WO2024042846A1 - Bulking agent for fiber-mixed board used as building material board, and use of bulking agent - Google Patents

Bulking agent for fiber-mixed board used as building material board, and use of bulking agent Download PDF

Info

Publication number
WO2024042846A1
WO2024042846A1 PCT/JP2023/023652 JP2023023652W WO2024042846A1 WO 2024042846 A1 WO2024042846 A1 WO 2024042846A1 JP 2023023652 W JP2023023652 W JP 2023023652W WO 2024042846 A1 WO2024042846 A1 WO 2024042846A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
board
building material
mixed
bulking agent
Prior art date
Application number
PCT/JP2023/023652
Other languages
French (fr)
Japanese (ja)
Inventor
尊生 野口
雨櫻 江
Original Assignee
伯東株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伯東株式会社 filed Critical 伯東株式会社
Publication of WO2024042846A1 publication Critical patent/WO2024042846A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/02Cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/06Alcohols; Phenols; Ethers; Aldehydes; Ketones; Acetals; Ketals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres

Definitions

  • the present invention relates to a bulking agent for a fiber-mixed board as a building material board.
  • This application is based on Japanese Patent Application No. 2022-132235 filed on August 23, 2022, and the contents thereof are incorporated herein.
  • Pulp bulking agents used in the paper manufacturing field include paper bulking agents containing higher alcohols and their alkylene oxide adducts (Patent Document 1), and paper bulking agents containing oils and fats or sugar alcohol-based nonionic surfactants.
  • paper bulking agents containing alkylene oxide adducts of fatty acids Patent Document 3
  • paper bulking agents containing cationic compounds, amines, acid salts of amines, and amphoteric compounds Patent Document 4
  • paper bulking agents containing polyhydric alcohol fatty acid esters Patent Document 5
  • paper bulking agents containing compounds obtained by reacting epihalohydrin with compounds obtained from aliphatic carboxylic acids and polyamines Patent Document 5
  • 6) is known.
  • Patent Document 7 discloses, as a method for manufacturing a bulky inorganic plate, a method in which alkoxysilanes are added to a slurry, and foaming is promoted by mixing and stirring to include fine bubbles.
  • Patent Documents 1 to 6 are added to acidic to neutral slurries. For this reason, the inventors of the present invention have found that a sufficient bulking effect cannot be obtained in a fiber-mixed board in which the slurry has strong alkaline liquid properties. Further, the slurry of the fiber-mixed board has an extremely high concentration of calcium ions. For this reason, the inventors of the present invention have found that even if a paper bulking agent applied to objects that do not have a high calcium ion concentration is used in a fiber-containing board, a sufficient bulking effect cannot be obtained.
  • Patent Documents 1 to 6 are added to acidic to neutral slurries. For this reason, the inventors of the present invention have discovered that a sufficient bulking effect cannot be obtained in ceramic siding boards whose slurry is often alkaline. For this reason, a technique is desired that improves the bulkiness of fiber-mixed boards in building material boards.
  • the present invention has been made to solve the above problems, and can be realized as the following forms.
  • a bulking agent for a fiber-mixed board as a building material board is provided.
  • This bulking agent for fiber-mixed boards is a bulking agent used for fiber-mixed boards as building material boards containing cement and pulp, and contains an ether compound (A) represented by the following general formula (F1) and the following general formula. It is characterized by containing at least one of the following: an ester compound (B) represented by formula (F2); According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • n1, m1, n2, m2 represent the average number of added moles
  • At least one of the R1a and the R2a is a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms.
  • At least one of an ether compound (A) and an ester compound (B) in which at least one of R1b and R2b is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms. May contain. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be further improved.
  • a bulking agent for a fiber-mixed board as a building material board is provided.
  • This bulking agent for fiber-mixed boards is a bulking agent used for fiber-mixed boards as building material boards containing cement and pulp, and is an ether compound of the following general formula (1) or an ester compound of the following general formula (2). It is characterized by containing at least one of these. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • R1 or R2 of the ether compound (1) or the ester compound (2) may have a chain length of 12 or more carbon atoms. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • R1 or R2 of the ether compound (1) or the ester compound (2) may have a chain length of 14 or more carbon atoms. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • the sum of the average number of added moles of EO and PO in the ether compound (1) or the ester compound (2) may be 7 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • the sum of the average number of added moles of EO and PO in the ether compound (1) or the ester compound (2) may be 20 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • R1 of the ether compound (1) or the ester compound (2) has a chain length of 14 or more carbon atoms, and the average number of moles of EO and PO added is The total amount may be 20 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • the ether compound (1) has a chain length of 14 or more carbon atoms in R1, and the total number of average added moles of EO and PO is 30 It may be more than mol. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • a fiber-mixed board as a building material board is provided.
  • This fiber-containing board as a building material board is made of cement, pulp, an ether compound (A) represented by the following general formula (F1), and an ester compound (B) represented by the following general formula (F2). It is characterized by containing at least one of the following. According to this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • n1, m1, n2, m2 represent the average number of added moles
  • a fiber-mixed board as a building material board is provided.
  • This fiber-mixed board as a building material board is characterized by containing cement, pulp, and at least one of the ether compound (1) or the ester compound (2). According to this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
  • a method for manufacturing a fiber-mixed board as a building material board is provided.
  • the manufacturing method of this fiber-mixed board as a building material board consists of pulp, cement, an ether compound (A) represented by the following general formula (F1), and an ester compound (B) represented by the following general formula (F2). It is characterized by including a mixing step of mixing at least one of the above. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
  • R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • n1, m1, n2, m2 represent the average number of added moles
  • a method for manufacturing a fiber-mixed board as a building material board is provided.
  • This method for manufacturing a fiber-mixed board as a building material board is characterized by including a mixing step of mixing pulp, cement, and at least one of the ether compound (1) or the ester compound (2). .
  • the bulkiness of the fiber-mixed board can be improved.
  • the mixing step includes mixing at least one of the ether compound (1) or the ester compound (2) with the mass of a cement mixed slurry containing pulp and cement. may be mixed at a concentration of 10 mg/kg or more and 1000 mg/kg or less. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
  • the method for manufacturing a fiber-mixed board of the above embodiment in the mixing step, at least one of the ether compound (1) or the ester compound (2) is mixed into a cement mixed slurry containing pulp and cement. You may. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
  • the present invention can be realized in various forms, such as a method for manufacturing a bulking agent for a fiber-mixed board, a building using a fiber-mixed board, and the like.
  • a bulking agent for fiber-mixed board as building material board A bulking agent that is one embodiment of the present invention is used for fiber-mixed board as building material board containing cement and pulp.
  • the bulking agent of the present disclosure includes at least one of an ether compound (A) represented by the following general formula (F1) and an ester compound (B) represented by the following general formula (F2).
  • R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • n1, m1, n2, m2 represent the average number of added moles
  • the saturated hydrocarbon group in the present disclosure is not particularly limited, and includes, for example, a linear, branched, or cyclic alkyl group. From the viewpoint of improving bulkiness, the saturated hydrocarbon group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group.
  • the unsaturated hydrocarbon group in the present disclosure is not particularly limited, but includes, for example, a linear, branched, or cyclic alkenyl group, and a linear, branched, or cyclic alkynyl group. . From the viewpoint of improving bulkiness, the unsaturated hydrocarbon group is preferably a linear or branched alkenyl group or alkynyl group, and more preferably a linear alkenyl group or alkynyl group. .
  • the bulking agent of the present disclosure preferably contains at least an ether compound (A) from the viewpoint of improving bulkiness.
  • the bulking agent of the present disclosure may contain both the ether compound (A) and the ester compound (B).
  • the bulking agent of the present disclosure comprises an ether compound (A) in which at least one of R1a and R2a is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms, and R1b and R2b. It is preferable to include at least one of the following: an ester compound (B), at least one of which is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms.
  • the number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ether compound (A) is preferably 4 or more, more preferably 8 or more, and 10 or more from the viewpoint of improving bulkiness. It is more preferably 12 or more, even more preferably 14 or more, and particularly preferably 18 or more.
  • the number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ether compound (A) is preferably 40 or less, more preferably 30 or less, and 24 or less, from the viewpoint of improving bulk. It is even more preferable.
  • the total number of carbon atoms in R1a and carbon number in R2a is preferably 12 or more, more preferably 14 or more, and even more preferably 18 or more. Further, the total number of carbon atoms in R1a and carbon number in R2a is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less, from the viewpoint of improving bulkiness. It is even more preferably 30 or less, and even more preferably 24 or less.
  • the average number of moles of EO added in other words, the value of n1 is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of n1 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less.
  • the average number of moles of PO added in other words, the value of m1 is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be.
  • the value of m1 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less.
  • the sum of the average number of added moles of EO and PO in other words, the sum of n1 and m1 is preferably 4 or more, and 7 or more, from the viewpoint of improving bulkiness. is more preferable, more preferably 20 or more, even more preferably 30 or more.
  • the sum of n1 and m1 is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
  • the number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ester compound (B) is preferably 4 or more, more preferably 8 or more, and 10 or more from the viewpoint of improving bulkiness. It is more preferably 12 or more, even more preferably 14 or more, and particularly preferably 18 or more.
  • the number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ester compound (B) is preferably 40 or less, more preferably 30 or less, and 24 or less, from the viewpoint of improving bulk. It is even more preferable.
  • the total number of carbon atoms in R1b and carbon number in R2b is preferably 12 or more, more preferably 14 or more, and even more preferably 18 or more. Further, the total number of carbon atoms in R1b and carbon number in R2b is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less, from the viewpoint of improving bulkiness. It is even more preferably 30 or less, and even more preferably 24 or less.
  • the average number of added moles of EO in other words, the value of n2, is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of n2 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less.
  • the average number of added moles of PO in other words, the value of m2, is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be.
  • the value of m2 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less.
  • the total number of average added moles of EO and PO in other words, the total of n2 and m2 is preferably 4 or more, and 7 or more, from the viewpoint of improving bulkiness. is more preferable, more preferably 20 or more, even more preferably 30 or more.
  • the sum of n2 and m2 is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
  • the bulking agent of the present disclosure by including at least one of the ether compound (A) and the ester compound (B), the bulkiness of the fiber-mixed board in the building material board can be improved.
  • the mechanism by which such an effect is produced is not certain, the following presumed mechanism can be considered.
  • the compound having a specific alkyl group and an ethylene oxide chain and/or a propylene oxide chain hydrogen bonding between pulp fibers is inhibited, and as a result, the spaces between the pulp fibers are expanded, which improves bulk.
  • the bulking agent as an embodiment of the present disclosure may be in the following form.
  • the bulking agent of the present embodiment is characterized by containing at least one of an ether compound represented by the following general formula (1) or an ester compound represented by the following general formula (2).
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms
  • EO is an ethylene oxide chain
  • PO is a propylene oxide chain
  • R1 is included in R1a in the above general formula (F1)
  • R2 is included in R2a in the above general formula (F1)
  • n is included in n1 in the above general formula (F1).
  • m is included in m1 in the above general formula (F1). Therefore, the ether compound represented by the above general formula (1) is included in the ether compound (A) represented by the above general formula (F1).
  • R1 is included in R1b in the above general formula (F2)
  • R2 is included in R2b in the above general formula (F2)
  • n is included in n2 in the above general formula (F2).
  • m is included in m2 in the above general formula (F2).
  • the ester compound represented by the above general formula (2) is included in the ester compound (B) represented by the above general formula (F2). Therefore, in the bulking agent of the present disclosure, the ether compound (A) represented by the above general formula (F1) may be an ether compound represented by the above general formula (1), or the ether compound represented by the above general formula (F2).
  • the ester compound (B) may be an ester compound represented by the above general formula (2).
  • the bulkiness of the fiber-mixed board in the building material board can be improved by including at least one of the ether compound (1) or the ester compound (2).
  • the mechanism by which such an effect is produced is not certain, the following presumed mechanism can be considered. In other words, by adding the compound having a specific alkyl group and an ethylene oxide chain and/or a propylene oxide chain, hydrogen bonding between pulp fibers is inhibited, and as a result, the spaces between the pulp fibers are expanded, which improves bulk.
  • the ether compound in the present invention has at least one ether bond in the molecule and has the following general formula (1).
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms
  • EO is an ethylene oxide chain
  • PO is a propylene oxide chain
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms.
  • the carbon number is 1 or more, more preferably the carbon number is 10 or more, even more preferably the carbon number is 12 or more, particularly preferably the carbon number is 14 or more, and most preferably the carbon number is It has a chain length of 18 or more.
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • the sum of n and m is 4 or more, more preferably the sum of n and m is 7 or more, even more preferably the sum of n and m is 20 or more, and particularly preferably n and m.
  • the total is 30 or more.
  • the ester compound in the present invention has at least one ester group in the molecule and has the following general formula (2).
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms
  • EO is an ethylene oxide chain
  • PO is a propylene oxide chain
  • R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms.
  • the carbon number is 1 or more, more preferably the carbon number is 10 or more, even more preferably the carbon number is 12 or more, particularly preferably the carbon number is 14 or more, and most preferably the carbon number is It has a chain length of 18 or more.
  • EO represents an ethylene oxide chain
  • PO represents a propylene oxide chain
  • the sum of n and m is 4 or more, more preferably the sum of n and m is 7 or more, even more preferably the sum of n and m is 20 or more, and particularly preferably n and m.
  • the total is 30 or more.
  • the bulking agent for fiber-containing boards used as building material boards can be used as is if the ether compound (A) and/or the ester compound (B) are in liquid form. It may be prepared by appropriately diluting it using.
  • the bulking agent for fiber-containing boards used as building material boards can be used as is if the ether compound (1) or the ester compound (2) is in liquid form. It may be prepared by diluting it as appropriate.
  • the bulking agent for a fiber-containing board used as a building material board may be one in which the ether compound (A) and/or the ester compound (B) are dissolved in a solvent, or dispersed in a dispersion medium (for example, suspended, It may also be emulsified.
  • the bulking agent for a fiber-containing board used as a building material board may be one in which the ether compound (1) or the ester compound (2) is dissolved in a solvent, or dispersed (for example, suspended or emulsified) in a dispersion medium. It may be something that has been done.
  • solvents or dispersion media are not particularly limited, but include, for example, water, ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, and benzophenone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and glycerol fatty acids.
  • ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, and benzophenone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and glycerol fatty acids.
  • Esters such as ester, alcohols such as methanol, ethanol, isopropyl alcohol, 2-butanol, lauryl alcohol, myristyl alcohol, alkaline aqueous solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, barium hydroxide aqueous solution, monoethanolamine, Examples include amines such as triethanolamine, dicyclohexylamine, and polyetheramine.
  • the bulking agent for a fiber-mixed board as a building material board of the present embodiment may contain optional components as necessary within a range that does not impede the effects of the present invention.
  • optional ingredients include, but are not particularly limited to, preservatives, fungicides, bactericides, dispersants, and the like. These optional components may be used alone or in combination of two or more.
  • the total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for fiber-mixed boards as building material boards is preferably 1% by mass or more, and 10% by mass. % or more, and even more preferably 50% by mass or more. Further, from the viewpoint of ease of handling, the total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for fiber-mixed boards as building material boards is preferably 90% by mass or less, and 75% by mass. % or less is more preferable.
  • the total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for a fiber-mixed board as a building material board is such that only one of the ether compound (A) and the ester compound (B) is contained.
  • a bulking agent for fiber-containing boards it means the concentration of only one of them.
  • the concentration of the ether compound (1) or the ester compound (2) in the bulking agent for fiber-mixed boards as building material boards is preferably 1% by mass or more, and 10% by mass or more. More preferably, it is 50% by mass or more.
  • the concentration of the ether compound (1) or the ester compound (2) in the bulking agent for fiber-containing boards used as building material boards is preferably 90% by mass or less, and 75% by mass or less, from the viewpoint of ease of handling. It is more preferable that
  • a fiber-mixed board with excellent bulkiness can be provided. Therefore, it can contribute to reducing the cost of raw materials due to the bulking effect and reducing the weight of the fiber-mixed board.
  • the bulking agent for a fiber-mixed board as a building material board of this embodiment can be mixed with other raw materials and used when manufacturing a fiber-mixed board. Therefore, it is possible to suppress the manufacturing process of the fiber-containing board from becoming complicated, so that large-scale equipment changes can be omitted, and process management can be suppressed from becoming complicated. Therefore, the bulkiness of the fiber-mixed board can be easily improved.
  • a fiber-mixed board as a building material board contains at least one of cement, pulp, an ether compound (A) represented by the above general formula (F1), and an ester compound (B) shown by the above general formula (F2).
  • a fiber-mixed board as an embodiment of the present disclosure may have the following form.
  • a fiber-mixed board as a building material board according to another embodiment of the present invention is characterized by containing cement, pulp, and at least one of the ether compound (1) or the ester compound (2).
  • the fiber-containing board as the building material board of this embodiment is not particularly limited, but examples thereof include ceramic siding boards, artificial slates, slag lime boards, calcium silicate boards, and the like.
  • ceramic siding boards are used, for example, as exterior wall materials and interior wall materials for houses and stores.
  • the bulking agent described above can be suitably used for ceramic siding boards.
  • the cement used in this embodiment is not particularly limited, but includes, for example, various Portland cements such as normal, early strength, super early strength, low heat, and medium heat, fillers mixed with limestone powder, etc., and blast furnace slowly cooled slag powder.
  • various Portland cements such as normal, early strength, super early strength, low heat, and medium heat
  • fillers mixed with limestone powder, etc. and blast furnace slowly cooled slag powder.
  • Examples include cement and environmentally friendly cement manufactured using various industrial wastes as main raw materials.
  • One type of cement may be used alone, or two or more types may be used in combination.
  • inorganic powders such as fly ash, calcium silicate, gypsum, calcium carbonate, blast furnace slag, and silica may be mixed with the cement.
  • the pulp of this embodiment is composed of natural fibers and has a role as reinforcing fibers in the fiber-mixed board.
  • the raw material pulp may be wood pulp or non-wood pulp.
  • the wood pulp include, but are not limited to, softwood kraft pulp (NKP), hardwood kraft pulp (LKP), and the like.
  • Non-wood pulps include, but are not particularly limited to, kenaf, bagasse, bamboo, hemp, straw, and the like.
  • the pulp may be bleached pulp or unbleached pulp that has not been bleached.
  • the pulp may be virgin pulp made directly from wood or non-wood, or may be waste paper pulp made from recovered paper that has already been manufactured as paper or the like.
  • one type of pulp may be used alone or two or more types may be used in combination.
  • the fiber-containing board as the building material board of this embodiment may contain optional components, as necessary, within a range that does not impede the effects of the present invention.
  • optional components include, but are not particularly limited to, antifoaming agents, hydrocarbons, preservatives, antifungal agents, bactericides, rust preventives, antiskinning agents, and the like. These optional components may be used alone or in combination of two or more.
  • the method for manufacturing the fiber-mixed board as the building material board of this embodiment is not particularly limited, and various manufacturing methods such as pouring, extrusion, and paper forming can be applied.
  • pulp, cement, an ether compound (A) represented by the above general formula (F1), and an ester compound (B) represented by the above general formula (F2) are used. and a mixing step of mixing at least one of the following.
  • a method for manufacturing a fiber-mixed board as an embodiment of the present disclosure may be in the following form.
  • the method for manufacturing a fiber-mixed board as a building material board of the present embodiment includes a mixing step of mixing pulp, cement, and at least one of the ether compound (1) or the ester compound (2).
  • a slurry obtained by adding the above raw materials to water is mixed and stirred.
  • the mixing step in the present disclosure includes (i) a first step of mixing at least one of the ether compound (A) and the ester compound (B) into a pulp slurry containing pulp;
  • the method may include a second step of mixing cement after the first step.
  • the mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner.
  • the mixing step of the present embodiment includes (i) a first step of mixing at least one of the ether compound (1) and the ester compound (2) into a pulp slurry containing pulp; (ii) a first step of mixing at least one of the ether compound (1) and the ester compound (2); A second step of mixing cement after the step may be included.
  • a pulp slurry containing raw material pulp in water and at least one of the ether compound (A) and the ester compound (B) may be mixed and stirred.
  • the mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner.
  • a pulp slurry containing raw material pulp in water and at least one of the ether compound (1) or the ester compound (2) are mixed and stirred.
  • the pulp is disintegrated.
  • the pH of the pulp slurry is strongly alkaline (eg, pH 10 to pH 13.5, preferably pH 11.5 to pH 13.2).
  • the mixed pulp slurry and cement are mixed and stirred.
  • a cement mixed slurry is obtained by the second step.
  • the ether compound (A) and the ester compound (B) are added to the cement mixed slurry obtained by mixing cement into the pulp slurry.
  • ) may be a step of mixing at least one of the following. From the viewpoint of bulking effect, it is preferable that at least one of the above ether compound (A) and the above ester compound (B) is added to the cement mixed slurry.
  • the mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner.
  • the mixing step instead of the first step and the second step, at least one of the ether compound (1) or the ester compound (2) is added to the cement mixed slurry obtained by mixing cement into the pulp slurry. It may be a step of mixing. From the viewpoint of bulking effect, it is preferable that at least one of the ether compound (1) and the ester compound (2) is added to the cement mixed slurry.
  • the method for mixing the ether compound (A) and/or the ester compound (B) with respect to pulp slurry or cement mixed slurry includes There are no particular restrictions as long as the method is distributed.
  • the method of mixing the ether compound (1) or the ester compound (2) to the pulp slurry or the cement mixed slurry is particularly one in which the ether compound (1) or the ester compound (2) is dispersed in the slurry. Not restricted. Examples include a method of continuously mixing using a liquid pump, a method of mixing a prescribed batch amount at regular intervals, and the like.
  • the place where the compound is mixed may be, for example, a pulper, a return line of filtrate discharged during production of a fiber-mixed board, raw material dilution water, or the like.
  • the ether compound (A) and/or the ester compound (B) may be added at multiple locations as necessary.
  • the ether compound (1) or the ester compound (2) may be added at multiple locations as necessary.
  • the ether compound (A) and the ester compound (B) are preferably mixed at a ratio of 10 mg/kg or more in total, and 200 mg/kg in total, based on the mass of the cement mixed slurry, from the viewpoint of improving the bulking effect. It is more preferable to mix at a ratio of 500 mg/kg or more, and even more preferably at a total ratio of 500 mg/kg or more. From the viewpoint of economy, the ether compound (A) and the ester compound (B) are preferably mixed in a total amount of 1000 mg/kg or less based on the mass of the cement mixed slurry.
  • the total mass of the ether compound (A) and the ester compound (B) is the same as the total mass of the ether compound (A) and the ester compound (B) when the fiber-containing board bulking agent contains only either the ether compound (A) or the ester compound (B). It means the mass of only one side.
  • the ether compound (1) or the ester compound (2) is preferably mixed at a ratio of 10 mg/kg or more, and 200 mg/kg or more, based on the mass of the cement mixed slurry. More preferably, they are mixed at a ratio of 500 mg/kg or more, and even more preferably at a ratio of 500 mg/kg or more. From the viewpoint of economy, it is preferable to mix at a rate of 1000 mg/kg or less based on the mass of the cement mixed slurry.
  • the above preferred total mass of the ether compound (A) and the ester compound (B) relative to the mass of the cement mixed slurry is the same when the compound is mixed into the pulp slurry.
  • the above preferable mass of the ether compound (1) or the ester compound (2) relative to the mass of the cement mixed slurry is the same when the compound is mixed into the pulp slurry.
  • the concentration of pulp in the pulp slurry is not particularly limited, but may be, for example, 0.1 to 10% by mass, and the concentration of cement in the cement mixed slurry is not particularly limited, but is, for example, 2 to 70% by mass. It may be %.
  • the cement mixed slurry obtained in the mixing step is made into paper.
  • the cement mixed slurry is machined like paper to produce a plate-shaped molded board. More specifically, for example, a cement mixed slurry is poured onto a screen, filtered, and dehydrated to produce a cement cake. The resulting cement cake is pressed and molded, dried and hardened to produce a fiber-mixed board.
  • the time elapsed from dispersing the ether compound (A) and/or the ester compound (B) into the slurry to the papermaking process there is no limit to the time elapsed from dispersing the ether compound (A) and/or the ester compound (B) into the slurry to the papermaking process.
  • the cement mixed slurry and pulp slurry after preparation are sent to the papermaking process in about 1 to 30 minutes, but the time elapsed after mixing the ether compound (A) and/or the ester compound (B) may vary. Therefore, it is possible to produce a fiber-mixed board that has excellent bulkiness and suppresses a decrease in strength.
  • the cement mixed slurry and pulp slurry after preparation are sent to the papermaking process in about 1 to 30 minutes, regardless of the length of time elapsed after mixing the ether compound (1) or the ester compound (2). , it is possible to produce a fiber-mixed board that has excellent bulkiness and suppresses a decrease in strength.
  • ceramic siding boards as fiber-mixed boards of Examples 1 to 30 and Comparative Examples 1 to 18 were prepared as follows. It was made as follows.
  • ceramic siding boards as fiber-mixed boards of Examples 31 to 40 were produced as follows using compounds A1 to A5 and B1 to B5 for Examples shown in the table below.
  • the pH of the pulp slurry in Examples and Comparative Examples was as shown in the table below.
  • Example 1 To 250 g of pulp slurry containing 3.7% waste paper pulp in water, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. Compound 1 was added to the obtained cement mixed slurry at a compound amount of 1000 mg/kg, and the mixture was stirred for 5 minutes. After that, the cement mixed slurry was added to No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the moisture content became approximately 40%, and a cement cake as a filtration residue was collected.
  • the recovered cement cake was placed in a mold having a diameter of 100 mm and pressed under a pressure of 18 kgf/cm2 to form the mold.
  • the molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 1 was obtained by leaving it at 120° C. for 24 hours and drying it.
  • Ceramic siding boards of Examples 2 to 6 were obtained by the same manufacturing method as Example 1 except that Compound 1 was added in the amount shown in Table 1 below.
  • Examples 7 to 16 Ceramic sidings of Examples 2 to 16 were produced using the same manufacturing method as Example 1, except that Compounds 2 to 11 were added in the amounts shown in Table 1 below in place of Compound 1. Got the board.
  • Example 17 Compound 1 was added in advance to 250 g of pulp slurry containing 3.7% waste paper pulp in water so that the amount of the compound was 200 mg/kg based on the mass of the cement mixed slurry described later, and the mixture was stirred for 5 minutes. Thereafter, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. The obtained cement mixed slurry was mixed into No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the water content became approximately 40%, and a cement cake as a filtration residue was collected.
  • the recovered cement cake was placed in a mold having a diameter of 100 mm and pressed at a pressure of 18 kgf/cm2 to form the mold.
  • the molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 17 was obtained by allowing it to stand at 120° C. for 24 hours and drying it.
  • Example 18 A ceramic siding board of Example 18 was obtained by the same manufacturing method as Example 3 except that virgin pulp was used instead of waste paper pulp.
  • Example 19 to 28 Ceramic sidings of Examples 19 to 28 were produced using the same manufacturing method as Example 1, except that Compounds 12 to 21 were added in the amounts shown in Table 1 below in place of Compound 1. Got the board.
  • Example 29 Compound 12 was added in advance to 250 g of pulp slurry containing 3.7% waste paper pulp in water so that the amount of the compound was 200 mg/kg based on the mass of the cement mixed slurry described later, and the mixture was stirred for 5 minutes. Thereafter, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. The obtained cement mixed slurry was mixed into No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the water content became approximately 40%, and a cement cake as a filtration residue was collected.
  • the recovered cement cake was placed in a mold having a diameter of 100 mm and pressed at a pressure of 18 kgf/cm2 to form the mold.
  • the molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 29 was obtained by allowing it to stand at 120° C. for 24 hours and drying it.
  • Example 30 A ceramic siding board of Example 30 was obtained in the same manner as Example 19 except that virgin pulp was used instead of waste paper pulp.
  • Examples 31 to 31 were produced in the same manner as in Example 1, except that Compounds A1 to A5 and B1 to B5 were added in the amounts shown in Table 3 below in place of Compound 1. Obtained 40 ceramic siding boards.
  • Comparative example 1 A ceramic siding board of Comparative Example 1 was obtained by the same manufacturing method as Example 1 except that Compound 1 was not added.
  • Ceramic siding boards of Comparative Examples 2 to 11 were obtained using the same manufacturing method as Comparative Example 1, except that Compounds 22 to 26 were added in the amounts listed in Table 2 below.
  • a ceramic siding board of Comparative Example 13 was obtained by the same manufacturing method as Comparative Example 1 except that virgin pulp was used instead of waste paper pulp.
  • Ceramic siding boards of Comparative Examples 14 to 18 were obtained using the same manufacturing method as Comparative Example 13, except that Compounds 22 to 26 were added in the amounts listed in Table 2 below.
  • each characteristic was determined according to the following method. Further, using the ceramic siding boards as the fiber-mixed boards of Examples 31 to 40, each characteristic was determined according to the following method.
  • ⁇ Thickness of ceramic siding boards> The ceramic siding board was dried at 120° C. for 24 hours, and the thickness of the dried ceramic siding board (board thickness) was measured using a caliper.
  • Each of the bulk factors was calculated using the board thickness measured by the above method. More specifically, from the thickness of the ceramic siding boards of Examples 1 to 17, Examples 19 to 29, and Comparative Examples 2 to 12, when the thickness of the ceramic siding board of Comparative Example 1 is taken as 100%, the bulkiness rate was calculated. Similarly, the bulking ratios of Examples 18 and 30 and Comparative Examples 14 to 18 were calculated based on Comparative Example 13. In addition, each of the bulk ratios of Examples 31 to 40 based on Comparative Example 1 was calculated using the board thickness measured by the above method. More specifically, the bulkiness ratio was calculated from the thickness of the ceramic siding boards of Examples 31 to 40, where the thickness of the ceramic siding board of Comparative Example 1 was taken as 100%.
  • Example 3 From a comparison between Example 3 and Example 17, and Example 19 and Example 29, it was found that when the ether compound (1) or the ester compound (2) was added to the pulp slurry, the case where the ether compound (1) or the ester compound (2) was added to the cement mixed slurry was It was found that the bulkiness was further improved.
  • Example 3 From a comparison between Example 3 and Example 18, and Example 19 and Example 30, it was found that the bulkiness of ceramic siding boards was improved regardless of whether waste paper pulp or virgin pulp was used as the raw material pulp. I found out that it can be done.
  • sodium ligninsulfonate (compound 22) added in Comparative Examples 2, 3, and 14 is a substance that is generally added to cement boards as an AE water reducing agent.
  • Lauryl alcohol (compound 23) added in Comparative Examples 4, 5, 12, and 15 is a typical substance that is generally added as a paper bulking agent in the paper manufacturing process. Substances used as bulking agents for paper manufacturing, such as lauryl alcohol, were not found to be effective in improving the bulkiness of ceramic siding boards.
  • Tetrabutoxysilane (compound 24) added in Comparative Examples 6, 7, and 16 is a substance known to have a bulking effect by incorporating foam during manufacturing of building material boards. However, since there was no step of incorporating foam in the manufacturing method of ceramic siding boards, no bulking effect was observed.
  • Sodium stearate (compound 25) added in Comparative Examples 8, 9, and 17 is a substance that is generally added as a paper bulking agent in the paper manufacturing process. However, sodium stearate was not found to be effective in improving the bulkiness of ceramic siding boards.
  • Methyl laurate (compound 26) added in Comparative Examples 10, 11, and 18 is a substance added in the paper manufacturing process as a bulking agent for paper. However, methyl laurate was not found to be effective in improving the bulkiness of ceramic siding boards.
  • the present invention is not limited to the embodiments described above, and can be realized in various configurations without departing from the spirit thereof.
  • the technical features in the embodiments and examples that correspond to the technical features in each form described in the summary column of the invention may be used to solve some or all of the above-mentioned problems, or to solve the above-mentioned problems. In order to achieve some or all of the effects, it is possible to replace or combine them as appropriate. Further, unless the technical feature is described as essential in this specification, it can be deleted as appropriate.
  • a fiber-mixed board as a building material board with excellent bulkiness can be provided. . Therefore, it can contribute to reducing raw material costs due to the bulking effect.

Abstract

Provided is a technique by which it is possible to suppress a decrease in strength of a fiber-mixed board used as a building material board while increasing the bulkiness of the fiber-mixed board. A bulking agent, which is used in a fiber-mixed board used as a building material board containing cement and pulp, is characterized by containing a specific ether compound (A) and/or a specific ester compound (B). A fiber-mixed board used as a building material board is characterized by containing cement, pulp, and a specific ether compound (A) and/or a specific ester compound (B). A method for producing a fiber-mixed board used as a building material board is characterized by including a mixing step for mixing pulp, cement, and a specific ether compound (A) and/or a specific ester compound (B).

Description

建材ボードとしての繊維混入板用嵩高剤およびその利用Bulking agent for fiber-containing board as building material board and its use
 本発明は、建材ボードとしての繊維混入板用嵩高剤に関する。本出願は、2022年8月23日に出願された日本国特許出願第2022-132235号に基づくもので、ここにその記載内容を援用する。 The present invention relates to a bulking agent for a fiber-mixed board as a building material board. This application is based on Japanese Patent Application No. 2022-132235 filed on August 23, 2022, and the contents thereof are incorporated herein.
近年、建材ボードとしての繊維混入板において、材料価格の高騰、環境保護の必要性および資源の有効利用等の観点から、嵩高さに重要なパルプの使用量を減らしつつも、建材ボードにおける繊維混入板の厚みを維持することが望まれている。 In recent years, from the viewpoint of rising material prices, the need for environmental protection, and the effective use of resources, the use of pulp, which is important for bulkiness, has been reduced in fiber-mixed boards used as building material boards. It is desired to maintain the thickness of the board.
 製紙の分野で用いられるパルプ嵩高剤としては、高級アルコールや、そのアルキレンオキシド付加物を含有する紙用嵩高剤(特許文献1)、油脂または糖アルコール系非イオン界面活性剤を含有する紙用嵩高剤(特許文献2)、脂肪酸のアルキレンオキシド付加物を含有する紙用嵩高剤(特許文献3)、カチオン性化合物、アミン、アミンの酸塩、両性化合物を含有する紙用嵩高剤(特許文献4)、更には多価アルコール脂肪酸エステルの紙用嵩高剤(特許文献5)や、脂肪族カルボン酸とポリアミンから得られる化合物にエピハロヒドリンを反応して得られる化合物を含有する紙用嵩高剤(特許文献6)が知られている。 Pulp bulking agents used in the paper manufacturing field include paper bulking agents containing higher alcohols and their alkylene oxide adducts (Patent Document 1), and paper bulking agents containing oils and fats or sugar alcohol-based nonionic surfactants. paper bulking agents containing alkylene oxide adducts of fatty acids (Patent Document 3), paper bulking agents containing cationic compounds, amines, acid salts of amines, and amphoteric compounds (Patent Document 4) ), paper bulking agents containing polyhydric alcohol fatty acid esters (Patent Document 5), and paper bulking agents containing compounds obtained by reacting epihalohydrin with compounds obtained from aliphatic carboxylic acids and polyamines (Patent Document 5). 6) is known.
 特許文献7には、嵩高な無機質板の製造方法として、スラリーにアルコキシシラン類を添加し、混合撹拌で発泡を促して微細気泡を含ませる方法が開示されている。 Patent Document 7 discloses, as a method for manufacturing a bulky inorganic plate, a method in which alkoxysilanes are added to a slurry, and foaming is promoted by mixing and stirring to include fine bubbles.
国際公開第98/03730号パンフレットInternational Publication No. 98/03730 pamphlet 特開平11-200283号公報Japanese Patent Application Publication No. 11-200283 特開平11-200284号公報Japanese Patent Application Publication No. 11-200284 特開平11-269799号公報Japanese Patent Application Publication No. 11-269799 特開平11-350380号公報Japanese Patent Application Publication No. 11-350380 特開2000-273792号公報Japanese Patent Application Publication No. 2000-273792 特開2004-255618号公報Japanese Patent Application Publication No. 2004-255618
 特許文献1~6に記載の紙用嵩高剤は、酸性~中性のスラリーに添加される。このため、スラリーの液性が強アルカリ性である繊維混入板においては、十分な嵩高効果が得られないことを本願発明者らは見出した。また、繊維混入板のスラリーは、カルシウムイオン濃度が極めて高い。このため、カルシウムイオン濃度が高くない対象物に適用される紙用嵩高剤を繊維混入板に用いても、十分な嵩高効果が得られないことを本願発明者らは見出した。 The paper bulking agents described in Patent Documents 1 to 6 are added to acidic to neutral slurries. For this reason, the inventors of the present invention have found that a sufficient bulking effect cannot be obtained in a fiber-mixed board in which the slurry has strong alkaline liquid properties. Further, the slurry of the fiber-mixed board has an extremely high concentration of calcium ions. For this reason, the inventors of the present invention have found that even if a paper bulking agent applied to objects that do not have a high calcium ion concentration is used in a fiber-containing board, a sufficient bulking effect cannot be obtained.
 また、特許文献7に記載の方法では、混合撹拌時の泡立ちの制御が必要であるため、品質の安定した繊維混入板の製造が困難となるおそれがあり、その結果、安定した嵩高効果が得られないことを本願発明者らは見出した。加えて、特許文献7に記載の方法では、気泡の混入により加圧成型時に水走りが生じて成型材に切れが生じるおそれがあり、繊維混入板の品質を損なうおそれがある。 In addition, in the method described in Patent Document 7, since it is necessary to control foaming during mixing and stirring, it may be difficult to manufacture a fiber-mixed board with stable quality, and as a result, a stable bulking effect cannot be obtained. The inventors of the present invention have found that this is not possible. In addition, in the method described in Patent Document 7, water running may occur during pressure molding due to the inclusion of air bubbles, which may cause breaks in the molded material, which may impair the quality of the fiber-containing board.
 特許文献1~6に記載の紙用嵩高剤は、酸性~中性のスラリーに添加される。このため、スラリーの液性がアルカリ性であることも多い窯業サイディングボードにおいては、十分な嵩高効果が得られないことを本願発明者らは見出した。このため、建材ボードにおける繊維混入板の嵩高性を向上させる技術が望まれる。 The paper bulking agents described in Patent Documents 1 to 6 are added to acidic to neutral slurries. For this reason, the inventors of the present invention have discovered that a sufficient bulking effect cannot be obtained in ceramic siding boards whose slurry is often alkaline. For this reason, a technique is desired that improves the bulkiness of fiber-mixed boards in building material boards.
 本発明は、上記の課題を解決するためになされたものであり、以下の形態として実現することができる。 The present invention has been made to solve the above problems, and can be realized as the following forms.
(1)本発明の一形態によれば、建材ボードとしての繊維混入板用嵩高剤が提供される。この繊維混入板用嵩高剤は、セメントとパルプとを含有する建材ボードとしての繊維混入板に用いられる嵩高剤であって、下記一般式(F1)で示されるエーテル化合物(A)と、下記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含むことを特徴とする。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。
R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
(式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
(1) According to one embodiment of the present invention, a bulking agent for a fiber-mixed board as a building material board is provided. This bulking agent for fiber-mixed boards is a bulking agent used for fiber-mixed boards as building material boards containing cement and pulp, and contains an ether compound (A) represented by the following general formula (F1) and the following general formula. It is characterized by containing at least one of the following: an ester compound (B) represented by formula (F2); According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
(In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
(2)上記(1)に記載の建材ボードとしての繊維混入板用嵩高剤において、前記R1aと前記R2aとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエーテル化合物(A)と、前記R1bと前記R2bとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエステル化合物(B)と、のうちの少なくとも一方を含んでいてもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性をより向上させることができる。 (2) In the bulking agent for a fiber-mixed board as a building material board according to (1) above, at least one of the R1a and the R2a is a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms. At least one of an ether compound (A) and an ester compound (B) in which at least one of R1b and R2b is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms. May contain. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be further improved.
(3)本発明の一形態によれば、建材ボードとしての繊維混入板用嵩高剤が提供される。この繊維混入板用嵩高剤は セメントとパルプとを含有する建材ボードとしての繊維混入板に用いられる嵩高剤であって、下記一般式(1)のエーテル化合物又は下記一般式(2)エステル化合物のうち少なくとも一方を含むことを特徴とする。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。
Figure JPOXMLDOC01-appb-C000004
(式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖を示し、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
(3) According to one embodiment of the present invention, a bulking agent for a fiber-mixed board as a building material board is provided. This bulking agent for fiber-mixed boards is a bulking agent used for fiber-mixed boards as building material boards containing cement and pulp, and is an ether compound of the following general formula (1) or an ester compound of the following general formula (2). It is characterized by containing at least one of these. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
Figure JPOXMLDOC01-appb-C000004
(In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
(4)上記形態の建材ボードとしての繊維混入板用嵩高剤において、前記エーテル化合物(1)又は前記エステル化合物(2)のR1又はR2が、炭素数12以上の鎖長であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (4) In the bulking agent for a fiber-mixed board as a building material board of the above embodiment, R1 or R2 of the ether compound (1) or the ester compound (2) may have a chain length of 12 or more carbon atoms. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(5)上記形態の繊維混入板用嵩高剤において、前記エーテル化合物(1)又は前記エステル化合物(2)のR1又はR2が、炭素数が14以上の鎖長であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (5) In the fiber-mixed board bulking agent of the above embodiment, R1 or R2 of the ether compound (1) or the ester compound (2) may have a chain length of 14 or more carbon atoms. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(6)上記形態の繊維混入板用嵩高剤において、前記エーテル化合物(1)又は前記エステル化合物(2)のEO及びPOの平均付加モル数の合計が7モル以上であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (6) In the fiber-mixed board bulking agent of the above form, the sum of the average number of added moles of EO and PO in the ether compound (1) or the ester compound (2) may be 7 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(7)上記形態の繊維混入板用嵩高剤において、前記エーテル化合物(1)又は前記エステル化合物(2)のEO及びPOの平均付加モル数の合計が20モル以上であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (7) In the fiber-mixed board bulking agent of the above embodiment, the sum of the average number of added moles of EO and PO in the ether compound (1) or the ester compound (2) may be 20 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(8)上記形態の繊維混入板用嵩高剤において、前記エーテル化合物(1)又は前記エステル化合物(2)のR1の炭素数が14以上の鎖長を有し、EO及びPOの平均付加モル数の合計が20モル以上であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (8) In the fiber-mixed board bulking agent of the above form, R1 of the ether compound (1) or the ester compound (2) has a chain length of 14 or more carbon atoms, and the average number of moles of EO and PO added is The total amount may be 20 moles or more. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(9)上記形態の繊維混入板用嵩高剤において、前記エーテル化合物(1)であって、R1の炭素数が14以上の鎖長を有し、EO及びPOの平均付加モル数の合計が30モル以上であってもよい。この形態の繊維混入板用嵩高剤によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (9) In the fiber-mixed board bulking agent of the above form, the ether compound (1) has a chain length of 14 or more carbon atoms in R1, and the total number of average added moles of EO and PO is 30 It may be more than mol. According to the bulking agent for a fiber-mixed board of this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(10)本発明の他の形態によれば、建材ボードとしての繊維混入板が提供される。この建材ボードとしての繊維混入板は、セメントと、パルプと、下記一般式(F1)で示されるエーテル化合物(A)と、下記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含むことを特徴とする。この形態によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。
R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
(式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
(10) According to another aspect of the present invention, a fiber-mixed board as a building material board is provided. This fiber-containing board as a building material board is made of cement, pulp, an ether compound (A) represented by the following general formula (F1), and an ester compound (B) represented by the following general formula (F2). It is characterized by containing at least one of the following. According to this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
(In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
(11)本発明の他の形態によれば、建材ボードとしての繊維混入板が提供される。この建材ボードとしての繊維混入板は、セメントと、パルプと、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を含むことを特徴とする。この形態によれば、建材ボードとしての繊維混入板の嵩高性を向上させることができる。 (11) According to another aspect of the present invention, a fiber-mixed board as a building material board is provided. This fiber-mixed board as a building material board is characterized by containing cement, pulp, and at least one of the ether compound (1) or the ester compound (2). According to this form, the bulkiness of the fiber-mixed board as a building material board can be improved.
(12)本発明の他の形態によれば、建材ボードとしての繊維混入板の製造方法が提供される。この建材ボードとしての繊維混入板の製造方法は、パルプと、セメントと、下記一般式(F1)で示されるエーテル化合物(A)と下記一般式(F2)で示されるエステル化合物(B)とのうちの少なくとも一方と、を混合する混合工程を含むことを特徴とする。この形態の繊維混入板の製造方法によれば、繊維混入板の嵩高性を向上させることができる。
R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
(式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
(12) According to another aspect of the present invention, a method for manufacturing a fiber-mixed board as a building material board is provided. The manufacturing method of this fiber-mixed board as a building material board consists of pulp, cement, an ether compound (A) represented by the following general formula (F1), and an ester compound (B) represented by the following general formula (F2). It is characterized by including a mixing step of mixing at least one of the above. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
(In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
(13)本発明の他の形態によれば、建材ボードとしての繊維混入板の製造方法が提供される。この建材ボードとしての繊維混入板の製造方法は、パルプと、セメントと、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方と、を混合する混合工程を含むことを特徴とする。この形態の繊維混入板の製造方法によれば、繊維混入板の嵩高性を向上させることができる。 (13) According to another aspect of the present invention, a method for manufacturing a fiber-mixed board as a building material board is provided. This method for manufacturing a fiber-mixed board as a building material board is characterized by including a mixing step of mixing pulp, cement, and at least one of the ether compound (1) or the ester compound (2). . According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
(14)上記形態の繊維混入板の製造方法において、前記混合工程は、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を、パルプと、セメントとを含むセメント混合スラリーの質量に対して10mg/kg以上1000mg/kg以下で混合してもよい。この形態の繊維混入板の製造方法によれば、繊維混入板の嵩高性を向上させることができる。 (14) In the method for manufacturing a fiber-mixed board according to the above embodiment, the mixing step includes mixing at least one of the ether compound (1) or the ester compound (2) with the mass of a cement mixed slurry containing pulp and cement. may be mixed at a concentration of 10 mg/kg or more and 1000 mg/kg or less. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
(15)上記形態の繊維混入板の製造方法において、前記混合工程では、パルプと、セメントとを含むセメント混合スラリーに、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を混合してもよい。この形態の繊維混入板の製造方法によれば、繊維混入板の嵩高性を向上させることができる。 (15) In the method for manufacturing a fiber-mixed board of the above embodiment, in the mixing step, at least one of the ether compound (1) or the ester compound (2) is mixed into a cement mixed slurry containing pulp and cement. You may. According to this method of manufacturing a fiber-mixed board, the bulkiness of the fiber-mixed board can be improved.
 なお、本発明は、種々の形態で実現することが可能であり、例えば、繊維混入板用嵩高剤の製造方法、繊維混入板を用いた建造物等の態様で実現することができる。 Note that the present invention can be realized in various forms, such as a method for manufacturing a bulking agent for a fiber-mixed board, a building using a fiber-mixed board, and the like.
A.建材ボードとしての繊維混入板用嵩高剤
 本発明の一実施形態である嵩高剤は、セメントとパルプとを含有する建材ボードとしての繊維混入板に用いられる。本開示の嵩高剤は、下記一般式(F1)で示されるエーテル化合物(A)と、下記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含む。
R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
(式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
A. Bulking agent for fiber-mixed board as building material board A bulking agent that is one embodiment of the present invention is used for fiber-mixed board as building material board containing cement and pulp. The bulking agent of the present disclosure includes at least one of an ether compound (A) represented by the following general formula (F1) and an ester compound (B) represented by the following general formula (F2).
R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
(In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
 本開示における飽和の炭化水素基としては、特に限定されないが、例えば、直鎖状、分枝状又は環状のアルキル基が挙げられる。飽和の炭化水素基としては、嵩高性を向上させる観点から、直鎖状または分岐状のアルキル基であることが好ましく、直鎖状のアルキル基であることがより好ましい。また、本開示における不飽和の炭化水素基としては、特に限定されないが、例えば、直鎖状、分枝状又は環状のアルケニル基や、直鎖状、分枝状又は環状のアルキニル基が挙げられる。不飽和の炭化水素基としては、嵩高性を向上させる観点から、直鎖状若しくは分岐状のアルケニル基またはアルキニル基であることが好ましく、直鎖状のアルケニル基またはアルキニル基であることがより好ましい。 The saturated hydrocarbon group in the present disclosure is not particularly limited, and includes, for example, a linear, branched, or cyclic alkyl group. From the viewpoint of improving bulkiness, the saturated hydrocarbon group is preferably a linear or branched alkyl group, and more preferably a linear alkyl group. In addition, the unsaturated hydrocarbon group in the present disclosure is not particularly limited, but includes, for example, a linear, branched, or cyclic alkenyl group, and a linear, branched, or cyclic alkynyl group. . From the viewpoint of improving bulkiness, the unsaturated hydrocarbon group is preferably a linear or branched alkenyl group or alkynyl group, and more preferably a linear alkenyl group or alkynyl group. .
 本開示の嵩高剤は、嵩高性を向上させる観点から、少なくともエーテル化合物(A)を含むことが好ましい。なお、本開示の嵩高剤は、エーテル化合物(A)とエステル化合物(B)との両方を含んでいてもよい。 The bulking agent of the present disclosure preferably contains at least an ether compound (A) from the viewpoint of improving bulkiness. Note that the bulking agent of the present disclosure may contain both the ether compound (A) and the ester compound (B).
 エーテル化合物(A)において、R1aとR2aとのうちの少なくとも一方は、嵩高性を向上させる観点から、飽和若しくは不飽和の炭化水素基であることが好ましい。また、エステル化合物(B)において、R1bとR2bとのうちの少なくとも一方は、嵩高性を向上させる観点から、飽和若しくは不飽和の炭化水素基であることが好ましい。したがって、本開示の嵩高剤は、R1aとR2aとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエーテル化合物(A)と、R1bとR2bとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエステル化合物(B)と、のうちの少なくとも一方を含むことが好ましい。 In the ether compound (A), at least one of R1a and R2a is preferably a saturated or unsaturated hydrocarbon group from the viewpoint of improving bulkiness. Furthermore, in the ester compound (B), at least one of R1b and R2b is preferably a saturated or unsaturated hydrocarbon group from the viewpoint of improving bulkiness. Therefore, the bulking agent of the present disclosure comprises an ether compound (A) in which at least one of R1a and R2a is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms, and R1b and R2b. It is preferable to include at least one of the following: an ester compound (B), at least one of which is a saturated or unsaturated hydrocarbon group having 1 or more and 50 or less carbon atoms.
 エーテル化合物(A)における「飽和若しくは不飽和の炭化水素基」の炭素数は、嵩高性を向上させる観点から、4以上であることが好ましく、8以上であることがより好ましく、10以上であることがさらに好ましく、12以上であることがより一層好ましく、14以上であることがさらに一層好ましく、18以上であることが特に好ましい。エーテル化合物(A)における「飽和若しくは不飽和の炭化水素基」の炭素数は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。また、R1aの炭素数とR2aの炭素数との合計は、嵩高性を向上させる観点から、12以上であることが好ましく、14以上であることがより好ましく、18以上であることがさらに好ましい。また、R1aの炭素数とR2aの炭素数との合計は、嵩高性を向上させる観点から、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましく、30以下であることがより一層好ましく、24以下であることがさらに一層好ましい。 The number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ether compound (A) is preferably 4 or more, more preferably 8 or more, and 10 or more from the viewpoint of improving bulkiness. It is more preferably 12 or more, even more preferably 14 or more, and particularly preferably 18 or more. The number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ether compound (A) is preferably 40 or less, more preferably 30 or less, and 24 or less, from the viewpoint of improving bulk. It is even more preferable. Further, from the viewpoint of improving bulkiness, the total number of carbon atoms in R1a and carbon number in R2a is preferably 12 or more, more preferably 14 or more, and even more preferably 18 or more. Further, the total number of carbon atoms in R1a and carbon number in R2a is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less, from the viewpoint of improving bulkiness. It is even more preferably 30 or less, and even more preferably 24 or less.
 エーテル化合物(A)において、EOの平均付加モル数、換言すると、n1の値は、嵩高性を向上させる観点から、4以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。n1の値は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。エーテル化合物(A)において、POの平均付加モル数、換言すると、m1の値は、嵩高性を向上させる観点から、4以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。m1の値は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。エーテル化合物(A)において、EO及びPOの平均付加モル数の合計、換言すると、n1とm1との合計は、嵩高性を向上させる観点から、4以上であることが好ましく、7以上であることがより好ましく、20以上であることがさらに好ましく、30以上であることがより一層好ましい。n1とm1との合計は、嵩高性を向上させる観点から、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。 In the ether compound (A), the average number of moles of EO added, in other words, the value of n1 is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of n1 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less. In the ether compound (A), the average number of moles of PO added, in other words, the value of m1 is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of m1 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less. In the ether compound (A), the sum of the average number of added moles of EO and PO, in other words, the sum of n1 and m1 is preferably 4 or more, and 7 or more, from the viewpoint of improving bulkiness. is more preferable, more preferably 20 or more, even more preferably 30 or more. From the viewpoint of improving bulkiness, the sum of n1 and m1 is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
 エステル化合物(B)における「飽和若しくは不飽和の炭化水素基」の炭素数は、嵩高性を向上させる観点から、4以上であることが好ましく、8以上であることがより好ましく、10以上であることがさらに好ましく、12以上であることがより一層好ましく、14以上であることがさらに一層好ましく、18以上であることが特に好ましい。エステル化合物(B)における「飽和若しくは不飽和の炭化水素基」の炭素数は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。また、R1bの炭素数とR2bの炭素数との合計は、嵩高性を向上させる観点から、12以上であることが好ましく、14以上であることがより好ましく、18以上であることがさらに好ましい。また、R1bの炭素数とR2bの炭素数との合計は、嵩高性を向上させる観点から、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましく、30以下であることがより一層好ましく、24以下であることがさらに一層好ましい。 The number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ester compound (B) is preferably 4 or more, more preferably 8 or more, and 10 or more from the viewpoint of improving bulkiness. It is more preferably 12 or more, even more preferably 14 or more, and particularly preferably 18 or more. The number of carbon atoms in the "saturated or unsaturated hydrocarbon group" in the ester compound (B) is preferably 40 or less, more preferably 30 or less, and 24 or less, from the viewpoint of improving bulk. It is even more preferable. Further, from the viewpoint of improving bulkiness, the total number of carbon atoms in R1b and carbon number in R2b is preferably 12 or more, more preferably 14 or more, and even more preferably 18 or more. Further, the total number of carbon atoms in R1b and carbon number in R2b is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less, from the viewpoint of improving bulkiness. It is even more preferably 30 or less, and even more preferably 24 or less.
 エステル化合物(B)において、EOの平均付加モル数、換言すると、n2の値は、嵩高性を向上させる観点から、4以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。n2の値は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。エステル化合物(B)において、POの平均付加モル数、換言すると、m2の値は、嵩高性を向上させる観点から、4以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。m2の値は、嵩高性を向上させる観点から、40以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましい。エステル化合物(B)において、EO及びPOの平均付加モル数の合計、換言すると、n2とm2との合計は、嵩高性を向上させる観点から、4以上であることが好ましく、7以上であることがより好ましく、20以上であることがさらに好ましく、30以上であることがより一層好ましい。n2とm2との合計は、嵩高性を向上させる観点から、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。 In the ester compound (B), the average number of added moles of EO, in other words, the value of n2, is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of n2 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less. In the ester compound (B), the average number of added moles of PO, in other words, the value of m2, is preferably 4 or more, more preferably 10 or more, and 20 or more, from the viewpoint of improving bulkiness. It is even more preferable that there be. From the viewpoint of improving bulkiness, the value of m2 is preferably 40 or less, more preferably 30 or less, and even more preferably 24 or less. In the ester compound (B), the total number of average added moles of EO and PO, in other words, the total of n2 and m2 is preferably 4 or more, and 7 or more, from the viewpoint of improving bulkiness. is more preferable, more preferably 20 or more, even more preferably 30 or more. From the viewpoint of improving bulkiness, the sum of n2 and m2 is preferably 80 or less, more preferably 60 or less, and even more preferably 40 or less.
 本開示の嵩高剤によれば、前記エーテル化合物(A)と前記エステル化合物(B)とのうちの少なくとも一方を含むことにより、建材ボードにおける繊維混入板の嵩高性を向上させることができる。このような効果が奏するメカニズムついては定かではないが、以下の推定メカニズムが考えられる。つまり、特定のアルキル基とエチレンオキシド鎖及び/又はプロピレンオキサイド鎖を有する当該化合物を添加することで、パルプ繊維同士の水素結合を阻害し、結果として、パルプ繊維間の空間が広がるため、嵩高性を向上させる効果を奏すると考えられる。また、セメント混合スラリー中に、前記エーテル化合物(A)と前記エステル化合物(B)とのうちの少なくとも一方を混合することにより、セメントや骨材表面に当該化合物が配位し、過剰な凝集を防止することで、嵩高性をより向上させると考えられる。 According to the bulking agent of the present disclosure, by including at least one of the ether compound (A) and the ester compound (B), the bulkiness of the fiber-mixed board in the building material board can be improved. Although the mechanism by which such an effect is produced is not certain, the following presumed mechanism can be considered. In other words, by adding the compound having a specific alkyl group and an ethylene oxide chain and/or a propylene oxide chain, hydrogen bonding between pulp fibers is inhibited, and as a result, the spaces between the pulp fibers are expanded, which improves bulk. It is believed that this has the effect of improving Furthermore, by mixing at least one of the ether compound (A) and the ester compound (B) in the cement mixed slurry, the compound is coordinated on the surface of the cement and aggregate, thereby preventing excessive agglomeration. It is thought that by preventing this, the bulkiness is further improved.
 本開示の一実施形態としての嵩高剤は、以下の形態であってもよい。 The bulking agent as an embodiment of the present disclosure may be in the following form.
 本実施形態の嵩高剤は、下記一般式(1)のエーテル化合物又は下記一般式(2)エステル化合物のうち少なくとも一方を含むことを特徴とする。 The bulking agent of the present embodiment is characterized by containing at least one of an ether compound represented by the following general formula (1) or an ester compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖であり、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO is an ethylene oxide chain, PO is a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
 上記一般式(1)において、R1は、上記一般式(F1)におけるR1aに含まれ、R2は、上記一般式(F1)におけるR2aに含まれ、nは、上記一般式(F1)におけるn1に含まれ、mは、上記一般式(F1)におけるm1に含まれる。このため、上記一般式(1)で示されるエーテル化合物は、上記一般式(F1)で示されるエーテル化合物(A)に含まれる。上記一般式(2)において、R1は、上記一般式(F2)におけるR1bに含まれ、R2は、上記一般式(F2)におけるR2bに含まれ、nは、上記一般式(F2)におけるn2に含まれ、mは、上記一般式(F2)におけるm2に含まれる。このため、上記一般式(2)で示されるエステル化合物は、上記一般式(F2)で示されるエステル化合物(B)に含まれる。したがって、本開示の嵩高剤は、上記一般式(F1)で示されるエーテル化合物(A)が上記一般式(1)で示されるエーテル化合物であってもよく、上記一般式(F2)で示されるエステル化合物(B)が上記一般式(2)で示されるエステル化合物であってもよい。 In the above general formula (1), R1 is included in R1a in the above general formula (F1), R2 is included in R2a in the above general formula (F1), and n is included in n1 in the above general formula (F1). m is included in m1 in the above general formula (F1). Therefore, the ether compound represented by the above general formula (1) is included in the ether compound (A) represented by the above general formula (F1). In the above general formula (2), R1 is included in R1b in the above general formula (F2), R2 is included in R2b in the above general formula (F2), and n is included in n2 in the above general formula (F2). m is included in m2 in the above general formula (F2). Therefore, the ester compound represented by the above general formula (2) is included in the ester compound (B) represented by the above general formula (F2). Therefore, in the bulking agent of the present disclosure, the ether compound (A) represented by the above general formula (F1) may be an ether compound represented by the above general formula (1), or the ether compound represented by the above general formula (F2). The ester compound (B) may be an ester compound represented by the above general formula (2).
 この形態の嵩高剤によれば、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を含むことにより、建材ボードにおける繊維混入板の嵩高性を向上させることができる。このような効果が奏するメカニズムついては定かではないが、以下の推定メカニズムが考えられる。つまり、特定のアルキル基とエチレンオキシド鎖及び/又はプロピレンオキサイド鎖を有する当該化合物を添加することで、パルプ繊維同士の水素結合を阻害し、結果として、パルプ繊維間の空間が広がるため、嵩高性を向上させる効果を奏すると考えられる。また、セメント混合スラリー中に、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を混合することにより、セメントや骨材表面に当該化合物が配位し、過剰な凝集を防止することで、嵩高性をより向上させると考えられる。 According to this form of bulking agent, the bulkiness of the fiber-mixed board in the building material board can be improved by including at least one of the ether compound (1) or the ester compound (2). Although the mechanism by which such an effect is produced is not certain, the following presumed mechanism can be considered. In other words, by adding the compound having a specific alkyl group and an ethylene oxide chain and/or a propylene oxide chain, hydrogen bonding between pulp fibers is inhibited, and as a result, the spaces between the pulp fibers are expanded, which improves bulk. It is believed that this has the effect of improving Furthermore, by mixing at least one of the ether compound (1) and the ester compound (2) into the cement mixed slurry, the compound is coordinated to the surface of the cement and aggregate, thereby preventing excessive agglomeration. This is thought to further improve bulkiness.
 本発明におけるエーテル化合物とは、分子中に少なくとも1つエーテル結合を有する以下一般式(1)を示す。 The ether compound in the present invention has at least one ether bond in the molecule and has the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖であり、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO is an ethylene oxide chain, PO is a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
 R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示す。嵩高性を効果的に向上させる観点から、炭素数が1以上、より好ましくは炭素数が10以上、更に好ましくは炭素数が12以上、特に好ましくは炭素数が14以上、最も好ましくは炭素数が18以上の鎖長を有することである。 R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms. From the viewpoint of effectively improving bulkiness, the carbon number is 1 or more, more preferably the carbon number is 10 or more, even more preferably the carbon number is 12 or more, particularly preferably the carbon number is 14 or more, and most preferably the carbon number is It has a chain length of 18 or more.
 EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示す。n、mは平均付加モル数であり、正の整数を示す。n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。嵩高性を効果的に向上させる観点から、nが4以上、より好ましくはnが10以上、更に好ましくはnが20以上である。また、mが4以上、より好ましくはmが10以上、更に好ましくはmが20以上である。嵩高性を効果的に向上させる観点から、nとmの合計が4以上、より好ましくはnとmの合計が7以上、更に好ましくはnとmの合計が20以上、特に好ましくはnとmの合計が30以上である。 EO represents an ethylene oxide chain, and PO represents a propylene oxide chain. n and m are the average number of added moles and represent positive integers. n and m are the same or different and each represents 0 or more and 50 or less, but there is no case where n=m=0. From the viewpoint of effectively improving bulkiness, n is 4 or more, more preferably 10 or more, and even more preferably 20 or more. Moreover, m is 4 or more, more preferably m is 10 or more, and even more preferably m is 20 or more. From the viewpoint of effectively improving bulkiness, the sum of n and m is 4 or more, more preferably the sum of n and m is 7 or more, even more preferably the sum of n and m is 20 or more, and particularly preferably n and m. The total is 30 or more.
 本発明におけるエステル化合物とは、分子中に少なくとも1つエステル基を有する以下一般式(2)を示す。 The ester compound in the present invention has at least one ester group in the molecule and has the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
(式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖であり、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO is an ethylene oxide chain, PO is a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
 R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示す。嵩高性を効果的に向上させる観点から、炭素数が1以上、より好ましくは炭素数が10以上、更に好ましくは炭素数が12以上、特に好ましくは炭素数が14以上、最も好ましくは炭素数が18以上の鎖長を有することである。 R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms. From the viewpoint of effectively improving bulkiness, the carbon number is 1 or more, more preferably the carbon number is 10 or more, even more preferably the carbon number is 12 or more, particularly preferably the carbon number is 14 or more, and most preferably the carbon number is It has a chain length of 18 or more.
 EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示す。n、mは平均付加モル数であり、正の整数を示す。n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。嵩高性を効果的に向上させる観点から、nが4以上、より好ましくはnが10以上、更に好ましくはnが20以上である。また、mが4以上、より好ましくはmが10以上、更に好ましくはmが20以上である。嵩高性を効果的に向上させる観点から、nとmの合計が4以上、より好ましくはnとmの合計が7以上、更に好ましくはnとmの合計が20以上、特に好ましくはnとmの合計が30以上である。 EO represents an ethylene oxide chain, and PO represents a propylene oxide chain. n and m are the average number of added moles and represent positive integers. n and m are the same or different and each represents 0 or more and 50 or less, but there is no case where n=m=0. From the viewpoint of effectively improving bulkiness, n is 4 or more, more preferably 10 or more, and even more preferably 20 or more. Moreover, m is 4 or more, more preferably m is 10 or more, and even more preferably m is 20 or more. From the viewpoint of effectively improving bulkiness, the sum of n and m is 4 or more, more preferably the sum of n and m is 7 or more, even more preferably the sum of n and m is 20 or more, and particularly preferably n and m. The total is 30 or more.
 建材ボードとしての繊維混入板用嵩高剤は、前記エーテル化合物(A)及び/又は前記エステル化合物(B)が液状であればそのまま使用することもでき、また、取扱い性等の観点から、水等を用いて適宜希釈して調製されていてもよい。建材ボードとしての繊維混入板用嵩高剤は、前記エーテル化合物(1)又は前記エステル化合物(2)が液状であればそのまま使用することもでき、また、取扱い性等の観点から、水等を用いて適宜希釈して調製されていてもよい。 The bulking agent for fiber-containing boards used as building material boards can be used as is if the ether compound (A) and/or the ester compound (B) are in liquid form. It may be prepared by appropriately diluting it using. The bulking agent for fiber-containing boards used as building material boards can be used as is if the ether compound (1) or the ester compound (2) is in liquid form. It may be prepared by diluting it as appropriate.
 建材ボードとしての繊維混入板用嵩高剤は、前記エーテル化合物(A)及び/又は前記エステル化合物(B)が溶媒に溶解されたものであってもよく、分散媒に分散(例えば、懸濁、乳化)されたものであってもよい。建材ボードとしての繊維混入板用嵩高剤は、前記エーテル化合物(1)又は前記エステル化合物(2)が溶媒に溶解されたものであってもよく、分散媒に分散(例えば、懸濁、乳化)されたものであってもよい。かかる溶媒または分散媒としては、特に限定されないが、例えば、水、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゾフェノン等のケトン類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、グリセリン脂肪酸エステル等のエステル類、メタノール、エタノール、イソプロピルアルコール、2-ブタノール、ラウリルアルコール、ミリスチルアルコール等のアルコール類、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化バリウム水溶液等のアルカリ水溶液、モノエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ポリエーテルアミン等のアミン類等が挙げられる。 The bulking agent for a fiber-containing board used as a building material board may be one in which the ether compound (A) and/or the ester compound (B) are dissolved in a solvent, or dispersed in a dispersion medium (for example, suspended, It may also be emulsified. The bulking agent for a fiber-containing board used as a building material board may be one in which the ether compound (1) or the ester compound (2) is dissolved in a solvent, or dispersed (for example, suspended or emulsified) in a dispersion medium. It may be something that has been done. Such solvents or dispersion media are not particularly limited, but include, for example, water, ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, and benzophenone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, and glycerol fatty acids. Esters such as ester, alcohols such as methanol, ethanol, isopropyl alcohol, 2-butanol, lauryl alcohol, myristyl alcohol, alkaline aqueous solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, barium hydroxide aqueous solution, monoethanolamine, Examples include amines such as triethanolamine, dicyclohexylamine, and polyetheramine.
 本実施形態の建材ボードとしての繊維混入板用嵩高剤は、必要に応じて、本発明の効果を妨げない範囲で、任意成分を含んでもよい。かかる任意成分としては、特に限定されないが、例えば、防腐剤、防カビ剤、殺菌剤、分散剤等が挙げられる。これらの任意成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The bulking agent for a fiber-mixed board as a building material board of the present embodiment may contain optional components as necessary within a range that does not impede the effects of the present invention. Such optional ingredients include, but are not particularly limited to, preservatives, fungicides, bactericides, dispersants, and the like. These optional components may be used alone or in combination of two or more.
 建材ボードとしての繊維混入板用嵩高剤における前記エーテル化合物(A)と前記エステル化合物(B)との合計濃度は、嵩高効果を向上させる観点から、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。また、建材ボードとしての繊維混入板用嵩高剤における前記エーテル化合物(A)と前記エステル化合物(B)との合計濃度は、取り扱い性の観点から、90質量%以下であることが好ましく、75質量%以下であることがより好ましい。建材ボードとしての繊維混入板用嵩高剤における前記エーテル化合物(A)と前記エステル化合物(B)との合計濃度は、前記エーテル化合物(A)と前記エステル化合物(B)とのどちらか一方のみを繊維混入板用嵩高剤が含む場合、当該一方のみの濃度を意味する。建材ボードとしての繊維混入板用嵩高剤における前記エーテル化合物(1)又は前記エステル化合物(2)の濃度は、嵩高効果を向上させる観点から、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。また、建材ボードとしての繊維混入板用嵩高剤における前記エーテル化合物(1)又は前記エステル化合物(2)の濃度は、取り扱い性の観点から、90質量%以下であることが好ましく、75質量%以下であることがより好ましい。 From the viewpoint of improving the bulking effect, the total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for fiber-mixed boards as building material boards is preferably 1% by mass or more, and 10% by mass. % or more, and even more preferably 50% by mass or more. Further, from the viewpoint of ease of handling, the total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for fiber-mixed boards as building material boards is preferably 90% by mass or less, and 75% by mass. % or less is more preferable. The total concentration of the ether compound (A) and the ester compound (B) in the bulking agent for a fiber-mixed board as a building material board is such that only one of the ether compound (A) and the ester compound (B) is contained. When a bulking agent for fiber-containing boards is included, it means the concentration of only one of them. From the viewpoint of improving the bulking effect, the concentration of the ether compound (1) or the ester compound (2) in the bulking agent for fiber-mixed boards as building material boards is preferably 1% by mass or more, and 10% by mass or more. More preferably, it is 50% by mass or more. Furthermore, the concentration of the ether compound (1) or the ester compound (2) in the bulking agent for fiber-containing boards used as building material boards is preferably 90% by mass or less, and 75% by mass or less, from the viewpoint of ease of handling. It is more preferable that
 本実施形態の建材ボードとしての繊維混入板用嵩高剤によれば、嵩高性に優れた繊維混入板を提供できる。このため、嵩高効果による原料コストの削減や、繊維混入板の軽量化等に貢献できる。また、本実施形態の建材ボードとしての繊維混入板用嵩高剤は、繊維混入板を製造する際に、他の原料に混合して用いることができる。このため、繊維混入板の製造工程が複雑化することを抑制できるので、大掛かりな設備変更を省略でき、また、工程管理の複雑化を抑制できる。したがって、繊維混入板の嵩高性を容易に向上させることができる。 According to the bulking agent for a fiber-mixed board as a building material board of the present embodiment, a fiber-mixed board with excellent bulkiness can be provided. Therefore, it can contribute to reducing the cost of raw materials due to the bulking effect and reducing the weight of the fiber-mixed board. Moreover, the bulking agent for a fiber-mixed board as a building material board of this embodiment can be mixed with other raw materials and used when manufacturing a fiber-mixed board. Therefore, it is possible to suppress the manufacturing process of the fiber-containing board from becoming complicated, so that large-scale equipment changes can be omitted, and process management can be suppressed from becoming complicated. Therefore, the bulkiness of the fiber-mixed board can be easily improved.
B.建材ボードとしての繊維混入板
 本開示の他の形態によれば、建材ボードとしての繊維混入板が提供される。この繊維混入板は、セメントと、パルプと、上記一般式(F1)で示されるエーテル化合物(A)と、上記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含む。本開示の一実施形態としての繊維混入板は、以下のような形態であってもよい。本発明の他の形態である建材ボードとしての繊維混入板は、セメントと、パルプと、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を含むことを特徴とする。本実施形態の建材ボードとしての繊維混入板は、特に限定されないが、例えば、窯業サイディングボード、人工スレート、スラグ石灰板、ケイ酸カルシウム板等が挙げられる。本明細書において、窯業サイディングボードは、例えば、家や店舗の外壁材や内壁材として利用される。上記の嵩高剤は、窯業サイディングボードに好適に用いることが出来る。
B. Fiber-mixed board as a building material board According to another aspect of the present disclosure, a fiber-mixed board as a building material board is provided. This fiber-containing board contains at least one of cement, pulp, an ether compound (A) represented by the above general formula (F1), and an ester compound (B) shown by the above general formula (F2). include. A fiber-mixed board as an embodiment of the present disclosure may have the following form. A fiber-mixed board as a building material board according to another embodiment of the present invention is characterized by containing cement, pulp, and at least one of the ether compound (1) or the ester compound (2). The fiber-containing board as the building material board of this embodiment is not particularly limited, but examples thereof include ceramic siding boards, artificial slates, slag lime boards, calcium silicate boards, and the like. In this specification, ceramic siding boards are used, for example, as exterior wall materials and interior wall materials for houses and stores. The bulking agent described above can be suitably used for ceramic siding boards.
〔建材ボードとしての繊維混入板の原料〕
 本実施形態において用いられるセメントとしては、特に限定されないが、例えば、普通、早強、超早強、低熱および中庸熱等の各種ポルトランドセメント、石灰石粉末等や高炉徐冷スラグ微粉末を混合したフィラーセメント、各種の産業廃棄物を主原料として製造される環境調和型セメント等が挙げられる。セメントは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、セメントには、フライアッシュ、珪酸カルシウム、石膏、炭酸カルシウム、高炉スラグ、シリカ等の無機粉末が混合されていてもよい。
[Raw materials for fiber-mixed boards used as building material boards]
The cement used in this embodiment is not particularly limited, but includes, for example, various Portland cements such as normal, early strength, super early strength, low heat, and medium heat, fillers mixed with limestone powder, etc., and blast furnace slowly cooled slag powder. Examples include cement and environmentally friendly cement manufactured using various industrial wastes as main raw materials. One type of cement may be used alone, or two or more types may be used in combination. Moreover, inorganic powders such as fly ash, calcium silicate, gypsum, calcium carbonate, blast furnace slag, and silica may be mixed with the cement.
 本実施形態のパルプは、天然繊維を含んで構成され、繊維混入板において補強繊維としての役割を有する。原料のパルプは、木材パルプであってもよく、非木材パルプであってもよい。木材パルプとしては、特に限定されないが、例えば、針葉樹クラフトパルプ(NKP)や広葉樹クラフトパルプ(LKP)等が挙げられる。非木材パルプとしては、特に限定されないが、例えば、ケナフ、バガス、竹、麻、藁等が挙げられる。パルプは、漂白処理された晒パルプであってもよく、漂白処理されていない未晒パルプであってもよい。また、パルプは、木材や非木材から直接作られたバージンパルプであってもよく、既に紙等として製造されたものを回収して原料とした古紙パルプであってもよい。なお、パルプは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The pulp of this embodiment is composed of natural fibers and has a role as reinforcing fibers in the fiber-mixed board. The raw material pulp may be wood pulp or non-wood pulp. Examples of the wood pulp include, but are not limited to, softwood kraft pulp (NKP), hardwood kraft pulp (LKP), and the like. Non-wood pulps include, but are not particularly limited to, kenaf, bagasse, bamboo, hemp, straw, and the like. The pulp may be bleached pulp or unbleached pulp that has not been bleached. Further, the pulp may be virgin pulp made directly from wood or non-wood, or may be waste paper pulp made from recovered paper that has already been manufactured as paper or the like. In addition, one type of pulp may be used alone or two or more types may be used in combination.
 本実施形態の建材ボードとしての繊維混入板は、必要に応じて、本発明の効果を妨げない範囲で、任意成分を含んでもよい。かかる任意成分としては、特に限定されないが、例えば、消泡剤、炭化水素、防腐剤、防カビ剤、殺菌剤、防錆剤、皮張り防止剤等が挙げられる。これらの任意成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The fiber-containing board as the building material board of this embodiment may contain optional components, as necessary, within a range that does not impede the effects of the present invention. Such optional components include, but are not particularly limited to, antifoaming agents, hydrocarbons, preservatives, antifungal agents, bactericides, rust preventives, antiskinning agents, and the like. These optional components may be used alone or in combination of two or more.
〔建材ボードとしての繊維混入板の製造方法〕
 本実施形態の建材ボードとしての繊維混入板の製造方法は、特に限定されず、流し込み、押し出し、抄造等の各種製造方法を適用することができる。本開示の建材ボードとしての繊維混入板の製造方法では、パルプと、セメントと、上記一般式(F1)で示されるエーテル化合物(A)と上記一般式(F2)で示されるエステル化合物(B)とのうちの少なくとも一方と、を混合する混合工程を含む。本開示の一実施形態としての繊維混入板の製造方法は、以下のような形態であってもよい。本実施形態の建材ボードとしての繊維混入板の製造方法では、パルプと、セメントと、前記エーテル化合物(1)又は前記エステル化合物(2)うち少なくとも一方と、を混合する混合工程を含む。混合工程では、水に上記の原料を加えたスラリーを、混合撹拌する。
[Method for manufacturing fiber-mixed boards as building material boards]
The method for manufacturing the fiber-mixed board as the building material board of this embodiment is not particularly limited, and various manufacturing methods such as pouring, extrusion, and paper forming can be applied. In the method for manufacturing a fiber-mixed board as a building material board of the present disclosure, pulp, cement, an ether compound (A) represented by the above general formula (F1), and an ester compound (B) represented by the above general formula (F2) are used. and a mixing step of mixing at least one of the following. A method for manufacturing a fiber-mixed board as an embodiment of the present disclosure may be in the following form. The method for manufacturing a fiber-mixed board as a building material board of the present embodiment includes a mixing step of mixing pulp, cement, and at least one of the ether compound (1) or the ester compound (2). In the mixing step, a slurry obtained by adding the above raw materials to water is mixed and stirred.
 本開示における上記混合工程は、(i)パルプを含有するパルプスラリーに、上記エーテル化合物(A)と上記エステル化合物(B)とのうちの少なくとも一方を混合する第1工程と、(ii)第1工程の後にセメントを混合する第2工程と、を含んでいてもよい。本開示の一実施形態としての繊維混入板の製造方法における混合工程は、以下のような形態であってもよい。本実施形態の混合工程は、(i)パルプを含有するパルプスラリーに、前記エーテル化合物(1)又は前記エステル化合物(2)うち少なくとも一方と、を混合する第1工程と、(ii)第1工程の後にセメントを混合する第2工程と、を含んでいてもよい。本開示において、第1工程では、原料のパルプを水中に含むパルプスラリーと、上記エーテル化合物(A)と上記エステル化合物(B)とのうちの少なくとも一方を混合して撹拌してもよい。本開示の一実施形態としての繊維混入板の製造方法における混合工程は、以下のような形態であってもよい。第1工程では、原料のパルプを水中に含むパルプスラリーと、前記エーテル化合物(1)又は前記エステル化合物(2)うち少なくとも一方を混合して撹拌する。第1工程において、パルプが離解される。パルプスラリーのpHは、強アルカリ性(例えば、pH10~pH13.5、好ましくはpH11.5~pH13.2)である。第2工程では、混合された状態のパルプスラリーと、セメントとを混合して撹拌する。第2工程により、セメント混合スラリーが得られる。混合工程が上記第1工程と上記第2工程とを含むことにより、繊維混入板の嵩高性をより向上できる。なお、第2工程では、セメントとともに無機粉末が混合されてもよい。 The mixing step in the present disclosure includes (i) a first step of mixing at least one of the ether compound (A) and the ester compound (B) into a pulp slurry containing pulp; The method may include a second step of mixing cement after the first step. The mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner. The mixing step of the present embodiment includes (i) a first step of mixing at least one of the ether compound (1) and the ester compound (2) into a pulp slurry containing pulp; (ii) a first step of mixing at least one of the ether compound (1) and the ester compound (2); A second step of mixing cement after the step may be included. In the present disclosure, in the first step, a pulp slurry containing raw material pulp in water and at least one of the ether compound (A) and the ester compound (B) may be mixed and stirred. The mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner. In the first step, a pulp slurry containing raw material pulp in water and at least one of the ether compound (1) or the ester compound (2) are mixed and stirred. In the first step, the pulp is disintegrated. The pH of the pulp slurry is strongly alkaline (eg, pH 10 to pH 13.5, preferably pH 11.5 to pH 13.2). In the second step, the mixed pulp slurry and cement are mixed and stirred. A cement mixed slurry is obtained by the second step. By including the first step and the second step in the mixing step, the bulkiness of the fiber-mixed board can be further improved. Note that in the second step, inorganic powder may be mixed with cement.
 本開示における上記混合工程は、上記第1工程と上記第2工程とに代えて、パルプスラリーにセメントを混合して得られたセメント混合スラリーに、上記エーテル化合物(A)と上記エステル化合物(B)とのうちの少なくとも一方を混合する工程であってもよい。嵩高効果の観点から、セメント混合スラリーに、上記エーテル化合物(A)と上記エステル化合物(B)とのうちの少なくとも一方が添加されることが好ましい。本開示の一実施形態としての繊維混入板の製造方法における混合工程は、以下のような形態であってもよい。混合工程は、上記第1工程と上記第2工程とに代えて、パルプスラリーにセメントを混合して得られたセメント混合スラリーに、前記エーテル化合物(1)又は前記エステル化合物(2)うち少なくとも一方を混合する工程であってもよい。嵩高効果の観点から、セメント混合スラリーに、前記エーテル化合物(1)又は前記エステル化合物(2)うち少なくとも一方を添加されることが好ましい。 In the mixing step of the present disclosure, instead of the first step and the second step, the ether compound (A) and the ester compound (B) are added to the cement mixed slurry obtained by mixing cement into the pulp slurry. ) may be a step of mixing at least one of the following. From the viewpoint of bulking effect, it is preferable that at least one of the above ether compound (A) and the above ester compound (B) is added to the cement mixed slurry. The mixing step in the method for manufacturing a fiber-mixed board according to an embodiment of the present disclosure may be in the following manner. In the mixing step, instead of the first step and the second step, at least one of the ether compound (1) or the ester compound (2) is added to the cement mixed slurry obtained by mixing cement into the pulp slurry. It may be a step of mixing. From the viewpoint of bulking effect, it is preferable that at least one of the ether compound (1) and the ester compound (2) is added to the cement mixed slurry.
 本開示において、パルプスラリー又はセメント混合スラリーに対する前記エーテル化合物(A)及び/又は前記エステル化合物(B)の混合方法は、前記エーテル化合物(A)及び/又は前記エステル化合物(B)がスラリー中に分散される方法であれば特に制限されない。パルプスラリー又はセメント混合スラリーに対する前記エーテル化合物(1)又は前記エステル化合物(2)の混合方法は、前記エーテル化合物(1)又は前記エステル化合物(2)がスラリー中に分散される方法であれば特に制限されない。例えば、送液ポンプを用いて連続的に混合する方法や、一定期間毎に規定のバッチ量を混合する方法等が挙げられる。また、化合物の混合場所としては、例えば、パルパーや、繊維混入板製造時に排出される濾水の戻りライン、原料希釈水等であってもよい。また、必要に応じて、複数の箇所において、前記エーテル化合物(A)及び/又は前記エステル化合物(B)が添加されてもよい。また、必要に応じて、複数の箇所において、前記エーテル化合物(1)又は前記エステル化合物(2)が添加されてもよい。 In the present disclosure, the method for mixing the ether compound (A) and/or the ester compound (B) with respect to pulp slurry or cement mixed slurry includes There are no particular restrictions as long as the method is distributed. The method of mixing the ether compound (1) or the ester compound (2) to the pulp slurry or the cement mixed slurry is particularly one in which the ether compound (1) or the ester compound (2) is dispersed in the slurry. Not restricted. Examples include a method of continuously mixing using a liquid pump, a method of mixing a prescribed batch amount at regular intervals, and the like. Further, the place where the compound is mixed may be, for example, a pulper, a return line of filtrate discharged during production of a fiber-mixed board, raw material dilution water, or the like. Further, the ether compound (A) and/or the ester compound (B) may be added at multiple locations as necessary. Further, the ether compound (1) or the ester compound (2) may be added at multiple locations as necessary.
 前記エーテル化合物(A)及び前記エステル化合物(B)は、嵩高効果を向上させる観点から、セメント混合スラリーの質量に対して、合計10mg/kg以上の割合で混合されることが好ましく、合計200mg/kg以上の割合で混合されることがより好ましく、更に好ましくは、合計500mg/kg以上の割合で混合されることである。前記エーテル化合物(A)及び前記エステル化合物(B)は、経済性の観点から、セメント混合スラリーの質量に対して、合計1000mg/kg以下の割合で混合されることが好ましい。前記エーテル化合物(A)と前記エステル化合物(B)との合計質量は、前記エーテル化合物(A)と前記エステル化合物(B)とのどちらか一方のみを繊維混入板用嵩高剤が含む場合、当該一方のみの質量を意味する。前記エーテル化合物(1)又は前記エステル化合物(2)は、嵩高効果を向上させる観点から、セメント混合スラリーの質量に対して、10mg/kg以上の割合で混合されることが好ましく、200mg/kg以上の割合で混合されることがより好ましく、更に好ましくは、500mg/kg以上の割合で混合されることである。経済性の観点から、セメント混合スラリーの質量に対して、1000mg/kg以下の割合で混合されることが好ましい。 The ether compound (A) and the ester compound (B) are preferably mixed at a ratio of 10 mg/kg or more in total, and 200 mg/kg in total, based on the mass of the cement mixed slurry, from the viewpoint of improving the bulking effect. It is more preferable to mix at a ratio of 500 mg/kg or more, and even more preferably at a total ratio of 500 mg/kg or more. From the viewpoint of economy, the ether compound (A) and the ester compound (B) are preferably mixed in a total amount of 1000 mg/kg or less based on the mass of the cement mixed slurry. The total mass of the ether compound (A) and the ester compound (B) is the same as the total mass of the ether compound (A) and the ester compound (B) when the fiber-containing board bulking agent contains only either the ether compound (A) or the ester compound (B). It means the mass of only one side. From the viewpoint of improving the bulking effect, the ether compound (1) or the ester compound (2) is preferably mixed at a ratio of 10 mg/kg or more, and 200 mg/kg or more, based on the mass of the cement mixed slurry. More preferably, they are mixed at a ratio of 500 mg/kg or more, and even more preferably at a ratio of 500 mg/kg or more. From the viewpoint of economy, it is preferable to mix at a rate of 1000 mg/kg or less based on the mass of the cement mixed slurry.
 セメント混合スラリーの質量に対する前記エーテル化合物(A)及び前記エステル化合物(B)の上記の好ましい合計質量は、パルプスラリーに化合物を混合する場合においても同様である。セメント混合スラリーの質量に対する前記エーテル化合物(1)又は前記エステル化合物(2)の上記の好ましい質量は、パルプスラリーに化合物を混合する場合においても同様である。なお、パルプスラリーにおけるパルプの濃度は、特に限定されないが、例えば、0.1~10質量%であってもよく、セメント混合スラリーにおけるセメントの濃度は、特に限定されないが、例えば、2~70質量%であってもよい。 The above preferred total mass of the ether compound (A) and the ester compound (B) relative to the mass of the cement mixed slurry is the same when the compound is mixed into the pulp slurry. The above preferable mass of the ether compound (1) or the ester compound (2) relative to the mass of the cement mixed slurry is the same when the compound is mixed into the pulp slurry. The concentration of pulp in the pulp slurry is not particularly limited, but may be, for example, 0.1 to 10% by mass, and the concentration of cement in the cement mixed slurry is not particularly limited, but is, for example, 2 to 70% by mass. It may be %.
 抄造製造により繊維混入板を製造する場合は、混合工程によって得られたセメント混合スラリーを、抄造する抄造工程をさらに含む。抄造工程では、セメント混合スラリーを、紙のように抄き取って板状の成形板を作製する。より具体的には、例えば、セメント混合スラリーを網上に流し出した後、ろ過し脱水したセメントケーキを生成する。生成したセメントケーキをプレスして成型し、乾燥・硬化させて繊維混入板を作製する。 When producing a fiber-mixed board by papermaking, it further includes a papermaking step in which the cement mixed slurry obtained in the mixing step is made into paper. In the paper-making process, the cement mixed slurry is machined like paper to produce a plate-shaped molded board. More specifically, for example, a cement mixed slurry is poured onto a screen, filtered, and dehydrated to produce a cement cake. The resulting cement cake is pressed and molded, dried and hardened to produce a fiber-mixed board.
 本開示において、前記エーテル化合物(A)及び/又は前記エステル化合物(B)をスラリーに分散した後の、抄造工程までの時間経過には制限がない。一般に、調製後のセメント混合スラリー及びパルプスラリーは、1~30分程度で抄造工程へと送られるが、前記エーテル化合物(A)及び/又は前記エステル化合物(B)混合後の経過時間の長短によらず、嵩高性に優れつつ強度低下が抑制された繊維混入板を製造することができる。本実施形態において、前記エーテル化合物(1)又は前記エステル化合物(2)をスラリーに分散した後の、抄造工程までの時間経過には制限がない。一般に、調製後のセメント混合スラリー及びパルプスラリーは、1~30分程度で抄造工程へと送られるが、前記エーテル化合物(1)又は前記エステル化合物(2)混合後の経過時間の長短によらず、嵩高性に優れつつ強度低下が抑制された繊維混入板を製造することができる。 In the present disclosure, there is no limit to the time elapsed from dispersing the ether compound (A) and/or the ester compound (B) into the slurry to the papermaking process. Generally, the cement mixed slurry and pulp slurry after preparation are sent to the papermaking process in about 1 to 30 minutes, but the time elapsed after mixing the ether compound (A) and/or the ester compound (B) may vary. Therefore, it is possible to produce a fiber-mixed board that has excellent bulkiness and suppresses a decrease in strength. In this embodiment, there is no limit to the time elapsed from dispersing the ether compound (1) or the ester compound (2) into the slurry to the papermaking process. Generally, the cement mixed slurry and pulp slurry after preparation are sent to the papermaking process in about 1 to 30 minutes, regardless of the length of time elapsed after mixing the ether compound (1) or the ester compound (2). , it is possible to produce a fiber-mixed board that has excellent bulkiness and suppresses a decrease in strength.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、例中、「%」との記載は、特に限定のない限り質量%を意味する。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples. In addition, in the examples, the description "%" means mass % unless otherwise specified.
[合成例1]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリルアルコールを270.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして、安全圧下で120℃を保持したままプロピレンオキサイド1860gを12時間で反応容器内に導入し、その後2時間その温度を保持した。その後、150℃まで加熱し、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物1を得た。
[Synthesis example 1]
270.5g of stearyl alcohol and 1g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube.The inside of the reaction vessel was replaced with nitrogen, and the temperature was raised to 120°C under a nitrogen atmosphere. Warmed. Then, 1860 g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was heated to 150°C, and while maintaining the temperature at 150°C under safe pressure, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction. Compound 1 was obtained.
[合成例2]
 合成例1のステアリルアルコール270.5gをラウリルアルコール186.3gに変える以外は同様の方法で、化合物2を得た。
[Synthesis example 2]
Compound 2 was obtained in the same manner as Synthesis Example 1 except that 270.5 g of stearyl alcohol was replaced with 186.3 g of lauryl alcohol.
[合成例3]
 合成例1のステアリルアルコール270.5gをミリスチルアルコール214.4gに変える以外は同様の方法で、化合物3を得た。
[Synthesis example 3]
Compound 3 was obtained in the same manner as Synthesis Example 1 except that 270.5 g of stearyl alcohol was replaced with 214.4 g of myristyl alcohol.
[合成例4]
 合成例1のステアリルアルコール270.5gをリグノセリルアルコール354.6gに変える以外は同様の方法で、化合物4を得た。
[Synthesis example 4]
Compound 4 was obtained in the same manner as Synthesis Example 1 except that 270.5 g of stearyl alcohol was replaced with 354.6 g of lignoceryl alcohol.
[合成例5]
 合成例1のプロピレンオキサイド導入量を697.2g、エチレンオキサイド導入量を352.4gにした以外は同様の方法で、化合物5を得た。
[Synthesis example 5]
Compound 5 was obtained in the same manner as in Synthesis Example 1 except that the amount of propylene oxide introduced was 697.2 g and the amount of ethylene oxide was changed to 352.4 g.
[合成例6]
 合成例1のプロピレンオキサイド導入量を232.4gにした以外は同様の方法で、化合物6を得た。
[Synthesis example 6]
Compound 6 was obtained in the same manner as in Synthesis Example 1 except that the amount of propylene oxide introduced was changed to 232.4 g.
[合成例7]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリルアルコール186.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして、安全圧下で120℃を保持したままプロピレンオキサイド174.3gを12時間で反応容器内に導入し、その後2時間その温度を保持した。その後、150℃まで加熱し、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物7を得た。
[Synthesis example 7]
186.3 g of lauryl alcohol and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 120°C under a nitrogen atmosphere. It was warm. Then, 174.3 g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was heated to 150°C, and while maintaining the temperature at 150°C under safe pressure, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction. Compound 7 was obtained.
[合成例8]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリルアルコール186.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加熱し、安全圧下で150℃を保持したままエチレンオキサイド528.6gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物8を得た。
[Synthesis example 8]
186.3 g of lauryl alcohol and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, the inside of the reaction vessel was replaced with nitrogen, and heated to 150°C under a nitrogen atmosphere. Then, 528.6 g of ethylene oxide was introduced into the reactor over 5 hours while maintaining the temperature at 150° C. under safe pressure, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction, yielding Compound 8.
[合成例9]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリルアルコール186.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして安全圧下で120℃を保持したままプロピレンオキサイド697.2gを12時間で反応器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物9を得た。
[Synthesis example 9]
186.3 g of lauryl alcohol and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 120°C under a nitrogen atmosphere. It was warm. Then, 697.2 g of propylene oxide was introduced into the reactor over 12 hours while maintaining the temperature at 120° C. under safe pressure, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction to obtain Compound 9.
[合成例10]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器に化合物1を2305g、96%KOHを40g仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして安全圧下で150℃を保持したまま臭化メチル94.9gを3時間で反応器内に導入し化合物10を得た。
[Synthesis example 10]
2305 g of Compound 1 and 40 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, the inside of the reaction vessel was replaced with nitrogen, and the mixture was heated to 150°C under a nitrogen atmosphere. did. Then, 94.9 g of methyl bromide was introduced into the reactor over 3 hours while maintaining the temperature at 150° C. under safe pressure to obtain Compound 10.
[合成例11]
 ガラス製反応容器内に化合物1を2305g、96%KOHを40g、1-ブロモテトラデカン305.0g仕込み、反応容器を窒素置換後、150℃で3時間加温し、化合物11を得た。
[Synthesis Example 11]
A glass reaction vessel was charged with 2305 g of Compound 1, 40 g of 96% KOH, and 305.0 g of 1-bromotetradecane, and the reaction vessel was purged with nitrogen and then heated at 150° C. for 3 hours to obtain Compound 11.
[合成例12]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリン酸を284.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして、安全圧下で120℃を保持したままプロピレンオキサイド1860gを12時間で反応容器内に導入し、その後2時間その温度を保持した。その後、150℃まで加熱し、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物12を得た。
[Synthesis example 12]
284.5 g of stearic acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 120°C under a nitrogen atmosphere. Warmed. Then, 1860 g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was heated to 150°C, and while maintaining the temperature at 150°C under safe pressure, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction. Compound 12 was obtained.
[合成例13]
 合成例12のステアリン酸284.5gをラウリン酸200.3gに変える以外は同様の方法で、化合物13を得た。
[Synthesis example 13]
Compound 13 was obtained in the same manner as Synthesis Example 12 except that 284.5 g of stearic acid was replaced with 200.3 g of lauric acid.
[合成例14]
 合成例12のステアリン酸284.5gをリグノセリン酸368.6gに変える以外は同様の方法で、化合物14を得た。
[Synthesis example 14]
Compound 14 was obtained in the same manner as Synthesis Example 12 except that 284.5 g of stearic acid was changed to 368.6 g of lignoceric acid.
[合成例15]
 合成例12のプロピレンオキサイド導入量を697.2g、エチレンオキサイド導入量を352.4gにした以外は同様の方法で、化合物15を得た。
[Synthesis example 15]
Compound 15 was obtained in the same manner as in Synthesis Example 12, except that the amount of propylene oxide introduced was 697.2 g and the amount of ethylene oxide was changed to 352.4 g.
[合成例16]
 合成例12のプロピレンオキサイド導入量を232.4gにした以外は同様の方法で、化合物16を得た。
[Synthesis example 16]
Compound 16 was obtained in the same manner as in Synthesis Example 12, except that the amount of propylene oxide introduced was changed to 232.4 g.
[合成例17]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリン酸200.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして、安全圧下で120℃を保持したままプロピレンオキサイド174.3gを12時間で反応容器内に導入し、その後2時間その温度を保持した。その後、150℃まで加熱し、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物17を得た。
[Synthesis example 17]
200.3 g of lauric acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 120°C under a nitrogen atmosphere. It was warm. Then, 174.3 g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was heated to 150°C, and while maintaining the temperature at 150°C under safe pressure, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction. Compound 17 was obtained.
[合成例18]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリン酸200.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして安全圧下で150℃を保持したままエチレンオキサイド528.6gを5時間で反応器内に導入し、その後1時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物18を得た。
[Synthesis example 18]
200.3 g of lauric acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube. It was warm. Then, 528.6 g of ethylene oxide was introduced into the reactor over 5 hours while maintaining the temperature at 150° C. under safe pressure, and then the temperature was maintained for 1 hour to complete the alkylene oxide addition reaction to obtain Compound 18.
[合成例19]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にラウリン酸200.3g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で120℃まで加温した。そして安全圧下で120℃を保持したままプロピレンオキサイド697.2gを12時間で反応器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物19を得た。
[Synthesis example 19]
200.3 g of lauric acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 120°C under a nitrogen atmosphere. It was warm. Then, 697.2 g of propylene oxide was introduced into the reactor over 12 hours while maintaining the temperature at 120° C. under safe pressure, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction to obtain Compound 19.
[合成例20]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器に化合物12を2333g、96%KOHを40g仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして安全圧下で150℃を保持したまま臭化メチル94.9gを3時間で反応器内に導入し化合物20を得た。
[Synthesis example 20]
2333 g of compound 12 and 40 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, the inside of the reaction vessel was replaced with nitrogen, and the mixture was heated to 150°C under a nitrogen atmosphere. did. Then, 94.9 g of methyl bromide was introduced into the reactor over 3 hours while maintaining the temperature at 150° C. under safe pressure to obtain Compound 20.
[合成例21]
ガラス製反応容器内に化合物10を2333g、96%KOHを40g、1-ブロモテトラデカン305.0g仕込み、反応容器を窒素置換後、150℃で3時間加温し、化合物21を得た。
[Synthesis example 21]
A glass reaction vessel was charged with 2333g of Compound 10, 40g of 96% KOH, and 305.0g of 1-bromotetradecane, and after the reaction vessel was purged with nitrogen, it was heated at 150°C for 3 hours to obtain Compound 21.
[合成例A1]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリルアルコールを270.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後2時間その温度を保持した。その後、120℃まで放冷し、安全圧下で120℃を保持したままプロピレンオキサイド1860gを12時間で反応容器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物A1を得た。
[Synthesis example A1]
270.5g of stearyl alcohol and 1g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube.The inside of the reaction vessel was replaced with nitrogen, and the temperature was raised to 150°C under nitrogen atmosphere. Warmed. Then, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours while maintaining the temperature at 150° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was allowed to cool to 120°C, and 1860g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120°C under safe pressure.Then, the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction, and the compound I got A1.
[合成例A2]
 合成例A1のエチレンオキサイド導入量を352.4g、プロピレンオキサイド導入量を697.2gにした以外は同様の方法で、化合物A2を得た。
[Synthesis example A2]
Compound A2 was obtained in the same manner as Synthesis Example A1 except that the amount of ethylene oxide introduced was 352.4 g and the amount of propylene oxide introduced was 697.2 g.
[合成例A3]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリルアルコールを270.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして、安全圧下で150℃を保持したままエチレンオキサイド176.2gとプロピレンオキサイド1860gの混合液体を17時間で反応容器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物A3を得た。
[Synthesis example A3]
270.5g of stearyl alcohol and 1g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube.The inside of the reaction vessel was replaced with nitrogen, and the temperature was raised to 150°C under nitrogen atmosphere. Warmed. Then, a liquid mixture of 176.2 g of ethylene oxide and 1,860 g of propylene oxide was introduced into the reaction vessel over 17 hours while maintaining the temperature at 150°C under safe pressure, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction. , compound A3 was obtained.
[合成例A4]
 合成例A3のプロピレンオキサイド導入量を697.2g、エチレンオキサイド導入量を352.4gにした以外は同様の方法で、化合物A4を得た。
[Synthesis example A4]
Compound A4 was obtained in the same manner as in Synthesis Example A3 except that the amount of propylene oxide introduced was 697.2 g and the amount of ethylene oxide was changed to 352.4 g.
[合成例A5]
 合成例1のステアリルアルコール270.5gをオレイルアルコール268.5gに変える以外は同様の方法で、化合物A5を得た。
[Synthesis example A5]
Compound A5 was obtained in the same manner as in Synthesis Example 1 except that 270.5 g of stearyl alcohol was replaced with 268.5 g of oleyl alcohol.
[合成例B1]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリン酸284.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして、安全圧下で150℃を保持したままエチレンオキサイド176.2gを5時間で反応器内に導入し、その後2時間その温度を保持した。その後、120℃まで放冷し、安全圧下で120℃を保持したままプロピレンオキサイド1860gを12時間で反応容器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物B1を得た。
[Synthesis example B1]
284.5 g of stearic acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 150°C under a nitrogen atmosphere. It was warm. Then, 176.2 g of ethylene oxide was introduced into the reactor over 5 hours while maintaining the temperature at 150° C. under safe pressure, and the temperature was then maintained for 2 hours. Thereafter, it was allowed to cool to 120°C, and 1860g of propylene oxide was introduced into the reaction vessel over 12 hours while maintaining the temperature at 120°C under safe pressure.Then, the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction, and the compound I got B1.
[合成例B2]
 合成例B1のエチレンオキサイド導入量を352.4g、プロピレンオキサイド導入量を697.2gにした以外は同様の方法で、化合物B2を得た。
[Synthesis example B2]
Compound B2 was obtained in the same manner as Synthesis Example B1 except that the amount of ethylene oxide introduced was 352.4 g and the amount of propylene oxide introduced was changed to 697.2 g.
[合成例B3]
 温度計、撹拌機、圧力計、窒素導入管を備えたステンレス製高圧反応容器にステアリン酸284.5g、96%KOH 1gを仕込み、反応容器内を窒素置換し、窒素雰囲気化で150℃まで加温した。そして、安全圧下で150℃を保持したままエチレンオキサイド176.2gとプロピレンオキサイド1860gの混合液体を17時間で反応容器内に導入し、その後2時間その温度を保持してアルキレンオキサイド付加反応を完結させ、化合物B3を得た。
[Synthesis example B3]
284.5 g of stearic acid and 1 g of 96% KOH were placed in a stainless steel high-pressure reaction vessel equipped with a thermometer, stirrer, pressure gauge, and nitrogen inlet tube, and the inside of the reaction vessel was replaced with nitrogen and heated to 150°C under a nitrogen atmosphere. It was warm. Then, a liquid mixture of 176.2 g of ethylene oxide and 1,860 g of propylene oxide was introduced into the reaction vessel over 17 hours while maintaining the temperature at 150°C under safe pressure, and then the temperature was maintained for 2 hours to complete the alkylene oxide addition reaction. , compound B3 was obtained.
[合成例B4]
 合成例B3のプロピレンオキサイド導入量を697.2g、エチレンオキサイド導入量を352.4gにした以外は同様の方法で、化合物B4を得た。
[Synthesis example B4]
Compound B4 was obtained in the same manner as in Synthesis Example B3, except that the amount of propylene oxide introduced was 697.2 g and the amount of ethylene oxide was changed to 352.4 g.
[合成例B5]
 合成例17のステアリン酸284.5gをオレイン酸282.5gに変える以外は同様の方法で、化合物B5を得た。
[Synthesis example B5]
Compound B5 was obtained in the same manner as Synthesis Example 17 except that 284.5 g of stearic acid was replaced with 282.5 g of oleic acid.
 以下の表に示す実施例用の化合物1~21および比較例用の化合物22~26を用いて、実施例1~30および比較例1~18の繊維混入板としての窯業サイディングボードを、以下のように作製した。また、以下の表に示す実施例用の化合物A1~A5、B1~B5を用いて、実施例31~40の繊維混入板としての窯業サイディングボードを、以下のように作製した。なお、実施例および比較例におけるパルプスラリーのpHは、それぞれ以下の表に示すとおりであった。 Using Compounds 1 to 21 for Examples and Compounds 22 to 26 for Comparative Examples shown in the table below, ceramic siding boards as fiber-mixed boards of Examples 1 to 30 and Comparative Examples 1 to 18 were prepared as follows. It was made as follows. In addition, ceramic siding boards as fiber-mixed boards of Examples 31 to 40 were produced as follows using compounds A1 to A5 and B1 to B5 for Examples shown in the table below. The pH of the pulp slurry in Examples and Comparative Examples was as shown in the table below.
〔実施例1〕
 古紙パルプを水中に3.7%含むパルプスラリー250gに、水1250g、フライアッシュ(JIS A6201-II種相当品)75g、ポルトランドセメント45gを加えて1分間強撹拌し、セメント混合スラリーを得た。得られたセメント混合スラリーに対し、化合物1を化合物質量1000mg/kgとなるように加え、5分間撹拌した。その後、セメント混合スラリーを、No.1濾紙を用いて、直径100mmサイズの濾過器で吸引濾過した。水分量が40%程度になるまで吸引濾過を行ない、濾過残渣のセメントケーキを回収した。回収されたセメントケーキを直径100mmサイズの型枠に入れ、18kgf/cm2の圧力でプレスし、成型した。成型物を50℃飽和水蒸気圧下で12時間程度静置した後、160℃飽和水蒸気圧下で5時間処理して水和反応により硬化させて養生を行なった。その後、120℃で24時間静置して乾燥させることにより、実施例1の窯業サイディングボードを得た。
[Example 1]
To 250 g of pulp slurry containing 3.7% waste paper pulp in water, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. Compound 1 was added to the obtained cement mixed slurry at a compound amount of 1000 mg/kg, and the mixture was stirred for 5 minutes. After that, the cement mixed slurry was added to No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the moisture content became approximately 40%, and a cement cake as a filtration residue was collected. The recovered cement cake was placed in a mold having a diameter of 100 mm and pressed under a pressure of 18 kgf/cm2 to form the mold. The molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 1 was obtained by leaving it at 120° C. for 24 hours and drying it.
〔実施例2~6〕
 以下の表1に記載された添加量となるように化合物1を含有させた以外は、実施例1と同様な製造方法にて、実施例2~6の窯業サイディングボードを得た。
[Examples 2 to 6]
Ceramic siding boards of Examples 2 to 6 were obtained by the same manufacturing method as Example 1 except that Compound 1 was added in the amount shown in Table 1 below.
〔実施例7~16〕
 化合物1に代えて、以下の表1に記載された添加量となるように化合物2~11を含有させた以外は、実施例1と同様な製造方法にて、実施例2~16の窯業サイディングボードを得た。 
[Examples 7 to 16]
Ceramic sidings of Examples 2 to 16 were produced using the same manufacturing method as Example 1, except that Compounds 2 to 11 were added in the amounts shown in Table 1 below in place of Compound 1. Got the board.
〔実施例17〕
 古紙パルプを水中に3.7%含むパルプスラリー250gに、後述するセメント混合スラリーの質量に対して、化合物質量200mg/kgとなるように化合物1を予め加えて、5分間撹拌した。その後、水1250g、フライアッシュ(JIS A6201-II種相当品)75g、ポルトランドセメント45gを加えて1分間強撹拌し、セメント混合スラリーを得た。得られたセメント混合スラリーを、No.1濾紙を用いて、直径100mmサイズの濾過器で吸引濾過した。水分量が40%程度になるまで吸引濾過を行ない、濾過残渣のセメントケーキを回収した。回収されたセメントケーキを直径100mmサイズの型枠に入れ、18kgf/cm2の圧力でプレスし、成型した。成型物を50℃飽和水蒸気圧下で12時間程度静置した後、160℃飽和水蒸気圧下で5時間処理して水和反応により硬化させて養生を行なった。その後、120℃で24時間静置して乾燥させることにより、実施例17の窯業サイディングボードを得た。
[Example 17]
Compound 1 was added in advance to 250 g of pulp slurry containing 3.7% waste paper pulp in water so that the amount of the compound was 200 mg/kg based on the mass of the cement mixed slurry described later, and the mixture was stirred for 5 minutes. Thereafter, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. The obtained cement mixed slurry was mixed into No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the water content became approximately 40%, and a cement cake as a filtration residue was collected. The recovered cement cake was placed in a mold having a diameter of 100 mm and pressed at a pressure of 18 kgf/cm2 to form the mold. The molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 17 was obtained by allowing it to stand at 120° C. for 24 hours and drying it.
〔実施例18〕
 古紙パルプに代えて、バージンパルプを用いた以外は、実施例3と同様な製造方法にて実施例18の窯業サイディングボードを得た。
[Example 18]
A ceramic siding board of Example 18 was obtained by the same manufacturing method as Example 3 except that virgin pulp was used instead of waste paper pulp.
〔実施例19~28〕
 化合物1に代えて、以下の表1に記載された添加量となるように化合物12~21を含有させた以外は、実施例1と同様な製造方法にて、実施例19~28の窯業サイディングボードを得た。 
[Examples 19 to 28]
Ceramic sidings of Examples 19 to 28 were produced using the same manufacturing method as Example 1, except that Compounds 12 to 21 were added in the amounts shown in Table 1 below in place of Compound 1. Got the board.
〔実施例29〕
 古紙パルプを水中に3.7%含むパルプスラリー250gに、後述するセメント混合スラリーの質量に対して、化合物質量200mg/kgとなるように化合物12を予め加えて、5分間撹拌した。その後、水1250g、フライアッシュ(JIS A6201-II種相当品)75g、ポルトランドセメント45gを加えて1分間強撹拌し、セメント混合スラリーを得た。得られたセメント混合スラリーを、No.1濾紙を用いて、直径100mmサイズの濾過器で吸引濾過した。水分量が40%程度になるまで吸引濾過を行ない、濾過残渣のセメントケーキを回収した。回収されたセメントケーキを直径100mmサイズの型枠に入れ、18kgf/cm2の圧力でプレスし、成型した。成型物を50℃飽和水蒸気圧下で12時間程度静置した後、160℃飽和水蒸気圧下で5時間処理して水和反応により硬化させて養生を行なった。その後、120℃で24時間静置して乾燥させることにより、実施例29の窯業サイディングボードを得た。
[Example 29]
Compound 12 was added in advance to 250 g of pulp slurry containing 3.7% waste paper pulp in water so that the amount of the compound was 200 mg/kg based on the mass of the cement mixed slurry described later, and the mixture was stirred for 5 minutes. Thereafter, 1250 g of water, 75 g of fly ash (equivalent to JIS A6201-II type), and 45 g of Portland cement were added and strongly stirred for 1 minute to obtain a cement mixed slurry. The obtained cement mixed slurry was mixed into No. The mixture was suction-filtered using a filter paper with a diameter of 100 mm. Suction filtration was performed until the water content became approximately 40%, and a cement cake as a filtration residue was collected. The recovered cement cake was placed in a mold having a diameter of 100 mm and pressed at a pressure of 18 kgf/cm2 to form the mold. The molded product was allowed to stand at 50° C. under saturated steam pressure for about 12 hours, and then treated at 160° C. under saturated steam pressure for 5 hours to cure by hydration reaction. Thereafter, the ceramic siding board of Example 29 was obtained by allowing it to stand at 120° C. for 24 hours and drying it.
〔実施例30〕
 古紙パルプに代えて、バージンパルプを用いた以外は、実施例19と同様に実施例30の窯業サイディングボードを得た。
[Example 30]
A ceramic siding board of Example 30 was obtained in the same manner as Example 19 except that virgin pulp was used instead of waste paper pulp.
〔実施例31~40〕
 化合物1に代えて、以下の表3に記載された添加量となるように化合物A1~A5、B1~B5を含有させた以外は、実施例1と同様な製造方法にて、実施例31~40の窯業サイディングボードを得た。
[Examples 31 to 40]
Examples 31 to 31 were produced in the same manner as in Example 1, except that Compounds A1 to A5 and B1 to B5 were added in the amounts shown in Table 3 below in place of Compound 1. Obtained 40 ceramic siding boards.
〔比較例1〕
 化合物1を添加しなかった以外は、実施例1と同様な製造方法にて、比較例1の窯業サイディングボードを得た。
[Comparative example 1]
A ceramic siding board of Comparative Example 1 was obtained by the same manufacturing method as Example 1 except that Compound 1 was not added.
〔比較例2~11〕
 以下の表2に記載された添加量となるように化合物22~26を含有させた以外は、比較例1と同様な製造方法にて、比較例2~11の窯業サイディングボードを得た。 
[Comparative Examples 2 to 11]
Ceramic siding boards of Comparative Examples 2 to 11 were obtained using the same manufacturing method as Comparative Example 1, except that Compounds 22 to 26 were added in the amounts listed in Table 2 below.
〔比較例12〕
 化合物1に代えて、化合物23を含有させた以外は、実施例17と同様な製造方法にて、比較例12の窯業サイディングボードを得た。
[Comparative example 12]
A ceramic siding board of Comparative Example 12 was obtained by the same manufacturing method as Example 17 except that Compound 23 was contained instead of Compound 1.
〔比較例13〕
 古紙パルプに代えて、バージンパルプを用いた以外は、比較例1と同様な製造方法にて、比較例13の窯業サイディングボードを得た。
[Comparative example 13]
A ceramic siding board of Comparative Example 13 was obtained by the same manufacturing method as Comparative Example 1 except that virgin pulp was used instead of waste paper pulp.
〔比較例14~18〕
 以下の表2に記載された添加量となるように化合物22~26を含有させた以外は、比較例13と同様な製造方法にて、比較例14~18の窯業サイディングボードを得た。 
[Comparative Examples 14 to 18]
Ceramic siding boards of Comparative Examples 14 to 18 were obtained using the same manufacturing method as Comparative Example 13, except that Compounds 22 to 26 were added in the amounts listed in Table 2 below.
 実施例1~30および比較例1~18の繊維混入板としての窯業サイディングボードを用いて、下記の方法に従い、各特性を求めた。また、実施例31~40の繊維混入板としての窯業サイディングボードを用いて、下記の方法に従い、各特性を求めた。 Using the ceramic siding boards as the fiber-mixed boards of Examples 1 to 30 and Comparative Examples 1 to 18, each characteristic was determined according to the following method. Further, using the ceramic siding boards as the fiber-mixed boards of Examples 31 to 40, each characteristic was determined according to the following method.
<窯業サイディングボードの厚み>
 窯業サイディングボードを120℃で24時間乾燥させ、乾燥後の窯業サイディングボードの厚み(ボード厚)を、ノギスを用いて測定した。
<Thickness of ceramic siding boards>
The ceramic siding board was dried at 120° C. for 24 hours, and the thickness of the dried ceramic siding board (board thickness) was measured using a caliper.
<窯業サイディングボードの嵩高率>
 比較例1を基準とした実施例1~17および実施例19~29と比較例2~12の嵩高率と、比較例13を基準とした実施例18および30と比較例14~18の嵩高率の嵩高率の各々を、上記の方法で測定されたボード厚を用いて算出した。より具体的には、比較例1の窯業サイディングボードの厚みを100%とした場合の、実施例1~17および実施例19~29と比較例2~12の窯業サイディングボードの厚みから、嵩高率を算出した。同様に、比較例13を基準とした実施例18および30と比較例14~18の嵩高率を算出した。また、比較例1を基準とした実施例31~40の嵩高率の各々を、上記の方法で測定されたボード厚を用いて算出した。より具体的には、比較例1の窯業サイディングボードの厚みを100%とした場合の、実施例31~40の窯業サイディングボードの厚みから、嵩高率を算出した。
<Bulking rate of ceramic siding boards>
Bulking rates of Examples 1 to 17, Examples 19 to 29, and Comparative Examples 2 to 12 based on Comparative Example 1, and bulking rates of Examples 18 and 30 and Comparative Examples 14 to 18 based on Comparative Example 13. Each of the bulk factors was calculated using the board thickness measured by the above method. More specifically, from the thickness of the ceramic siding boards of Examples 1 to 17, Examples 19 to 29, and Comparative Examples 2 to 12, when the thickness of the ceramic siding board of Comparative Example 1 is taken as 100%, the bulkiness rate was calculated. Similarly, the bulking ratios of Examples 18 and 30 and Comparative Examples 14 to 18 were calculated based on Comparative Example 13. In addition, each of the bulk ratios of Examples 31 to 40 based on Comparative Example 1 was calculated using the board thickness measured by the above method. More specifically, the bulkiness ratio was calculated from the thickness of the ceramic siding boards of Examples 31 to 40, where the thickness of the ceramic siding board of Comparative Example 1 was taken as 100%.
 以下に、得られた結果を示す。なお、表1において、EOPO付加形態は、いずれもブロック付加である。 The results obtained are shown below. Note that in Table 1, all EOPO addition forms are block addition.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上述の結果から以下のことが分かった。実施例1~17及び実施例19~29と比較例1との比較、実施例18及び実施例30と比較例13との比較から、前記エーテル化合物(1)又は前記エステル化合物(2)を含有することにより、繊維混入板としての窯業サイディングボードの嵩高性が向上することがわかった。また、実施例31~40と比較例1との比較から、前記エーテル化合物(A)又は前記エステル化合物(B)を含有することにより、繊維混入板としての窯業サイディングボードの嵩高性が向上することがわかった。 From the above results, we found the following. From the comparison between Examples 1 to 17 and Examples 19 to 29 and Comparative Example 1, and the comparison between Example 18 and Example 30 and Comparative Example 13, it was found that the compound containing the ether compound (1) or the ester compound (2) It was found that by doing so, the bulkiness of the ceramic siding board as a fiber-mixed board was improved. Further, from a comparison between Examples 31 to 40 and Comparative Example 1, it was found that the bulkiness of the ceramic siding board as a fiber-mixed board was improved by containing the ether compound (A) or the ester compound (B). I understand.
 また、実施例3と実施例17、実施例19と実施例29との比較から、エーテル化合物(1)又はエステル化合物(2)をパルプスラリーに添加する場合に比べ、セメント混合スラリーに添加した場合の方が、嵩高性がより向上することがわかった。 Also, from a comparison between Example 3 and Example 17, and Example 19 and Example 29, it was found that when the ether compound (1) or the ester compound (2) was added to the pulp slurry, the case where the ether compound (1) or the ester compound (2) was added to the cement mixed slurry was It was found that the bulkiness was further improved.
 また、実施例3と実施例18、実施例19と実施例30との比較から、原料パルプとして古紙パルプとバージンパルプとのいずれのパルプを用いた場合においても、窯業サイディングボードの嵩高性を向上できることがわかった。 Furthermore, from a comparison between Example 3 and Example 18, and Example 19 and Example 30, it was found that the bulkiness of ceramic siding boards was improved regardless of whether waste paper pulp or virgin pulp was used as the raw material pulp. I found out that it can be done.
 他方、比較例2、3、14において添加されたリグニンスルホン酸ナトリウム(化合物22)は、一般にAE減水剤としてセメントボードに添加される物質である。リグニンスルホン酸ナトリウムのようなAE減水剤として用いられる物質では、窯業サイディングボードの嵩高性を向上させる効果は認められなかった。 On the other hand, sodium ligninsulfonate (compound 22) added in Comparative Examples 2, 3, and 14 is a substance that is generally added to cement boards as an AE water reducing agent. Substances used as AE water reducing agents, such as sodium ligninsulfonate, were not found to be effective in improving the bulkiness of ceramic siding boards.
 比較例4、5、12、15において添加されたラウリルアルコール(化合物23)は、一般に紙用嵩高剤として製紙工程において添加される代表的な物質である。ラウリルアルコールのような製紙用嵩高剤として用いられる物質では、窯業サイディングボードの嵩高性を向上させる効果は認められなかった。 Lauryl alcohol (compound 23) added in Comparative Examples 4, 5, 12, and 15 is a typical substance that is generally added as a paper bulking agent in the paper manufacturing process. Substances used as bulking agents for paper manufacturing, such as lauryl alcohol, were not found to be effective in improving the bulkiness of ceramic siding boards.
 比較例6、7、16において添加されたテトラブトキシシラン(化合物24)は、建材ボード製造時に泡を含ませることで嵩高効果が得られることが公知の物質である。しかしながら、窯業サイディングボードの製造方法において泡を含ませる工程がなかったため、嵩高効果は認められなかった。 Tetrabutoxysilane (compound 24) added in Comparative Examples 6, 7, and 16 is a substance known to have a bulking effect by incorporating foam during manufacturing of building material boards. However, since there was no step of incorporating foam in the manufacturing method of ceramic siding boards, no bulking effect was observed.
 比較例8、9、17において添加されたステアリン酸ナトリウム(化合物25)は、一般に紙用嵩高剤として製紙工程において添加される物質である。しかしながら、ステアリン酸ナトリウムでは、窯業サイディングボードの嵩高性を向上させる効果は認められなかった。 Sodium stearate (compound 25) added in Comparative Examples 8, 9, and 17 is a substance that is generally added as a paper bulking agent in the paper manufacturing process. However, sodium stearate was not found to be effective in improving the bulkiness of ceramic siding boards.
 比較例10、11、18において添加されたラウリン酸メチル(化合物26)は、紙用嵩高剤として製紙工程において添加される物質である。しかしながら、ラウリン酸メチルでは、窯業サイディングボードの嵩高性を向上させる効果は認められなかった。 Methyl laurate (compound 26) added in Comparative Examples 10, 11, and 18 is a substance added in the paper manufacturing process as a bulking agent for paper. However, methyl laurate was not found to be effective in improving the bulkiness of ceramic siding boards.
 本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the embodiments described above, and can be realized in various configurations without departing from the spirit thereof. For example, the technical features in the embodiments and examples that correspond to the technical features in each form described in the summary column of the invention may be used to solve some or all of the above-mentioned problems, or to solve the above-mentioned problems. In order to achieve some or all of the effects, it is possible to replace or combine them as appropriate. Further, unless the technical feature is described as essential in this specification, it can be deleted as appropriate.
 本発明の建材ボードとしての繊維混入板用嵩高剤、建材ボードとしての繊維混入板、建材ボードとしての繊維混入板の製造方法によれば、嵩高性に優れる建材ボードとしての繊維混入板を提供できる。このため、嵩高効果による原料コストの削減等に貢献できる。

 
According to the bulking agent for a fiber-mixed board as a building material board, the fiber-mixed board as a building material board, and the manufacturing method of a fiber-mixed board as a building material board of the present invention, a fiber-mixed board as a building material board with excellent bulkiness can be provided. . Therefore, it can contribute to reducing raw material costs due to the bulking effect.

Claims (15)

  1.  セメントとパルプとを含有する建材ボードとしての繊維混入板に用いられる嵩高剤であって、
     下記一般式(F1)で示されるエーテル化合物(A)と、下記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含むことを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
    R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
    (式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
    A bulking agent used for a fiber-mixed board as a building material board containing cement and pulp,
    It is characterized by containing at least one of an ether compound (A) represented by the following general formula (F1) and an ester compound (B) represented by the following general formula (F2),
    A bulking agent for fiber-containing boards used as building material boards.
    R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
    R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
    (In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
  2.  請求項1に記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記R1aと前記R2aとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエーテル化合物(A)と、前記R1bと前記R2bとのうちの少なくとも一方が炭素数1以上50以下の飽和若しくは不飽和の炭化水素基であるエステル化合物(B)と、
     のうちの少なくとも一方を含むことを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    The bulking agent for a fiber-containing board as a building material board according to claim 1,
    an ether compound (A) in which at least one of R1a and R2a is a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms; and at least one of R1b and R2b has a carbon number of 1 to 50; an ester compound (B) which is a saturated or unsaturated hydrocarbon group of 1 or more and 50 or less;
    characterized by containing at least one of
    A bulking agent for fiber-containing boards used as building material boards.
  3.  セメントとパルプとを含有する建材ボードとしての繊維混入板に用いられる嵩高剤であって、
     下記一般式(1)のエーテル化合物又は下記一般式(2)エステル化合物のうち少なくとも一方を含むことを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖を示し、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
    A bulking agent used for a fiber-mixed board as a building material board containing cement and pulp,
    characterized by containing at least one of the following general formula (1) ether compound or the following general formula (2) ester compound,
    A bulking agent for fiber-containing boards used as building material boards.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
  4.  請求項3に記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)又は前記エステル化合物(2)のR1又はR2が、炭素数12以上の鎖長を有することを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    The bulking agent for a fiber-mixed board as a building material board according to claim 3,
    R1 or R2 of the ether compound (1) or the ester compound (2) has a chain length of 12 or more carbon atoms,
    A bulking agent for fiber-containing boards used as building material boards.
  5. 請求項4に記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)又は前記エステル化合物(2)のR1又はR2が、炭素数が14以上の鎖長を有することを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    A bulking agent for a fiber-containing board as a building material board according to claim 4,
    R1 or R2 of the ether compound (1) or the ester compound (2) has a chain length of 14 or more carbon atoms,
    A bulking agent for fiber-containing boards used as building material boards.
  6.  請求項4または請求項5に記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)又は前記エステル化合物(2)のEO及びPOの平均付加モル数の合計が7モル以上であることを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    In the bulking agent for a fiber-containing board as a building material board according to claim 4 or 5,
    characterized in that the sum of the average number of added moles of EO and PO in the ether compound (1) or the ester compound (2) is 7 moles or more;
    A bulking agent for fiber-containing boards used as building material boards.
  7. 請求項6に記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)又は前記エステル化合物(2)のEO及びPOの平均付加モル数の合計が20モル以上であることを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    The bulking agent for a fiber-mixed board as a building material board according to claim 6,
    characterized in that the sum of the average number of added moles of EO and PO of the ether compound (1) or the ester compound (2) is 20 moles or more,
    A bulking agent for fiber-containing boards used as building material boards.
  8.  請求項7記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)又は前記エステル化合物(2)のR1の炭素数が14以上の鎖長を有し、EO及びPOの平均付加モル数の合計が20モル以上であることを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    A bulking agent for a fiber-containing board as a building material board according to claim 7,
    R1 of the ether compound (1) or the ester compound (2) has a chain length of 14 or more carbon atoms, and the total average number of added moles of EO and PO is 20 moles or more,
    A bulking agent for fiber-containing boards used as building material boards.
  9.  請求項8記載の建材ボードとしての繊維混入板用嵩高剤において、
     前記エーテル化合物(1)であって、R1の炭素数が14以上の鎖長を有し、EO及びPOの平均付加モル数の合計が30モル以上であることを特徴とする、
     建材ボードとしての繊維混入板用嵩高剤。
    A bulking agent for a fiber-mixed board as a building material board according to claim 8,
    The ether compound (1) is characterized in that R1 has a chain length of 14 or more carbon atoms, and the total average number of added moles of EO and PO is 30 moles or more.
    A bulking agent for fiber-containing boards used as building material boards.
  10.  建材ボードとしての繊維混入板であって、
     セメントと、
     パルプと、
     下記一般式(F1)で示されるエーテル化合物(A)と、下記一般式(F2)で示されるエステル化合物(B)と、のうちの少なくとも一方を含むことを特徴とする、
     建材ボードとしての繊維混入板。
    R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
    R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
    (式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
    A fiber mixed board used as a building material board,
    cement and
    pulp and
    It is characterized by containing at least one of an ether compound (A) represented by the following general formula (F1) and an ester compound (B) represented by the following general formula (F2),
    Fiber mixed board used as a building material board.
    R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
    R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
    (In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
  11.  建材ボードとしての繊維混入板であって、
     セメントと、
     パルプと、
     下記一般式(1)のエーテル化合物又は下記一般式(2)エステル化合物のうち少なくとも一方を含むことを特徴とする、
     建材ボードとしての繊維混入板。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖を示し、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
    A fiber mixed board used as a building material board,
    cement and
    pulp and
    characterized by containing at least one of the following general formula (1) ether compound or the following general formula (2) ester compound,
    Fiber mixed board used as a building material board.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
  12.  建材ボードとしての繊維混入板の製造方法であって、
     パルプと、セメントと、下記一般式(F1)で示されるエーテル化合物(A)と下記一般式(F2)で示されるエステル化合物(B)とのうちの少なくとも一方と、を混合する混合工程を含むことを特徴とする、
     建材ボードとしての繊維混入板の製造方法。
    R1a-O-{(EO)n1/(PO)m1}-R2a      (F1)
    R1b-COO-{(EO)n2/(PO)m2}-R2b    (F2)
    (式中、R1a及びR2aは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、R1b及びR2bは、同一又は異なって、それぞれ水素原子又は炭素数1以上50以下の飽和若しくは不飽和の炭化水素基を示し、EOはエチレンオキサイド鎖を示し、POはプロピレンオキサイド鎖を示し、n1、m1、n2、m2は平均付加モル数を示し、n1及びm1は、同一又は異なって、それぞれ0以上50以下を示すが、n1=m1=0の場合はなく、n2及びm2は、同一又は異なって、それぞれ0以上50以下を示すが、n2=m2=0の場合はなく、「/」はEOとPOとの付加形態がランダム付加、ブロック付加、これらの混合付加のいずれでもよく、かつ、EOとPOとの付加の順番がこの順でも逆の順でもよいことを示す記号である。)
    A method for manufacturing a fiber-mixed board as a building material board, the method comprising:
    Includes a mixing step of mixing pulp, cement, and at least one of an ether compound (A) represented by the following general formula (F1) and an ester compound (B) represented by the following general formula (F2). characterized by
    A method for producing a fiber-mixed board as a building material board.
    R1a-O-{(EO) n1 /(PO) m1 }-R2a (F1)
    R1b-COO-{(EO) n2 /(PO) m2 }-R2b (F2)
    (In the formula, R1a and R2a are the same or different and each represents a hydrogen atom or a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, and R1b and R2b are the same or different and each represents a hydrogen atom or Represents a saturated or unsaturated hydrocarbon group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, n1, m1, n2, m2 represent the average number of added moles, n1 and m1 are the same or different and each represents 0 to 50, but there is no case where n1=m1=0, and n2 and m2 are the same or different and each represents 0 to 50, but n2=m2 = 0, and "/" means that the addition form of EO and PO may be random addition, block addition, or a mixture of these, and the order of addition of EO and PO may be in this order or reverse. (This symbol indicates that the order is acceptable.)
  13.  建材ボードとしての繊維混入板の製造方法であって、
     パルプと、セメントと、下記一般式(1)のエーテル化合物又は下記一般式(2)エステル化合物のうち少なくとも一方と、を混合する混合工程を含むことを特徴とする、
     建材ボードとしての繊維混入板の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1及びR2は、同一又は異なって、それぞれ水素原子又炭素数1以上50以下のアルキル基を示し、EOはエチレンオキサイド鎖、POはプロピレンオキサイド鎖を示し、n、mは平均付加モル数であり、n、mは、同一又は異なって、それぞれ0以上50以下を示すが、n=m=0の場合はない。)
    A method for manufacturing a fiber-mixed board as a building material board, the method comprising:
    It is characterized by including a mixing step of mixing pulp, cement, and at least one of an ether compound of the following general formula (1) or an ester compound of the following general formula (2),
    A method for producing a fiber-mixed board as a building material board.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R1 and R2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 50 carbon atoms, EO represents an ethylene oxide chain, PO represents a propylene oxide chain, and n and m are average additions. It is the number of moles, and n and m are the same or different and each represents 0 to 50, but there is no case where n = m = 0.)
  14.  請求項13に記載の建材ボードとしての繊維混入板の製造方法において、
     前記混合工程では、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を、パルプと、セメントとを含むセメント混合スラリーの質量に対して10mg/kg以上1000mg/kg以下で混合することを特徴とする、
     建材ボードとしての繊維混入板の製造方法。
    In the method for manufacturing a fiber-mixed board as a building material board according to claim 13,
    In the mixing step, at least one of the ether compound (1) or the ester compound (2) is mixed in an amount of 10 mg/kg or more and 1000 mg/kg or less based on the mass of the cement mixed slurry containing pulp and cement. characterized by
    A method for producing a fiber-mixed board as a building material board.
  15.  請求項13または請求項14に記載の建材ボードとしての繊維混入板の製造方法において、
     前記混合工程は、
     パルプと、セメントとを含むセメント混合スラリーに、前記エーテル化合物(1)又は前記エステル化合物(2)のうち少なくとも一方を混合することを特徴とする、
     建材ボードとしての繊維混入板の製造方法。

     
    In the method for manufacturing a fiber-mixed board as a building material board according to claim 13 or 14,
    The mixing step includes:
    At least one of the ether compound (1) or the ester compound (2) is mixed into a cement mixed slurry containing pulp and cement.
    A method for producing a fiber-mixed board as a building material board.

PCT/JP2023/023652 2022-08-23 2023-06-26 Bulking agent for fiber-mixed board used as building material board, and use of bulking agent WO2024042846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-132235 2022-08-23
JP2022132235 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024042846A1 true WO2024042846A1 (en) 2024-02-29

Family

ID=90012945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023652 WO2024042846A1 (en) 2022-08-23 2023-06-26 Bulking agent for fiber-mixed board used as building material board, and use of bulking agent

Country Status (1)

Country Link
WO (1) WO2024042846A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003730A1 (en) * 1996-07-18 1998-01-29 Kao Corporation Bulking agents for paper, high-bulkiness pulp sheets, and process for the production of the sheets
JPH11200285A (en) * 1998-01-13 1999-07-27 Kao Corp Agent for making paper bulky
JP2015151294A (en) * 2014-02-13 2015-08-24 伯東株式会社 Antifoam agent for building material board production step
WO2018116500A1 (en) * 2016-12-22 2018-06-28 住友林業株式会社 Cement material reinforcing fiber
JP2021155890A (en) * 2020-03-27 2021-10-07 伯東株式会社 Bulking agent for ceramic siding board, and use thereof
JP2022109639A (en) * 2021-01-15 2022-07-28 伯東株式会社 Bulky agent for ceramic siding board and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003730A1 (en) * 1996-07-18 1998-01-29 Kao Corporation Bulking agents for paper, high-bulkiness pulp sheets, and process for the production of the sheets
JPH11200285A (en) * 1998-01-13 1999-07-27 Kao Corp Agent for making paper bulky
JP2015151294A (en) * 2014-02-13 2015-08-24 伯東株式会社 Antifoam agent for building material board production step
WO2018116500A1 (en) * 2016-12-22 2018-06-28 住友林業株式会社 Cement material reinforcing fiber
JP2021155890A (en) * 2020-03-27 2021-10-07 伯東株式会社 Bulking agent for ceramic siding board, and use thereof
JP2022109639A (en) * 2021-01-15 2022-07-28 伯東株式会社 Bulky agent for ceramic siding board and use thereof

Similar Documents

Publication Publication Date Title
DE69815668T2 (en) CONSTRUCTION PRODUCTS
US4204877A (en) Cement grinding aid and set retarder
JP6161116B2 (en) Cement additive
JP2011184230A (en) Lignin-based concrete admixture
JP2014105114A (en) Thickener for cement
JPWO2018056124A1 (en) Additive for cement composition and cement composition
JP2006512473A (en) Water-resistant additives for gypsum xylem fiber products
JP4848293B2 (en) Ultra-fine particle injection material composition
JP6597285B2 (en) Cement hardener coating agent
JP2010058072A (en) Dehydration accelerator of lime sludge and dehydration acceleration method of lime sludge using the same
EP3757283A1 (en) Fiber composite and method for manufacturing same
WO2024042846A1 (en) Bulking agent for fiber-mixed board used as building material board, and use of bulking agent
JPH0840758A (en) Fiber-reinforced cement product and its production
JP5295722B2 (en) Concrete production method
JP2022109639A (en) Bulky agent for ceramic siding board and use thereof
JP2956039B2 (en) Manufacturing method of wet cement board
JP2022189190A (en) Bulking agent for fiber-mixed board in building material board and use thereof
JP2021155890A (en) Bulking agent for ceramic siding board, and use thereof
JPS5818338B2 (en) Mortar manufacturing method
JP5473997B2 (en) Cement admixture
JP2023112798A (en) Bulking agent for fiber blend board as housing material board and use thereof
JP3192464B2 (en) Cement admixture
JP2021031314A (en) Additive for hydraulic composition and its use
JP4201121B2 (en) Paperboard manufacturing method
JP5869903B2 (en) Additive for hydraulic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856963

Country of ref document: EP

Kind code of ref document: A1