EP3322948A1 - Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée - Google Patents

Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée

Info

Publication number
EP3322948A1
EP3322948A1 EP16741582.7A EP16741582A EP3322948A1 EP 3322948 A1 EP3322948 A1 EP 3322948A1 EP 16741582 A EP16741582 A EP 16741582A EP 3322948 A1 EP3322948 A1 EP 3322948A1
Authority
EP
European Patent Office
Prior art keywords
stream
gas
natural gas
flash
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16741582.7A
Other languages
German (de)
English (en)
Inventor
Sylvain Vovard
Vincent TIRILLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of EP3322948A1 publication Critical patent/EP3322948A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Definitions

  • the present invention relates to a method for expanding and storing a stream of liquefied natural gas from a natural gas liquefaction plant, comprising the following steps:
  • Such a method is intended in particular to be implemented in floating facilities for producing liquefied natural gas, or in liquefaction facilities on land, having a small footprint.
  • liquefied natural gas production plants currently in operation, natural gas is condensed and subcooled under high pressure, before being flashed to atmospheric pressure.
  • the liquefied natural gas thus obtained can be stored at atmospheric pressure and at a cryogenic temperature, typically of the order of -160 ° C.
  • the expansion is performed either directly at the liquefied natural gas storage tank, or in a dedicated unit, for example a flash gas recovery unit.
  • the steam generated by the expansion is recovered, then compressed in a dedicated compressor to form a fuel gas stream, or to be recycled within the liquefaction train.
  • another stream of steam is generated in the liquefied natural gas storage tank, because of the pressure difference between the liquid directly from the expansion and that present in the storage tank and / or because of the reheating liquefied natural gas during transportation to the tank.
  • a gaseous flow of evaporation gas from the tank is thus recovered and is compressed in another dedicated compressor, to form a fuel gas stream or to be recycled within the unit, especially when the unit is a floating unit. .
  • DE102010062050 discloses a method in which flash gas gas stream and evaporation gas gas stream are mixed and then compressed together in a common compressor to form the fuel gas stream.
  • An object of the invention is therefore to obtain a particularly compact and economical method for recovering flash gases and evaporation gases from a natural gas liquefaction plant by the use of one or more dedicated compressors. (s) both functions.
  • the subject of the invention is a process of the aforementioned type comprising the following steps:
  • the method according to the invention comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the at least partially liquid expanded bypass stream is introduced into a downstream separator tank, the process comprising the following steps:
  • the flow of evaporation gas is introduced into the downstream heat exchanger to be placed in heat exchange relation with the first flow;
  • the flash end capacity is a flash end balloon or flash end distillation column
  • the expansion device comprises a dynamic expansion turbine
  • the molar flow rate of the first part of the treated natural gas stream is less than 10% of the molar flow rate of the expanded liquefied natural gas stream coming from the expansion device.
  • the invention also relates to a facility for expanding and storing a stream of liquefied natural gas from a natural gas liquefaction plant, comprising:
  • an expansion device capable of flashing off the stream of liquefied natural gas to form a stream of liquefied natural gas expanded
  • a flash end capacity capable of receiving the stream of liquefied natural gas expanded from the expansion device
  • a recovery assembly at the top of the liquefied natural gas reservoir, of a gaseous flow of evaporation gas
  • At least one compressing apparatus capable of compressing the mixing gas stream to form a stream of compressed fuel gas
  • At least one downstream compressor for compressing the bypass stream and forming a compressed bypass stream
  • a downstream heat exchanger for cooling the compressed bypass stream to form a relaxed bypass stream
  • the installation according to the invention comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the first flow consists of the entire relaxed bypass stream
  • a collection assembly at the top of the downstream separator flask, of the first stream in gaseous form, and of reintroduction of the first stream into the gaseous mixing stream and / or into at least one of the evaporation gas gas stream and a gaseous flow of flash gas upstream of the compression apparatus;
  • a recovery assembly at the bottom of the downstream separator balloon, of a second liquid bypass flow, and of introduction of the bypass liquid flow into the expanded liquefied natural gas stream, upstream of the flash end balloon;
  • the downstream heat exchanger is adapted to put in heat exchange relationship the first stream, and at least a portion of a treated gas stream to be liquefied;
  • FIG. 1 is a block diagram of a first installation intended for the implementation of a first method according to the invention
  • FIGS. 2 to 6 are block diagrams of plant variants for the implementation of process variants according to the invention.
  • upstream and downstream generally extend with respect to the normal direction of flow of a fluid.
  • the additional turbines which are described drive compressors, but may also lead to variable frequency electric generators whose electricity produced can be used in the network via a frequency converter.
  • the ambient temperature prevailing around the installation is not significant under the invention and may be in particular between 15 ° C and 35 ° C.
  • a first facility 10 for relaxing and storing liquefied natural gas from a natural gas liquefaction plant 12 is illustrated schematically in FIG.
  • the installations 10, 12 are advantageously carried by a support 14 located on the surface of a body of water, such as a sea, a lake, an ocean or a river.
  • the support 14 is for example a floating barge and is a floating unit for liquefaction of natural gas (FLNG).
  • the liquefaction plant 12 comprises, in a known manner, a unit 16 for treating natural gas, capable of producing a treated gas devoid of compounds capable of solidifying during liquefaction, and a liquefaction unit 18 for the treated gas, comprising at least one system (not shown). ) of cooling, liquefying, and subcooling the treated gas 20, capable of producing a stream 22 of liquefied natural gas under pressure.
  • the expansion and storage installation 10 comprises an expansion device 24 of the pressurized liquefied natural gas stream 22, here comprising a dynamic expansion turbine 25 and a flash end capacity, in this particular example a end balloon 26. of flash. It also comprises at least one tank 28 for recovering liquefied natural gas, and a compression apparatus 30, able to recover and compress both the flash gas from the balloon 26 and the evaporation gas from the each reservoir 28, to form a compressed fuel gas stream 32.
  • the installation 10 further comprises a downstream compressor 34, intended to compress a bypass stream 36 taken from the stream of compressed fuel gas 32, and at least one dynamic expansion turbine 38, suitable for relaxing the bypass current 36.
  • the installation 10 further comprises a downstream heat exchanger 40 and an additional heat exchanger 41 intended for the liquefaction of at least a portion of the treated gas 20, using the cold produced during the dynamic expansion of the bypass current 36 in the turbine 38.
  • the exchangers 40 and 41 are intended for cooling and at least partial liquefaction of a part of the bypass stream 36, when an excess of flash gas and or evaporation gas is present in the stream of compressed fuel gas 32.
  • the stream of liquefied natural gas 22 has a pressure for example greater than 60 bar, and may be between 40 bar and 80 bar.
  • Stream 22 is subcooled.
  • the temperature of the liquefied natural gas stream 22 is typically less than -150 ° C but may be between -140 ° C and -160 ° C.
  • Stream 22 preferably has a methane molar content greater than 80%, and a molar content of C 4 + less than 5%.
  • the molar flow rate of the liquefied natural gas stream 22 is, for example, greater than 10,000 kmol / h.
  • the liquefied natural gas stream 22 is conveyed to the dynamic expansion turbine 25 of the expansion device 24 to undergo flash expansion and form a stream 42 of expanded liquefied natural gas.
  • the pressure of the expanded liquefied natural gas stream 42 is for example less than 7 bar, in particular between 6 bar and 12 bar.
  • the expansion of the current 22 generates formation in the stream 42 of a residual flash gas downstream of the final expansion valve.
  • the molar content of flash gas in stream 42 is for example greater than 5% and is especially between 4% and 10%.
  • the current 42 is then introduced into the end flash balloon 26, to recover at the foot of the balloon 26, a liquid flow 46 of liquefied natural gas, and at the head of the balloon 26, a gas flow 48 flash gas.
  • the liquid flow 46 is then conveyed to a storage tank 28.
  • the flow 46 is pumped through a pump 50. In a variant, it flows by gravity into the reservoir 28, without to be pumped.
  • a residual evaporation gas (“boil off gas” in English) is formed from the liquid stream 46, in particular by heating the liquid flow 46 in the transport pipes by the heat inputs of the tank or tanks 28 and / or under the effect of a pressure difference between the tank 26 and the tank 28.
  • a gaseous stream 52 of evaporation gas is recovered at the top of the tank 28.
  • the gaseous evaporation gas stream 52 is heated in the downstream heat exchanger 40, for example to a temperature above -60 ° C.
  • the gas stream 48 of flash gas is heated in the additional heat exchanger 41, for example to a temperature above -60 ° C.
  • the gas flow 48 represents between 30 mol% and 80 mol% of the mixing gas stream 54.
  • the mixture gas stream 54 is then introduced into the compression apparatus 30 to form a compressed fuel gas stream 32.
  • the stream 54 passes successively through a first compressor 56, a first air-cooling exchanger or a water exchanger 58 to be cooled to ambient temperature, a second compressor 60, then a second exchanger 62 to be cooled again to room temperature or the water temperature.
  • the pressure of the stream of compressed fuel gas 32 is for example greater than 25 bar and is in particular between 5 bar and 70 bar.
  • the composition of stream 32 typically consists of 15 mol% of nitrogen and 85 mol% of methane.
  • the stream of compressed fuel gas 32 is then recovered for use as a fuel in the installation 12, or as a make-up fluid in this installation 12.
  • a bypass stream 36 is withdrawn from the fuel gas stream 32.
  • the molar flow rate of the bypass stream 36 is, for example, greater than 10% of the molar flow rate of the fuel gas stream 32 coming from the compression apparatus 30, and is in particular between 10% and 100% of this flow.
  • bypass stream 36 and then compressed in the compressor 34, and is then cooled to room temperature in the air-cooled exchanger or water exchanger 64, to form a compressed bypass stream 66.
  • the pressure of the compressed bypass stream 66 is, for example, 30 bars higher than the pressure of the stream 32.
  • the stream 66 is then introduced into the downstream heat exchanger 40 to be cooled to a temperature advantageously below -50 ° C.
  • the temperature of the stream 68 is preferably below -150 ° C. and is in particular between -140 ° C. and -160 ° C.
  • the expanded bypass stream 68 is optionally at least partially liquid.
  • the molar content of liquid in stream 68 is typically less than 15 mol%.
  • the stream 68 remains completely gaseous.
  • all of the expanded bypass stream 68 forms a first stream 70 which is then introduced into the downstream heat exchanger 40 for reheating.
  • the temperature of the first heated stream 71 is preferably greater than -60 ° C.
  • the first heated stream 71 is then reintroduced into the mixing stream 54, downstream of the flash end balloon 26, and upstream of the compression apparatus 30.
  • At least one gaseous stream of treated gas 72 from the plant 12 is diverted to the plant 10.
  • the gas stream 72 has a pressure for example greater than 60 bar, and especially between 40 bar and 90 bar.
  • the temperature of the gas stream typically equal to room temperature or pre-cooled.
  • the gas stream 72 has a molar methane content greater than 80%, and a molar content of C 4 + less than 5%.
  • the molar flow rate of the gas stream 72 may represent up to 10% of the flow rate of the initial charge of natural gas introduced into the liquefaction plant 12.
  • the gas stream 72 is then separated into a first portion 74 and a second portion 76.
  • the molar flow rate of the first portion 74 of the gas stream 72 constitutes, for example, between 20% and 50 mol% of the gaseous stream 72 and the molar flow rate of the second portion 76 of the gaseous stream 72 constitutes, for example, between 50% and 80% of the flow rate. molar of the gas stream 72.
  • the first portion 74 of the gas stream 72 is then introduced into the downstream heat exchanger 40 to be cooled and liquefied by heat exchange including the expanded bypass stream 68, to a temperature advantageously below -150 ° C.
  • the first part 74 then passes through a control valve 78, before being mixed with the stream of liquefied natural gas 42 expanded from the expansion device 24.
  • the second portion 76 of the gas stream 72 is introduced into the additional heat exchanger 41 to be cooled and liquefied by heat exchange with the gaseous flow flash gas 48, to a temperature advantageously below-150 ° C.
  • the second part 76 then passes through a control valve 80, before being mixed with the expanded liquefied natural gas stream 42 coming from the expansion device 24.
  • the implementation of the method according to the invention is therefore particularly simple since it reduces the number of equipment necessary to flash liquefied natural gas for storage, and to advantageously recover the flash gases and evaporation gas products.
  • a single compression apparatus 30 is used to compress a blending stream 54 formed from flash gases and evaporation gases.
  • bypass current 36 taken from the fuel stream 32 formed at the outlet of the compression apparatus 30 makes it possible to obtain a very efficient thermal integration, and to take advantage of the frigories available to liquefy at least partially the treated gas in the installation 12.
  • the thermal integration of the bypass current 36 makes it possible to adjust the frigories between the various operating modes of the installation 10, between the filling phases of the tanks, and the loading phases of a LNG carrier.
  • the method according to the invention and the installation 10 allowing its implementation are therefore particularly suitable for a floating unit such as FLNG.
  • a portion 90 of the gaseous evaporation gas stream is sent to other liquefaction trains.
  • a stream of liquefied natural gas 92 from other liquefaction trains is introduced into the tank 28.
  • a second installation 1 10 according to the invention is illustrated in Figure 2.
  • the second installation 1 10 differs from the first installation 10 in the sense that it comprises a downstream flask 1 12, placed at the outlet of the dynamic expansion turbine 38 .
  • the expanded bypass stream 68 is introduced into the downstream tank 1 12 to recover, at the head, the first stream 70 in gaseous form, and at the bottom, a second liquid stream 1 14.
  • the molar flow rate of the second stream 1 14 is, for example, between 10% and 15% of the molar flow rate of the expanded bypass stream 68.
  • the first stream 70 is introduced into the downstream heat exchanger 40 to be heated by heat exchange in particular with the first portion 74 of the gaseous stream 72 of treated gas.
  • the second stream 1 14 is reintroduced into the stream of liquefied natural gas 42 expanded from the expansion device 24, upstream of the flash end balloon 26.
  • the second method according to the invention optimizes the distribution of the liquid in the downstream heat exchanger 40.
  • FIG. 120 A third installation 120, intended for the implementation of a third method according to the invention, is illustrated in FIG.
  • a recirculation stream 122 is taken from the compressed bypass stream 66.
  • the recirculation stream 122 represents, for example, between 30% and 80 mol% of the compressed bypass stream 66 coming from the compressor 34.
  • the recirculation stream 122 is then separated into a first portion 124 and a second portion 126.
  • the molar flow rate of the first portion 124 of the recirculation stream 122 constitutes, for example, between 20% and 50 mol% of the recirculation stream 122 and the The molar flow rate of the second portion 126 of the recirculation stream 122 constitutes, for example, between 50% and 80% of the molar flow rate of the recirculation stream 122.
  • the first part 124 of the recirculation stream 122 is introduced into the downstream heat exchanger 40 to be cooled, and possibly at least partially liquefied, by heat exchange, in particular with the expanded bypass stream 68, to a temperature advantageously lower than -150 ° C.
  • the first portion 124 then passes through a control valve 128, before being mixed with the expanded liquefied natural gas stream 42 from the expansion device 24.
  • the second portion 126 of the bypass stream 122 is introduced into the additional heat exchanger 41, to be cooled and optionally at least partially liquefied by heat exchange with the flash gas gas flow 48, to a temperature advantageously less than -150 ° C.
  • the second portion 126 then passes through a control valve 130, before being mixed with the expanded liquefied natural gas stream 42 from the expansion device 24.
  • bypass stream 36 taken from the fuel stream 32 formed at the outlet of the compression apparatus 30 makes it possible to obtain a very efficient thermal integration, and to take advantage of the frigories available to liquefy at least partially a recirculation current 122 from the bypass current, when an excess of flash gas and / or evaporation gas occurs.
  • At least a portion 76 of the treated gas gas stream 72 coming from the installation 12 is also introduced into the additional heat exchanger 41, as described above for FIG. 2.
  • FIG. 4 A fourth installation 130, intended for the implementation of a fourth method according to the invention, is illustrated in FIG. 4.
  • This installation 130 differs from the installation 10 shown in FIG. 1 in that the flash end balloon 26 is replaced by a flash end distillation column 132.
  • a reboiler exchanger 134 is arranged upstream of the expansion device 24 to put the liquefied natural gas stream 22 in heat exchange relation with a reboilage stream 136 coming from the column 132.
  • FIG. 140 A fifth installation 140, intended for the implementation of a fifth method according to the invention, is illustrated in FIG. This installation 140 differs from the installation 120 shown in FIG. 3 in that the flash end balloon 26 is replaced by a flash end distillation column 132.
  • the implementation of the fifth method according to the invention is moreover analogous to that of the third method according to the invention.
  • FIG. 150 A sixth installation 150, intended for the implementation of a sixth method according to the invention, is illustrated in FIG.
  • the sixth installation 150 differs from the fourth installation 130 by the insertion of an intermediate balloon 152 between the outlet of the expansion device 24 and the inlet of the distillation column 132.
  • the intermediate balloon 152 receives the expanded liquefied natural gas stream 42 and separates it into a head stream 154, mixed with the flash gas gas stream 48, and a foot stream 156, introduced into the reboiler exchanger 134 beforehand. to reach the distillation column 132.
  • This installation 150 is beneficial for the recovery of helium in the case where the gas stream 154 is rich in helium, typically consisting of at least 25% helium, and can therefore be advantageously sent to a helium purification plant .
  • a downstream flask 1 12 is provided for separating the expanded bypass stream 68, as described in the second method according to the invention.
  • the dynamic expansion turbine 25 of the expansion device 24 is replaced by a static expansion valve.
  • the stream of liquefied natural gas then undergoes a static and non-dynamic expansion in the expansion device 24.
  • the method according to the invention and the corresponding installation are therefore particularly suitable for managing the large variations in temperature and flow rate of the evaporation gas stream 52 coming from the tank 28 between the loading phases of a tanker by emptying the tank. and the filling phases of the tank.
  • the thermal integration of the bypass current 36 with the evaporation gas stream 52 is used to adjust the required frigories, and to vary the relative flow rates of the fuel gas stream 32 and the bypass stream 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Le procédé comprend les étapes suivantes : - mélange d'un flux gazeux de gaz de flash (48) et d'un flux gazeux de gaz d'évaporation (52) pour former un courant gazeux de mélange (54); - compression du courant gazeux de mélange (54) dans au moins un appareil de compression (30) pour former un courant de gaz combustible comprimé (32); - prélèvement d'un courant de dérivation (36) dans le courant de gaz combustible comprimé (32); - compression du courant de dérivation (36) dans au moins un compresseur aval (34); - refroidissement et détente du courant de dérivation comprimé (66); - réchauffage d'au moins un premier flux (68; 70) issu du courant de dérivation détendu (68) dans au moins un échangeur thermique aval (40), - réintroduction du premier flux (68; 70) réchauffé dans le courant gazeux de mélange (54) en amont de l'appareil de compression (30).

Description

Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée
La présente invention concerne un procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, comprenant les étapes suivantes :
- détente flash du courant de gaz naturel liquéfié dans un dispositif de détente pour former un courant de gaz naturel liquéfié détendu ;
- amenée du courant de gaz naturel liquéfié détendu dans une capacité de fin de flash ;
- récupération, en pied de la capacité de fin de flash, d'un flux liquide de gaz naturel liquéfié ;
- convoyage du flux liquide de gaz naturel liquéfié dans au moins un réservoir de gaz naturel liquéfié ;
- prélèvement, en tête de la capacité de fin de flash, d'un flux gazeux de gaz de flash ;
- récupération, en tête du réservoir de gaz naturel liquéfié, d'un flux gazeux de gaz d'évaporation ;
- mélange du flux gazeux de gaz de flash et du flux gazeux de gaz d'évaporation pour former un courant gazeux de mélange ;
- compression du courant gazeux de mélange dans au moins un appareil de compression pour former un courant de gaz combustible comprimé.
Un tel procédé est destiné notamment à être mis en œuvre dans des installations flottantes de production de gaz naturel liquéfié, ou dans des installations de liquéfaction à terre, présentant un encombrement réduit.
Dans les usines de production de gaz naturel liquéfié actuellement en opération, le gaz naturel est condensé et sous-refroidi à haute pression, avant de subir une détente flash jusqu'à la pression atmosphérique. Le gaz naturel liquéfié ainsi obtenu peut être stocké à pression atmosphérique et à une température cryogénique, typiquement de l'ordre de -160 °C.
La détente est effectuée soit directement au niveau du réservoir de stockage de gaz naturel liquéfié, soit dans une unité dédiée, par exemple une unité de récupération des gaz de flash.
Dans une telle unité, la vapeur générée par la détente est récupérée, puis est comprimée dans un compresseur dédié pour former un courant de gaz combustible, ou pour être recyclée au sein du train de liquéfaction. Par ailleurs, un autre courant de vapeur est généré dans le réservoir de stockage de gaz naturel liquéfié, en raison de la différence de pression entre le liquide directement issu de la détente et celui présent dans le réservoir de stockage et/ou en raison du réchauffage du gaz naturel liquéfié lors de son transport vers le réservoir.
Un flux gazeux de gaz d'évaporation issu du réservoir est donc récupéré et est comprimé dans un autre compresseur dédié, pour former un courant de gaz combustible ou pour être recyclé au sein de l'unité, notamment lorsque l'unité est une unité flottante.
Un tel procédé ne donne pas entière satisfaction, notamment dans un environnement flottant. En effet, la mise en œuvre du procédé nécessite plusieurs compresseurs distincts, souvent au moins trois compresseurs, ce qui est particulièrement encombrant, pesant, et ce qui augmente les coûts fixes et variables de l'installation.
Pour pallier ce problème, DE102010062050 décrit un procédé dans lequel le flux gazeux de gaz de flash et le flux gazeux de gaz d'évaporation sont mélangés, puis sont comprimés conjointement dans un compresseur commun, pour former le courant de gaz combustible.
Un tel procédé diminue l'encombrement de l'installation et réduit les coûts de mise en œuvre. Toutefois, le procédé n'est pas totalement optimisé en termes de rendement et de récupération du gaz naturel liquéfié.
Un but de l'invention est donc d'obtenir un procédé particulièrement compact et économique de récupération des gaz de flash et des gaz d'évaporation issus d'une installation de liquéfaction de gaz naturel par l'usage d'un ou plusieurs compresseurs dédié(s) aux deux fonctions.
A cet effet, l'invention a pour objet un procédé du type précité comprenant les étapes suivantes :
- prélèvement d'un courant de dérivation dans le courant de gaz combustible comprimé ;
- compression du courant de dérivation dans au moins un compresseur aval pour former un courant de dérivation comprimé ;
- refroidissement du courant de dérivation comprimé ;
- détente du courant de dérivation comprimé pour former un courant de dérivation détendu ;
- réchauffage d'au moins un premier flux issu du courant de dérivation détendu dans au moins un échangeur thermique aval,
- réintroduction du premier flux réchauffé dans le courant gazeux de mélange et/ou dans l'un au moins du flux gazeux de gaz d'évaporation et du flux gazeux de gaz de flash, en amont de l'appareil de compression. Suivant des modes particuliers de réalisation, le procédé selon l'invention comprend l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible :
- le courant de dérivation détendu au moins partiellement liquide est introduit dans un ballon séparateur aval, le procédé comprenant les étapes suivantes :
- prélèvement, en tête du ballon séparateur aval, du premier flux sous forme gazeuse, et réintroduction du premier flux dans le courant gazeux de mélange et/ou dans l'un au moins du flux gazeux de gaz d'évaporation et du flux gazeux de gaz de flash, en amont de l'appareil de compression ;
- récupération, en pied du ballon séparateur aval, d'un deuxième flux liquide de dérivation, et introduction du flux liquide de dérivation dans le courant de gaz naturel liquéfié détendu, en amont de la capacité de fin de flash ;
- la totalité du courant de dérivation détendu constitue le premier flux ;
- le courant de dérivation comprimé issu du compresseur aval est introduit dans l'échangeur thermique aval pour être mis en relation d'échange thermique avec le premier flux ;
- le flux de gaz d'évaporation est introduit dans l'échangeur thermique aval pour être mis en relation d'échange thermique avec le premier flux ;
- il comprend les étapes suivantes :
- fourniture d'un courant de gaz naturel traité destiné à être liquéfié ;
- introduction d'au moins une première partie du courant de gaz naturel traité dans l'échangeur thermique aval pour être mis en relation d'échange thermique avec le premier flux ;
- liquéfaction au moins partielle de la première partie du courant de gaz naturel traité dans l'échangeur thermique aval par échange thermique avec le premier flux ;
- il comprend l'introduction de la première partie du courant de gaz naturel traité liquéfié dans le courant de gaz naturel liquéfié détendu issu du dispositif de détente, en amont d'une capacité de fin de flash ;
- il comprend les étapes suivantes :
- séparation du courant de gaz naturel traité en la première partie du courant de gaz naturel traité et une deuxième partie du courant de gaz naturel traité ;
- introduction de la deuxième partie du courant de gaz naturel traité dans un échangeur thermique additionnel, pour être mis en relation d'échange thermique avec le flux de gaz de flash ; - liquéfaction de la deuxième partie du courant de gaz naturel traité dans l'échangeur thermique additionnel par réchauffage du flux de gaz de flash ;
- introduction de la deuxième partie du courant de gaz naturel traité liquéfiée dans le courant de gaz naturel liquéfié détendu issu du dispositif de détente, en amont de la capacité de fin de flash ;
- il comprend également les étapes suivantes :
- dérivation d'un courant de recirculation dans le courant de dérivation comprimé ;
- liquéfaction d'au moins une partie du courant de recirculation dans l'échangeur thermique aval par échange thermique avec le premier flux ;
- la capacité de fin de flash est un ballon de fin de flash ou une colonne de distillation de fin de flash ;
- le dispositif de détente comprend une turbine de détente dynamique ;
- le débit molaire de la première partie du courant de gaz naturel traité est inférieur à 10% du débit molaire du courant de gaz naturel liquéfié détendu issu du dispositif de détente.
L'invention a également pour objet une installation de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, comprenant :
- un dispositif de détente propre à effectuer une détente flash du courant de gaz naturel liquéfié pour former un courant de gaz naturel liquéfié détendu ;
- une capacité de fin de flash propre à recevoir le courant de gaz naturel liquéfié détendu provenant du dispositif de détente ;
- un ensemble de récupération, en pied de la capacité de fin de flash, d'un flux liquide de gaz naturel liquéfié ;
- au moins un réservoir de gaz naturel liquéfié et un ensemble de convoyage du flux liquide de gaz naturel liquéfié dans le réservoir de gaz naturel liquéfié ;
- un ensemble de prélèvement, en tête de la capacité de fin de flash, d'un flux gazeux de gaz de flash ;
- un ensemble de récupération, en tête du réservoir de gaz naturel liquéfié, d'un flux gazeux de gaz d'évaporation ;
- un ensemble de mélange du flux gazeux de gaz de flash et du flux gazeux de gaz d'évaporation pour former un courant gazeux de mélange ;
- au moins un appareil de compression propre à comprimer le courant gazeux de mélange pour former un courant de gaz combustible comprimé,
caractérisée par : - un ensemble de prélèvement d'un courant de dérivation dans le courant de gaz combustible comprimé ;
- au moins un compresseur aval pour comprimer le courant de dérivation et former un courant de dérivation comprimé ;
- un échangeur thermique aval de refroidissement du courant de dérivation comprimé pour former un courant de dérivation détendu ;
- un dispositif de détente et de liquéfaction au moins partielle du courant de dérivation comprimée ;
- un ensemble d'introduction d'au moins un premier flux issu du courant de dérivation détendu dans l'échangeur thermique aval, pour permettre le réchauffage du premier flux,
- un ensemble de réintroduction du premier flux dans le courant gazeux de mélange et/ou dans l'un au moins du flux gazeux de gaz d'évaporation et du flux gazeux de gaz de flash, en amont de l'appareil de compression.
Suivant des modes particuliers de réalisation, l'installation selon l'invention comprend l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible :
- le premier flux est constitué par la totalité du courant de dérivation détendu ;
- elle comprend :
- un ballon séparateur aval,
- un ensemble de prélèvement, en tête du ballon séparateur aval, du premier flux sous forme gazeuse, et de réintroduction du premier flux dans le courant gazeux de mélange et/ou dans l'un au moins du flux gazeux de gaz d'évaporation et du flux gazeux de gaz de flash, en amont de l'appareil de compression ;
- un ensemble de récupération, en pied du ballon séparateur aval, d'un deuxième flux liquide de dérivation, et d'introduction du flux liquide de dérivation dans le courant de gaz naturel liquéfié détendu, en amont du ballon de fin de flash ;
- l'échangeur thermique aval est propre à mettre en relation d'échange thermique le premier flux, et au moins une partie d'un courant de gaz traité destiné à être liquéfié ;
- elle comprend :
- un ensemble de dérivation d'un courant de recirculation à partir du courant de dérivation comprimé ; - un ensemble d'introduction d'au moins une partie du courant de recirculation dans l'échangeur thermique aval pour le liquéfier au moins partiellement dans l'échangeur thermique aval.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est un schéma synoptique d'une première installation destinée à la mise en œuvre d'un premier procédé selon l'invention ;
- les figures 2 à 6 sont des schémas synoptiques de variantes d'installations destinées à la mise en œuvre de variantes de procédés selon l'invention.
Dans tout ce qui suit, on désignera par les mêmes références un courant circulant dans une conduite et la conduite qui le transporte. Les termes « amont » et «aval » s'étendent généralement par rapport au sens normal de circulation d'un fluide.
En outre, sauf indication contraire, les pourcentages cités sont des pourcentages molaires, et les pressions sont données en bars absolus.
Les turbines additionnelles qui sont décrites entraînent des compresseurs, mais peuvent également entraîner des générateurs électriques à fréquence variable dont l'électricité produite peut être utilisée dans le réseau par l'intermédiaire d'un convertisseur de fréquence.
Les courants dont la température est supérieure à l'ambiante sont décrits comme étant refroidis par des aéro-réfrigérants. En variante, il est possible d'utiliser des échangeurs à eau, par exemple à eau douce ou à eau de mer.
La température ambiante régnant autour de l'installation n'est pas significative au titre de l'invention et peut être comprise notamment entre 15°C et 35°C.
Une première installation 10 de détente et de stockage de gaz naturel liquéfié issu d'une installation 12 de liquéfaction de gaz naturel est illustrée schématiquement par la figure 1 .
Les installations 10, 12 sont avantageusement portées par un support 14 situé à la surface d'une étendue d'eau, tel qu'une mer, un lac, un océan ou une rivière. Le support 14 est par exemple une barge flottante et constitue une unité flottante de liquéfaction de gaz naturel (FLNG).
L'installation de liquéfaction 12 n'est pas décrite ici en détail. Elle comporte de manière connue une unité 16 de traitement du gaz naturel, propre à produire un gaz traité dépourvu de composés propres à se solidifier lors de la liquéfaction, et une unité 18 de liquéfaction du gaz traité, comprenant au moins un système (non représenté) de refroidissement, de liquéfaction, et de sous-refroidissement du gaz traité 20, propre à produire un courant 22 de gaz naturel liquéfié sous pression.
L'installation 10 de détente et de stockage comporte un dispositif de détente 24 du courant de gaz naturel liquéfié sous pression 22, comprenant ici une turbine de détente dynamique 25 et une capacité de fin de flash, dans cet exemple particulier un ballon 26 de fin de flash. Elle comporte par ailleurs au moins un réservoir 28 de récupération de gaz naturel liquéfié, et un appareil de compression 30, propre à récupérer et à comprimer à la fois le gaz de flash issu du ballon 26 et le gaz d'évaporation issu du ou de chaque réservoir 28, pour former un courant de gaz combustible 32 comprimé.
Selon l'invention, l'installation 10 comporte en outre, un compresseur aval 34, destiné à comprimer un courant de dérivation 36 prélevé dans le courant de gaz combustible comprimé 32, et au moins une turbine de détente dynamique 38, propre à détendre le courant de dérivation 36.
Dans l'exemple représenté sur la figure 1 , l'installation 10 comporte en outre un échangeur thermique aval 40 et un échangeur thermique additionnel 41 destinés à la liquéfaction d'au moins une partie du gaz traité 20, à l'aide du froid produit lors de la détente dynamique du courant de dérivation 36 dans la turbine 38.
En variante ou en complément, comme décrit plus bas sur la figure 3, les échangeurs 40 et 41 sont destinés au refroidissement et à la liquéfaction au moins partielle d'une partie du courant de dérivation 36, lorsqu'un excédent de gaz de flash et/ou de gaz d'évaporation est présent dans le courant de gaz combustible comprimé 32.
Un premier procédé selon l'invention de détente et de stockage du courant de gaz naturel liquéfié 22, mis en œuvre dans l'installation 10, va maintenant être décrit.
Initialement, un courant de gaz naturel liquéfié 22 sous pression est produit par l'installation 12.
Le courant de gaz naturel liquéfié 22 présente une pression par exemple supérieure à 60 bar, et peut être compris entre 40 bar et 80 bar.
Le courant 22 est sous-refroidi. La température du courant de gaz naturel liquéfié 22 est typiquement inférieure à -150 °C mais peut être comprise entre -140° C et -160° C.
Le courant 22 possède avantageusement une teneur molaire en méthane supérieure à 80 %, et une teneur molaire en C4 + inférieure à 5 %.
Le débit molaire du courant de gaz naturel liquéfié 22 est par exemple supérieur à 10000 kmol/h.
Le courant de gaz naturel liquéfié 22 est convoyé jusqu'à la turbine de détente dynamique 25 du dispositif de détente 24 pour y subir une détente flash et former un courant 42 de gaz naturel liquéfié détendu. La pression du courant de gaz naturel liquéfié détendu 42 est par exemple inférieure à 7 bar, notamment comprise entre 6 bar et 12 bar.
La détente du courant 22 engendre la formation dans le courant 42 d'un gaz de flash résiduel en aval de la vanne de détente finale. La teneur molaire en gaz de flash dans le courant 42 est par exemple supérieure à 5 % et est notamment comprise entre 4 % et 10 %.
Le courant 42 est ensuite introduit dans le ballon 26 de fin de flash, pour récupérer, au pied du ballon 26, un flux liquide 46 de gaz naturel liquéfié, et en tête du ballon 26, un flux gazeux 48 de gaz de flash.
Le flux liquide 46 est alors convoyé vers un réservoir de stockage 28. Dans l'exemple présenté sur la figure 1 , le flux 46 est pompé à travers une pompe 50. En variante, il s'écoule par gravité dans le réservoir 28, sans être pompé.
Lors de son transport, et de son introduction dans le réservoir 28, un gaz d'évaporation résiduel (« boil off gas » en anglais) se forme à partir du flux liquide 46, notamment par réchauffage du flux liquide 46 dans les conduites de transport, par les entrées de chaleurs du ou des réservoirs 28 et/ou sous l'effet d'une différence de pression entre le ballon 26 et le réservoir 28.
Un flux gazeux 52 de gaz d'évaporation est récupéré en tête du réservoir 28. Le flux gazeux de gaz évaporation 52 est réchauffé dans l'échangeur thermique aval 40, par exemple jusqu'à une température supérieure à -60 °C.
Le flux gazeux 48 de gaz de flash est réchauffé dans l'échangeur thermique additionnel 41 , par exemple jusqu'à une température supérieure à -60°C.
Il est ensuite mélangé avec le flux gazeux 52 de gaz d'évaporation pour former un courant de gaz de mélange 54.
Le flux gazeux 48 représente entre 30% molaire et 80% molaire du courant de gaz de mélange 54.
Le courant de gaz de mélange 54 est ensuite introduit dans l'appareil de compression 30 pour former un courant de gaz combustible comprimé 32.
Dans l'exemple représenté sur la figure 1 , le courant 54 passe successivement à travers un premier compresseur 56, un premier échangeur aéroréfrigérant ou un échangeur à eau 58 pour être refroidi jusqu'à la température ambiante, un deuxième compresseur 60, puis un deuxième échangeur 62 pour être refroidi à nouveau jusqu'à la température ambiante ou la température de l'eau.
La pression du courant de gaz combustible comprimé 32 est par exemple supérieure à 25 bar et est notamment comprise entre 5 bar et 70 bar. Dans un exemple particulier, la composition du courant 32 est typiquement constituée de 15% molaire d'azote et de 85% molaire de méthane.
Le courant de gaz combustible comprimé 32 est alors récupéré pour être utilisé comme combustible dans l'installation 12, ou encore comme fluide d'appoint dans cette installation 12.
Un courant de dérivation 36 est prélevé dans le courant de gaz combustible 32. Le débit molaire du courant de dérivation 36 est par exemple supérieur à 10 % du débit molaire du courant de gaz combustible 32 issu de l'appareil de compression 30, et est notamment compris entre 10 % et 100 % de ce débit.
Le courant de dérivation 36 et ensuite comprimé dans le compresseur 34, puis est refroidi jusqu'à la température ambiante dans l'échangeur aéro-réfrigérant ou l'échangeur à eau 64, pour former un courant de dérivation comprimé 66.
La pression du courant de dérivation comprimé 66 est par exemple supérieure de 30 bar à la pression du courant 32.
Le courant 66 est ensuite introduit dans l'échangeur thermique aval 40 pour y être refroidi jusqu'à une température avantageusement inférieure à -50 °C.
Il est ensuite détendu dans la turbine de détente dynamique 38, jusqu'à une pression inférieure à 2 bar et est notamment comprise entre 1 ,1 bar et 3 bar, pour former un courant de dérivation détendu 68.
La température du courant 68 est de préférence inférieure à -150 °C et est notamment comprise entre -140° C et -160° C.
Le courant de dérivation détendu 68 est éventuellement au moins partiellement liquide. Dans ce cas, la teneur molaire en liquide dans le courant 68 est typiquement inférieure à 15 % molaire. En variante, le courant 68 reste totalement gazeux.
Dans cet exemple, la totalité du courant de dérivation détendu 68 forme un premier flux 70 qui est ensuite introduit dans l'échangeur thermique aval 40 pour y être réchauffé. La température du premier flux réchauffé 71 est avantageusement supérieure à à -60 °C.
Le premier flux réchauffé 71 est ensuite réintroduit dans le courant de mélange 54, en aval du ballon de fin de flash 26, et en amont de l'appareil de compression 30.
Dans ce mode de réalisation, au moins un courant gazeux de gaz traité 72 issu de l'installation 12 est dérivé vers l'installation 10.
Le courant gazeux 72 présente une pression par exemple supérieure à 60 bar, et notamment comprise entre 40 bar et 90 bar. La température du courant gazeux typiquement égale à la température ambiante ou pré-refroidie. Le courant gazeux 72 possède une teneur molaire en méthane supérieure à 80 %, et une teneur molaire en C4 + inférieure à 5 %.
Le débit molaire du courant gazeux 72 peut représenter jusqu'à 10 % du débit de la charge initiale de gaz naturel introduite dans l'installation de liquéfaction 12.
Le courant gazeux 72 est ensuite séparé en une première partie 74 et en une deuxième partie 76.
Le débit molaire de la première partie 74 du courant gazeux 72 constitue par exemple entre 20 % et 50 % molaire du courant gazeux 72 et le débit molaire de la deuxième partie 76 du courant gazeux 72 constitue par exemple entre 50 % et 80 % du débit molaire du courant gazeux 72.
La première partie 74 du courant gazeux 72 est ensuite introduite dans l'échangeur thermique aval 40 pour y être refroidie et liquéfiée par échange thermique notamment avec le courant de dérivation détendu 68, jusqu'à une température avantageusement inférieure à -150 °C.
La première partie 74 passe ensuite à travers une vanne de contrôle 78, avant d'être mélangée au courant de gaz naturel liquéfié détendu 42 issu du dispositif de détente 24.
La deuxième partie 76 du courant gazeux 72 est introduite dans l'échangeur thermique additionnel 41 pour y être refroidie et liquéfiée par échange thermique avec le flux gazeux de gaz de flash 48, jusqu'à une température avantageusement inférieure à - 150 °C.
La deuxième partie 76 passe ensuite à travers une vanne de contrôle 80, avant d'être mélangée au courant de gaz naturel liquéfié détendu 42 issu du dispositif de détente 24.
La mise en œuvre du procédé selon l'invention est donc particulièrement simple puisqu'elle diminue le nombre d'équipements nécessaires pour effectuer un flash du gaz naturel liquéfié en vue de son stockage, et pour récupérer de manière avantageuse les gaz de flash et les gaz d'évaporation produits.
En particulier, un appareil de compression unique 30 est utilisé pour comprimer un courant de mélange 54 formé à partir des gaz de flash et des gaz d'évaporation.
L'utilisation d'un courant de dérivation 36 prélevé dans le courant de combustible 32 formé à la sortie de l'appareil de compression 30 permet d'obtenir une intégration thermique très efficace, et de profiter des frigories disponibles pour liquéfier au moins partiellement le gaz traité dans l'installation 12. L'intégration thermique du courant de dérivation 36 permet d'ajuster les frigories entre les différents modes de fonctionnement de l'installation 10, entre les phases de remplissage des bacs, et les phases de chargement d'un méthanier
Le procédé selon l'invention et l'installation 10 permettant sa mise en œuvre sont donc particulièrement adaptés pour une unité flottante telle qu'une FLNG.
Dans une variante, représentée schématiquement sur la figure 1 , une partie 90 du flux gazeux de gaz évaporation est envoyée vers d'autres trains de liquéfaction. À l'inverse, un courant de gaz naturel liquéfié 92 provenant d'autres trains de liquéfaction est introduit dans le réservoir 28.
Une deuxième installation 1 10 selon l'invention est illustrée par la figure 2. La deuxième installation 1 10 diffère de la première installation 10 dans le sens où elle comprend un ballon aval 1 12, placé à la sortie de la turbine de détente dynamique 38.
Le courant de dérivation détendu 68 est introduit dans le ballon aval 1 12 pour récupérer, en tête, le premier flux 70 sous forme gazeuse, et en pied, un deuxième flux 1 14 liquide.
Le débit molaire du deuxième flux 1 14 constitue par exemple entre 10% et 15% du débit molaire du courant de dérivation détendu 68.
Comme précédemment, le premier flux 70 est introduit dans l'échangeur thermique aval 40 pour être réchauffé par échange thermique notamment avec la première partie 74 du courant gazeux 72 de gaz traité.
Le deuxième flux 1 14 est réintroduit dans le courant de gaz naturel liquéfié détendu 42 issu de l'appareil de détente 24, en amont du ballon de fin de flash 26.
Le deuxième procédé selon l'invention optimise la distribution du liquide dans l'échangeur thermique aval 40.
Une troisième installation 120, destinée à la mise en œuvre d'un troisième procédé selon l'invention, est illustrée par la figure 3.
À la différence du premier procédé mis en œuvre dans l'installation 10 décrite sur la figure 1 , un courant 122 de recirculation est prélevé dans le courant de dérivation comprimé 66.
Le courant de recirculation 122 représente par exemple entre 30% et 80% molaire du courant de dérivation comprimé 66 issu du compresseur 34.
Le courant de recirculation 122 est ensuite séparé en une première partie 124 et en une deuxième partie 126.
Le débit molaire de la première partie 124 du courant de recirculation 122 constitue par exemple entre 20% et 50 % molaire du courant de recirculation 122 et le débit molaire de la deuxième partie 126 du courant de recirculation 122 constitue par exemple entre 50% et 80% du débit molaire du courant de recirculation 122.
La première partie 124 du courant de recirculation 122 est introduite dans l'échangeur thermique aval 40 pour y être refroidie, et éventuellement au moins partiellement liquéfiée, par échange thermique notamment avec le courant de dérivation détendu 68, jusqu'à une température avantageusement inférieure à -150°C.
La première partie 124 passe ensuite à travers une vanne de contrôle 128, avant d'être mélangée au courant de gaz naturel liquéfié détendu 42 issu du dispositif de détente 24.
La deuxième partie 126 du courant de dérivation 122 est introduite dans l'échangeur thermique additionnel 41 , pour y être refroidie et éventuellement au moins partiellement liquéfiée par échange thermique avec le flux gazeux de gaz de flash 48, jusqu'à une température avantageusement inférieure à -150°C.
La deuxième partie 126 passe ensuite à travers une vanne de contrôle 130, avant d'être mélangée au courant de gaz naturel liquéfié détendu 42 issu du dispositif de détente 24.
L'utilisation d'un courant de dérivation 36 prélevé dans le courant de combustible 32 formé à la sortie de l'appareil de compression 30 permet d'obtenir une intégration thermique très efficace, et de profiter des frigories disponibles pour liquéfier au moins partiellement un courant de recirculation 122 issu du courant de dérivation, lorsqu'un excès de gaz de flash et/ou de gaz d'évaporation se produit.
Dans une variante représentée en pointillés sur la figure 3, au moins une partie 76 du courant gazeux de gaz traité 72 issu de l'installation 12 est également introduite dans l'échangeur thermique additionnel 41 , comme décrit plus haut pour la figure 2.
Une quatrième installation 130, destinée à la mise en œuvre d'un quatrième procédé selon l'invention, est illustrée par la figure 4.
Cette installation 130 diffère de l'installation 10 représentée sur la figure 1 en ce que le ballon de fin de flash 26 est remplacé par une colonne de distillation 132 de fin de flash.
Un échangeur de rebouillage 134 est disposé en amont du dispositif de détente 24 pour mettre en relation d'échange thermique le courant de gaz naturel liquéfié 22 avec un courant de rebouillage 136 issu de la colonne 132.
La mise en œuvre du quatrième procédé selon l'invention est par ailleurs analogue à celle du premier procédé selon l'invention.
Une cinquième installation 140, destinée à la mise en œuvre d'un cinquième procédé selon l'invention, est illustrée par la figure 5. Cette installation 140 diffère de l'installation 120 représentée sur la figure 3 en ce que le ballon de fin de flash 26 est remplacé par une colonne de distillation 132 de fin de flash.
La mise en œuvre du cinquième procédé selon l'invention est par ailleurs analogue à celle du troisième procédé selon l'invention.
Une sixième installation 150, destinée à la mise en œuvre d'un sixième procédé selon l'invention, est illustrée par la figure 6.
La sixième installation 150 diffère de la quatrième installation 130 par l'insertion d'un ballon intermédiaire 152 entre la sortie du dispositif de détente 24 et l'entrée de la colonne de distillation 132.
Le ballon intermédiaire 152 reçoit le courant de gaz naturel liquéfié détendu 42 et le sépare en un flux de tête 154, mélangé au flux gazeux 48 de gaz de flash, et en un flux de pied 156, introduit dans l'échangeur de rebouillage 134 avant d'atteindre la colonne de distillation 132.
Cette installation 150 est bénéfique pour la récupération d'hélium dans le cas où le courant gazeux 154 est riche en hélium, typiquement constitué d'au moins 25% d'hélium, et peut donc être avantageusement envoyé dans une installation de purification d'hélium.
Dans des variantes de chacune des installations 120 à 150, un ballon aval 1 12 est prévu pour séparer le courant de dérivation détendu 68, comme décrit dans le deuxième procédé selon l'invention.
Dans une variante des installations décrites plus haut, la turbine de détente dynamique 25 du dispositif de détente 24 est remplacée par une vanne de détente statique. Le courant de gaz naturel liquéfié subit alors une détente statique et non dynamique dans le dispositif de détente 24.
Le procédé selon l'invention et l'installation correspondante sont donc particulièrement adaptés pour gérer les variations importantes de température et de débit du flux de gaz d'évaporation 52 provenant du réservoir 28 entre les phases de chargement d'un méthanier par vidange du réservoir et les phases de remplissage du réservoir.
Comme indiqué plus haut, l'intégration thermique du courant de dérivation 36 avec le courant de gaz d'évaporation 52 est utilisée pour ajuster les frigories nécessaires, et faire varier les débits relatifs du courant de gaz combustible 32 et du courant de dérivation 36.
Ceci est obtenu sans avoir à modifier de paramètres opératoires pour la liquéfaction du gaz naturel, notamment au niveau des cycles principaux de liquéfaction.

Claims

REVENDICATIONS
1 .- Procédé de détente et de stockage d'un courant de gaz naturel liquéfié (22) issu d'une installation (12) de liquéfaction de gaz naturel, comprenant les étapes suivantes :
- détente flash du courant de gaz naturel liquéfié (22) dans un dispositif de détente (24) pour former un courant de gaz naturel liquéfié détendu (42) ;
- amenée du courant de gaz naturel liquéfié détendu (42) dans une capacité de fin de flash (26 ; 132) ;
- récupération, en pied de la capacité de fin de flash (26 ; 132), d'un flux liquide de gaz naturel liquéfié (46) ;
- convoyage du flux liquide de gaz naturel liquéfié (46) dans au moins un réservoir de gaz naturel liquéfié (28) ;
- prélèvement, en tête de la capacité de fin de flash (26 ; 132), d'un flux gazeux de gaz de flash (48) ;
- récupération, en tête du réservoir de gaz naturel liquéfié (28), d'un flux gazeux de gaz d'évaporation (52) ;
- mélange du flux gazeux de gaz de flash (48) et du flux gazeux de gaz d'évaporation (52) pour former un courant gazeux de mélange (54);
- compression du courant gazeux de mélange (54) dans au moins un appareil de compression (30) pour former un courant de gaz combustible comprimé (32) ;
caractérisé par les étapes suivantes :
- prélèvement d'un courant de dérivation (36) dans le courant de gaz combustible comprimé (32) ;
- compression du courant de dérivation (36) dans au moins un compresseur aval
(34) pour former un courant de dérivation comprimé (66) ;
- refroidissement du courant de dérivation comprimé (66) ;
- détente du courant de dérivation comprimé (66) pour former un courant de dérivation détendu (68);
- réchauffage d'au moins un premier flux (68 ; 70) issu du courant de dérivation détendu (68) dans au moins un échangeur thermique aval (40),
- réintroduction du premier flux (68 ; 70) réchauffé dans le courant gazeux de mélange (54) et/ou dans l'un au moins du flux gazeux de gaz d'évaporation (52) et du flux gazeux de gaz de flash (48), en amont de l'appareil de compression (30).
2. - Procédé selon la revendication 1 , dans lequel le courant de dérivation détendu (68) au moins partiellement liquide est introduit dans un ballon séparateur aval (1 12), le procédé comprenant les étapes suivantes :
- prélèvement, en tête du ballon séparateur aval (1 12), du premier flux (70) sous forme gazeuse, et réintroduction du premier flux (70) dans le courant gazeux de mélange
(54) et/ou dans l'un au moins du flux gazeux de gaz d'évaporation (52) et du flux gazeux de gaz de flash (48), en amont de l'appareil de compression (30) ;
- récupération, en pied du ballon séparateur aval (1 12), d'un deuxième flux liquide (1 14) de dérivation, et introduction du flux liquide de dérivation (1 14) dans le courant (42) de gaz naturel liquéfié détendu, en amont de la capacité de fin de flash (26 ; 132).
3. - Procédé selon la revendication 1 , dans lequel la totalité du courant de dérivation détendu (68) constitue le premier flux (70).
4. - Procédé selon l'une quelconque des revendications précédentes, dans lequel le courant de dérivation comprimé (66) issu du compresseur aval (34) est introduit dans l'échangeur thermique aval (40) pour être mis en relation d'échange thermique avec le premier flux (70).
5. - Procédé selon l'une quelconque des revendications précédentes, dans lequel le flux de gaz d'évaporation (52) est introduit dans l'échangeur thermique aval (40) pour être mis en relation d'échange thermique avec le premier flux (70).
6. - Procédé selon l'une quelconque des revendications précédentes, comprenant les étapes suivantes :
- fourniture d'un courant de gaz naturel traité (72) destiné à être liquéfié ;
- introduction d'au moins une première partie (74) du courant de gaz naturel traité (72) dans l'échangeur thermique aval (40) pour être mis en relation d'échange thermique avec le premier flux (70) ;
- liquéfaction au moins partielle de la première partie (74) du courant de gaz naturel traité (72) dans l'échangeur thermique aval (40) par échange thermique avec le premier flux (68 ; 70).
7. - Procédé selon la revendication 6, comprenant l'introduction de la première partie (74) du courant de gaz naturel traité (72) liquéfié dans le courant de gaz naturel liquéfié détendu (42) issu du dispositif de détente (24), en amont d'une capacité de fin de flash (26 ; 132).
8. - Procédé selon la revendication 6 ou 7, comprenant les étapes suivantes :
- séparation du courant de gaz naturel traité en la première partie (74) du courant de gaz naturel traité (72) et une deuxième partie (76) du courant de gaz naturel traité (72) - introduction de la deuxième partie (76) du courant de gaz naturel traité (72) dans un échangeur thermique additionnel (41 ), pour être mis en relation d'échange thermique avec le flux de gaz de flash (48) ;
- liquéfaction de la deuxième partie (76) du courant de gaz naturel traité (72) dans l'échangeur thermique additionnel (41 ) par réchauffage du flux de gaz de flash (48) ;
- introduction de la deuxième partie (76) du courant de gaz naturel traité (72) liquéfiée dans le courant de gaz naturel liquéfié détendu (42) issu du dispositif de détente (24), en amont de la capacité de fin de flash (26 ; 132).
9.- Procédé selon l'une quelconque des revendications précédentes, comprenant les étapes suivantes :
- dérivation d'un courant de recirculation (122) dans le courant de dérivation comprimé (66) ;
- liquéfaction d'au moins une partie (124) du courant de recirculation (122) dans l'échangeur thermique aval (40) par échange thermique avec le premier flux (68 ; 70).
10. - Procédé selon l'une quelconque des revendications précédentes, dans lequel la capacité de fin de flash (26 ; 132) est un ballon de fin de flash (26) ou une colonne de distillation de fin de flash (132).
1 1 . - Procédé selon l'une quelconque des revendications précédentes, dans lequel le dispositif de détente (24) comprend une turbine de détente dynamique (25).
12. - Installation de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation (12) de liquéfaction de gaz naturel, comprenant
- un dispositif de détente (24) propre à effectuer une détente flash du courant de gaz naturel liquéfié (22) pour former un courant de gaz naturel liquéfié détendu (42);
- une capacité de fin de flash (26 ; 132) propre à recevoir le courant de gaz naturel liquéfié détendu (42) provenant du dispositif de détente (24) ;
- un ensemble de récupération, en pied de la capacité de fin de flash (26 ; 132), d'un flux liquide de gaz naturel liquéfié (46) ;
- au moins un réservoir de gaz naturel liquéfié (28) et un ensemble de convoyage du flux liquide de gaz naturel liquéfié (46) dans le réservoir de gaz naturel liquéfié (28) ;
- un ensemble de prélèvement, en tête de la capacité de fin de flash (26 ; 132), d'un flux gazeux de gaz de flash (48) ;
- un ensemble de récupération, en tête du réservoir de gaz naturel liquéfié (28), d'un flux gazeux de gaz d'évaporation (52) ;
- un ensemble de mélange du flux gazeux de gaz de flash (48) et du flux gazeux de gaz d'évaporation (52) pour former un courant gazeux de mélange (54) ; - au moins un appareil de compression (30) propre à comprimer le courant gazeux de mélange (54) pour former un courant de gaz combustible comprimé (32) ;
caractérisée par :
- un ensemble de prélèvement d'un courant de dérivation (36) dans le courant de gaz combustible comprimé (32) ;
- au moins un compresseur aval (34) pour comprimer le courant de dérivation (36) et former un courant de dérivation comprimé (66) ;
- un échangeur thermique aval (40) de refroidissement du courant de dérivation comprimé (66) pour former un courant de dérivation détendu (68) ;
- un dispositif de détente et de liquéfaction au moins partielle du courant de dérivation comprimée (66) ;
- un ensemble d'introduction d'au moins un premier flux (68 ; 70) issu du courant de dérivation détendu (68) dans l'échangeur thermique aval (40), pour permettre le réchauffage du premier flux (68 ; 70),
- un ensemble de réintroduction du premier flux (68 ; 70) dans le courant gazeux de mélange (54) et/ou dans l'un au moins du flux gazeux de gaz d'évaporation (52) et du flux gazeux de gaz de flash (48), en amont de l'appareil de compression (30) ;
13. - Installation selon la revendication 12, dans laquelle le premier flux (68) est constitué par la totalité du courant de dérivation détendu (68).
14. - Installation selon la revendication 12, comprenant :
- un ballon séparateur aval (1 12),
- un ensemble de prélèvement, en tête du ballon séparateur aval (1 12), du premier flux (70) sous forme gazeuse, et de réintroduction du premier flux (70) dans le courant gazeux de mélange (54) et/ou dans l'un au moins du flux gazeux de gaz d'évaporation (52) et du flux gazeux de gaz de flash (48), en amont de l'appareil de compression (30) ;
- un ensemble de récupération, en pied du ballon séparateur aval (1 12), d'un deuxième flux liquide (1 14) de dérivation, et d'introduction du flux liquide de dérivation (1 14) dans le courant (42) de gaz naturel liquéfié détendu, en amont du ballon de fin de flash (26 ; 132).
15. - Installation selon l'une quelconque des revendications 12 à 14, dans laquelle l'échangeur thermique aval (40) est propre à mettre en relation d'échange thermique le premier flux (68 ; 70), et au moins une partie (74) d'un courant de gaz traité (72) destiné à être liquéfié.
16. - Installation selon l'une quelconque des revendications 12 à 14, comprenant : - un ensemble de dérivation d'un courant de recirculation (122) à partir du courant de dérivation comprimé (66) ; - un ensemble d'introduction d'au moins une partie (124) du courant de recirculation (122) dans l'échangeur thermique aval (40) pour le liquéfier au moins partiellement dans l'échangeur thermique aval (40).
EP16741582.7A 2015-07-13 2016-07-12 Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée Pending EP3322948A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556656A FR3038964B1 (fr) 2015-07-13 2015-07-13 Procede de detente et de stockage d'un courant de gaz naturel liquefie issu d'une installation de liquefaction de gaz naturel, et installation associee
PCT/EP2016/066544 WO2017009341A1 (fr) 2015-07-13 2016-07-12 Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée

Publications (1)

Publication Number Publication Date
EP3322948A1 true EP3322948A1 (fr) 2018-05-23

Family

ID=54145888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741582.7A Pending EP3322948A1 (fr) 2015-07-13 2016-07-12 Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée

Country Status (7)

Country Link
US (1) US10995910B2 (fr)
EP (1) EP3322948A1 (fr)
JP (1) JP6800204B2 (fr)
KR (1) KR102523737B1 (fr)
CN (1) CN108027197B (fr)
FR (1) FR3038964B1 (fr)
WO (1) WO2017009341A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3049341B1 (fr) * 2016-03-23 2019-06-14 Cryostar Sas Systeme de traitement d'un gaz issu de l'evaporation d'un liquide cryogenique et d'alimentation en gaz sous pression d'un moteur a gaz
IT201900025078A1 (it) * 2019-12-20 2021-06-20 Fpt Ind Spa Metodo e relativo apparato per produrre gas liquefatti
JP7265516B2 (ja) * 2020-11-26 2023-04-26 大陽日酸株式会社 液体ヘリウム移液時の貯槽内圧力保持方法及び装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331214A (en) 1965-03-22 1967-07-18 Conch Int Methane Ltd Method for liquefying and storing natural gas and controlling the b.t.u. content
GB1288762A (fr) 1968-09-16 1972-09-13
US3581511A (en) 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
US3690114A (en) * 1969-11-17 1972-09-12 Judson S Swearingen Refrigeration process for use in liquefication of gases
GB1471404A (en) 1973-04-17 1977-04-27 Petrocarbon Dev Ltd Reliquefaction of boil-off gas
GB1472533A (en) 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
DE2820212A1 (de) * 1978-05-09 1979-11-22 Linde Ag Verfahren zum verfluessigen von erdgas
US4435198A (en) * 1982-02-24 1984-03-06 Phillips Petroleum Company Separation of nitrogen from natural gas
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
US4541852A (en) 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
US4689962A (en) 1986-01-17 1987-09-01 The Boc Group, Inc. Process and apparatus for handling a vaporized gaseous stream of a cryogenic liquid
US5137558A (en) 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
DE4440406C1 (de) 1994-11-11 1996-04-04 Linde Ag Verfahren zum Verflüssigen einer unter Druck stehenden kohlenwasserstoffreichen Fraktion
JP3868033B2 (ja) 1996-07-05 2007-01-17 三菱重工業株式会社 Lngボイルオフガスの再液化方法及びその装置
MY117068A (en) 1998-10-23 2004-04-30 Exxon Production Research Co Reliquefaction of pressurized boil-off from pressurized liquid natural gas
JP3908881B2 (ja) 1999-11-08 2007-04-25 大阪瓦斯株式会社 ボイルオフガスの再液化方法
FR2818365B1 (fr) * 2000-12-18 2003-02-07 Technip Cie Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci
MY140540A (en) 2004-07-12 2009-12-31 Shell Int Research Treating liquefied natural gas
US20060156758A1 (en) 2005-01-18 2006-07-20 Hyung-Su An Operating system of liquefied natural gas ship for sub-cooling and liquefying boil-off gas
WO2006135363A1 (fr) 2005-06-09 2006-12-21 Mustang Engineering, L.P. Appareil et procédés de traitement des hydrocarbures destinés à produire du gaz naturel liquéfié
JP2006348080A (ja) 2005-06-13 2006-12-28 Mitsui Eng & Shipbuild Co Ltd ボイルオフガスの処理方法及び装置
EP1913117A1 (fr) 2005-07-19 2008-04-23 Shinyoung Heavy Industries Co., Ltd. Appareil de reliquéfaction de gaz d évaporats de gaz naturel liquéfié
FR2891900B1 (fr) 2005-10-10 2008-01-04 Technip France Sa Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee.
US7581411B2 (en) 2006-05-08 2009-09-01 Amcs Corporation Equipment and process for liquefaction of LNG boiloff gas
KR100804953B1 (ko) 2007-02-13 2008-02-20 대우조선해양 주식회사 냉동 부하 가변 운전이 가능한 증발가스 재액화 장치 및방법
JP2009030675A (ja) 2007-07-25 2009-02-12 Mitsubishi Heavy Ind Ltd ガス再液化装置およびガス再液化方法
US8555672B2 (en) * 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
MX2010010706A (es) 2008-04-11 2010-11-01 Fluor Tech Corp Metodos y configuracion del manejo de gases de evaporacion en terminales de regasificacion de gas natural licuado.
GB2462125B (en) 2008-07-25 2012-04-04 Dps Bristol Holdings Ltd Production of liquefied natural gas
US20100139317A1 (en) 2008-12-05 2010-06-10 Francois Chantant Method of cooling a hydrocarbon stream and an apparatus therefor
FR2944523B1 (fr) 2009-04-21 2011-08-26 Technip France Procede de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee
KR101191241B1 (ko) 2009-10-20 2012-10-16 대우조선해양 주식회사 액화가스 수송선의 증발가스 재액화 장치
FR2954345B1 (fr) 2009-12-18 2013-01-18 Total Sa Procede de production de gaz naturel liquefie ayant un pouvoir calorifique superieur ajuste
DE102010062044A1 (de) 2010-11-26 2012-05-31 Siemens Aktiengesellschaft Flüssigerdgasanlage und Verfahren zum Betrieb
DE102010062050A1 (de) 2010-11-26 2012-05-31 Siemens Aktiengesellschaft Flüssigerdgasanlage und Verfahren zum Betrieb
KR101797610B1 (ko) 2010-11-29 2017-12-13 대우조선해양 주식회사 연료가스 공급시스템 및 연료가스 공급시스템의 증발가스 재액화 방법
EP2690274A4 (fr) 2011-03-22 2016-07-13 Daewoo Shipbuilding&Marine Engineering Co Ltd Système permettant de fournir du combustible à un moteur à injection de gaz naturel haute pression doté d'un moyen de consommation d'excès de gaz d'évaporation
EP2693035A4 (fr) 2011-03-22 2016-07-13 Daewoo Shipbuilding&Marine Engineering Co Ltd Procédé et système permettant de fournir un combustible à un moteur à injection de gaz naturel haute pression
KR101521573B1 (ko) 2012-01-25 2015-05-20 대우조선해양 주식회사 액화가스 수송선의 증발가스 재액화 장치
KR101220208B1 (ko) 2012-05-22 2013-01-09 연세대학교 산학협력단 천연가스와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법
CN203463934U (zh) * 2013-07-30 2014-03-05 江苏中核华纬工程设计研究有限公司 一种利用液化天然气冷能的合成氨驰放气处理装置

Also Published As

Publication number Publication date
CN108027197B (zh) 2020-06-19
FR3038964A1 (fr) 2017-01-20
JP6800204B2 (ja) 2020-12-16
KR20180030048A (ko) 2018-03-21
FR3038964B1 (fr) 2017-08-18
JP2018523805A (ja) 2018-08-23
CN108027197A (zh) 2018-05-11
WO2017009341A1 (fr) 2017-01-19
US20180202610A1 (en) 2018-07-19
KR102523737B1 (ko) 2023-04-19
US10995910B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
CA2744450C (fr) Procede de production d'un courant de gaz naturel liquefie sous-refroidi a partir d'un courant de charge de gaz naturel et installation associee
FR3053771B1 (fr) Procede de liquefaction de gaz naturel et de recuperation d'eventuels liquides du gaz naturel comprenant deux cycles refrigerant semi-ouverts au gaz naturel et un cycle refrigerant ferme au gaz refrigerant
EP2724099B1 (fr) Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
EP2959242B1 (fr) Station d'abaissement de pression d'un gaz et de liquéfaction du gaz
CA2739696A1 (fr) Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee
EP2411118A1 (fr) Procede et installation de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+
EP3322948A1 (fr) Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée
WO2012066460A2 (fr) Procede et installation de transport de gaz naturel liquefie
WO2017037400A1 (fr) Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique
JP2021516325A (ja) 液体窒素を使用する天然ガスの液化のための方法及びシステム
WO2022106260A1 (fr) Procédé de production de gaz naturel liquéfié à partir de gaz naturel, et installation correspondante
WO2005105669A1 (fr) Procédé de liquéfaction du dioxyde de 5 carbone solide
EP3390938B1 (fr) Procédé hybride de liquéfaction d'un gaz combustible et installation pour sa mise en oeuvre
WO2024003236A1 (fr) Dispositif et procédé de capture cryogénique de dioxyde de carbone contenu dans un flux de fluide cible
WO2022223909A1 (fr) Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre
FR2869404A1 (fr) Procede de liquefaction du dioxyde de carbone gazeux.
KR20240137980A (ko) 이산화탄소 처리 시스템 및 이를 포함하는 구조물
CA2957860A1 (fr) Methode pour eviter l'evaporation instantanee de gaz naturel liquefie en cours de transport
WO2011039476A1 (fr) Procede de traitement d'un effluent gazeux et installation de traitement associee
BE581892A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211018

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNIP ENERGIES FRANCE