtain a cement material reinforcing fiber in which the (ligno) cellulose nanofiber is firmly attached to the surface of the fiber. Such a fiber for reinforcing a cement material is further excellent in sustainability of the reinforcing effect of the cement material.
The amount of (ligno) cellulose nanofiber attached to the lignocellulose fiber is preferably 0.1 to 10% by mass in terms of the solid content of the (ligno) cellulose nanofiber, based on the mass of the lignocellulose fiber in the dry state. More preferably, it is 0.2 to 5% by mass, and still more preferably 0.5 to 2% by mass. In the fiber for reinforcing cement material according to the second embodiment, the entire fiber surface may be coated with (ligno) cellulose nanofibers, or the fiber surface is partially coated with (ligno) cellulose nanofibers. It may be in the state.
〔第2のセメント材料補強用繊維を用いたセメント材料補強用繊維〕
 前述したリグノセルロース繊維を樹脂で処理する方法、又は前述したリグノセルロース繊維をセルロースナノファイバー及び/又はリグノセルロースナノファイバーで処理する方法を採用することによって、繊維、セルロースナノファイバー及びリグノセルロースナノファイバーからなる群から選択される少なくとも1種が付着したリグノセルロース繊維からなる、第2のセメント材料補強用繊維が得られる。
[Cement material reinforcing fiber using second cement material reinforcing fiber]
By adopting the above-mentioned method for treating lignocellulose fibers with a resin, or the above-mentioned method for treating lignocellulose fibers with cellulose nanofibers and / or lignocellulose nanofibers, fibers, cellulose nanofibers and lignocellulose nanofibers can be used. A second cement material reinforcing fiber made of lignocellulosic fibers to which at least one selected from the group is attached is obtained.
 また、建築や土木工事の現場への繊維混合セメント材料の搬入の容易や、繊維混合セメント材料の搬送コストの削減等の観点から、繊維混合セメント材料は、水分の含有率が、15質量%以下のモルタルミックス又はコンクリートミックスであることが好ましく、さらに水分の含有率は、10質量%以下であることがより好ましい。モルタルミックスは、セメント材料補強用繊維及びセメント以外に、砂等の細骨材を含んでおり、コンクリートミックスは、セメント材料補強用繊維及びセメント以外に、砂利等の粗骨材を含んでいる。繊維混合セメント材料は、セメント材料補強用繊維として、帯電防止剤が付着したセメント材料補強用繊維を含むことが好ましい。 In addition, from the viewpoint of easy delivery of fiber-mixed cement material to the construction and civil engineering sites and reduction in the cost of transporting fiber-mixed cement material, the fiber-mixed cement material has a moisture content of 15% by mass or less. The mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less. The mortar mix contains fine aggregates such as sand in addition to the cement material reinforcing fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to the cement material reinforcing fibers and cement. The fiber-mixed cement material preferably includes a cement material reinforcing fiber to which an antistatic agent is attached as a cement material reinforcing fiber.
 第2のセメント材料補強用繊維は、リグノセルロース繊維に、樹脂、セルロースナノファイバー及びセルロースナノファイバーの少なくとも1種である繊維表面被覆剤に加えて、帯電防止剤が付着していることが、セメント材料調製時の水等に対する分散性を向上させ、繊維強化セメント材料や繊維強化成形体の強度や耐久性を向上させ得る観点から好ましい。帯電防止剤は、1種を単独で用いても良いし、2種以上を組み合わせて用いることもできる。なお、ポリオキシエチレンソルビタン脂肪酸エステル類は、帯電防止剤として好ましく、また、帯電防止剤であるか否かに関わらずに、リグノセルロース繊維に、繊維表面被覆剤に加えて付着させることが好ましい。 The second reinforcing fiber for cement material is that the antistatic agent is attached to the lignocellulose fiber in addition to the resin, cellulose nanofiber, and fiber surface coating agent that is at least one of cellulose nanofiber. It is preferable from the viewpoint of improving the dispersibility of water and the like during material preparation, and improving the strength and durability of the fiber-reinforced cement material and the fiber-reinforced molded body. One antistatic agent may be used alone, or two or more antistatic agents may be used in combination. Polyoxyethylene sorbitan fatty acid esters are preferable as antistatic agents, and it is preferable to adhere to lignocellulosic fibers in addition to the fiber surface coating agent, regardless of whether or not they are antistatic agents.
 帯電防止剤の使用方法は、前述したリグノセルロース繊維を樹脂で処理する方法又は前述したリグノセルロース繊維を(リグノ)セルロースナノファイバーで処理する方法において、繊維表面被覆剤を含む液体を、吹き付け、浸漬等によりリグノセルロース繊維に接触させる際に、当該液体中に、帯電防止剤を含有させておく方法が好ましい。これにより、リグノセルロース繊維に、繊維表面被覆剤に加えて帯電防止剤が付着している第2のセメント材料補強用繊維が得られる。帯電防止剤のリグノセルロース繊維への付着量は、乾燥状態のリグノセルロース繊維に対する帯電防止剤の固形分換算で、0.01~10質量%が好ましく、より好ましくは0.1~5質量%、更に好ましくは0.5~2質量%である。 The method of using the antistatic agent is a method of treating the above lignocellulose fiber with a resin or a method of treating the above lignocellulose fiber with (ligno) cellulose nanofiber, and spraying and dipping a liquid containing a fiber surface coating agent. When the lignocellulose fiber is brought into contact with the liquid, an antistatic agent is preferably contained in the liquid. Thereby, the 2nd fiber for cement material reinforcement to which the antistatic agent has adhered to the lignocellulose fiber in addition to the fiber surface coating agent is obtained. The amount of the antistatic agent attached to the lignocellulosic fiber is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of the solid content of the antistatic agent relative to the dry lignocellulose fiber. More preferably, it is 0.5 to 2% by mass.
 また、第2のセメント材料補強用繊維、特にリグノセルロース繊維に、繊維表面被覆剤に加えて帯電防止剤が付着しているセメント材料補強用繊維を用いることにより、リグノセルロース繊維の凝集を解消し、セメント材料補強用繊維をセメント材料内へ均一に分散させることが容易となる。したがって、例えば、混合物の混錬に、過剰な水分の下で機械的に強力に攪拌するような装置を用いたり、その後に、スラリーからの脱水工程を経由することなく、繊維強化セメント材料を効率的に製造可能である。また、特別な攪拌装置ではない通常のコンクリートミキサーやモルタルミキサーを用いて、スラリーからの脱水工程を経由することなく目的を達することができる。 In addition, the second cement material reinforcing fiber, particularly lignocellulosic fiber, eliminates the aggregation of lignocellulosic fiber by using the cement material reinforcing fiber to which an antistatic agent is attached in addition to the fiber surface coating agent. It becomes easy to uniformly disperse the fiber for reinforcing the cement material into the cement material. Thus, for example, the use of a device that mechanically and vigorously stirs under excess moisture for kneading the mixture, or afterwards, the fiber reinforced cement material is made efficient without going through a dehydration process from the slurry. Can be manufactured. Moreover, the objective can be achieved without using a normal concrete mixer or mortar mixer, which is not a special stirring device, without going through a dehydration step from the slurry.
 本発明のリグノセルロース繊維の圧縮成形体の製造方法(以下「本発明の圧縮成形体の製造方法」ともいう)の好ましい実施態様においては、リグノセルロース繊維を、以下に説明する多軸スクリュー押出機を用いて圧縮・成形して、リグノセルロース繊維が集合体として圧縮及び成形された圧縮成形体を製造する。リグノセルロース繊維としては、本発明で用いるリグノセルロース繊維として前述したもの等を用いることができ、好ましいリグノセルロース繊維についても前述した説明が適宜適用される。 In a preferred embodiment of the method for producing a compression molded product of lignocellulosic fibers of the present invention (hereinafter also referred to as “method for producing the compression molded product of the present invention”), the lignocellulose fiber is a multi-screw extruder described below. To produce a compression molded body in which lignocellulose fibers are compressed and molded as an aggregate. As the lignocellulose fiber, those described above as the lignocellulose fiber used in the present invention can be used, and the above description is also applied to preferable lignocellulose fibers.
〔多軸スクリュー押出機〕
 本発明においては、リグノセルロース繊維の圧縮成形体を得るために、2本以上のスクリューを備えた多軸スクリュー押出機を用いる。本発明における多軸スクリュー押出機には、2本のスクリューを備えた2軸スクリュー押出機と、3本以上のスクリューを備えた多軸スクリュー押出機が含まれる。
 図2には、本発明に好ましく用いられる多軸スクリュー押出機の一例である多軸スクリュー押出機1が示されている。多軸スクリュー押出機1においては、バレル2A内に、複数のスクリュー3(一本のみ図示)が、その回転軸であるスクリュー軸31を互いに平行にして回転自在に並設されている。スクリュー軸31のそれぞれには、図3に示すように、相互に噛み合うスクリュー羽根32が設けられている。
 多軸スクリュー押出機1は、複数のスクリュー3の駆動源4として、例えば、電動モーターを備えており、複数のスクリュー3のスクリュー軸31に、駆動源4から動力が、歯車機構等の動力伝達系5を介して伝達されることで、複数のスクリュー軸31のそれぞれが回転する。
[Multi-screw extruder]
In the present invention, a multi-screw extruder equipped with two or more screws is used to obtain a compression molded product of lignocellulose fibers. The multi-screw extruder in the present invention includes a twin-screw extruder having two screws and a multi-screw extruder having three or more screws.
FIG. 2 shows a multi-screw extruder 1 that is an example of a multi-screw extruder preferably used in the present invention. In the multi-screw extruder 1, a plurality of screws 3 (only one is shown) are arranged in a barrel 2A so as to be rotatable in parallel with screw shafts 31 as rotation axes thereof being parallel to each other. Each of the screw shafts 31 is provided with screw blades 32 that mesh with each other, as shown in FIG.
The multi-screw extruder 1 includes, for example, an electric motor as a drive source 4 for the plurality of screws 3. Power is transmitted from the drive source 4 to the screw shafts 31 of the plurality of screws 3 such as a gear mechanism. Each of the plurality of screw shafts 31 is rotated by being transmitted through the system 5.
 図2に示す多軸スクリュー押出機1を用いて、リグノセルロース繊維の圧縮成形体を製造するには、複数のスクリュー3を回転させながら、原料投入部6に、リグノセルロース繊維Aを投入すると、スクリュー3の回転によって、リグノセルロース繊維Aがスクリュー羽根32の噛合空間に強制的に引き込まれ、そのまま排出孔71を有するダイス7側に向かって、リグノセルロース繊維が強制的に移送及び圧縮される。
 この強制的な移送及び圧縮によって発生した熱とその熱により発生した水蒸気によって、リグノセルロース繊維Aは、軟化した状態となって圧縮され、嵩密度が大幅に低下したリグノセルロースの集合体の圧縮物となって、ダイス7に設けられた複数個の排出孔71から排出される。排出孔71から排出される圧縮物は、排出孔6の断面形状に対応した略円柱状のリグノセルロース繊維の圧縮成形体となっている。
In order to produce a compression-molded body of lignocellulose fibers using the multi-screw extruder 1 shown in FIG. 2, when the lignocellulose fibers A are charged into the raw material charging unit 6 while rotating the plurality of screws 3, By rotation of the screw 3, the lignocellulose fiber A is forcibly drawn into the meshing space of the screw blade 32, and the lignocellulose fiber is forcibly transferred and compressed toward the die 7 side having the discharge hole 71 as it is.
The lignocellulose fiber A is compressed in a softened state by the heat generated by the forced transfer and compression and the water vapor generated by the heat, and the compressed product of the lignocellulose aggregate in which the bulk density is greatly reduced. And discharged from a plurality of discharge holes 71 provided in the die 7. The compressed product discharged from the discharge holes 71 is a compression molded body of substantially cylindrical lignocellulose fibers corresponding to the cross-sectional shape of the discharge holes 6.
 このように、本発明の好ましい実施態様においては、木材や非木材の植物由来のリグノセルロース繊維を、2本以上のスクリューを備えた多軸スクリュー押出機1を用いて移送及び圧縮し、その圧縮物を排出孔71から排出させることで、リグノセルロース繊維の圧縮成形体を製造するため、リグノセルロース繊維を、外部から添加する結合剤を実質的に用いずに、効率よく圧縮及び成形して、リグノセルロース繊維の圧縮成形体を得ることができる。
 より具体的に説明すると、並設された羽根付きスクリューを互いに噛みあう方向に回転させる機構を用いると、1)羽根付きスクリューの互いに噛みあう方向への回転に伴い発生するリグノセルロース間、又は、リグノセルロースと羽根付きスクリューの間で発生する摩擦熱によって繊維が軟化されると共に、本来繊維が保有している繊維結合水が昇温によって水蒸気化し易くなる。その結果、リグノセルロース繊維は、多軸スクリュー押出機1内において、軟化した状態で効率よく圧縮されるとともに、排出孔71から排出される圧縮物のリグノセルロース繊維間には新たな水素結合が発生することとなる。このような作用により、実質的に外部からの結合剤の添加を必要とせず、リグノセルロース繊維の圧縮成形体を得ることができる。
 また、特許文献13で用いるペレッタイザーに見られるような、石臼式の圧縮・押し出し機構を採用すると、リグノセルロース繊維がせん断され、粉状になってしまうが、本実施態様のように、本実施態様のように、多軸スクリュー押出機を用いた圧縮方式下では、繊維への過度なせん断力が発生せず、リグノセルロース繊維が木粉となって補強材料としての性能が大きく低下することも防止できる。
Thus, in a preferred embodiment of the present invention, lignocellulosic fibers derived from wood or non-wood plants are transferred and compressed using the multi-screw extruder 1 equipped with two or more screws, and the compression is performed. In order to produce a compression molded body of lignocellulosic fiber by discharging the product from the discharge hole 71, the lignocellulosic fiber is efficiently compressed and molded without substantially using a binder added from the outside, A compression molded body of lignocellulose fibers can be obtained.
More specifically, if a mechanism for rotating the bladed screws arranged side by side in the direction of meshing with each other is used, 1) between the lignocelluloses generated by the rotation of the bladed screws in the direction of meshing with each other, or The fibers are softened by the frictional heat generated between the lignocellulose and the bladed screw, and the fiber-bound water originally held by the fibers is easily vaporized by the temperature rise. As a result, the lignocellulosic fibers are efficiently compressed in the softened state in the multi-screw extruder 1, and new hydrogen bonds are generated between the lignocellulosic fibers of the compressed product discharged from the discharge holes 71. Will be. By such an action, it is possible to obtain a compression molded body of lignocellulose fiber without substantially adding an external binder.
Further, when a stone mill type compression / extrusion mechanism such as found in a pelletizer used in Patent Document 13 is adopted, lignocellulosic fibers are sheared and become powdery. As in the embodiment, under the compression method using a multi-screw extruder, excessive shearing force is not generated on the fiber, and the lignocellulosic fiber becomes wood flour and the performance as a reinforcing material is greatly reduced. Can be prevented.
 また、特許文献14で用いるブリケット製造装置のような二対のローラー方式の場合は、繊維の過度のせん断は見られないが、ローラー入り口や供給装置内部でブリッジを発生させ、機構を複雑にしてしまい、何らかの補助的な押し込み機構を用いずに、連続的に圧縮及び成形することは難しいが、本実施態様のように、多軸スクリュー押出機を用いた場合は、羽根付きスクリューの互いに噛みあう方向への回転によって、リグノセルロース繊維が自動的に引き込まれるためにブリッジが発生せず、連続的にリグノセルロース繊維を、供給、圧縮、成形して、リグノセルロース繊維の圧縮成形体を効率よく製造することができる。 In addition, in the case of a two-pair roller system such as the briquette manufacturing apparatus used in Patent Document 14, excessive shearing of the fiber is not observed, but a bridge is generated inside the roller entrance and the supply apparatus, making the mechanism complicated. Therefore, it is difficult to continuously compress and mold without using any auxiliary pushing mechanism, but when a multi-screw extruder is used as in this embodiment, the bladed screws mesh with each other. By rotating in the direction, the lignocellulosic fiber is automatically pulled in, so no bridging occurs, and the lignocellulosic fiber is continuously supplied, compressed and molded to efficiently produce a compression molded product of lignocellulose fiber. can do.
 また本実施態様のように、多軸スクリュー押出機1を用いて製造されたリグノセルロース繊維の圧縮成形体においては、リグノセルロース繊維が効率的に圧縮されていることによって、多軸スクリュー押出機1に投入する前に比して、嵩密度が大幅に減少しており、また圧縮成形体として纏まった形状を有し、繊維が飛散しにくくなっている。また、前述のように、リグノセルロース繊維を、過度の繊維の破断を伴わずに、圧縮及び成形できるため、補強材料としての性能が大きく低下することもない。
 したがって、本発明のリグノセルロース繊維の圧縮成形体の製造方法により得られた圧縮成形体及び本発明のリグノセルロース繊維の圧縮成形体は、経済的及び効率的に、輸送、保管、ハンドリング可能であり、また、補強材料としての性能にも優れており、高性能な繊維強化複合材料やその硬化体等を得ることができる。
Moreover, in the compression molding of the lignocellulose fiber manufactured using the multi-screw extruder 1 like this embodiment, when the lignocellulose fiber is compressed efficiently, the multi-screw extruder 1 The bulk density is greatly reduced as compared with that before being put in, and it has a shape formed as a compression-molded body, making it difficult for the fibers to scatter. Further, as described above, since the lignocellulosic fiber can be compressed and molded without excessive fiber breakage, the performance as a reinforcing material is not greatly deteriorated.
Therefore, the compression molded product obtained by the method for producing a compression molded product of lignocellulose fiber of the present invention and the compression molded product of lignocellulose fiber of the present invention can be transported, stored and handled economically and efficiently. Moreover, it is excellent in performance as a reinforcing material, and a high-performance fiber-reinforced composite material or a cured product thereof can be obtained.
 多軸スクリュー押出機1は、3つ又はそれ以上のスクリュー3を備えたものであっても良いが、経済的、及び、技術的な簡便さを考慮すると、二軸スクリュー押出機であることが好ましい。また、多軸スクリュー押出機には、スクリューの軸が異方向に回転する異方向回転型押出機と、スクリューの軸が同方向に回転する同方向回転型押出機とがあるが、リグノセルロース繊維の投入や圧縮の効率の点から、本発明に用いる多軸スクリュー押出機は、異方向回転型押出機が好ましく、より好ましくは、異方向回転型の2軸スクリュー押出機である。また、多軸スクリュー押出機は、原料投入部6の直下に2本のスクリューの羽根の噛み合い部が存在することが好ましく、該噛み合い部においては、2本のスクリューの羽根のそれぞれが、上方から下方に向かって移動していることが好ましい。また、図3に示すように、2本のスクリュー3は、原料投入部6の直下に、隣り合う2本のスクリュー軸31間の距離が、他の部分、好ましくは、それより下流側(図中左側)に位置する部分よりも広い、噛み込み導入部33を有することが好ましい。斯かる噛み込み導入部33を有することで、多軸スクリュー押出機1内へのリグノセルロース繊維の取り込みが一層スムーズになる。したがって、原料投入部6付近に、嵩密度の低いリグノセルロース繊維がブリッジを形成して滞留すること等が一層確実に防止される。また、当該機構は、原料投入部6が広く排出部が狭くなるように、隣り合う2本のスクリュー軸31間の距離が漸次又は段階的に狭くなるような傾斜構造とすることもできる。 The multi-screw extruder 1 may be provided with three or more screws 3, but in consideration of economic and technical convenience, it may be a twin-screw extruder. preferable. Multi-screw extruders include a counter-rotating extruder in which the screw shaft rotates in a different direction and a co-rotating extruder in which the screw shaft rotates in the same direction. The multi-screw extruder used in the present invention is preferably a counter-rotating extruder, more preferably a counter-rotating twin-screw extruder. Further, in the multi-screw extruder, it is preferable that a meshing portion of two screw blades is present immediately below the raw material charging unit 6, and in each of the meshing portions, each of the two screw blades is viewed from above. It is preferable to move downward. Also, as shown in FIG. 3, the two screws 3 have a distance between the two adjacent screw shafts 31 directly below the raw material charging unit 6 in the other part, preferably downstream (see FIG. It is preferable to have the biting introduction part 33 wider than the part located in the middle left). By having such a bite introducing part 33, the lignocellulose fiber can be taken into the multi-screw extruder 1 more smoothly. Therefore, lignocellulosic fibers having a low bulk density are prevented from staying in the vicinity of the raw material charging part 6 by forming a bridge. In addition, the mechanism may have an inclined structure in which the distance between the two adjacent screw shafts 31 is gradually or stepwise narrowed so that the raw material charging unit 6 is wide and the discharge unit is narrowed.
 製造するリグノセルロース繊維の圧縮成形体は、輸送、保管、ハンドリング性の向上の点から、その嵩密度が、100~800kg/mであることが好ましく、200~500kg/mであることが更に好ましい。また、圧縮成形前のリグノセルロース繊維の嵩密度、すなわち多軸スクリュー押出機に投入する前のリグノセルロース繊維の嵩密度に比して、製造するリグノセルロース繊維の圧縮成形体の嵩密度が、2.5~20倍であることが好ましく、5~12.5倍であることが更に好ましい。
 また、リグノセルロース繊維の圧縮成形体の原料となるリグノセルロース繊維として嵩高いものを使用することができ、例えば、圧縮成形前のリグノセルロース繊維は、その嵩密度が、例えば、100kg/m未満であり、好ましくは10~60kg/mである。
The compression-molded body of lignocellulose fibers to be produced preferably has a bulk density of 100 to 800 kg / m 3 and 200 to 500 kg / m 3 from the viewpoint of improving transportation, storage and handling properties. Further preferred. Moreover, the bulk density of the lignocellulosic fiber to be produced is 2 in comparison with the bulk density of the lignocellulosic fiber before compression molding, that is, the bulk density of the lignocellulose fiber before being fed into the multi-screw extruder. It is preferably 5 to 20 times, and more preferably 5 to 12.5 times.
Moreover, a bulky thing can be used as a lignocellulosic fiber used as the raw material of the compression molding body of a lignocellulose fiber, for example, the bulk density of the lignocellulosic fiber before compression molding is less than 100 kg / m < 3 >, for example. And preferably 10 to 60 kg / m 3 .
 ここで、リグノセルロース繊維の圧縮成形前の嵩密度(原料の嵩密度)、及びリグノセルロース繊維の圧縮成形体の嵩密度は、例えば、以下の方法により測定する。
<嵩密度の測定方法>
 容量が50mlのメスシリンダー内に、リグノセルロース繊維を投入したあと、メスシリンダーを50mm程度持ち上げ、自重で落下させ、内容物がメスシリンダー内で隙間を埋めるように落ち着かせる。この作業を10回繰り返しながら、繊維の上部を、ガラス棒等を用いて平らに近づける。繊維の容量が50mlになった場合は、その繊維の質量を計測し、50mlで除して嵩密度とする。繊維の量に過不足がある場合は、繊維を除去したり、追加したりして、適宜調整を行うものとする。同様の操作を複数回(例えば3回)繰り返し、平均値を算出することが望ましい。なお、圧縮成形体でも同様の操作で嵩密度を決定する。ただし、圧縮成形体の大きさが50mlメスシリンダーより大きい場合は、メスシリンダーの大きさを変更することが望ましい。
Here, the bulk density before compression molding of the lignocellulose fiber (bulk density of the raw material) and the bulk density of the compression molded product of lignocellulose fiber are measured by the following methods, for example.
<Method for measuring bulk density>
After the lignocellulosic fiber is put into a graduated cylinder having a capacity of 50 ml, the graduated cylinder is lifted by about 50 mm and dropped by its own weight, so that the contents are settled so as to fill a gap in the graduated cylinder. While repeating this operation 10 times, the upper part of the fiber is made flat using a glass rod or the like. When the fiber capacity reaches 50 ml, the mass of the fiber is measured and divided by 50 ml to obtain the bulk density. If there is an excess or deficiency in the amount of fibers, the fibers should be removed or added and adjusted accordingly. It is desirable to calculate the average value by repeating the same operation a plurality of times (for example, three times). Note that the bulk density is determined by the same operation for the compression molded body. However, when the size of the compression molded body is larger than the 50 ml graduated cylinder, it is desirable to change the size of the graduated cylinder.
 本発明のリグノセルロース繊維の圧縮成形体の製造方法においては、リグノセルロース繊維を、外部から添加する結合剤を実質的に用いずに単独で、多軸スクリュー押出機に導入しても、圧縮状態の保持性に優れた圧縮成形体が得られる。ここで「結合剤を実質的に用いずに単独で」とは、前述したとおり、繊維同士を結合させる目的の樹脂結合剤を添加しないという意味であり、別の目的でリグノセルロース繊維を処理するための樹脂等の添加(例えば、コーティング等)は許容される。例えば、完成したリグノセルロース繊維の圧縮成形体を、繊維強化複合材料を得るために、セメント材料や合成樹脂等の被補強材と混する際の均一混合性を向上させるために、多軸スクリュー押出機に投入する前のリグノセルロース繊維に、少量の水溶性樹脂や熱硬化性樹脂を付着させておいても良い。
 ただし、リグノセルロース繊維に元々含まれていない種類の樹脂の含有量は、多軸スクリュー押出機に投入する圧縮成形体の全材料(水分を除く)の全質量中、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
In the method for producing a compression molded product of lignocellulosic fiber of the present invention, the lignocellulosic fiber can be introduced into a multi-screw extruder alone without substantially using a binder added from the outside. A compression-molded body having excellent retentivity is obtained. Here, “singlely without substantially using a binder” means that a resin binder intended to bind fibers is not added as described above, and lignocellulosic fibers are treated for another purpose. Addition of resin or the like (for example, coating) is permitted. For example, in order to improve the uniform mixing characteristics when the finished lignocellulosic fiber compression molding is mixed with a reinforcing material such as cement material or synthetic resin in order to obtain a fiber reinforced composite material, A small amount of water-soluble resin or thermosetting resin may be adhered to the lignocellulosic fiber before being put into the machine.
However, the content of the type of resin not originally contained in the lignocellulosic fiber is 10% by mass or less based on the total mass of all materials (excluding moisture) of the compression-molded body to be charged into the multi-screw extruder. Is preferable, and it is more preferable that it is 5 mass% or less.
 多軸スクリュー押出機内での軟化や圧縮状態での水素結合の形成を促進させ、結合剤を使用せずに圧縮状態の保形性に優れた圧縮成形体を得る観点から、多軸スクリュー押出機に投入するリグノセルロース繊維は、水分率が、1%以上であることが好ましく、5%以上であることが更に好ましい。他方、水分量が多すぎると、圧縮物の保形性が強すぎるという不都合が生じやすくなる。そのため、投入するリグノセルロース繊維の水分量は、1~100%であることが好ましく、より好ましくは5~50%以下である。 From the viewpoint of accelerating softening and formation of hydrogen bonds in a compressed state in a multi-screw extruder, and obtaining a compression-molded body excellent in shape retention in a compressed state without using a binder, a multi-screw extruder The lignocellulosic fiber charged into the water content is preferably 1% or more, more preferably 5% or more. On the other hand, if the amount of water is too large, the inconvenience that the shape retention of the compressed product is too strong tends to occur. Therefore, the water content of the lignocellulose fiber to be input is preferably 1 to 100%, more preferably 5 to 50% or less.
 リグノセルロース繊維の水分率(原料の水分率)は、以下の方法により測定する。
<水分率の測定方法>
 適量(例えば、質量20~100g程度)のリグノセルロース繊維を、温度105℃の乾燥器に入れて、質量が恒量に達するまで乾燥した後、シリカゲルを入れたデシケータ内に移して放冷し、質量(乾燥後質量)を測定する。
 乾燥機に入れる前の質量を「乾燥前質量」として、水分量(%)を、下記式により求める。
 水分量(%)=〔(乾燥前質量-乾燥後質量)/乾燥後質量〕×100
The water content of the lignocellulose fiber (the water content of the raw material) is measured by the following method.
<Method for measuring moisture content>
An appropriate amount (for example, a mass of about 20 to 100 g) of lignocellulose fiber is put in a drier at a temperature of 105 ° C. and dried until the mass reaches a constant weight. (Mass after drying) is measured.
The mass before being put in the dryer is defined as “mass before drying”, and the moisture content (%) is obtained by the following formula.
Water content (%) = [(mass before drying−mass after drying) / mass after drying] × 100
 また、多軸スクリュー押出機は、バレルの外周部に加熱ヒータを備えたものを用いることもでき、本発明に係るリグノセルロース繊維の圧縮成形体を製造する際に、バレル内のリグノセルロース繊維を外部から加熱することもできる。しかし、前述のとおり、バレル内に生じる摩擦熱によりリグノセルロース繊維が加熱されるため、加熱ヒータによる外部からの加熱は行わなくても良い。外部からの加熱を行う場合及び行わない場合のいずれにおいても、リグノセルロース繊維の柔軟化や圧縮状態の保形性に優れた圧縮成形体を得る観点から、多軸スクリュー押出機内で圧縮されるリグノセルロース繊維の到達する最高温度を、40~190℃、特に50~100℃とすることが、リグノセルロース繊維の柔軟化や圧縮状態の保形性に優れた圧縮成形体を得る観点から好ましい。多軸スクリュー押出機内で圧縮されるリグノセルロース繊維は、加熱ヒータのオンオフ、加熱ヒータの出力、スクリューの回転速度、排出孔71の断面積の設定等により調節することができる。 In addition, the multi-screw extruder may be one having a heater on the outer peripheral portion of the barrel, and the lignocellulosic fiber in the barrel is produced when the compression molded product of lignocellulose fiber according to the present invention is produced. It can also be heated from the outside. However, as described above, the lignocellulosic fiber is heated by the frictional heat generated in the barrel, so that it is not necessary to perform external heating by the heater. Regardless of whether or not external heating is performed, lignocellulosic fibers are compressed in a multi-screw extruder from the viewpoint of obtaining a compression-molded article excellent in softening of lignocellulosic fibers and shape retention in a compressed state. The maximum temperature reached by the cellulose fibers is preferably 40 to 190 ° C., particularly 50 to 100 ° C., from the viewpoint of obtaining a compression-molded article excellent in softening of the lignocellulose fibers and excellent shape retention. The lignocellulosic fiber compressed in the multi-screw extruder can be adjusted by turning on / off the heater, the output of the heater, the rotational speed of the screw, the cross-sectional area of the discharge hole 71, and the like.
 図2に示す多軸スクリュー押出機1は、図2及び図4に示すように、ダイス7の排出孔71から排出されるリグノセルロース繊維の圧縮成形体を、前記ダイス7の下流側に設けた切断機構8により切断して、大きさが調節された、リグノセルロース繊維の圧縮成形体Bを得ることができるようになっている。
 切断機構8としては、その目的を達成し得る各種公知の切断機構を特に制限なく用いることができ、例えば、図4に示すような、回転式カッター機構が簡便で好ましい。図4に示すカッター機構は、スクリュー軸に直交する平面に沿って回転する切断刃81を複数備えており、該切断刃81のそれぞれは、ダイス7に設けられた複数の排出孔71から排出される略円柱状の圧縮成形体を回転しながら切断するように構成されている。なお、ダイス7は、プレート状のものに代えてブロック状でも良い。また図2に示す排出孔71は、ダイス7の下流側の面72から突出する円筒状の排出側開口部を有していたが、ダイス7の下流側の面に、排出孔71の排出側開口部が開口していても良い。
As shown in FIGS. 2 and 4, the multi-screw extruder 1 shown in FIG. 2 is provided with a compression molded body of lignocellulose fiber discharged from the discharge hole 71 of the die 7 on the downstream side of the die 7. A compression molded body B of lignocellulose fibers having a size adjusted by cutting by the cutting mechanism 8 can be obtained.
As the cutting mechanism 8, various known cutting mechanisms that can achieve the object can be used without particular limitation. For example, a rotary cutter mechanism as shown in FIG. 4 is simple and preferable. The cutter mechanism shown in FIG. 4 includes a plurality of cutting blades 81 that rotate along a plane orthogonal to the screw axis, and each of the cutting blades 81 is discharged from a plurality of discharge holes 71 provided in the die 7. The substantially cylindrical compression molded body is cut while rotating. The dice 7 may be block-shaped instead of plate-shaped. The discharge hole 71 shown in FIG. 2 has a cylindrical discharge-side opening protruding from the downstream surface 72 of the die 7, but the discharge side of the discharge hole 71 is formed on the downstream surface of the die 7. The opening may be open.
 また、ダイス7に設けられた排出孔71の数、大きさ及び形状を適宜調製することで、リグノセルロース繊維の圧縮成形体の密度、硬さ、形状や大きさ、生産性を変更することができる。また、切断機構との組み合わせにより、更に、様々なものへの対応が可能である。
 ハンドリング性(取扱の容易性)の観点から、大きさを調節された個々の圧縮成形体は、ペレット状であることが好ましい。ここでいう、「ペレット状」とは、リグノセルロース繊維の集合体が、小さな塊状の形態(定形、不定形を問わない)を有することを意味する。
 リグノセルロース繊維の圧縮成形体は、繊維間に多少の空間が残っていることが、被補強材料への分散性の好ましい。
 なお、図4中、符号73は、ダイスプレート(ダイス)を固定するボルトを示す。
In addition, by appropriately adjusting the number, size and shape of the discharge holes 71 provided in the die 7, it is possible to change the density, hardness, shape and size, and productivity of the compression molded product of lignocellulose fiber. it can. Further, various combinations can be made by combining with a cutting mechanism.
From the viewpoint of handling properties (ease of handling), it is preferable that each compression-molded body whose size is adjusted is in the form of pellets. As used herein, “pellet-like” means that the aggregate of lignocellulosic fibers has a small lump-like form (regardless of regular shape or irregular shape).
The compression molded product of lignocellulosic fibers preferably has some space between the fibers in terms of dispersibility in the material to be reinforced.
In FIG. 4, reference numeral 73 denotes a bolt for fixing the die plate (die).
〔繊維強化複合材料〕
 リグノセルロース繊維の圧縮成形体は、リグノセルロース繊維が配合されていない以外は、公知の組成を有するセメント材料や樹脂組成物等の被補強材に配合することによって、リグノセルロース繊維によって補強された各種の繊維強化複合材料を得ることができる。
 本発明の繊維強化複合材料は、リグノセルロース繊維の圧縮成形体を用いて製造されたものであれば、特に制限されない。繊維強化複合材料としては、具体的には、繊維強化セメント材料、繊維強化アスファルト複合材料、繊維強化樹脂系材料等が挙げられる。
 繊維強化セメント材料には、コンクリート複合材料、モルタル複合材料、セメント成型複合材料が挙げられ、セメント成型複合材料としては、例えば、木片セメント板、木毛セメント板、サイディング板、スレート板、発泡コンクリート等が挙げられる。
 複合材料の意には、最終的な製品だけでなく、製品を製造する原料となるもの、例えば、セメント粉体と本リグノセルロース繊維ペレットの混合物、樹脂ペレットと本リグノセルロース繊維ペレットの混合物等を含むことは言うまでもない。
 さらには、複合材料を構成要素とする利用方法、例えば、繊維強化コンクリートやモルタルの壁構成、繊維強化アスファルトの路盤構成、繊維強化樹脂の成型物をも含むものである。
[Fiber-reinforced composite materials]
The compression-molded body of lignocellulosic fiber is variously reinforced with lignocellulosic fiber by blending into a reinforcing material such as cement material or resin composition having a known composition except that the lignocellulose fiber is not blended. The fiber-reinforced composite material can be obtained.
The fiber-reinforced composite material of the present invention is not particularly limited as long as it is produced using a compression molded body of lignocellulose fiber. Specific examples of the fiber reinforced composite material include a fiber reinforced cement material, a fiber reinforced asphalt composite material, and a fiber reinforced resin material.
Examples of fiber reinforced cement materials include concrete composite materials, mortar composite materials, and cement-molded composite materials. Examples of cement-molded composite materials include wood chip cement boards, wood wool cement boards, siding boards, slate boards, and foamed concrete. Is mentioned.
In the meaning of the composite material, not only the final product but also the raw material for manufacturing the product, such as a mixture of cement powder and the present lignocellulose fiber pellet, a mixture of resin pellet and the present lignocellulose fiber pellet, etc. Needless to say.
Furthermore, the utilization method which makes a composite material a component, for example, the wall structure of fiber reinforced concrete and mortar, the roadbed structure of fiber reinforced asphalt, and the molding of fiber reinforced resin are also included.
〔混合方法〕
 リグノセルロース繊維の圧縮成形体を、被補強材に配合する方法としては、両者を混合し得る任意の方法を特に制限なく用いることができる。リグノセルロース繊維の圧縮成形体を用いて、繊維強化複合材料としての繊維強化セメント材料を製造する場合、リグノセルロース繊維の圧縮成形体を、セメント及び水と混合すれば良い。それらの混合方法としては、例えば、ミキサーによる攪拌等を用いることができる。
 リグノセルロース繊維の圧縮成形体を、アスファルト材料や樹脂(プラスチック)材料と混合する方法としても、リグノセルロース繊維をアスファルト材料や樹脂と混合し得る任意の方法を特に制限なく用いることができる。リグノセルロース繊維の圧縮成形体を用いて、繊維強化複合材料としての繊維強化樹脂系材料を製造する場合、リグノセルロース繊維の圧縮成形体を、溶融状態の樹脂と混錬すれば良い。リグノセルロース繊維の圧縮成形体と溶融状態の樹脂とを混錬する方法としては、リグノセルロース繊維の圧縮成形体と樹脂ペレットとを、単軸又は多軸のスクリュー押出機や混錬機に投入し、樹脂ペレットを溶融させるとともに繊維とともに混錬させる方法、複数の加熱ローラーを有したローラーミル上で混錬させる方法等が挙げられる。
[Mixing method]
As a method for blending the compression-molded body of lignocellulose fibers into the material to be reinforced, any method capable of mixing both can be used without particular limitation. When a fiber reinforced cement material as a fiber reinforced composite material is produced using a compression molded body of lignocellulose fiber, the compression molded body of lignocellulose fiber may be mixed with cement and water. As a mixing method thereof, for example, stirring by a mixer or the like can be used.
As a method of mixing the compression-molded body of lignocellulose fibers with an asphalt material or a resin (plastic) material, any method that can mix lignocellulose fibers with an asphalt material or a resin can be used without particular limitation. In the case of producing a fiber-reinforced resin-based material as a fiber-reinforced composite material using a compression-molded body of lignocellulose fibers, the compression-molded body of lignocellulose fibers may be kneaded with a molten resin. As a method of kneading a compression molded product of lignocellulose fibers and a resin in a molten state, the compression molded product of lignocellulose fibers and resin pellets are introduced into a single-screw or multi-screw extruder or kneader. , A method of melting resin pellets and kneading with fibers, a method of kneading on a roller mill having a plurality of heating rollers, and the like.
 本発明の製造方法により製造されたリグノセルロース繊維の圧縮成形体又は本発明のリグノセルロース繊維の圧縮成形体は、単独で販売しても良いし、リグノセルロース繊維、及びセメントを含む繊維混合セメント材料として販売しても良い。リグノセルロース繊維の圧縮成形体又は繊維混合セメント材料を工場で生産し、それを各地の建築や土木工事の現場に搬入し、当該現場で、モルタルやコンクリートの他の材料や水と混錬して、繊維強化セメント材料とすることも、搬送コストを抑制しつつ高品質の繊維強化成形体を製造できる等の観点から好ましい。 The compression molded product of lignocellulose fibers produced by the production method of the present invention or the compression molded product of lignocellulose fibers of the present invention may be sold alone, or a fiber mixed cement material containing lignocellulose fibers and cement. May be sold as. Lignocellulosic fiber compression moldings or fiber-mixed cement materials are produced in factories, transported to local construction and civil engineering sites, where they are kneaded with mortar, other concrete materials and water. It is also preferable to use a fiber-reinforced cement material from the standpoint that a high-quality fiber-reinforced molded body can be produced while suppressing the conveyance cost.
 また、建築や土木工事の現場への繊維混合セメント材料の搬入の容易や、繊維混合セメント材料の搬送コストの削減等の観点から、繊維混合セメント材料は、水分の含有率が、15質量%以下のモルタルミックス又はコンクリートミックスであることが好ましく、さらに水分の含有率は、10質量%以下であることがより好ましい。モルタルミックスは、リグノセルロース繊維及びセメント以外に、砂等の細骨材を含んでおり、コンクリートミックスは、リグノセルロース繊維及びセメント以外に、砂利等の粗骨材を含んでいる。
 リグノセルロース繊維の圧縮成形体や繊維混合セメント材料を工場で生産し、それを各地の建築や土木工事の現場に搬入し、当該現場で、モルタルやコンクリートの他の材料や水と混錬して、繊維強化セメント材料とすることも、搬送コストを抑制しつつ高品質の繊維強化成形体を製造できる等の観点から好ましい。
In addition, from the viewpoint of easy delivery of fiber-mixed cement material to the construction and civil engineering sites and reduction in the cost of transporting fiber-mixed cement material, the fiber-mixed cement material has a moisture content of 15% by mass or less. The mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less. The mortar mix contains fine aggregates such as sand in addition to lignocellulose fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to lignocellulose fibers and cement.
We produce lignocellulosic fiber compression moldings and fiber-mixed cement materials at factories, carry them to various construction and civil engineering sites, and knead them with mortar and other concrete materials and water. It is also preferable to use a fiber-reinforced cement material from the standpoint that a high-quality fiber-reinforced molded body can be produced while suppressing the conveyance cost.
 また、建築や土木工事の現場への繊維混合セメント材料の搬入の容易や、繊維混合セメント材料の搬送コストの削減等の観点から、繊維混合セメント材料は、水分の含有率が、15質量%以下のモルタルミックス又はコンクリートミックスであることが好ましく、さらに水分の含有率は、10質量%以下であることがより好ましい。モルタルミックスは、リグノセルロース繊維及びセメント以外に、砂等の細骨材を含んでおり、コンクリートミックスは、リグノセルロース繊維及びセメント以外に、砂利等の粗骨材を含んでいる。 In addition, from the viewpoint of easy delivery of fiber-mixed cement material to the construction and civil engineering sites and reduction in the cost of transporting fiber-mixed cement material, the fiber-mixed cement material has a moisture content of 15% by mass or less. The mortar mix or concrete mix is preferable, and the moisture content is more preferably 10% by mass or less. The mortar mix contains fine aggregates such as sand in addition to lignocellulose fibers and cement, and the concrete mix contains coarse aggregates such as gravel in addition to lignocellulose fibers and cement.
〔添加剤〕
 本発明に係るリグノセルロース繊維には、本発明の効果を損なわない範囲で防腐剤、防虫剤、防カビ剤、撥水剤、紫外線吸収剤、難燃剤、フィラー、カップリング剤、エラストマー、消泡剤、滑剤、顔料、色素、消泡剤、減水剤、膨張剤、収縮低減剤等の種々の添加剤を加えることができる。これらは、1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
 これらの添加剤は、任意の段階で適宜、配合することができる。
〔Additive〕
The lignocellulosic fiber according to the present invention includes preservatives, insecticides, fungicides, water repellents, ultraviolet absorbers, flame retardants, fillers, coupling agents, elastomers, antifoams as long as the effects of the present invention are not impaired. Various additives such as an agent, a lubricant, a pigment, a dye, an antifoaming agent, a water reducing agent, a swelling agent, and a shrinkage reducing agent can be added. These may be used individually by 1 type and may be used in combination of 2 or more type.
These additives can be appropriately blended at an arbitrary stage.
 更に、繊維強化複合材料には、本発明の目的を損なわない範囲で、ガラス繊維、合成樹脂繊維、炭素繊維、セルロースナノファイバー、リグノセルロースナノファイバー、セルロースナノクリスタル、カーボンナノチューブ、その他ナノファイバー等を添加することができる。一般的に、特性や形状の異なる、複数の種類の繊維を組み合わせると、何れかを単独で使用するよりも好ましい効果が得られることが経験的に知られているためである。 Further, the fiber reinforced composite material includes glass fibers, synthetic resin fibers, carbon fibers, cellulose nanofibers, lignocellulose nanofibers, cellulose nanocrystals, carbon nanotubes, other nanofibers and the like within a range not impairing the object of the present invention. Can be added. This is because, in general, it is empirically known that when a plurality of types of fibers having different characteristics and shapes are combined, a preferable effect can be obtained as compared with the case where any one of them is used alone.
 リグノセルロース繊維の圧縮成形体を、セメント及び水と混合して、繊維強化セメント材料を製造する際には、リグノセルロース繊維の圧縮成形体を、分散補助剤の存在下に、セメント及び水と混合することが、リグノセルロース繊維の均一分散性を向上させ、強度及び耐久性等に優れた繊維強化セメント材料やその硬化体を得る観点から好ましい。
 分散補助剤としては、ノニオン性の界面活性剤が好ましく、例えば、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルジエタノールアミン、ヒドロキシアルキルモノエタノールアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル類、アルキルジエタノールアマイド等が挙げられる。
 ポリオキシエチレンソルビタン脂肪酸エステル類は、好ましくは、モノ、ジ又はトリエステル化した1,4-、1,5-又は3,6-ソルビタンに、エチレンオキシド(EO)、又はエチレンオキシド(EO)及びプロピレンオキシド(PO)を付加縮合したものである。
When producing a fiber-reinforced cement material by mixing a compression molded body of lignocellulose fiber with cement and water, the compression molded body of lignocellulose fiber is mixed with cement and water in the presence of a dispersion aid. It is preferable to improve the uniform dispersibility of the lignocellulosic fibers and obtain a fiber-reinforced cement material excellent in strength and durability and a cured product thereof.
As the dispersion aid, nonionic surfactants are preferable. For example, glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyl diethanolamine, hydroxyalkyl monoethanolamine, polyoxyethylene alkylamine, polyoxyethylene alkylamine, Examples thereof include oxyethylene alkylamine fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and alkyldiethanol amides.
Polyoxyethylene sorbitan fatty acid esters are preferably mono-, di- or triesterized 1,4-, 1,5- or 3,6-sorbitan, ethylene oxide (EO), or ethylene oxide (EO) and propylene oxide. (PO) is obtained by addition condensation.
 ポリオキシエチレンソルビタン脂肪酸エステル類としては、例えば、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンジラウレート、ポリオキシエチレンソルビタントリラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンジパルミテート、ポリオキシエチレンソルビタントリパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンジステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンソルビタンジオレート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンソルビタンモノイソステアレート、ポリオキシエチレンソルビタンジイソステアレート、ポリオキシエチレンソルビタントリイソステアレート、ポリオキシエチレンソルビタン混合脂肪酸エステル等が挙げられる。ポリオキシエチレンソルビタン混合脂肪酸エステルとしては、ソルビタンヤシ油脂肪酸エステル、モノパルミチン酸ポリオキシエチレンソルビタン等が挙げられる。ポリオキシエチレンソルビタン脂肪酸エステル類としては、例えば、ポリオキシエチレンソルビタンモノラウレートを用いることが好ましい。
 上述したノニオン性の界面活性剤は、1種を単独で用いても良いし、2種以上を組み合わせて用いることもできる。
Examples of polyoxyethylene sorbitan fatty acid esters include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan dilaurate, polyoxyethylene sorbitan trilaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan dipalmitate, Polyoxyethylene sorbitan tripalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan distearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan diolate, polyoxyethylene sorbitan Triolate, polyoxyethylene sorbitan monoisostearate, polyoxyethylene sorbitan Isostearate, polyoxyethylene sorbitan triisostearate, polyoxyethylene sorbitan esters of mixed fatty acids, and the like. Examples of the polyoxyethylene sorbitan mixed fatty acid ester include sorbitan coconut oil fatty acid ester, monopalmitic acid polyoxyethylene sorbitan, and the like. As the polyoxyethylene sorbitan fatty acid esters, for example, polyoxyethylene sorbitan monolaurate is preferably used.
The nonionic surfactant mentioned above may be used individually by 1 type, and can also be used in combination of 2 or more type.
 以上、本発明の好ましい実施形態を示して説明したが、各発明は、上記の実施形態に制限されず適宜に変更可能である。 As described above, the preferred embodiments of the present invention have been shown and described, but each invention is not limited to the above-described embodiments, and can be appropriately changed.
 以下、実施例及び比較例により、本発明をより具体的に説明する。但し、本発明は、かかる実施例によって何ら限定されるものではない。
1.標準調製方法
〔リグノセルロース繊維の調製〕
 ファイバーボード工場で加圧型リファイナーを用いて製造されたファイバーボード用リグノセルロース繊維を、そのままリグノセルロース繊維として用いた。繊維の長さは凡そ3mm、繊維の幅は凡そ30μmであった。さらに、同様の手順を用いて、インシュレーションボード用リグノセルロース繊維(特に、粗リグノセルロース繊維と呼ぶ)を製造し、そのままリグノセルロース繊維として用いた。繊維の長さは凡そ15mm、繊維の幅は凡そ300μmであった。
〔セメント材料(水混合物)の調製方法〕
 市販の軽量モルタルミックス(富士川建材工業社製、「ACモルタル」)質量2.5kgに水1Lを加え、ホバート式ミキサーで攪拌して、モルタルセメント材料(水混合物)を得た。
 ここで、リグノセルロース繊維は吸水性が高いために、リグノセルロース繊維を添加することで、見かけの水分が不足し、混練が難しくなり加水が必要になる場合があるが、その場合は、適宜、所望の作業効率を確保できる程度まで、加水を行った。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
1. Standard preparation method (Preparation of lignocellulose fiber)
The lignocellulosic fiber for fiberboard manufactured using the pressure type refiner in the fiberboard factory was used as lignocellulose fiber as it was. The fiber length was about 3 mm, and the fiber width was about 30 μm. Furthermore, using the same procedure, lignocellulose fibers for insulation boards (in particular, referred to as crude lignocellulose fibers) were produced and used as lignocellulose fibers as they were. The fiber length was approximately 15 mm and the fiber width was approximately 300 μm.
[Method for preparing cement material (water mixture)]
1 L of water was added to 2.5 kg of a commercially available lightweight mortar mix (manufactured by Fujikawa Construction Materials Co., Ltd., “AC mortar”) and stirred with a Hobart mixer to obtain a mortar cement material (water mixture).
Here, lignocellulosic fiber has high water absorption, so by adding lignocellulose fiber, apparent moisture is insufficient, kneading becomes difficult and water may be required. Water was added to the extent that the desired working efficiency could be ensured.
2.曲げタフネス試験
(1)実施例及び比較例のセメント材料の調製方法
〔実施例1〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を、下記のリグノセルロース繊維Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
 リグノセルロース繊維A:帯電防止効果を有するノニオン性の界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートを、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるようにスプレー処理した後、105℃の熱風式乾燥機により乾燥したセメント材料補強用繊維。
〔実施例2〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの2質量%分を、下記のリグノセルロース繊維Bに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
 リグノセルロース繊維B:帯電防止効果を有するノニオン性の界面活性剤であるポリオキシエチレンココナットアルキルアミンを、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が2.5質量%となるようにスプレーした後、105℃の熱風式乾燥機により乾燥したセメント材料補強用繊維。
〔実施例3〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を、下記の粗リグノセルロース繊維Cに置き換えたものを用いる以外は、標準調整法に従って、セメント材料を調整した。
 粗リグノセルロース繊維C:帯電防止効果を有するノニオン性の界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートを乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるようにスプレー処理した後、105℃の熱風式乾燥機により乾燥したセメント材料補強用繊維。
2. Bending toughness test (1) Cement material preparation method of Example and Comparative Example [Example 1]
A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the following lignocellulose fiber A.
Lignocellulosic fiber A: Polyoxyethylene (20) sorbitan monolaurate, which is a nonionic surfactant having an antistatic effect, has an adhesion amount (in terms of solid content) of 1% by mass with respect to dry lignocellulose fiber. After the spray treatment as described above, the cement material reinforcing fiber was dried by a hot air dryer at 105 ° C.
[Example 2]
A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 2% by mass of the lightweight mortar mix was replaced with the following lignocellulose fiber B.
Lignocellulosic fiber B: Polyoxyethylene coconut alkylamine, which is a nonionic surfactant having an antistatic effect, is attached to lignocellulose fiber in a dry state (in terms of solid content) so as to be 2.5% by mass. After being sprayed on, the fiber for reinforcing cement material dried by a hot air dryer at 105 ° C.
Example 3
The cement material was adjusted according to the standard adjustment method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the following crude lignocellulose fiber C.
Crude lignocellulosic fiber C: The amount of adhering polyoxyethylene (20) sorbitan monolaurate, which is a nonionic surfactant having an antistatic effect, to dry lignocellulose fiber (in terms of solid content) is 1% by mass. After the spray treatment as described above, the cement material reinforcing fiber was dried by a hot air dryer at 105 ° C.
〔比較例1〕
 上記市販の軽量モルタルミックスをそのまま用い、標準調製方法に従って、比較例1のセメント材料(コントロール)を調製した。
〔比較例2〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの0.5質量%分を、下記のセルロースナノファイバーに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
 セルロースナノファイバー:スギノマシン社製の「セルロースナノファイバー(標準品)」
 なお、セルロースナノファイバーは極めて粘度が高く、これ以上添加すると混練ができないために0.5質量%を上限とした。
〔比較例3〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの0.75質量%分を、帯電防止剤で処理していないリグノセルロース繊維に置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
 なお、帯電防止剤を添加していない系ではリグノセルロース繊維が明らかにダマになるのが調製中に観察されたため、0.75重量%を上限とした。
[Comparative Example 1]
The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material (control) of Comparative Example 1 was prepared according to a standard preparation method.
[Comparative Example 2]
A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 0.5 wt% of the lightweight mortar mix was replaced with the following cellulose nanofiber.
Cellulose nanofiber: “Cellulose nanofiber (standard)” manufactured by Sugino Machine
In addition, since cellulose nanofiber has extremely high viscosity and cannot be kneaded when added more than this, the upper limit was made 0.5 mass%.
[Comparative Example 3]
In place of the above-mentioned commercially available lightweight mortar mix, a cement material was prepared according to the standard preparation method except that 0.75% by mass of the lightweight mortar mix was replaced with lignocellulose fibers not treated with an antistatic agent. Was prepared.
In the system to which no antistatic agent was added, it was observed during preparation that lignocellulosic fibers were clearly damped, so the upper limit was made 0.75% by weight.
(2)曲げタフネス試験の評価
 実施例及び比較例で調製したセメント材料を、曲げタフネス試験に供した。
 曲げタフネス試験は、曲げ試験を行う際に得られる荷重-変位曲線の下側の面積を曲げ破壊に要したエネルギーとして算出し、評価する方法である。曲げタフネスが大きければ好ましい評価となる。
(2-1)試験方法
 調製したセメント材料を、型に入れ、幅75mm、長さ150mm、厚み15mmの形状とした。24時間後に脱型し、その後20℃―65%で28日間養生した後に、その試験体を用いて、曲げタフネス試験を行った。また、同時に、材料が破壊に要するまでの材料の伸びも併せて評価を行った。なお、試験体は何れも6体作成し、その平均を計算して評価を行った。
(2-2)結果
 試験結果を表1に示す。なお、結果は比較例1(コントロール)を100とし、それ以外の結果をコントロールに対する比(%)で表した。
(2) Evaluation of bending toughness test The cement materials prepared in Examples and Comparative Examples were subjected to a bending toughness test.
The bending toughness test is a method of calculating and evaluating the area under the load-displacement curve obtained when performing a bending test as the energy required for bending fracture. If the bending toughness is large, the evaluation becomes preferable.
(2-1) Test Method The prepared cement material was put into a mold and formed into a shape having a width of 75 mm, a length of 150 mm, and a thickness of 15 mm. After 24 hours, the mold was removed, and after curing at 20 ° C.-65% for 28 days, a bending toughness test was performed using the specimen. At the same time, the elongation of the material until the material required for destruction was also evaluated. All six test specimens were prepared, and the average was calculated for evaluation.
(2-2) Results Table 1 shows the test results. In addition, as for the result, the comparative example 1 (control) was set to 100, and the other result was represented by ratio (%) with respect to control.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、実施例1、2共に、比較例1(コントロール)に対して、曲げタフネス及び破断時伸び率の顕著な向上が見られた。また、実施例3は、比較例1(コントロール)に対して、曲げタフネスの顕著な向上が見られた。すなわち、帯電防止剤で処理されたリグノセルロース繊維を添加することで、セメント材料の脆性が改善され、補強効果が発揮されることが明らかに示された。
 また、比較例3は、リグノセルロース繊維を含むが、帯電防止剤は含まない場合の例である。作成した試験体には、目視で明らかなリグノセルロース繊維の凝集やダマが見られた。また、試験結果からも補強効果が有効に発揮されていないことが明らかに示された。
From the above results, the bending toughness and the elongation at break were significantly improved with respect to Comparative Example 1 (control) in both Examples 1 and 2. In Example 3, the bending toughness was remarkably improved as compared with Comparative Example 1 (control). That is, it was clearly shown that the brittleness of the cement material is improved and the reinforcing effect is exhibited by adding lignocellulose fibers treated with an antistatic agent.
Comparative Example 3 is an example in the case of containing lignocellulose fibers but not containing an antistatic agent. Aggregation and lumps of lignocellulosic fibers that were clearly visible were observed in the prepared specimens. Moreover, it was clearly shown from the test results that the reinforcing effect was not effectively exhibited.
3.リング試験
(1)実施例及び比較例のセメント材料の調製方法
〔実施例4〕
 実施例1と同様にしてセメント材料を調製した。
〔実施例5〕
 実施例2と同様にしてセメント材料を調製した。
〔比較例4〕
 上記市販の軽量モルタルミックスをそのまま用い、標準調製方法に従って、比較例4のセメント材料を調製した。
3. Ring test (1) Method for preparing cement materials of Examples and Comparative Examples [Example 4]
A cement material was prepared in the same manner as in Example 1.
Example 5
A cement material was prepared in the same manner as in Example 2.
[Comparative Example 4]
The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material of Comparative Example 4 was prepared according to a standard preparation method.
〔比較例5〕
 比較例2と同様にしてセメント材料を調製した。
〔比較例6〕
 比較例3と同様にしてセメント材料を調製した。
〔比較例7〕
 上記市販の軽量モルタルミックスをそのまま用い、標準調製方法に従って、セメント材料を調製した。後述するリング試験の評価においては、リング状試験体の表面にガラス繊維を編んで作られたガラスクロスを貼り付けたものを用いて評価を行った。このガラスクロスによる補強は、コンクリートやモルタル面の割れの発生を防ぐために、建築工事で一般的に用いられている補強方法である。なお、曲げタフネス試験は行わなかった。
[Comparative Example 5]
A cement material was prepared in the same manner as in Comparative Example 2.
[Comparative Example 6]
A cement material was prepared in the same manner as in Comparative Example 3.
[Comparative Example 7]
The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material was prepared according to a standard preparation method. In the evaluation of the ring test described later, the evaluation was performed using a glass cloth made by knitting glass fibers on the surface of a ring-shaped test body. This reinforcement with glass cloth is a reinforcement method generally used in construction work in order to prevent cracking of concrete or mortar surface. The bending toughness test was not performed.
〔比較例8~12〕
 上記市販の軽量モルタルミックスに代えて、その1、2、3、4、5質量%を、下記のリグノセルロース材料切削小片Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
 リグノセルロース材料切削小片A:ラボ用のリングフレーカーを用いて製造されたパーティクルボード用フレーク(針葉樹)をそのまま材料として用いた。切削小片の長さは凡そ10mm、幅は4mm、厚さは0.5mmであった。
(2)リング試験の評価
 実施例及び比較例で調製したセメント材料をリング試験に供した。
 リング試験はリング状の試験治具にセメント材料を流し込み成型行い、セメント材料の硬化に伴い発生する収縮応力がリング内外で異なることからセメント材料に割れが発生することを利用して、耐割れ性を評価する方法である。
(2-1)試験方法
 調製したセメント材料を型に入れ、内円50mm、外円150mm、高さ50mmのリング状の型枠内で試験体を作成し、水分を失わないようにプラスチック製の袋で完全に密閉して20℃で5日間養生した。その後、袋と外円を外し、60℃の乾燥機に入れ、経時的な割れの発生の評価を行った。なお、試験体は何れも3体作成し、最も悪い結果を用いて評価を行った。
(2-2)結果
 試験結果を表2に示す。
[Comparative Examples 8 to 12]
Instead of the above-mentioned commercially available lightweight mortar mix, a cement material was prepared according to the standard preparation method except that the 1, 2, 3, 4, 5% by mass replaced with the following lignocellulosic material cutting pieces A did.
Lignocellulosic material cutting pieces A: Particle board flakes (conifers) produced using a laboratory ring flaker were used as they were. The length of the cutting piece was about 10 mm, the width was 4 mm, and the thickness was 0.5 mm.
(2) Evaluation of ring test The cement materials prepared in Examples and Comparative Examples were subjected to a ring test.
The ring test is performed by pouring and molding the cement material into a ring-shaped test jig and utilizing the fact that the shrinkage stress generated by the hardening of the cement material differs between the inside and outside of the ring, and cracking occurs in the cement material. It is a method to evaluate.
(2-1) Test method The prepared cement material is put into a mold, and a test body is made in a ring-shaped mold having an inner circle of 50 mm, an outer circle of 150 mm, and a height of 50 mm. The bag was completely sealed and cured at 20 ° C. for 5 days. Thereafter, the bag and the outer circle were removed and placed in a dryer at 60 ° C. to evaluate the occurrence of cracks over time. Three test specimens were prepared and evaluated using the worst results.
(2-2) Results Table 2 shows the test results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果より、実施例4、5では、比較例4~7に比して明らかな改善効果が見られた。特に実施例5では割れの発生が全く見られず、また実施例4では割れは発生したが、その程度は軽微であり、試験体の厚さ方向では表面のみに留まるものであった。比較例7では、ガラスクロスによる補強効果で、割れの発生は幅方向では軽微に留められているが、厚さ方向は貫通している結果となった。
 また、比較例8~12より、木材切削片を単独で用いる場合は、多量の添加が必要となり、コストや作業性、流動性といった問題を考慮しなければならない。
From the above results, Examples 4 and 5 showed a clear improvement effect as compared with Comparative Examples 4 to 7. In particular, no cracks were observed in Example 5, and cracks occurred in Example 4. However, the level of the cracks was slight and remained only on the surface in the thickness direction of the specimen. In Comparative Example 7, due to the reinforcing effect by the glass cloth, the occurrence of cracks was kept light in the width direction, but penetrated in the thickness direction.
Further, according to Comparative Examples 8 to 12, when a wood cutting piece is used alone, a large amount of addition is necessary, and problems such as cost, workability, and fluidity must be considered.
4.リグノセルロース繊維とリグノセルロース材料切削小片との併用
(1)実施例及び比較例のセメント材料の調製方法
〔実施例11〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を実施例1で用いた上記のリグノセルロース繊維Aに置き換え、更に1質量%分を比較例8~12で用いた上記のリグノセルロース材料切削小片Aに置き換えたものを用いる以外は、前述した標準調製方法に従って、セメント材料を調製した。
〔実施例12〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を上記のリグノセルロース繊維Aに置き換え、更に2質量%分を上記のリグノセルロース材料切削小片Aに置き換えたものを用いる以外は、前述した標準調製方法に従って、セメント材料を調製した。
〔実施例13〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を上記のリグノセルロース繊維Aに置き換え、更に3質量%分を上記のリグノセルロース材料切削小片Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
4). Combined use of lignocellulosic fibers and lignocellulosic material cutting pieces (1) Preparation method of cement materials of Examples and Comparative Examples [Example 11]
Instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the above lignocellulose fiber A used in Example 1, and further 1% by mass was used in Comparative Examples 8-12. A cement material was prepared according to the standard preparation method described above except that the lignocellulosic material cutting piece A was used.
Example 12
Instead of using the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the above lignocellulose fiber A, and 2% by mass was replaced with the above lignocellulosic material cutting pieces A. Prepared a cement material according to the standard preparation method described above.
Example 13
Instead of using the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the above lignocellulose fiber A, and 3% by mass was replaced with the above lignocellulosic material cutting pieces A. Prepared cement material according to standard preparation methods.
〔比較例21〕
 上記市販の軽量モルタルミックスをそのまま用い、標準調製方法に従って、比較例21のセメント材料(コントロール)を調製した。
[Comparative Example 21]
The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material (control) of Comparative Example 21 was prepared according to a standard preparation method.
〔実施例14〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分を、上記のリグノセルロース繊維Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
〔実施例15〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの2質量%分を、上記のリグノセルロース繊維Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
〔比較例22~25〕
 上記市販の軽量モルタルミックスに代えて、その軽量モルタルミックスの1質量%分、2質量%分、3質量%分又は4質量%分を、上記のリグノセルロース材料切削小片Aに置き換えたものを用いる以外は、標準調製方法に従って、セメント材料を調製した。
〔比較例26〕
 前述した比較例7と同様に、上記市販の軽量モルタルミックスをそのまま用いて、セメント材料を調製し、それを用いて、リング状試験体の表面にガラス繊維を編んで作られたガラスクロスを貼り付けたものを作成した。リング試験は、このガラスクロスによる補強を行ったものについて評価した。なお、曲げタフネス試験は行わなかった。
Example 14
A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 1% by mass of the lightweight mortar mix was replaced with the lignocellulose fiber A described above.
Example 15
A cement material was prepared according to the standard preparation method, except that instead of the commercially available lightweight mortar mix, 2% by mass of the lightweight mortar mix was replaced with the lignocellulose fiber A described above.
[Comparative Examples 22 to 25]
Instead of the above-mentioned commercially available lightweight mortar mix, one in which 1% by mass, 2% by mass, 3% by mass or 4% by mass of the lightweight mortar mix is replaced with the above-mentioned lignocellulosic material cutting pieces A is used. Except for the above, a cement material was prepared according to a standard preparation method.
[Comparative Example 26]
As in Comparative Example 7 described above, the above-mentioned commercially available lightweight mortar mix is used as it is to prepare a cement material, and a glass cloth made by knitting glass fibers on the surface of the ring-shaped test body is used. I made something with it. In the ring test, the glass cloth reinforced was evaluated. The bending toughness test was not performed.
(2)実施例11~15及び比較例21~26について、前述した方法により曲げタフネス試験及びリング試験を行い、同様に評価した結果を表3に示す。なお、曲げタフネス試験の結果は比較例21(コントロール)を100とし、それ以外の結果をコントロールに対する比(%)で表した。
Figure JPOXMLDOC01-appb-T000003
(2) With respect to Examples 11 to 15 and Comparative Examples 21 to 26, the bending toughness test and the ring test were performed by the above-described method, and the results of the similar evaluation are shown in Table 3. In addition, the result of the bending toughness test was set to 100 for Comparative Example 21 (control), and the other results were expressed as a ratio (%) to the control.
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなように、実施例11、12、13は、共に、比較例21(コントロール)に対して、曲げタフネス及び耐割れ性の顕著な向上が見られた。また、実施例11、12、13は、帯電防止剤で処理したリグノセルロース繊維のみを単独で用いた実施例14及び15と比べて曲げタフネスが向上している。
 また、同一のリグノセルロース添加率での結果を検討すると、実施例11(リグノセルロース繊維1重量%+リグノセルロース材料切削小片1重量%=含有率2重量%)は比較例23(リグノセルロース材料切削小片2重量%=含有率2重量%)、同様に実施例12(含有率3重量%)と比較例24(含有率3重量%)、実施例13(含有率4重量%)と比較例25(含有率4重量%)とを比較することができる。
 曲げタフネス試験に関しては、実施例11~13は、それぞれリグノセルロース材料切削小片を単独で用いた比較例23~25より優れており、リング試験の結果に関しても、実施例11~13は、それぞれ比較例23~25より優れている。また、比較例26のガラスクロスによる補強効よりも優れている結果となった。
 以上より、リグノセルロース繊維と共にリグノセルロース材料切削小片を用いることで、従来達成が難しいレベルの優れた効果が得られることが判る。また、リグノセルロース繊維及びリグノセルロース材料切削小片は、いずれもリグノセルロース材料を原料とするものであり、リグノセルロース材料のみでも、斯かる優れた効果が得られる点においても優れている。
As is apparent from the results shown in Table 3, in Examples 11, 12, and 13, all the bending toughness and crack resistance were significantly improved with respect to Comparative Example 21 (control). In addition, Examples 11, 12, and 13 have improved bending toughness compared to Examples 14 and 15 in which only lignocellulose fibers treated with an antistatic agent were used alone.
Further, when the results at the same lignocellulose addition ratio were examined, Example 11 (1% by weight of lignocellulose fiber + 1% by weight of cutting piece of lignocellulose material = 2% by weight of content) was Comparative Example 23 (cutting lignocellulose material). Small piece 2% by weight = content 2% by weight), similarly, Example 12 (content 3% by weight) and Comparative Example 24 (content 3% by weight), Example 13 (content 4% by weight) and Comparative Example 25 (Content 4% by weight) can be compared.
Regarding the bending toughness test, Examples 11 to 13 are superior to Comparative Examples 23 to 25 each using a lignocellulosic material cutting piece alone, and the results of the ring test are also compared with Examples 11 to 13, respectively. Superior to Examples 23-25. Further, the result was superior to the reinforcing effect of the glass cloth of Comparative Example 26.
From the above, it can be seen that by using the lignocellulosic material cutting pieces together with the lignocellulose fibers, it is possible to obtain an excellent effect that is difficult to achieve conventionally. The lignocellulose fibers and the lignocellulose material cutting pieces are both made from lignocellulose material, and the lignocellulose material alone is also excellent in that such excellent effects can be obtained.
4.面内せん断試験
(1)実施例及び比較例のセメント材料の調製方法
〔実施例16〕
 実施例12と同様にしてセメント材料を調製した。
〔比較例27〕
 上記市販の軽量モルタルミックスをそのまま用い、標準調製方法に従って、比較例27のセメント材料(コントロール)を調製した。
4). In-plane shear test (1) Preparation method of cement materials of Examples and Comparative Examples [Example 16]
A cement material was prepared in the same manner as in Example 12.
[Comparative Example 27]
The above-mentioned commercially available lightweight mortar mix was used as it was, and a cement material (control) of Comparative Example 27 was prepared according to a standard preparation method.
(2)面内せん断試験の評価
 実施例16及び比較例27で調製したセメント材料を、面内せん断試験に供した。
 面内せん断試験は、壁状の試験体の上部に対し、水平方向に荷重を加えた際に発生するクラックの総長さを測定することで、試験体の割れ抵抗性を評価する方法である。
 なお、この面内せん断試験は、JIS A 1414「建築用構成材(パネル)及びその構造部分の性能試験方法」の面内せん断試験(B)(タイロッドを用いない場合)に準拠するものである。
(2) Evaluation of in-plane shear test The cement materials prepared in Example 16 and Comparative Example 27 were subjected to an in-plane shear test.
The in-plane shear test is a method for evaluating the crack resistance of a specimen by measuring the total length of cracks generated when a load is applied in the horizontal direction to the upper part of a wall-like specimen.
This in-plane shear test conforms to the in-plane shear test (B) (when tie rods are not used) of JIS A 1414 “Performance test method for building components (panels) and structural parts thereof”. .
(2-1)試験方法
 面内せん断試験で使用した面内せん断試験機1の概略図を図1に示す。105mm角の木製角材を用いて、土台21、一対の柱22,22及び梁23からなる矩形状の枠体20を形成し、その枠体20の片面に18mm厚の小割り板(図示せず)を固定し、その上にラス網(図示せず)を固定した。枠体20は、その土台21を六角ボルト(M12)を用いて面内せん断試験機1の加力フレーム11に緊結し、柱22の柱脚は、ホールダウン金物を用いて土台21に固定した。
 このようにして、縦1400mm、横1450mmの矩形状の試験用壁体2Aを形成した。この試験用壁体2Aのラス網(図示せず)の表面に、実施例16及び比較例27で調製したセメント材料を厚み18mmになるように塗着し、1ヶ月以上硬化させて試験体3を作成した。試験体3としては、中央部に窓枠を配置することによって、中央部に窓用の開口部26を有するモルタル壁を形成した。
 枠体20の梁23に対し、加力ジャッキ12により水平方向(X,Y方向)に荷重を加え、表4に示す変形角まで枠体20及び試験体3をせん断変形させた。各変形角ごとに、正方向(X方向)及び負方向(Y方向)に3回ずつ荷重を加えた後、試験体3に発生したクラックの総長さを測定した。
(2-2)試験結果
 試験結果を表4に示す。表4は試験体3のクラック発現状況を示したものである。結果は、実施例16及び比較例27の場合のそれぞれについて、窓枠の周囲に生じたクラックの総長さを測定し、比較例27のクラック総長さに対する実施例16のクラック総長さの比(%)で表した。
(2-1) Test Method FIG. 1 shows a schematic diagram of the in-plane shear tester 1 used in the in-plane shear test. A rectangular frame 20 composed of a base 21, a pair of columns 22, 22 and a beam 23 is formed using a 105 mm square wooden square, and a 18 mm thick small plate (not shown) is formed on one side of the frame 20. ) Was fixed, and a lath net (not shown) was fixed thereon. The frame body 20 has its base 21 fastened to the force frame 11 of the in-plane shear tester 1 using hexagon bolts (M12), and the column base of the column 22 is fixed to the base 21 using hole-down hardware. .
In this way, a rectangular test wall 2A having a length of 1400 mm and a width of 1450 mm was formed. The cement material prepared in Example 16 and Comparative Example 27 was applied to the surface of a lath net (not shown) of the test wall 2A so as to have a thickness of 18 mm, and cured for one month or longer. It was created. As the test body 3, the window frame was arrange | positioned in the center part, and the mortar wall which has the opening part 26 for windows in the center part was formed.
A load was applied to the beam 23 of the frame body 20 in the horizontal direction (X, Y direction) by the force jack 12, and the frame body 20 and the test body 3 were subjected to shear deformation to the deformation angles shown in Table 4. For each deformation angle, a load was applied three times in the positive direction (X direction) and the negative direction (Y direction), and then the total length of cracks generated in the specimen 3 was measured.
(2-2) Test results Table 4 shows the test results. Table 4 shows the crack appearance status of the specimen 3. As a result, for each of Example 16 and Comparative Example 27, the total length of cracks generated around the window frame was measured, and the ratio of the total crack length of Example 16 to the total crack length of Comparative Example 27 (% )
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記の結果より、実施例16は、比較例27に比して、せん断変形を加えた際のクラックの総長さが短く、顕著な割れ抑止効果を有することが分かった。すなわち、セメント材料にリグノセルロース繊維と共にリグノセルロース材料切削小片を添加することで、セメント材料の脆性が改善され、外力に対する高い耐割れ性が発揮されることが明らかに示された。 From the above results, it was found that Example 16 had a remarkable crack suppression effect because the total length of cracks when shear deformation was applied was shorter than that of Comparative Example 27. That is, it was clearly shown that the brittleness of the cement material was improved by adding the lignocellulosic material cutting pieces together with the lignocellulosic fiber to the cement material, and high crack resistance against external force was exhibited.
〔第2のセメント材料補強用繊維〕
1.リグノセルロース繊維の調製
 ファイバーボード工場で加圧型リファイナーを用いて製造されたファイバーボード用リグノセルロース繊維を、そのままリグノセルロース繊維として用いた。繊維の長さは凡そ3mm、繊維の幅は凡そ30μmであった。
[Second fiber for cement material reinforcement]
1. Preparation of lignocellulosic fiber The lignocellulose fiber for fiberboard manufactured using the pressure type refiner in the fiberboard factory was used as lignocellulose fiber as it was. The fiber length was about 3 mm, and the fiber width was about 30 μm.
1.セメント材料補強用繊維の調製
〔実施例31〕
 上記により得られた乾燥状態のリグノセルロース繊維に対して、ポリアクリルアミド系樹脂(荒川化学工業株式会社製:ポリストロン705)を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように、適宜水で希釈して噴霧した後、105℃のオーブンで10分間の乾燥及び熱硬化処理を行った。また、噴霧した液体中には、帯電防止剤として、ポリオキシエチレン(20)ソルビタンモノラウレートを配合し、帯電防止剤を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように付着させた。このようにして、実施例31のセメント材料補強用繊維を得た。
〔実施例32〕
 上記により得られた乾燥状態のリグノセルロース繊維に対して、メラミン・ユリア・ホルムアルデヒド樹脂(モル比率1.15、メラミン含有率1質量%)を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が10質量%となるように、適宜水で希釈して噴霧した後、105℃のオーブンで5分間の乾燥及び熱硬化処理を行った。また、噴霧した液体中には、帯電防止剤として、ポリオキシエチレン(20)ソルビタンモノラウレートを配合し、帯電防止剤を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように付着させた。このようにして、実施例32のセメント材料補強用繊維を得た。
1. Preparation of fiber for reinforcing cement material [Example 31]
With respect to the dried lignocellulose fiber obtained as described above, the amount of the polyacrylamide resin (Arakawa Chemical Industries, Ltd .: Polystron 705) attached to the dried lignocellulose fiber (in terms of solid content) is 1 mass. After being appropriately diluted with water and sprayed so as to be%, drying and thermosetting treatment were performed in an oven at 105 ° C. for 10 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. In this way, a cement material reinforcing fiber of Example 31 was obtained.
[Example 32]
With respect to the dried lignocellulose fiber obtained as described above, a melamine / urea / formaldehyde resin (molar ratio 1.15, melamine content 1% by mass) is attached to the dried lignocellulose fiber (in terms of solid content). ) Was appropriately diluted with water so as to be 10% by mass and sprayed, followed by drying and thermosetting treatment in an oven at 105 ° C. for 5 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, the cement material reinforcing fiber of Example 32 was obtained.
〔実施例33〕
 上記により得られた乾燥状態のリグノセルロース繊維に対して、セルロースナノファイバー(スギノマシン社製「ビンフィス」)の水分散液を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように、適宜水で希釈して噴霧した後、105℃のオーブンで10分間の乾燥処理を行った。また、噴霧した液体中には、帯電防止剤として、ポリオキシエチレン(20)ソルビタンモノラウレートを配合し、帯電防止剤を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように付着させた。このようにして、実施例33のセメント材料補強用繊維を得た。
〔実施例34〕
 上記により得られた乾燥状態のリグノセルロース繊維に対して、リグノセルロースナノファイバーの水分散液を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように、適宜水で希釈して噴霧した後、105℃のオーブンで10分間の乾燥処理を行った。また、噴霧した液体中には、帯電防止剤として、ポリオキシエチレン(20)ソルビタンモノラウレートを配合し、帯電防止剤を、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように付着させた。このようにして、実施例34のセメント材料補強用繊維を得た。
Example 33
With respect to the dry lignocellulose fiber obtained as described above, an aqueous dispersion of cellulose nanofiber (“Binfiss” manufactured by Sugino Machine Co., Ltd.) is attached to the dry lignocellulose fiber in an amount of 1 mass (solid content conversion). % Was appropriately diluted with water and sprayed, and then dried in an oven at 105 ° C. for 10 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, a cement material reinforcing fiber of Example 33 was obtained.
Example 34
With respect to the dry lignocellulose fiber obtained as described above, an aqueous dispersion of lignocellulose nanofibers is appropriately water so that the amount of adhesion (in terms of solid content) to the dry lignocellulose fiber is 1% by mass. After diluting with and spraying, it was dried in an oven at 105 ° C. for 10 minutes. Moreover, in the sprayed liquid, polyoxyethylene (20) sorbitan monolaurate is blended as an antistatic agent, and the amount of the antistatic agent attached to dry lignocellulose fibers (in terms of solid content) is 1 mass. It was made to adhere so that it might become%. Thus, the cement material reinforcing fiber of Example 34 was obtained.
〔比較例31〕
 上記により得られた乾燥状態のリグノセルロース繊維を樹脂で処理することなく用いた。ただし、分散性を確保するために、帯電防止剤として、ポリオキシエチレン(20)ソルビタンモノラウレートを、乾燥状態のリグノセルロース繊維に対する付着量(固形分換算)が1質量%となるように付着させた。このようにして、比較例31のセメント材料補強用繊維を得た。
[Comparative Example 31]
The dried lignocellulose fibers obtained as described above were used without being treated with a resin. However, in order to ensure dispersibility, polyoxyethylene (20) sorbitan monolaurate is applied as an antistatic agent so that the amount of adhesion (in terms of solid content) to dry lignocellulose fibers is 1% by mass. I let you. Thus, the cement material reinforcing fiber of Comparative Example 31 was obtained.
3.セメント材料(水混合物)の調製
 市販の軽量モルタルミックス(富士川建材工業社製、「ACモルタル」)質量2.5kgに水1Lを加え、ホバート式ミキサーで攪拌して、モルタルセメント材料(水混合物)を得た。この調製方法を、標準調製方法とし、実施例31~34及び比較例31のセメント材料補強用繊維については、前記の軽量モルタルミックスの1質量%分を、実施例31~34又は比較例32のセメント材料補強用繊維に置き換える以外は、標準調製方法に従って繊維強化セメント材料を得た。
 ここで、リグノセルロース繊維は吸水性が高いために、リグノセルロース繊維を添加することで、見かけの水分が不足し、混練が難しくなり加水が必要になる場合があるが、その場合は、適宜、所望の作業効率を確保できる程度まで、加水を行った。
3. Preparation of cement material (water mixture) Commercial lightweight mortar mix (Fujikawa Construction Materials Co., Ltd., "AC mortar") Add 1L of water to 2.5kg mass and stir with a Hobart mixer to obtain mortar cement material (water mixture) Got. This preparation method is a standard preparation method. For the fibers for reinforcing the cement material of Examples 31 to 34 and Comparative Example 31, 1% by mass of the light-weight mortar mix is used for Examples 31 to 34 or Comparative Example 32. A fiber reinforced cement material was obtained according to the standard preparation method except that the fiber was replaced with a cement material reinforcing fiber.
Here, lignocellulosic fiber has high water absorption, so by adding lignocellulose fiber, apparent moisture is insufficient, kneading becomes difficult and water may be required. Water was added to the extent that the desired working efficiency could be ensured.
4.曲げタフネス試験の評価
 実施例31~34又は比較例32の繊維強化セメント材料を用いて調製した各セメント材料を、曲げタフネス試験に供した。また、比較例31として、上記の市販の軽量モルタルミックスをそのまま用いて標準調製方法により調製したセメント材料も同様に曲げタフネス試験に供した。
 曲げタフネス試験は、曲げ試験を行う際に得られる荷重-変位曲線の下側の面積を曲げ破壊に要したエネルギーとして算出し、評価する方法である。曲げタフネスが大きければ好ましい評価となる。
4-1.試験方法
 調製したセメント材料を、型に入れ、幅75mm、長さ150mm、厚み15mmの形状とした。24時間後に脱型し、その後20℃―65%で28日間養生した後に、その試験体を用いて、曲げタフネス試験を行った。
 また、促進劣化処理として、20℃の水中に8時間の浸漬及び60℃の乾燥機での16時間の乾燥を1サイクルとして、0サイクル、10サイクルの繰り返した後に、それぞれ、曲げタフネス試験を行い、初期の強度、及び強度の長期耐久性を評価した。なお、試験体は何れも6体作成し、その平均を計算して評価を行った。
4-2.結果
 試験結果を表5に示す。なお、試験結果は、比較例31(コントロール)を100とし、それ以外の結果を比較例31(コントロール)の値に対する比(%)で表した。
4). Evaluation of Bending Toughness Test Each cement material prepared using the fiber reinforced cement material of Examples 31 to 34 or Comparative Example 32 was subjected to a bending toughness test. Further, as Comparative Example 31, a cement material prepared by the standard preparation method using the above-described commercially available lightweight mortar mix as it was was also subjected to a bending toughness test.
The bending toughness test is a method of calculating and evaluating the area under the load-displacement curve obtained when performing a bending test as the energy required for bending fracture. If the bending toughness is large, the evaluation becomes preferable.
4-1. Test Method The prepared cement material was put into a mold and formed into a shape having a width of 75 mm, a length of 150 mm, and a thickness of 15 mm. After 24 hours, the mold was removed, and after curing at 20 ° C.-65% for 28 days, a bending toughness test was performed using the specimen.
In addition, as accelerated deterioration treatment, 8 hours of immersion in 20 ° C. water and 16 hours of drying in a dryer at 60 ° C. are defined as 1 cycle, and after repeating 0 cycle and 10 cycles, a bending toughness test is performed. The initial strength and the long-term durability of the strength were evaluated. All six test specimens were prepared, and the average was calculated for evaluation.
4-2. Results Table 5 shows the test results. In addition, the test result set the comparative example 31 (control) to 100, and represented the other result by ratio (%) with respect to the value of the comparative example 31 (control).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果より、実施例31,32共に、比較例31、32に対して、促進劣化処理後の曲げタフネスの維持効果が見られた。すなわち、繊維表面被覆剤としての樹脂が付着したリグノセルロース繊維からなる本発明のセメント材料補強用繊維をセメント材料に配合することで、セメント材料の脆性が従来以上に改善されると共に、更に長期に渡ってその補強効果が発揮されることが明らかにされた。
 また、表5に示す結果より、実施例33は、比較例31、32に対して、曲げタフネスが顕著に向上しその持続効果にも優れていた。実施例34についても、曲げタフネスの向上効果が認められた。すなわち、繊維表面被覆剤として、(リグノ)セルロースナノファイバーが付着したリグノセルロース繊維からなる本発明のセメント材料補強用繊維、特にセルロースナノファイバー及び/又はリグノセルロースナノファイバーで処理し、当該セルロースナノファイバー及び/又はリグノセルロースナノファイバーを乾燥・硬化せしめたリグノセルロース繊維をセメント材料に添加することで、セメント材料の脆性が従来以上に改善されると同時に、更に長期に渡って補強効果が発揮されることが明らかにされた。なお、実施例34については、10サイクルの計測は行わなかったが、実施例33と同様に、曲げタフネスの向上効果の持続性にも優れると推測される。
 また、表5に示す結果から、本発明のセメント材料補強用繊維を用いた本発明の繊維混合セメント材料や本発明の繊維強化セメント材料によれば、耐水及び耐久性に優れた繊維強化成形体を形成可能であることも判る。
From the results shown in Table 5, both Examples 31 and 32 showed an effect of maintaining the bending toughness after the accelerated deterioration treatment with respect to Comparative Examples 31 and 32. That is, by blending the cement material reinforcing fiber of the present invention consisting of lignocellulosic fiber with a resin as a fiber surface coating agent attached to the cement material, the brittleness of the cement material is improved more than before, and for a longer period of time. It was clarified that the reinforcing effect was exhibited across.
Further, from the results shown in Table 5, in Example 33, the bending toughness was remarkably improved and the sustaining effect was excellent as compared with Comparative Examples 31 and 32. Also in Example 34, the effect of improving the bending toughness was recognized. That is, as a fiber surface coating agent, the cellulose nanofiber is treated with the fiber for reinforcing a cement material of the present invention, particularly cellulose nanofiber and / or lignocellulose nanofiber, which is composed of lignocellulose fiber to which (ligno) cellulose nanofiber is attached. Addition of lignocellulosic fibers obtained by drying and hardening lignocellulose nanofibers to the cement material improves the brittleness of the cement material more than before, and at the same time exerts a reinforcing effect for a longer period of time. It was revealed. In Example 34, 10 cycles of measurement were not performed. However, as in Example 33, it is presumed that the effect of improving the bending toughness is excellent.
Further, from the results shown in Table 5, according to the fiber-mixed cement material of the present invention using the fiber for reinforcing cement material of the present invention and the fiber-reinforced cement material of the present invention, a fiber-reinforced molded article excellent in water resistance and durability. It can also be seen that can be formed.
〔リグノセルロース繊維の圧縮成形体の実施例〕
1.リグノセルロース繊維の圧縮成形体の製造
 小熊鉄鋼所社製の二軸式減容固化装置(DP-3S)のダイスプレート部(ダイス)の排出ノズル(排出孔)の直径を20mm又は11mmとし、ファイバーボード工場で製造されたファイバーボード用の木材より製造されたリグノセルロース繊維(水分率13%)を原料として、原料投入部から装置内に単独で投入し、リグノセルロース繊維のペレット(圧縮成形体)を製造した。
 その結果、嵩密度40kg/mのリグノセルロース繊維から嵩密度420~440kg/mのリグノセルロース繊維の圧縮成形体を得ることができた。
[Examples of compression molded product of lignocellulose fiber]
1. Manufacture of compression molded body of lignocellulose fiber The diameter of the discharge nozzle (discharge hole) of the die plate part (die) of the biaxial volume reduction solidification device (DP-3S) manufactured by Oguma Steel Corporation is 20 mm or 11 mm, and the fiber Lignocellulose fiber (13% moisture content) manufactured from fiberboard wood manufactured at a board factory is used as a raw material, and it is put into the device alone from the raw material input section, and the lignocellulose fiber pellets (compression molded product). Manufactured.
As a result, a compression molded product of lignocellulose fibers having a bulk density of 420 to 440 kg / m 3 could be obtained from lignocellulose fibers having a bulk density of 40 kg / m 3 .
2.リグノセルロース繊維の圧縮成形体の評価
(1)繊維補強セメント複合材料への適用
 市販の軽量モルタルミックスに直径20mmのリグノセルロース繊維のペレットを2質量%添加し、更に分散補助剤として、ポリオキシエチレン(20)ソルビタンモノラウレートをペレットに対して1質量%添加したものに水を加え、ホバートミキサーを用いて2分間攪拌を行った。その結果、モルタル/水のスラリー中にリグノセルロース繊維が、ダマを形成することなく、均一に分散されたスラリーミックスを得ることができた。
(2)繊維補強樹脂複合材料への適用
 180℃に設定した樹脂のコンパウンド製造用の二軸混錬式押し出し装置に、樹脂ペレットと共に直径11mm、長さ5mm程度のリグノセルロース繊維ペレット投入し、リグノセルロース繊維ペレットの崩壊・分散の評価を行った。その結果、該リグノセルロース繊維ペレットは二軸混錬装置内で簡単に崩壊・分散し、リグノセルロース繊維を含む樹脂コンパウンドが問題なく得られた。
2. Evaluation of Lignocellulose Fiber Compression Molded Body (1) Application to Fiber Reinforced Cement Composite Material Add 2% by mass of 20mm diameter lignocellulosic fiber pellets to a commercially available lightweight mortar mix, and use polyoxyethylene as a dispersion aid. (20) Water was added to 1% by mass of sorbitan monolaurate based on the pellets, and the mixture was stirred for 2 minutes using a Hobart mixer. As a result, it was possible to obtain a slurry mix in which lignocellulose fibers were uniformly dispersed in the mortar / water slurry without forming lumps.
(2) Application to fiber-reinforced resin composite material Lignocellulose fiber pellets having a diameter of about 11 mm and a length of about 5 mm together with resin pellets are placed in a biaxial kneading-type extruder for resin compound production set at 180 ° C. The disintegration / dispersion of the cellulose fiber pellet was evaluated. As a result, the lignocellulose fiber pellets were easily disintegrated and dispersed in a biaxial kneading apparatus, and a resin compound containing lignocellulose fibers was obtained without problems.
 上記結果より、通常、嵩高いリグノセルロース繊維を外部からの結合剤の添加なしに、10~11分の1に圧縮できることが示された。このことより、リグノセルロース繊維を経済的かつ効率的に、輸送、保管、ハンドリングすることが可能になったと言える。
 更に、リグノセルロース繊維圧縮のペレットをモルタルミックスや樹脂ペレットと混合したところ、何れの場合も、ダマを発生させることなく、均一に被分散物中に分散させることができた。このことより、種類の異なる分散物(分散媒:例えば、セメント系の場合は水であり、樹脂系の場合は溶融した液状の樹脂)に、リグノセルロース繊維を好適に分散させられることが確認され、繊維強化複合材料用の補強繊維として様々な用途に使用できることが可能になったと言える。
From the above results, it has been shown that normally bulky lignocellulose fibers can be compressed to 10 to 11 times without adding an external binder. From this, it can be said that lignocellulosic fibers can be transported, stored and handled economically and efficiently.
Furthermore, when the lignocellulose fiber compressed pellets were mixed with mortar mix and resin pellets, in any case, they could be uniformly dispersed in the dispersion without causing lumps. This confirms that lignocellulosic fibers can be suitably dispersed in different types of dispersions (dispersion medium: for example, water in the case of cement-based materials and molten liquid resin in the case of resin-based materials). It can be said that it can be used for various purposes as a reinforcing fiber for a fiber-reinforced composite material.
 本発明のセメント材料補強用繊維は、植物由来のリグノセルロース繊維を用いており、環境への配慮の点から好ましい上に、セメント材料の効果的な補強が可能である。
 本発明の繊維混合セメント材料によれば、植物由来のリグノセルロース繊維により補強された高性能の繊維強化成形体を製造可能である。
 本発明の繊維強化セメント材料の製造方法によれば、植物由来のリグノセルロース繊維により補強された高性能の繊維強化成形体を形成可能な繊維強化セメント材料を効率的に製造可能である。
 本発明の繊維強化セメント構造体及び繊維強化セメント構造体の製造方法によれば、容易にセメント材料の脆性が改善された高強度の繊維強化セメント構造体を得ることが可能である。
The fiber for reinforcing cement material of the present invention uses plant-derived lignocellulosic fibers, which is preferable from the viewpoint of consideration for the environment and can effectively reinforce the cement material.
According to the fiber-mixed cement material of the present invention, a high-performance fiber-reinforced molded body reinforced with plant-derived lignocellulose fibers can be produced.
According to the method for producing a fiber-reinforced cement material of the present invention, a fiber-reinforced cement material capable of forming a high-performance fiber-reinforced molded body reinforced with plant-derived lignocellulose fibers can be efficiently produced.
According to the fiber-reinforced cement structure and the method for producing a fiber-reinforced cement structure of the present invention, it is possible to easily obtain a high-strength fiber-reinforced cement structure in which the brittleness of the cement material is improved.
 本発明のセメント材料補強用繊維は、植物由来のリグノセルロース繊維を用いており、環境への配慮の点から好ましい上に、セメント材料の効果的な補強が可能で、補強効果の持続性にも優れている。
 また、本発明の繊維混合セメント材料によれば、植物由来のリグノセルロース繊維により補強され、耐水及び耐久性に優れた繊維強化成形体を製造可能である。
 また、本発明の繊維強化セメント材料の製造方法によれば、植物由来のリグノセルロース繊維により補強され、耐水及び耐久性に優れた繊維強化成形体を形成可能な繊維強化セメント材料を効率的に製造可能である。
The fiber for reinforcing a cement material according to the present invention uses lignocellulosic fiber derived from a plant, which is preferable from the viewpoint of consideration for the environment, and can effectively reinforce the cement material, and also has a sustained reinforcing effect. Are better.
Moreover, according to the fiber-mixed cement material of the present invention, it is possible to produce a fiber-reinforced molded body that is reinforced with plant-derived lignocellulose fibers and has excellent water resistance and durability.
In addition, according to the method for producing a fiber-reinforced cement material of the present invention, a fiber-reinforced cement material that is reinforced with plant-derived lignocellulosic fibers and can form a fiber-reinforced molded article having excellent water resistance and durability is efficiently produced. Is possible.
 より詳細に説明すると、本発明によれば、下記の一又は二以上の効果が奏される。
(1)物性に優れたセメント複合材料が得られると共に、カーボンニュートラルなリグノセルロース繊維を用いることで二酸化炭素の放散を抑制し、またその結果セメント材料を使用している期間中、その材中に二酸化炭素をストックすることが可能となる。
(2)本発明により得られる繊維強化セメント材料は、脆性が改善され、乾燥収縮、引っ張り応力に強く、衝撃吸収性にも優れる。その結果、長期耐久性を発揮することが可能になり、セメント材料のライフサイクルを延長することが可能になり、経済的にも環境的にもその効果は大きい。
(3)環境中で容易に生分解するために、その製造、使用、使用後に環境に与える影響が少なくなるものである。加えて、火災時のセメント材料の爆裂も軽減される。
More specifically, according to the present invention, one or more of the following effects can be achieved.
(1) A cement composite material having excellent physical properties can be obtained, and carbon neutral emission can be suppressed by using carbon neutral lignocellulosic fiber. As a result, during the period when the cement material is used, It becomes possible to stock carbon dioxide.
(2) The fiber reinforced cement material obtained by the present invention has improved brittleness, is resistant to drying shrinkage and tensile stress, and is excellent in impact absorption. As a result, long-term durability can be exhibited, the life cycle of the cement material can be extended, and the effect is great both economically and environmentally.
(3) Since it is easily biodegraded in the environment, its influence on the environment is reduced after its manufacture, use and use. In addition, the explosion of cement material during a fire is reduced.
 本発明のリグノセルロース繊維の圧縮成形体の製造方法によれば、リグノセルロース繊維を、外部から添加する結合剤を実質的に用いずに、効率よく圧縮及び成形して、リグノセルロース繊維の圧縮成形体を得ることができる。また、製造されるリグノセルロース繊維の圧縮成形体は、リグノセルロース繊維が集合体として圧縮されていることによって、効率的且つ経済的に輸送、保管、ハンドリング可能である。また、過度の繊維の破断を伴わずに、圧縮・成形されるため、繊維強化複合材料に用いたときに、優れた被補強材の補強効果を発現して、高性能な繊維強化複合材料やその硬化体を得ることができる。 According to the method for producing a compression-molded body of lignocellulose fiber of the present invention, the lignocellulose fiber is efficiently compressed and molded without substantially using a binder added from the outside, and the compression molding of the lignocellulose fiber is performed. You can get a body. Moreover, the compression molded body of the lignocellulose fiber manufactured can be transported, stored and handled efficiently and economically because the lignocellulose fiber is compressed as an aggregate. In addition, since it is compressed and molded without excessive fiber breakage, when used in a fiber-reinforced composite material, it exhibits an excellent reinforcing effect of the material to be reinforced, and a high-performance fiber-reinforced composite material or The cured product can be obtained.
 また、ダイスの下流側に切断機構を設けることで、排出孔からの排出時に圧縮成形体の長さ方向のカット長さを所望に調整して、短粒状にすることも、長円筒状にすることも可能である。リグノセルロース繊維を圧縮成形体とすること、特に所望の長さに調整して、大きさが調整された圧縮成形体とすることによって、計量性、供給性、及び他材料との均一混合性が向上し、様々な用途への展開が一層容易となる。 Moreover, by providing a cutting mechanism on the downstream side of the die, the cut length in the length direction of the compression molded body can be adjusted as desired when discharging from the discharge hole, and can be made into a short cylindrical shape. It is also possible. By making the lignocellulosic fiber into a compression-molded body, in particular by adjusting the size to a desired length and adjusting the size, the meterability, feedability, and uniform mixing with other materials are improved. It will be easier to deploy to various applications.
 また、本発明の繊維強化複合材料の製造方法によれば、被補強材に対して効率よく配合することができ、強度やその耐久性等の物性が大幅に改善された繊維強化複合材料(例えば、セメント、アスファルトや樹脂複合材料)が得られる。繊維強化複合材料には、硬化前の組成物及び硬化後の硬化体の双方が含まれる。
 また、本発明の繊維強化複合材料の硬化体は、被補強材が、木材や非木材の植物由来のリグノセルロース繊維により補強され、強度やその耐久性に優れている。
 
In addition, according to the method for producing a fiber-reinforced composite material of the present invention, a fiber-reinforced composite material (for example, a material that can be efficiently blended with a material to be reinforced and whose physical properties such as strength and durability are greatly improved (for example, , Cement, asphalt and resin composite materials). The fiber-reinforced composite material includes both the composition before curing and the cured product after curing.
In the cured body of the fiber-reinforced composite material of the present invention, the material to be reinforced is reinforced with lignocellulosic fibers derived from plants such as wood or non-wood, and is excellent in strength and durability.

Claims (19)

  1.  帯電防止剤を付着させたリグノセルロース繊維からなることを特徴とする、セメント材料補強用繊維。 Cement material reinforcing fiber, characterized by comprising lignocellulose fiber with antistatic agent attached.
  2.  更に、樹脂、セルロースナノファイバー及びリグノセルロースナノファイバーからなる群から選択される1種以上の繊維表面被覆剤が付着していることを特徴とする、請求項1に記載のセメント材料補強用繊維。 Furthermore, the fiber for cement material reinforcement of Claim 1 to which the 1 or more types of fiber surface coating agent selected from the group which consists of resin, a cellulose nanofiber, and a lignocellulose nanofiber has adhered.
  3.  繊維表面被覆剤が付着したリグノセルロース繊維からなり、前記繊維表面被覆剤が、樹脂、セルロースナノファイバー及びリグノセルロースナノファイバーからなる群から選択される1種以上であることを特徴とする、セメント材料補強用繊維。 A cement material comprising a lignocellulose fiber to which a fiber surface coating agent is adhered, wherein the fiber surface coating agent is at least one selected from the group consisting of a resin, a cellulose nanofiber, and a lignocellulose nanofiber. Reinforcing fiber.
  4.  前記繊維表面被覆剤が、アミノ樹脂、ポリアクリルアミド樹脂、及び、ポリアクリルアミド樹脂誘導体からなる群から選択される1種以上の樹脂である、請求項2又は3に記載のセメント材料補強用繊維。 The cement material reinforcing fiber according to claim 2 or 3, wherein the fiber surface coating agent is at least one resin selected from the group consisting of amino resins, polyacrylamide resins, and polyacrylamide resin derivatives.
  5.  前記帯電防止剤が、カチオン性でないことを特徴とする、請求項1又は2に記載のセメント材料補強用繊維。 The cement material reinforcing fiber according to claim 1 or 2, wherein the antistatic agent is not cationic.
  6.  前記帯電防止剤が、水性であることを特徴とする、請求項1、2又は5に記載のセメント材料補強用繊維。 The cement material reinforcing fiber according to claim 1, 2 or 5, wherein the antistatic agent is aqueous.
  7.  前記帯電防止剤が、ポリオキシエチレンソルビタン脂肪酸エステル類である、請求項1、2、5又は6の何れか1項に記載のセメント材料補強用繊維。 The cement material reinforcing fiber according to any one of claims 1, 2, 5, and 6, wherein the antistatic agent is a polyoxyethylene sorbitan fatty acid ester.
  8.  請求項1~7の何れか1項に記載のセメント材料補強用繊維、及びセメントを含むことを特徴とする、繊維混合セメント材料。 A fiber-mixed cement material comprising the cement material reinforcing fiber according to any one of claims 1 to 7 and cement.
  9.  前記繊維混合セメント材料が、水分の含有率が15%以下の、モルタルミックス又はコンクリートミックスであることを特徴とする、請求項8に記載の繊維混合セメント材料。 The fiber-mixed cement material according to claim 8, wherein the fiber-mixed cement material is a mortar mix or a concrete mix having a moisture content of 15% or less.
  10.  更に、リグノセルロース材料を切削した小片を含むことを特徴とする、請求項8又は9に記載の繊維混合セメント材料。 The fiber-mixed cement material according to claim 8 or 9, further comprising a small piece obtained by cutting a lignocellulose material.
  11.  請求項1~7の何れか1項に記載のセメント材料補強用繊維を、セメント及び水と混合する、繊維強化セメント材料の製造方法。 A method for producing a fiber-reinforced cement material, wherein the fiber for reinforcing a cement material according to any one of claims 1 to 7 is mixed with cement and water.
  12.  更に、リグノセルロース材料を切削した小片を添加することを特徴とする、請求項11に記載の繊維混合セメント材料の製造方法。 Furthermore, the manufacturing method of the fiber mixing cement material of Claim 11 characterized by adding the small piece which cut the lignocellulose material.
  13.  繊維強化複合材料に使用されるリグノセルロース繊維の圧縮成形体の製造方法であって、
     リグノセルロース繊維、又は請求項1~7の何れか1項に記載のセメント材料補強用繊維を、2本以上のスクリューを備えた多軸スクリュー押出機に導入し、該リグノセルロース繊維を、複数のスクリューにおける相互に噛み合うスクリュー羽根により強制的にダイスに向けて移送及び圧縮し、その圧縮物を、該ダイスに設けた複数個の排出孔から排出させることを特徴とする、リグノセルロース繊維の圧縮成形体の製造方法。
    A method for producing a compression-molded body of lignocellulose fibers used in a fiber-reinforced composite material,
    The lignocellulose fiber or the fiber for reinforcing a cement material according to any one of claims 1 to 7 is introduced into a multi-screw extruder having two or more screws, and the lignocellulose fiber Compression molding of lignocellulosic fibers, wherein the blades are forcibly transferred and compressed toward a die by screw blades meshing with each other, and the compressed product is discharged from a plurality of discharge holes provided in the die. Body manufacturing method.
  14.  製造するリグノセルロース繊維の圧縮成形体の嵩密度が100~800kg/mであることを特徴とする、請求項13に記載のリグノセルロース繊維の圧縮成形体の製造方法。 14. The method for producing a compression-molded body of lignocellulose fibers according to claim 13, wherein the bulk density of the compression-molded body of lignocellulose fibers to be produced is 100 to 800 kg / m 3 .
  15.  繊維強化複合材料が、繊維強化セメント材料である、請求項13又は14に記載のリグノセルロース繊維の圧縮成形体の製造方法。 The method for producing a compression-molded body of lignocellulose fibers according to claim 13 or 14, wherein the fiber-reinforced composite material is a fiber-reinforced cement material.
  16.  請求項15に記載の方法により製造されたリグノセルロース繊維の圧縮成形体を用いて強化されていることを特徴とする、繊維強化セメント材料。 A fiber-reinforced cement material, which is reinforced by using a compression-molded body of lignocellulose fibers produced by the method according to claim 15.
  17.  更に、リグノセルロース材料を切削した小片を混合することを特徴とする、請求項16に記載の繊維混合セメント材料。 The fiber-mixed cement material according to claim 16, further comprising mixing small pieces cut from the lignocellulosic material.
  18.  請求項1~7の何れか1項に記載のセメント材料補強用繊維、又は請求項15に記載の方法により製造されたリグノセルロース繊維の圧縮成形体を含むことを特徴とする、繊維強化セメント構造体。 A fiber-reinforced cement structure comprising a fiber for reinforcing a cement material according to any one of claims 1 to 7, or a compression molded product of lignocellulosic fiber produced by the method according to claim 15. body.
  19.  更に、リグノセルロース材料を切削した小片を含むことを特徴とする、請求項18に記載の繊維強化セメント構造体。  The fiber-reinforced cement structure according to claim 18, further comprising a small piece obtained by cutting a lignocellulosic material.
PCT/JP2017/020895 2016-12-22 2017-06-05 Cement material reinforcing fiber WO2018116500A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016250167 2016-12-22
JP2016-250167 2016-12-22
JP2017011715A JP6745227B2 (en) 2017-01-25 2017-01-25 Fiber for cement material reinforcement
JP2017-011715 2017-01-25
JP2017031592A JP6864493B2 (en) 2017-02-22 2017-02-22 Method for manufacturing compression molded product of lignocellulosic fiber
JP2017-031592 2017-02-22
JP2017086713A JP6791804B2 (en) 2016-12-22 2017-04-25 Fiber for reinforcing cement material
JP2017-086713 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018116500A1 true WO2018116500A1 (en) 2018-06-28

Family

ID=62626156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020895 WO2018116500A1 (en) 2016-12-22 2017-06-05 Cement material reinforcing fiber

Country Status (1)

Country Link
WO (1) WO2018116500A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011452A (en) * 2018-07-18 2020-01-23 住友林業株式会社 Manufacturing method of compression molding of cellulose fiber
JP2021155857A (en) * 2020-03-25 2021-10-07 国立大学法人京都大学 Microfibrillated cellulosic fiber, molded body containing the same, and method for producing the molded body
WO2024042846A1 (en) * 2022-08-23 2024-02-29 伯東株式会社 Bulking agent for fiber-mixed board used as building material board, and use of bulking agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424057A (en) * 1987-07-16 1989-01-26 Kubota Ltd Production of inorganic building material
JPH03112842A (en) * 1989-09-27 1991-05-14 Kubota Corp Production of fiber cement board
JPH04139044A (en) * 1990-06-12 1992-05-13 Shin Etsu Chem Co Ltd Cement composition
JPH06321605A (en) * 1993-05-12 1994-11-22 Nichiha Kk Building board
JPH07237211A (en) * 1994-02-25 1995-09-12 Nichiha Corp Production of cement plate
JPH07267708A (en) * 1994-03-25 1995-10-17 Matsushita Electric Works Ltd Production of cement composition
JPH11246257A (en) * 1998-03-06 1999-09-14 Kenzai Techno Kenkyusho:Kk Vegetable fiber cement molding and production thereof
JP2013525248A (en) * 2010-04-23 2013-06-20 キャスタグラ・プロダクツ,インコーポレイテッド Fibrous plasticized gypsum composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424057A (en) * 1987-07-16 1989-01-26 Kubota Ltd Production of inorganic building material
JPH03112842A (en) * 1989-09-27 1991-05-14 Kubota Corp Production of fiber cement board
JPH04139044A (en) * 1990-06-12 1992-05-13 Shin Etsu Chem Co Ltd Cement composition
JPH06321605A (en) * 1993-05-12 1994-11-22 Nichiha Kk Building board
JPH07237211A (en) * 1994-02-25 1995-09-12 Nichiha Corp Production of cement plate
JPH07267708A (en) * 1994-03-25 1995-10-17 Matsushita Electric Works Ltd Production of cement composition
JPH11246257A (en) * 1998-03-06 1999-09-14 Kenzai Techno Kenkyusho:Kk Vegetable fiber cement molding and production thereof
JP2013525248A (en) * 2010-04-23 2013-06-20 キャスタグラ・プロダクツ,インコーポレイテッド Fibrous plasticized gypsum composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011452A (en) * 2018-07-18 2020-01-23 住友林業株式会社 Manufacturing method of compression molding of cellulose fiber
JP2021155857A (en) * 2020-03-25 2021-10-07 国立大学法人京都大学 Microfibrillated cellulosic fiber, molded body containing the same, and method for producing the molded body
WO2024042846A1 (en) * 2022-08-23 2024-02-29 伯東株式会社 Bulking agent for fiber-mixed board used as building material board, and use of bulking agent

Similar Documents

Publication Publication Date Title
El-Feky et al. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers.
WO2018116500A1 (en) Cement material reinforcing fiber
WO2015182823A1 (en) Glass fiber-reinforced composite material, hot asphalt mixture using same, and manufacturing method thereof
JP6715270B2 (en) Cement composition and cured product thereof
JP2004525845A (en) Fiber reinforced mineral base material and method for producing the same
Ansari et al. Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites
Galán-Marín et al. Effect of animal fibres reinforcement on stabilized earth mechanical properties
JP6791804B2 (en) Fiber for reinforcing cement material
Iniya et al. A Review on Fiber Reinforced Concrete using sisal fiber
Cavdar et al. Microcrystalline cellulose addition effects on the properties of wood cement boards
JP2020011452A (en) Manufacturing method of compression molding of cellulose fiber
EP1525264B1 (en) Method for the production of fire-resistant moulded wood fibre pieces
KR100899838B1 (en) Concrete composition having high performance and fire-resistant
JP7525848B2 (en) Lignocellulose fiber manufacturing method, lignocellulose fiber and composite material
CN110482893A (en) A kind of anti-cracking plastering mortar and preparation method thereof
JPH03122038A (en) Production of hydraulic material molded article
Arya et al. Preparation and characterization of woven jute fabric layered composite by using bamboo fiber reinforced polymers as resin matrix
JP6745227B2 (en) Fiber for cement material reinforcement
CN102452790B (en) Hydrophilic mineral composite fibers and preparation method thereof
JP6864493B2 (en) Method for manufacturing compression molded product of lignocellulosic fiber
Rokbi et al. Flexural characterization of polymer concrete comprising waste marble and date palm fibers
Verma et al. Evaluation of mechanical properties and morphological studies of bagasse fibre (chemically treated/untreated)-CaCO 3 epoxy hybrid composites
EP3323576B1 (en) Method for the preparation of fire-retardant insulating panels/mats on the basis of renewable resources
Ramli et al. Effects of coupling agent on oil palm clinker and flour-filled polypropylene composites
Sen et al. Efficacy of thermally conditioned sisal FRP composite on the shear characteristics of reinforced concrete beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884693

Country of ref document: EP

Kind code of ref document: A1