WO2012066460A2 - Procede et installation de transport de gaz naturel liquefie - Google Patents

Procede et installation de transport de gaz naturel liquefie Download PDF

Info

Publication number
WO2012066460A2
WO2012066460A2 PCT/IB2011/055062 IB2011055062W WO2012066460A2 WO 2012066460 A2 WO2012066460 A2 WO 2012066460A2 IB 2011055062 W IB2011055062 W IB 2011055062W WO 2012066460 A2 WO2012066460 A2 WO 2012066460A2
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
liquefied natural
unit
loading
gas
Prior art date
Application number
PCT/IB2011/055062
Other languages
English (en)
Other versions
WO2012066460A3 (fr
Inventor
Jean-Claude Garcel
Christophe Thomas
Myriam Samba
Original Assignee
Total S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total S.A. filed Critical Total S.A.
Publication of WO2012066460A2 publication Critical patent/WO2012066460A2/fr
Publication of WO2012066460A3 publication Critical patent/WO2012066460A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0367Arrangements in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/061Fluid distribution for supply of supplying vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a liquefied natural gas transport method, and an installation adapted to the implementation of this method.
  • LNG Liquefied natural gas production plants
  • the transfer of LNG between the shore storage and the sea loading station is carried out via a pipe generally disposed on a pier.
  • the invention relates firstly to a liquefied natural gas transport method comprising successive stages of storage and loading, each of these phases comprising the following successive steps:
  • the loading phase including the final final step of:
  • an evaporation gas is emitted during storage of the liquefied natural gas, said evaporation gas being consumed and / or at least partly liquefied in the storage structure.
  • the liquefied natural gas is sub-cooled to a temperature of less than or equal to -162 ° C, preferably less than or equal to -163 ° C, preferably less than or equal to -164 ° C, preferably less than or equal to -165 ° C, before its transfer, during the storage phase and the loading phase.
  • the loading stage comprises an additional subcooling step of the liquefied natural gas before the transfer of the liquefied natural gas.
  • the liquefied natural gas is subcooled before it is transferred, during the loading phase, to a temperature of at least 1 ° C, preferably at least 2 ° C, preferably at least 3 ° C, preferably at least 4 ° C, preferably at least 5 ° C, with respect to the subcooling temperature of the liquefied natural gas during the storage phase.
  • the additional subcooling step of the liquefied natural gas is carried out by taking a fraction of liquefied natural gas, expanding this fraction and heat exchange between the liquefied natural gas and the liquefied natural gas fraction. taken and relaxed.
  • the invention also relates to a liquefied natural gas transport installation, comprising:
  • Subcooling means for liquefied natural gas suitable for sub-cooling the liquefied natural gas at a temperature below -161 ° C;
  • means for loading of liquefied natural gas in a transport vessel
  • a transfer line adapted to transfer liquefied natural gas from the terrestrial unit to the maritime unit.
  • the storage structure is a stranded ship or barge or a floating barge or a platform.
  • the storage structure is provided with means for liquefying natural gas.
  • the terrestrial unit comprises a unit for cooling and liquefying natural gas comprising at least one heat exchange section and supplying the liquefied natural gas supply line, the means for sub-cooling the gas liquefied natural gas being constituted by a heat exchange section of the unit for cooling and liquefying natural gas.
  • the terrestrial unit comprises additional subcooling means of the liquefied natural gas, capable of being alternately actuated and stopped.
  • the additional subcooling means of the liquefied natural gas comprise a sub-cooled liquefied natural gas bypass line provided with expansion means, and an additional subcooling exchanger between the supply line of the liquefied natural gas natural gas and the branch line of liquefied natural gas subcooled downstream of the expansion means.
  • the present invention overcomes the disadvantages of the state of the art.
  • it provides an LNG transport process for the loading of LNG carriers which is simpler to implement: it does not require the construction of a jetty equipped with several LNG loading lines and a gas return line. from evaporation to land, which is a significant simplification when the loading of LNG carriers has to take place far from the coast (eg at least 10 km, at least 15 km or at least 20 km from the coast ); and it also limits the emission of evaporation gases. In this way the return of evaporation gases to the coast is useless.
  • the invention also has one or preferably more of the advantageous features listed below.
  • the invention makes it possible to produce and load LNG in geographical areas where a jetty is difficult or impossible to build, or in an area where a jetty would cut in half a maritime area of interest for the boats.
  • the invention makes it possible to reduce the number of low-pressure torches, since only one torch is needed (at sea) instead of two in the state of the art (one on shore at storage and one at sea at loading).
  • FIG. 1 schematically represents the main elements of an installation according to one embodiment of the invention, in the non-loading phase of the LNG carrier, here called storage.
  • FIG. 2 schematically represents the main elements of an installation according to one embodiment of the invention, in the loading phase.
  • Figure 3 schematically shows a ground unit of a plant according to the state of the art.
  • FIGS. 4 and 5 schematically represent embodiments of a terrestrial unit of an installation according to the invention (comprising the unit for cooling and liquefying natural gas as well as the sub-cooling devices for LNG).
  • the installation includes a terrestrial unit 1 located on the ground (on the coast) and a maritime unit 2 located at sea.
  • the distance between the terrestrial unit 1 and the maritime unit 2 is preferably greater than or equal to 5 km. , or greater than or equal to 10 km, or more than or equal to 15 km, or more than or equal to 20 km.
  • the term "on land” can be taken in its strict sense, or, according to one embodiment, also cover a situation at sea, the depth of the water being low (c '). that is, less than 15 m or less than 10 m or less than 5 m). In this case, either the entire terrestrial unit 1 is located at sea (the depth of the water being low), or the terrestrial unit 1 is distributed on land and at sea (the depth of the water being low ).
  • the terrestrial unit 1 comprises a unit for cooling and liquefying natural gas 3.
  • the LNG produced by the unit for cooling and liquefying natural gas 3 is collected by an output line of the liquefaction unit 4.
  • the LNG is in principle at a temperature of -148 ° C approximately in this output line of the liquefaction unit 4. This feeds a final vaporization tank 5.
  • the LNG transported in the output line of the unit of liquefaction 4 is expanded upstream of the final vaporization tank 5 and then separated therein from the vaporization gas produced, which is collected in a vaporization gas withdrawal line 6.
  • the vaporization gas withdrawal line 6 feeds a compressor 7, at the output of which is connected a first line of combustion gas 8.
  • the vaporization gas is compressed and burned to provide energy to the installation.
  • the temperature of the LNG at the outlet of the natural gas cooling and liquefaction unit 3 is generally set to satisfy the energy balance of the installation. Surplus, if any, can be recycled in the facility. More details on the flow of the vaporization gas are provided below in connection with FIGS. 3, 4 and 5.
  • a liquefied natural gas supply line 9 feeds subcooling means for the liquefied natural gas 10.
  • a transfer line 11 connecting the terrestrial unit 1 to the maritime unit 2.
  • the transfer pipe 11 feeds a liquefied natural gas storage structure 12 in the maritime unit 2.
  • the subcooling means of the liquefied natural gas 10 are suitable for sub-cooling the LNG at a temperature below -161 ° C., and especially at a temperature of less than or equal to -162 ° C., preferably less than or equal to 163 ° C, preferably less than or equal to -164 ° C, preferably less than or equal to -165 ° C, for example less than or equal to -166 ° C.
  • LNG can be sub-cooled to a temperature of -167 to -165 ° C.
  • the intensity of the subcooling is preferably adapted according to the heat inputs in the transfer line 11, so that the LNG in the liquefied natural gas storage structure 12 is at a temperature of -161 to -161 ° C. 160 ° C (slightly lower than conventional land storage).
  • the transfer line 11 is preferably an underwater pipe, that is to say a pipe arranged on the seabed. No jetty is therefore necessary between the terrestrial unit 1 and the maritime unit 2.
  • the submarine transfer pipe 11 comprises at least one inner tube (for example with a diameter of about 24 inches) and an outer tube concentric with the inner tube, the inner tube and the outer tube being separated by a heat-insulating material (for example an airgel).
  • a heat-insulating material for example an airgel.
  • the inner tube is preferably made of an alloy having a very low coefficient of expansion.
  • stainless steel may be used with about 36% nickel (an alloy known as Invar®).
  • the outer tube is for example made of carbon steel (with an anti-corrosion coating).
  • connection between the transfer line 11 and the storage structure 12 can be provided by one or more lines (s) flexible or non-flexible (s).
  • liquefied natural gas loading means 13 which are adapted to transfer the LNG to a transport vessel (not shown in Figure 1) during the loading phase.
  • These means of loading liquefied natural gas 13 may comprise flexible pipes or not, known in the art.
  • a berth 15 (dock) is adapted to receive a transport vessel.
  • the mooring station 15 may itself be provided with flexible or non-flexible pipes to allow loading on loading vessels.
  • an LNG recirculation system (not shown) is provided from the liquefied natural gas loading means 13 towards the storage structure 12 during the storage phase, in order to maintain the liquefied natural gas loading means 13 at the same temperature as during the loading phase.
  • the offshore storage structure 12 can be either a storage vessel (LNG carrier), or a fixed storage (on a platform, or a stranded barge) or a floating storage type barge or boat.
  • LNG carrier storage vessel
  • fixed storage on a platform, or a stranded barge
  • floating storage type barge or boat can be either a storage vessel (LNG carrier), or a fixed storage (on a platform, or a stranded barge) or a floating storage type barge or boat.
  • the LNG storage capacity is greater than that of the loading vessels used and this in order to be able to load loading vessels to their maximum capacity, without having to interrupt the storage (and therefore the production) of LNG between rotations loading ships.
  • a storage structure 12 it is possible to use a Q-Max type vessel, which has a capacity of approximately 266,000 m 3 or possibly a Q-Flex type vessel, with a capacity of 210,000 to 216,000 m 3 approximately. It can then typically be used as loading vessels conventional LNG carriers having a capacity for example from 120 000 to 140 000 m 3 or even greater capacity.
  • Natural gas liquefaction means 14 can thus be provided on the storage structure 12, which are adapted to collect the evaporation gas, to compress it, to the cool, liquefy (again), and recycle to storage. Part of the evaporation gas is also used as a combustion gas for the purposes in particular natural gas liquefaction means 14, when present. For this purpose, a second line of combustion gas 20 is always provided on the storage structure 12, adapted to collect this part of the evaporation gas.
  • the necessary natural gas liquefying means 14 have a size, complexity and power compatible with a situation at sea.
  • the storage structure 12 is a LNG tanker with a gas liquefaction device. evaporation, this conventionally present device on this type of ships may suffice.
  • a Q-Max type vessel is provided with liquefaction means for liquefying about 7 tons of gas per hour.
  • FIG. 2 there is described an embodiment of the method and the installation according to the invention during a loading phase of LNG.
  • the set of reference numbers identical to those of FIG. 1 have the same meaning.
  • FIG. 2 shows a transport vessel 16 at the berth 15.
  • the LNG from the storage is loaded onto the transport vessel 16 by the liquefied natural gas loading means 13.
  • evaporation gas is also produced in the transport vessel 16.
  • This evaporation gas is recycled to the storage structure 12 by a recycling line 17 provided with a compressor 18. So that this additional contribution of evaporation gas during the charging phase (said evaporation gas to be re-liquefied or used as a combustion gas) remains compatible with the fuel gas requirements and natural gas liquefaction means 14 available on the storage structure 12, and on the other hand that there is no increase in the temperature of the LNG in the storage structure 12 during the loading phase, it is expected additional subcooling of the LNG before its transfer in the transfer line 1 1.
  • the subcooling means of the liquefied natural gas 10 mentioned above can provide a different subcooling intensity in the charging phase with respect to the storage phase.
  • additional means of subcooling the liquefied natural gas 19 which are capable of being alternately actuated (during the loading phase) and stopped (during the storage phase), and without affecting the the reliability and efficiency of the process.
  • the additional subcooling means of the liquefied natural gas 19 may be installed in the maritime unit 2, or, preferably and as illustrated below, in the terrestrial unit 1.
  • the additional subcooling of LNG provided by the additional subcooling means of the liquefied natural gas 19 may be at least 1 ° C, preferably at least 2 ° C, preferably at least 1 ° C, preferably at least 1 ° C, preferably at least 2 ° C, preferably at least 1 ° C. 3 ° C, preferably at least 4 ° C, preferably at least 5 ° C, for example 5 to 7 ° C (and in particular about 6 ° C) in addition to the subcooling performed during the storage phase.
  • C3-MR cooling and liquefaction system of natural gas
  • propane propane and on the other hand a mixture of hydrocarbons and water. 'nitrogen.
  • the invention could be applied in a similar manner to other types of natural gas cooling and liquefaction units.
  • the natural gas cooling and liquefying unit comprises a natural gas supply line 100, which passes through a first heat exchange section 101 and a second heat exchange section 102.
  • the heat exchange sections 101, 102 may be two (or more) compartments of the same exchanger or separate exchangers.
  • Natural gas transported in the natural gas supply line 100 is cooled and liquefied at the crossing of the first heat exchange section 101 and the second heat exchange section 102. It is recovered at the outlet of the latter in a liquefied natural gas withdrawal line 103 (corresponding to the exit line of the liquefaction unit 4 described above with reference to Figures 1 and 2) at a typical temperature of -148 ° C.
  • expansion means 104, 105 comprising, for example, an expander 104 which may be of the turbine type and an expansion valve 105.
  • the LNG is expanded (typically until atmospheric pressure) and cooled to a temperature of about -162 to -160 ° C.
  • the liquefied natural gas withdrawal line 103 finally feeds a final vaporization flask 106 (corresponding to the final vaporization flask 5 described above with reference to FIGS. 1 and 2), in which the vaporization gas generated by the expansion of the LNG is separated from LNG.
  • the vaporization gas is collected in a vaporization gas withdrawal line 109 (corresponding to reference 6 in FIGS. 1 and 2) connected at the outlet of the final vaporization flask 106.
  • a portion of the natural gas output in the natural gas supply line 100 is diverted into a natural gas bypass line 1 13.
  • This natural gas bypass line 1 13 passes through a heat exchanger 1 10, which is also traversed by the vaporization gas withdrawal line 109.
  • the diverted natural gas is thus cooled against the heating of the vaporization gas.
  • the diverted natural gas thus cooled is mixed with the LNG, the natural gas bypass line 1 13 opening on the liquefied natural gas withdrawal line 103, for example after the expansion valve 105 and before the final vaporization tank 106.
  • the vaporization gas is compressed in a compressor January 1 and cooled by cooling means January 12 arranged on the vaporization gas withdrawal line 109.
  • the compressed vaporization gas is used as flue gas for the purposes of operation of the cooling and liquefying unit.
  • a liquefied natural gas supply line 108 (corresponding to the reference 9 in FIGS. 1 and 2), through which the LNG is collected and sent to storage, with means of pumping 107.
  • the cooling and the liquefaction of the natural gas are carried out by heat exchange with a (main) refrigerant comprising a mixture of hydrocarbons and nitrogen.
  • This refrigerant is conveyed in a main refrigerant supply line 114 which supplies a refrigerant vaporization flask 15, in which a fraction of the refrigerant is vaporized.
  • a first refrigerant supply line 121 which collects the vapor fraction of the refrigerant
  • a second refrigerant supply line 1 16 which collects the liquid fraction of the refrigerant
  • the first refrigerant supply line 121 passes through the first heat exchange section 101 and then the second heat exchange section 102.
  • the vapor fraction of the refrigerant is thus cooled and then condensed.
  • an expansion device 122 ensures the relaxation of the vapor fraction (cooled and condensed) of the refrigerant.
  • the condensed and then expanded vapor fraction is collected in a refrigerant return line 123 which again passes through the second heat exchange section 102 and then the first heat exchange section 101.
  • the condensed and then expanded vapor fraction is thus reheated and vaporized again in the heat exchange sections 102 and 101 to cool the natural gas and the vapor fraction of the refrigerant circulating in the first refrigerant supply line 121 (and also by the liquid fraction of the refrigerant flowing in the second refrigerant supply line 1 16, as described below).
  • the second refrigerant supply line 1 16 passes through the first heat exchange section 101.
  • the liquid fraction of the refrigerant is thus cooled.
  • an expansion device 17 ensures the relaxation of the liquid fraction (undercooled) of the refrigerant.
  • the expanded liquid fraction is collected in a refrigerant return line 118 which is for example connected to the refrigerant return line 123 between the second heat exchange section 102 and the first heat exchange section 101.
  • the expanded liquid fraction of the refrigerant is also heated and vaporized in the first heat exchange section 101, thus absorbing the heat transferred by the natural gas, by the vapor fraction of the refrigerant circulating in the first supply line of the refrigerant 121 and the liquid fraction of the refrigerant flowing in the second refrigerant supply line 1 16.
  • the entire vaporized and heated refrigerant is collected in a heated refrigerant collection line 124 at the outlet of the first heat exchange section 101, which feeds compression means 1 19 and refrigerant cooling means 120.
  • the main refrigerant supply line 1 14 is connected at the outlet of the refrigerant cooling means 120.
  • the refrigerant cooling means 120 comprise in the present case a refrigeration cycle by an auxiliary refrigerant (not shown), which is in this case propane, in the context of the "C3-MR" type liquefaction process taken as example.
  • FIG. 4 there is now described a terrestrial unit of an installation according to the invention, comprising a unit for cooling and liquefying natural gas, adapted from a unit for cooling and liquefying gas.
  • a terrestrial unit of an installation according to the invention comprising a unit for cooling and liquefying natural gas, adapted from a unit for cooling and liquefying gas.
  • the set of reference numbers identical to those of FIG. 3 have the same meaning as above. Only the modifications made to the installation according to the invention are thus described here only.
  • the natural gas cooling and liquefying unit comprises a third heat exchange section 129 downstream of the heat exchange sections 101, 102 described above.
  • This third heat exchange section 129 may be an additional compartment of an exchanger or be a separate exchanger.
  • the LNG at the outlet of the second heat exchange section 102 is always at a typical temperature of about -148 ° C. It is recovered in a first liquefied natural gas transfer line 130 on which are provided expansion means 104, 105 as described above, allowing further relaxation of the LNG (typically up to atmospheric pressure) and the cool to a temperature of about -162 to -160 ° C. After separation of the vaporization gas into the vaporization tank 106 described above, the LNG is recovered in a second liquefied natural gas transfer line 125, and is directed to the third heat exchange section 129 by pumping means 143.
  • the LNG is sub-cooled to a temperature of -170 to -163 ° C, especially -168 to -164 ° C, and for example -167 to -165 ° vs.
  • the subcooled LNG is recovered in a sub-cooled liquefied natural gas withdrawal line 126 (which corresponds, along with the liquefied natural gas transfer line 130, to the liquefied natural gas supply line 9 in FIGS. and 2, which therefore feeds the pipe (preferably underwater) for the transfer of LNG to the storage).
  • the refrigerant circuit is adapted to take into account the presence of the third heat exchange section 129.
  • the vapor fraction of the refrigerant transported in the first refrigerant supply line 121 passes successively through the first heat exchange section 101, the second heat exchange section 102 and the third heat exchange section 129.
  • the vapor fraction of the refrigerant is thus cooled and condensed.
  • an expansion device 127 ensures the relaxation of the vapor fraction (cooled and then condensed) of the refrigerant.
  • the condensed vapor fraction after expansion is collected in a refrigerant return line 128 which again passes through the third heat exchange section 129, then the second heat exchange section 102, then the first heat exchange section 101.
  • the condensed and expanded vapor fraction is reheated and vaporized again in the heat exchange sections 129, 102 and 101, thereby absorbing the heat transferred by the natural gas and the vapor fraction of the refrigerant circulating in the first supply line of the refrigerant 121 and the liquid fraction of the refrigerant flowing in the second refrigerant supply line 1 16.
  • the circuit of the refrigerant liquid fraction is not changed in the illustrated example.
  • the provision of subcooling of the natural gas in the third heat exchange section 129 involves changing the composition of the (main) refrigerant to obtain a minimum temperature in the lower system.
  • FIG. 5 a variant of a terrestrial unit of an installation according to the invention is now described, comprising a unit for cooling and liquefying natural gas that is adapted from a cooling unit. and liquefaction of natural gas of the state of the art as described above, both for permanently subcooling the LNG and for sub-cooling the LNG further during the charging phase.
  • the set of reference numbers identical to those of FIG. 4 have the same meaning as above. Thus, only the modifications made for the purposes of the additional subcooling for the charging phase are described here, compared with the installation of FIG. 4.
  • a liquefied natural gas bypass line 131 is connected to the sub-cooled liquefied natural gas withdrawal line 126.
  • An expansion device 132 is provided on this sub-cooled liquefied natural gas bypass line 131.
  • An additional subcooling exchanger 133 allows heat exchange between the sub-cooled LNG of the subcooled liquefied natural gas withdrawal line 126 and the sub-cooled and expanded LNG of the liquefied natural gas bypass line. -cooled 131. Most of the subcooled LNG thus undergoes additional subcooling against warming and partial vaporization of the subcooled LNG fraction that has been expanded.
  • the sub-cooled liquefied natural gas bypass line 131 feeds a separation tank 134, at the outlet of which a vapor phase is collected in a vapor phase collection line 137, and a liquid phase in a liquid phase collection line 135, which is provided with pumping means 136 and connected to the subcooled liquefied natural gas withdrawal line 126 (before or after the connection of the gas bypass line) sub-cooled liquefied natural 131).
  • the liquid phase is thus mixed (and thus recycled) with the main stream of sub-cooled LNG.
  • the vapor phase transported in the vapor phase collection line 137 is compressed in a compressor 138 and then mixed (in the example illustrated) with the vaporization gas transported in the vaporization gas withdrawal line 109, for example at the level of the heat exchanger 1 10.
  • the additional subcooling can be easily started and stopped during the storage and loading phases by opening or closing the liquefied natural gas bypass line 131.
  • a first branch 139 makes it possible to recover the gas intended for combustion.
  • a second branch 140 provided with a compressor 141 and cooling means 142, makes it possible to recover the excess of gas (useless for the operation of the installation) which is advantageously recycled with the initial natural gas of the supply line natural gas 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un procédé de transport de gaz naturel liquéfié comprenant des phases successives de stockage et de chargement, chacune de ces phases comprenant les étapes successives suivantes: –fourniture de gaz naturel liquéfié à terre; –sous-refroidissement du gaz naturel liquéfié à une température inférieure à -161°C, à terre; –transfert du gaz naturel liquéfié jusqu'à une structure de stockage disposée en mer; –stockage du gaz naturel liquéfié dans la structure de stockage; la phase de chargement comprenant l'étape finale supplémentaire de: –chargement du gaz naturel liquéfié dans un navire de transport. L'invention concerne également une installation adaptée à la mise en œuvre de ce procédé.

Description

PROCEDE ET INSTALLATION DE TRANSPORT DE GAZ NATUREL LIQUEFIE
DOMAINE DE L'INVENTION
La présente invention concerne un procédé de transport de gaz naturel liquéfié, ainsi qu'une installation adaptée à la mise en œuvre de ce procédé. ARRIERE-PLAN TECHNIQUE
Les usines de production de gaz naturel liquéfié (ci-après GNL) sont des installations dont la taille et la complexité rendent à ce jour difficile une disposition en mer. Il se pose donc un problème de chargement du GNL produit sur la terre ferme dans des navires méthaniers. Actuellement, le gaz naturel une fois liquéfié est généralement stocké à terre, puis transféré à un poste de chargement situé en mer, d'où il est chargé sur les navires méthaniers.
Le transfert du GNL entre le stockage à terre et le poste de chargement en mer est effectué via une conduite généralement disposée sur une jetée.
Ce système présente un certain nombre d'inconvénients. Tout d'abord, dans certains configurations géographiques, il peut être nécessaire de bâtir une jetée très longue (jusqu'à 15 ou 20 km) afin d'obtenir le tirant d'eau nécessaire pour les navires méthaniers. La construction d'une telle jetée est très contraignante et représente un coût considérable. Par ailleurs, du fait des transferts de chaleur au travers de la conduite transportant le GNL pour le chargement, on constate l'apparition d'une grande quantité de vapeur (gaz d'évaporation ou gaz de flash) au chargement des navires. Cette vapeur doit être ramenée à terre pour être à nouveau liquéfiée, ce qui nécessite une ligne dédiée de grande capacité et un compresseur de grande puissance installé près des postes de chargement.
Il existe donc un réel besoin de mettre au point un procédé de transport de GNL pour le chargement de navires méthaniers qui ne présente pas les inconvénients ci-dessus, et qui en particulier soit plus simple à mettre en œuvre.
RESUME DE L'INVENTION
L'invention concerne en premier lieu un procédé de transport de gaz naturel liquéfié comprenant des phases successives de stockage et de chargement, chacune de ces phases comprenant les étapes successives suivantes :
- fourniture de gaz naturel liquéfié à terre ; - sous-refroidissement du gaz naturel liquéfié à une température inférieure à -161 °C, à terre ;
- transfert du gaz naturel liquéfié jusqu'à une structure de stockage disposée en mer ;
- stockage du gaz naturel liquéfié dans la structure de stockage ;
la phase de chargement comprenant l'étape finale supplémentaire de :
- chargement du gaz naturel liquéfié dans un navire de transport.
Selon un mode de réalisation, un gaz d'évaporation est émis lors du stockage du gaz naturel liquéfié, ledit gaz d'évaporation étant consommé et/ou au moins en partie liquéfié dans la structure de stockage.
Selon un mode de réalisation, le gaz naturel liquéfié est sous-refroidi à une température inférieure ou égale à -162°C, de préférence inférieure ou égale à - 163°C, de préférence inférieure ou égale à -164°C, de préférence inférieure ou égale à -165°C, avant son transfert, pendant la phase de stockage et la phase de chargement.
Selon un mode de réalisation, la phase de chargement comprend une étape de sous-refroidissement supplémentaire du gaz naturel liquéfié avant le transfert du gaz naturel liquéfié.
Selon un mode de réalisation, le gaz naturel liquéfié est sous-refroidi avant son transfert, lors de la phase de chargement, à une température inférieure d'au moins 1 °C, de préférence d'au moins 2°C, de préférence d'au moins 3°C, de préférence d'au moins 4°C, de préférence d'au moins 5°C, par rapport à la température de sous-refroidissement du gaz naturel liquéfié pendant la phase de stockage.
Selon un mode de réalisation, l'étape de sous-refroidissement supplémentaire du gaz naturel liquéfié est effectuée par prélèvement d'une fraction de gaz naturel liquéfié, détente de cette fraction et échange thermique entre le gaz naturel liquéfié et la fraction de gaz naturel liquéfié prélevée et détendue.
L'invention a également pour objet une installation de transport de gaz naturel liquéfié, comprenant :
- une unité terrestre, située à terre et comprenant :
une ligne d'amenée de gaz naturel liquéfié ;
des moyens de sous-refroidissement du gaz naturel liquéfié adaptés à sous-refroidir le gaz naturel liquéfié à une température inférieure à - 161 °C ;
- une unité maritime, située en mer et comprenant :
une structure de stockage de gaz naturel liquéfié ; des moyens de chargement du gaz naturel liquéfié dans un navire de transport ;
- une conduite de transfert adaptée à transférer du gaz naturel liquéfié de l'unité terrestre vers l'unité maritime.
Selon un mode de réalisation, la structure de stockage est un navire ou une barge échouée ou une barge flottante ou une plateforme.
Selon un mode de réalisation, la structure de stockage est pourvue de moyens de liquéfaction de gaz naturel.
Selon un mode de réalisation, l'unité terrestre comprend une unité de refroidissement et de liquéfaction de gaz naturel comportant au moins une section d'échange thermique et alimentant la ligne d'amenée de gaz naturel liquéfié, les moyens de sous-refroidissement du gaz naturel liquéfié étant constitués par une section d'échange thermique de l'unité de refroidissement et de liquéfaction de gaz naturel.
Selon un mode de réalisation, l'unité terrestre comprend des moyens de sous- refroidissement supplémentaire du gaz naturel liquéfié, susceptibles d'être alternativement actionnés et arrêtés.
Selon un mode de réalisation, les moyens de sous-refroidissement supplémentaire du gaz naturel liquéfié comprennent une ligne de dérivation de gaz naturel liquéfié sous-refroidi pourvue de moyens de détente, et un échangeur de sous-refroidissement supplémentaire entre la ligne d'amenée de gaz naturel et la ligne de dérivation de gaz naturel liquéfié sous-refroidi en aval des moyens de détente.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement un procédé de transport de GNL pour le chargement de navires méthaniers qui est plus simple à mettre en œuvre : il ne nécessite pas la construction d'une jetée équipée de plusieurs lignes de chargement de GNL et de ligne de retour des gaz d'évaporation vers la terre, ce qui représente une simplification importante lorsque le chargement des navires méthaniers doit s'effectuer à grande distance de la côte (par exemple à au moins 10 km, au moins 15 km ou au moins 20 km de la côte) ; et il limite par ailleurs l'émission de gaz d'évaporation. De la sorte le retour des gaz d'évaporation vers la côte est inutile.
Ceci est accompli grâce à une disposition selon laquelle le gaz naturel est refroidi et liquéfié à terre et transféré (sans nécessiter une jetée) vers une zone de stockage en mer. Le stockage en mer avec une réduction importante de la quantité de gaz d'évaporation produite en mer est rendu possible grâce à un sous- refroidissement du GNL en-dessous de la température de -161 °C qui est normalement celle du GNL produit. Selon certains modes de réalisation particuliers, l'invention présente également une ou de préférence plusieurs des caractéristiques avantageuses énumérées ci-dessous.
- L'invention permet de produire et charger du GNL dans des zones géographiques où une jetée est difficile ou impossible à construire, ou encore dans une zone où une jetée couperait en deux une zone maritime d'intérêt pour les bateaux.
- L'invention permet de réduire le nombre de torches à basse pression, car une seule torche est nécessaire (en mer) au lieu de deux dans l'état de la technique (une à terre au stockage et une en mer au chargement).
- La production de gaz d'évaporation est réduite. Les lignes terre - mer sont réduites et simplifiées. La ligne de retour à terre des gaz d'évaporation est supprimée. En effet, le débit de chargement des bateaux (5000 à 16000 m3/h) est très supérieur au débit de transfert de GNL vers le stockage (1000 à 2000 m3/h).
- Lorsque le stockage est effectué sur un navire méthanier, si celui-ci est autonome en termes d'utilités et/ou de reliquéfaction de gaz d'évaporation, il est donc inutile de prévoir des pompes de chargement de GNL et un compresseur de gaz d'évaporation (le retour du GNL évaporé à terre étant inutile). Le personnel nécessaire à l'opération et à la maintenance est équivalent à celui d'un navire méthanier, et le quartier de vie y est intégré.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente de manière schématique les éléments principaux d'une installation selon un mode de réalisation de l'invention, en phase de non chargement de méthanier, appelée ici stockage.
La figure 2 représente de manière schématique les éléments principaux d'une installation selon un mode de réalisation de l'invention, en phase de chargement.
La figure 3 représente de manière schématique une unité terrestre d'une installation selon l'état de la technique.
Les figures 4 et 5 représentent de manière schématique des modes de réalisation d'une unité terrestre d'une installation selon l'invention (comprenant l'unité de refroidissement et de liquéfaction de gaz naturel ainsi que les dispositifs de sous refroidissement du GNL).
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. Transport et chargement de GNL
En faisant référence à la figure 1 , on décrit un mode de réalisation du procédé et de l'installation selon l'invention pendant une phase de stockage du GNL.
L'installation comprend une unité terrestre 1 , située à terre (sur la côte) et une unité maritime 2, située en mer. La distance entre l'unité terrestre 1 et l'unité maritime 2 est de préférence supérieure ou égale à 5 km, ou supérieure ou égale à 10 km, ou supérieure ou égale à 15 km, ou supérieure ou égale à 20 km.
Dans le cadre de l'invention, l'expression « à terre » peut être prise dans son sens strict, ou bien, selon un mode de réalisation, couvrir également une situation en mer, la profondeur de l'eau étant faible (c'est-à-dire moins de 15 m ou moins de 10 m ou moins de 5 m). Dans ce cas, soit la totalité de l'unité terrestre 1 est située en mer (la profondeur de l'eau étant faible), soit l'unité terrestre 1 est répartie à terre et en mer (la profondeur de l'eau étant faible).
L'unité terrestre 1 comprend une unité de refroidissement et de liquéfaction de gaz naturel 3. Le GNL produit par l'unité de refroidissement et de liquéfaction de gaz naturel 3 est récolté par une ligne de sortie de l'unité de liquéfaction 4. Le GNL est en principe à une température de -148°C environ dans cette ligne de sortie de l'unité de liquéfaction 4. Celle-ci alimente un ballon de vaporisation finale 5. Le GNL transporté dans la ligne de sortie de l'unité de liquéfaction 4 est détendu en amont du ballon de vaporisation finale 5 puis séparé dans celui-ci du gaz de vaporisation produit, qui est récolté dans une ligne de soutirage de gaz de vaporisation 6.
La ligne de soutirage de gaz de vaporisation 6 alimente un compresseur 7, en sortie duquel est connectée une première ligne de gaz de combustion 8. Le gaz de vaporisation est donc comprimé puis brûlé pour fournir de l'énergie à l'installation. La température du GNL en sortie de l'unité de refroidissement et de liquéfaction de gaz naturel 3 est généralement fixée pour satisfaire le bilan énergétique de l'installation. L'excédent, s'il existe peut être recyclé dans l'installation. Plus de détails sur le cheminement du gaz de vaporisation sont fournis ci-dessous en relation avec les figures 3, 4 et 5.
En sortie du ballon de vaporisation finale 5 est également connectée une ligne d'amenée de gaz naturel liquéfié 9, par laquelle le GNL destiné au stockage est récolté. Le GNL est en principe à ce stade à une température de -161 à -160°C. La ligne d'amenée de gaz naturel liquéfié 9 alimente des moyens de sous- refroidissement du gaz naturel liquéfié 10. En sortie des moyens de sous- refroidissement du gaz naturel liquéfié 10 est connectée une conduite de transfert 1 1 reliant l'unité terrestre 1 à l'unité maritime 2. La conduite de transfert 1 1 alimente une structure de stockage de gaz naturel liquéfié 12 dans l'unité maritime 2. Les moyens de sous-refroidissement du gaz naturel liquéfié 10 sont adaptés à sous-refroidir le GNL à une température inférieure à -161 °C, et notamment à une température inférieure ou égale à -162°C, de préférence inférieure ou égale à - 163°C, de préférence inférieure ou égale à -164°C, de préférence inférieure ou égale à -165°C, par exemple inférieure ou égale à -166°C. Par exemple le GNL peut être sous-refroidi à une température de -167 à -165°C.
L'intensité du sous-refroidissement est de préférence adaptée en fonction des entrées de chaleur subies dans la conduite de transfert 1 1 , de sorte que le GNL dans la structure de stockage de gaz naturel liquéfié 12 soit à une température de -161 à - 160°C (légèrement inférieure à celle d'un stockage classique à terre).
La conduite de transfert 1 1 est de préférence une conduite sous-marine, c'est- à-dire une conduite disposée sur le fond marin. Aucune jetée n'est donc nécessaire entre l'unité terrestre 1 et l'unité maritime 2. De préférence, la conduite de transfert 1 1 sous-marine comprend au moins un tube interne (par exemple d'un diamètre de 24 pouces environ) et un tube externe concentrique avec le tube interne, le tube interne et le tube externe étant séparés par un matériau calorifuge (par exemple un aérogel). Un tel système communément appelé « pipe in pipe » permet de limiter les entrées de chaleur.
Le tube interne est de préférence fabriqué dans un alliage présentant un coefficient de dilatation très faible. On peut par exemple utiliser de l'acier inoxydable avec environ 36% de nickel (alliage connu sous le nom d'Invar®). Le tube externe est par exemple fabriqué en acier carbone (avec un revêtement anti-corrosion).
L'utilisation de l'alliage ci-dessus permet d'éviter les lyres de dilatation qui sont généralement présentes dans les installations de l'état de la technique pour les conduites situées sur les jetées. Ainsi, on réduit les pertes de charge et les entrées de chaleur lors du transport du GNL.
La liaison entre la conduite de transfert 1 1 et la structure de stockage 12 peut être assurée par une ou des ligne(s) flexible(s) ou non flexible(s).
En sortie de la structure de stockage 12 sont prévus des moyens de chargement du gaz naturel liquéfié 13, qui sont adaptés à transférer le GNL vers un navire de transport (non représenté sur la figure 1 ) lors de la phase de chargement. Ces moyens de chargement du gaz naturel liquéfié 13 peuvent comprendre des conduites flexibles ou non, connues dans le domaine. Un poste de mouillage 15 (quai) est adapté à recevoir un navire de transport. Le poste de mouillage 15 peut lui- même être pourvu de conduites flexibles ou non pour permettre le chargement sur des navires de chargement.
On prévoit avantageusement un système de recirculation du GNL (non représenté) depuis les moyens de chargement du gaz naturel liquéfié 13 vers la structure de stockage 12 pendant la phase de stockage, afin de maintenir les moyens de chargement du gaz naturel liquéfié 13 à la même température que lors de la phase de chargement.
La structure de stockage 12 en mer peut être soit un navire de stockage (méthanier), soit un stockage fixe (sur plateforme, ou une barge échouée) soit un stockage flottant de type barge ou bateau.
Dans le cas où la structure de stockage 12 est flottante, celle-ci est ancrée. De préférence, la capacité de stockage en GNL est supérieure à celle des navires de chargement utilisés et ce afin de pouvoir charger les navires de chargement à leur capacité maximale, sans avoir à interrompre le stockage (et donc la production) de GNL entre les rotations des navires de chargement. Par exemple, à titre de structure de stockage 12, on peut utiliser un navire de type Q-Max, qui présente une capacité de 266 000 m3 environ ou éventuellement un navire de type Q-Flex, dont la capacité est de 210 000 à 216 000 m3 environ. On peut alors typiquement utiliser comme navires de chargement des méthaniers conventionnels présentant une capacité par exemple de 120 000 à 140 000 m3 environ voire de capacité supérieure.
Un gaz d'évaporation est généré dans la structure de stockage 12. On peut donc prévoir des moyens de liquéfaction de gaz naturel 14 sur la structure de stockage 12, qui sont adaptés à collecter le gaz d'évaporation, à le comprimer, à le refroidir, à le liquéfier (à nouveau), puis à le recycler vers le stockage. Une partie du gaz d'évaporation est également utilisée en tant que gaz de combustion pour les besoins notamment des moyens de liquéfaction de gaz naturel 14, lorsqu'ils sont présents. On prévoit pour ce faire une deuxième ligne de gaz de combustion 20 toujours sur la structure de stockage 12, adaptée à la collecte de cette partie du gaz d'évaporation.
Du fait de la basse température du GNL stocké (grâce au sous- refroidissement du GNL avant son transfert dans la conduite de transfert 1 1 ), l'émission de gaz d'évaporation reste faible. Par conséquent, les moyens de liquéfaction de gaz naturel 14 nécessaires ont une taille, une complexité et une puissance compatibles avec une situation en mer. En particulier, lorsque la structure de stockage 12 est un navire méthanier avec un dispositif de liquéfaction de gaz d'évaporation, ce dispositif conventionneNement présent sur ce type de navires peut suffire. A titre d'exemple, un navire de type Q-Max est pourvu de moyens de liquéfaction permettant de liquéfier environ 7 tonnes de gaz par heure.
Alternativement, on peut prévoir un autre dispositif consommateur de gaz à la place des moyens de liquéfaction de gaz naturel 14, notamment un dispositif moins complexe, tel que par exemple des moyens de génération électrique par turbines à gaz. En faisant référence à la figure 2, on décrit un mode de réalisation du procédé et de l'installation selon l'invention pendant une phase de chargement du GNL. L'ensemble des numéros de référence identiques à ceux de la figure 1 ont la même signification.
Sur la figure 2 est représenté un navire de transport 16 sur le poste de mouillage 15. Le GNL issu du stockage est chargé vers le navire de transport 16 par les moyens de chargement du gaz naturel liquéfié 13.
Lors du chargement, du gaz d'évaporation est aussi produit dans le navire de transport 16. Ce gaz d'évaporation est recyclé vers la structure de stockage 12 par une ligne de recyclage 17 pourvue d'un compresseur 18. Afin que cet apport supplémentaire de gaz d'évaporation lors de la phase de chargement (ledit gaz d'évaporation devant être à nouveau liquéfié ou bien utilisé comme gaz de combustion) reste compatible avec les besoins en gaz combustible et les moyens de liquéfaction de gaz naturel 14 disponibles sur la structure de stockage 12, et afin d'autre part qu'il n'y ait pas d'augmentation de la température du GNL dans la structure de stockage 12 lors de la phase de chargement, on prévoit un sous- refroidissement supplémentaire du GNL avant son transfert dans la conduite de transfert 1 1 .
Pour ce faire, il est possible de prévoir que les moyens de sous- refroidissement du gaz naturel liquéfié 10 mentionnés ci-dessus puissent fournir une intensité de sous-refroidissement différente en phase de chargement par rapport à la phase de stockage. Il est toutefois plus simple de prévoir plutôt des moyens de sous- refroidissement supplémentaire du gaz naturel liquéfié 19 qui sont susceptibles d'être alternativement actionnés (pendant la phase de chargement) et arrêtés (pendant la phase de stockage), et ce sans nuire à la fiabilité et à l'efficacité du procédé. Dans ce cas, les moyens de sous refroidissement supplémentaire du gaz naturel liquéfié 19 peuvent être installés dans l'unité maritime 2, ou, de préférence et comme illustré dans ce qui suit, dans l'unité terrestre 1 .
Par exemple, le sous-refroidissement supplémentaire du GNL assuré par les moyens de sous-refroidissement supplémentaire du gaz naturel liquéfié 19 peut être d'au moins 1 °C, de préférence d'au moins 2°C, de préférence d'au moins 3°C, de préférence d'au moins 4°C, de préférence d'au moins 5°C, par exemple de 5 à 7°C (et notamment d'environ 6°C) en plus du sous-refroidissement réalisé pendant la phase de stockage.
Lorsque le navire de chargement 16 est pourvu de son propre dispositif de liquéfaction pour le gaz d'évaporation, il est possible d'utiliser ce dispositif en plus des moyens de liquéfaction de gaz naturel 14, pour alléger le sous-refroidissement supplémentaire. Sous-refroidissement du GNL
Dans ce qui suit, on commence par décrire une installation classique de refroidissement et de liquéfaction de gaz naturel, afin d'identifier dans un deuxième temps les équipements supplémentaires nécessaires pour la mise en œuvre du sous-refroidissement du GNL proposé par l'invention.
La présente description est établie en rapport avec un système de refroidissement et de liquéfaction de gaz naturel dit « C3-MR », dans lequel deux réfrigérants sont utilisés, d'une part du propane et d'autre part un mélange d'hydrocarbures et d'azote. Toutefois, l'invention pourrait s'appliquer de manière analogue à d'autres types d'unités de refroidissement et liquéfaction de gaz naturel.
En faisant référence à la figure 3, l'unité de refroidissement et de liquéfaction de gaz naturel comprend une ligne d'amenée de gaz naturel 100, qui traverse une première section d'échange thermique 101 et une deuxième section d'échange thermique 102. Les sections d'échange thermique 101 , 102 peuvent être deux (ou plusieurs) compartiments d'un même échangeur ou d'échangeurs distincts.
Le gaz naturel transporté dans la ligne d'amenée de gaz naturel 100 est refroidi et liquéfié à la traversée de la première section d'échange thermique 101 et de la deuxième section d'échange thermique 102. Il est récupéré en sortie de ce dernier dans une ligne de soutirage de gaz naturel liquéfié 103 (correspondant à la ligne de sortie de l'unité de liquéfaction 4 décrite ci-dessus en rapport avec les figures 1 et 2) à une température typique de -148°C environ. Sur cette ligne de soutirage de gaz naturel liquéfié 103 sont prévus des moyens de détente 104, 105, comprenant par exemple un détendeur 104 qui peut être de type turbine et une vanne de détente 105. Ainsi, le GNL est détendu (typiquement jusqu'à la pression atmosphérique) et refroidi jusqu'à une température de -162 à -160°C environ.
La ligne de soutirage de gaz naturel liquéfié 103 alimente finalement un ballon de vaporisation finale 106 (correspondant au ballon de vaporisation finale 5 décrit ci- dessus en rapport avec les figures 1 et 2), dans lequel le gaz de vaporisation généré par la détente du GNL est séparé du GNL. Le gaz de vaporisation est récolté dans une ligne de soutirage de gaz de vaporisation 109 (correspondant à la référence 6 sur les figures 1 et 2) connectée en sortie du ballon de vaporisation finale 106.
Afin d'exploiter les frigories disponibles dans le gaz de vaporisation, une partie du gaz naturel issu dans la ligne d'amenée de gaz naturel 100 est détournée dans une ligne de dérivation de gaz naturel 1 13. Cette ligne de dérivation de gaz naturel 1 13 traverse un échangeur thermique 1 10, qui est également traversé par la ligne de soutirage de gaz de vaporisation 109. Le gaz naturel détourné est donc refroidi contre le réchauffement du gaz de vaporisation. Le gaz naturel détourné ainsi refroidi est mélangé avec le GNL, la ligne de dérivation de gaz naturel 1 13 débouchant sur la ligne de soutirage de gaz naturel liquéfié 103, par exemple après la vanne de détente 105 et avant le ballon de vaporisation finale 106.
En sortie de l'échangeur thermique 1 10, le gaz de vaporisation est comprimé dans un compresseur 1 1 1 et refroidi par des moyens de refroidissement 1 12 disposés sur la ligne de soutirage de gaz de vaporisation 109. Le gaz de vaporisation comprimé est utilisé comme gaz de combustion pour les besoins du fonctionnement de l'unité de refroidissement et de liquéfaction.
En sortie du ballon de vaporisation finale 106 est également connectée une ligne d'amenée de gaz naturel liquéfié 108 (correspondant à la référence 9 sur les figures 1 et 2), par laquelle le GNL est récolté et envoyé au stockage, avec des moyens de pompage 107.
Dans l'exemple illustré, le refroidissement et la liquéfaction du gaz naturel sont effectués par échange de chaleur avec un réfrigérant (principal) comprenant un mélange d'hydrocarbures et d'azote. Ce réfrigérant est transporté dans une ligne principale d'amenée de réfrigérant 1 14 qui alimente un ballon de vaporisation de réfrigérant 1 15, dans lequel une fraction du réfrigérant est vaporisée. En sortie du ballon de vaporisation de réfrigérant 1 15 sont respectivement connectées une première ligne d'amenée de réfrigérant 121 (qui collecte la fraction vapeur du réfrigérant) et une deuxième ligne d'amenée de réfrigérant 1 16 (qui collecte la fraction liquide du réfrigérant).
La première ligne d'amenée de réfrigérant 121 traverse la première section d'échange thermique 101 puis la deuxième section d'échange thermique 102. La fraction vapeur du réfrigérant est ainsi refroidie puis condensée. En sortie de la deuxième section d'échange thermique 102, un dispositif de détente 122 assure la détente de la fraction vapeur (refroidie et condensée) du réfrigérant. La fraction vapeur condensée puis détendue est collectée dans une ligne de retour de réfrigérant 123 qui traverse à nouveau la deuxième section d'échange thermique 102 puis la première section d'échange thermique 101 .
La fraction vapeur condensée puis détendue est donc réchauffée et à nouveau vaporisée dans les sections d'échange thermique 102 puis 101 , pour refroidir le gaz naturel et la fraction vapeur du réfrigérant circulant dans la première ligne d'amenée de réfrigérant 121 (et également par la fraction liquide du réfrigérant circulant dans la deuxième ligne d'amenée de réfrigérant 1 16, ainsi que décrit ci- dessous).
La deuxième ligne d'amenée de réfrigérant 1 16 traverse la première section d'échange thermique 101 . La fraction liquide du réfrigérant est ainsi refroidie. En sortie de la première section d'échange thermique 101 , un dispositif de détente 1 17 assure la détente de la fraction liquide (sous refroidie) du réfrigérant. La fraction liquide détendue est collectée dans une ligne de retour de réfrigérant 1 18 qui est par exemple connectée à la ligne de retour de réfrigérant 123 entre la deuxième section d'échange thermique 102 et la première section d'échange thermique 101 .
De la sorte, la fraction liquide détendue du réfrigérant est également réchauffée et vaporisée dans la première section d'échange thermique 101 , absorbant ainsi la chaleur cédée par le gaz naturel, par la fraction vapeur du réfrigérant circulant dans la première ligne d'amenée de réfrigérant 121 et par la fraction liquide du réfrigérant circulant dans la deuxième ligne d'amenée de réfrigérant 1 16.
L'ensemble du réfrigérant vaporisé et réchauffé est récolté dans une ligne de collecte de réfrigérant réchauffé 124 en sortie de la première section d'échange thermique 101 , qui alimente des moyens de compression 1 19 puis des moyens de refroidissement de réfrigérant 120. Ainsi le réfrigérant est comprimé puis refroidi. La ligne principale d'amenée de réfrigérant 1 14 est connectée en sortie des moyens de refroidissement de réfrigérant 120.
Les moyens de refroidissement de réfrigérant 120 comprennent dans le cas présent un cycle de réfrigération par un réfrigérant auxiliaire (non représenté), qui est en l'occurrence du propane, dans le cadre du procédé de liquéfaction de type « C3- MR » pris comme exemple.
En faisant référence à la figure 4, on décrit à présent une unité terrestre d'une installation selon l'invention, comprenant une unité de refroidissement et de liquéfaction de gaz naturel, adaptée à partir d'une unité de refroidissement et de liquéfaction de gaz naturel de l'état de la technique telle que décrite ci-dessus pour fournir les moyens de sous-refroidissement de GNL nécessaires pour la mise en œuvre de l'invention. L'ensemble des numéros de référence identiques à ceux de la figure 3 ont la même signification que ci-dessus. On décrit donc uniquement ici les modifications apportées à l'installation, conformément à l'invention.
La principale modification de l'installation est que l'unité de refroidissement et de liquéfaction de gaz naturel comprend une troisième section d'échange thermique 129 en aval des sections d'échange thermique 101 , 102 décrites ci-dessus. Cette troisième section d'échange thermique 129 peut être un compartiment supplémentaire d'un échangeur ou bien être un échangeur distinct.
Le GNL en sortie de la deuxième section d'échange de chaleur 102 est toujours à une température typique de -148°C environ. Il est récupéré dans une première ligne de transfert de gaz naturel liquéfié 130 sur laquelle sont prévus des moyens de détente 104, 105 tels que décrits ci-dessus, permettant encore de détendre le GNL (typiquement jusqu'à la pression atmosphérique) et de le refroidir jusqu'à une température de -162 à -160°C environ. Après séparation du gaz de vaporisation dans le ballon de vaporisation 106 décrit ci-dessus, le GNL est récupéré dans une deuxième ligne de transfert de gaz naturel liquéfié 125, et est dirigé vers la troisième section d'échange thermique 129 par des moyens de pompage 143.
En traversant cette troisième section d'échange thermique 129, le GNL est sous-refroidi à une température typique de -170 à -163°C, notamment de -168 à - 164°C, et par exemple de -167 à -165°C. Le GNL sous-refroidi est récupéré dans une ligne de soutirage de gaz naturel liquéfié sous-refroidi 126 (qui correspond, avec la ligne de transfert de gaz naturel liquéfié 130, à la ligne d'amenée de gaz naturel liquéfié 9 dans les figures 1 et 2, et qui alimente donc la conduite (de préférence sous-marine) pour le transfert du GNL vers le stockage).
Le circuit réfrigérant est adapté pour tenir compte de la présence de la troisième section d'échange thermique 129. Ainsi, la fraction vapeur du réfrigérant transportée dans la première ligne d'amenée de réfrigérant 121 traverse successivement la première section d'échange thermique 101 , la deuxième section d'échange thermique 102 et la troisième section d'échange thermique 129. La fraction vapeur du réfrigérant est ainsi refroidie puis condensée.
En sortie de la troisième section d'échange thermique 129, un dispositif de détente 127 assure la détente de la fraction vapeur (refroidie puis condensée) du réfrigérant. La fraction vapeur condensée après détente est collectée dans une ligne de retour de réfrigérant 128 qui traverse à nouveau la troisième section d'échange thermique 129, puis la deuxième section d'échange thermique 102, puis la première section d'échange thermique 101 .
La fraction vapeur condensée et détendue est réchauffée et à nouveau vaporisée dans les sections d'échange thermique 129, 102 puis 101 , absorbant ainsi la chaleur cédée par le gaz naturel et par la fraction vapeur du réfrigérant circulant dans la première ligne d'amenée de réfrigérant 121 et par la fraction liquide du réfrigérant circulant dans la deuxième ligne d'amenée de réfrigérant 1 16. Le circuit de la fraction liquide du réfrigérant n'est, lui, pas modifié dans l'exemple illustré.
La fourniture d'un sous-refroidissement du gaz naturel dans la troisième section d'échange thermique 129 suppose de modifier la composition du réfrigérant (principal) afin d'obtenir une température minimale dans le système plus basse.
Un exemple de la variation de composition du réfrigérant principal (MR) pour dans le cadre de l'invention par rapport à une installation conventionnelle avec stockage à terre est donné ci-dessous (en pourcentages molaires):
- Azote : 1 1 ,23 au lieu de 10,47.
- Méthane : 37,82 au lieu de 41 ,18.
- Ethane : 37,40 au lieu de 36,25. - Propane : 13,55 au lieu de 12,10.
En faisant référence à la figure 5, on décrit à présent une variante d'une unité terrestre d'une installation selon l'invention, comprenant une unité de refroidissement et de liquéfaction de gaz naturel qui est adaptée à partir d'une unité de refroidissement et de liquéfaction de gaz naturel de l'état de la technique telle que décrite ci-dessus, à la fois pour sous-refroidir le GNL de façon permanente et pour sous-refroidir le GNL de manière supplémentaire pendant la phase de chargement. L'ensemble des numéros de référence identiques à ceux de la figure 4 ont la même signification que ci-dessus. On décrit donc uniquement ici les modifications apportées pour les besoins du sous-refroidissement supplémentaire pour la phase de chargement, par rapport à l'installation de la figure 4.
Dans cette variante, une ligne de dérivation de gaz naturel liquéfié 131 est connectée sur la ligne de soutirage de gaz naturel liquéfié sous-refroidi 126. Un dispositif de détente 132 est prévu sur cette ligne de dérivation de gaz naturel liquéfié sous-refroidi 131 . Ainsi, une partie du GNL sous-refroidi est prélevée dans la ligne de dérivation de gaz naturel liquéfié sous-refroidi 131 et détendue à une pression qui peut être inférieure à la pression atmosphérique de 1 .013 bar absolu (par exemple à une pression de 0,7 à 0,8 bar absolu).
Un échangeur de sous-refroidissement supplémentaire 133 permet un échange de chaleur entre le GNL sous-refroidi de la ligne de soutirage de gaz naturel liquéfié sous-refroidi 126 et le GNL sous-refroidi et détendu de la ligne de dérivation de gaz naturel liquéfié sous-refroidi 131 . La majeure partie du GNL sous-refroidi subit ainsi un sous-refroidissement supplémentaire contre le réchauffement et la vaporisation partielle de la fraction du GNL sous-refroidi qui a été détendue.
En aval de l'échangeur de sous-refroidissement supplémentaire 133, la ligne de dérivation de gaz naturel liquéfié sous-refroidi 131 alimente un ballon de séparation 134, en sortie duquel on récolte une phase vapeur dans une ligne de collecte de phase vapeur 137, et une phase liquide dans une ligne de collecte de phase liquide 135, qui est pourvue de moyens de pompage 136 et connectée à la ligne de soutirage de gaz naturel liquéfié sous-refroidi 126 (avant ou après le branchement de la ligne de dérivation de gaz naturel liquéfié sous-refroidi 131 ). La phase liquide est donc mélangée (et ainsi recyclée) avec le flux principal de GNL sous-refroidi.
La phase vapeur transportée dans la ligne de collecte de phase vapeur 137 est comprimée dans un compresseur 138 puis mélangée (dans l'exemple illustré) avec le gaz de vaporisation transporté dans la ligne de soutirage de gaz de vaporisation 109, par exemple au niveau de l'échangeur thermique 1 10. Le sous-refroidissement supplémentaire peut être facilement mis en marche et arrêté au grès des phases de stockage et de chargement, en ouvrant ou en fermant la ligne de dérivation de gaz naturel liquéfié 131 .
En raison de l'excès de gaz produit lorsque le sous-refroidissement supplémentaire est opéré, on prévoit avantageusement de diviser la ligne de soutirage de gaz de vaporisation 109 en deux branches en aval de la compression et du refroidissement par le compresseur 1 1 1 et les moyens de refroidissement 1 12. Une première branche 139 permet de récupérer le gaz destiné à la combustion. Une deuxième branche 140 pourvu d'un compresseur 141 et de moyens de refroidissement 142, permet de récupérer l'excès de gaz (inutile pour le fonctionnement de l'installation) qui est avantageusement recyclé avec le gaz naturel initial de la ligne d'amenée de gaz naturel 100.
De manière alternative à ce qui a été décrit ci-dessus, il faut noter qu'un cycle frigorifique additionnel pourrait être utilisé pour les moyens de sous-refroidissement supplémentaire du gaz naturel liquéfié 19.

Claims

REVENDICATIONS
Procédé de transport de gaz naturel liquéfié comprenant des phases successives de stockage et de chargement, chacune de ces phases comprenant les étapes successives suivantes :
- fourniture de gaz naturel liquéfié à terre ;
- sous-refroidissement du gaz naturel liquéfié à une température inférieure à -161 °C, à terre ;
- transfert du gaz naturel liquéfié jusqu'à une structure de stockage disposée en mer ;
- stockage du gaz naturel liquéfié dans la structure de stockage ; la phase de chargement comprenant l'étape finale supplémentaire de :
- chargement du gaz naturel liquéfié dans un navire de transport.
Procédé selon la revendication 1 , dans lequel un gaz d'évaporation est émis lors du stockage du gaz naturel liquéfié, ledit gaz d'évaporation étant consommé et/ou au moins en partie liquéfié dans la structure de stockage.
Procédé selon l'une des revendications 1 à 2, dans lequel le gaz naturel liquéfié est sous-refroidi à une température inférieure ou égale à - 162°C, de préférence inférieure ou égale à -163°C, de préférence inférieure ou égale à -164°C, de préférence inférieure ou égale à - 165°C, avant son transfert, pendant la phase de stockage et la phase de chargement.
Procédé selon l'une des revendications 1 à 3, dans lequel la phase de chargement comprend une étape de sous-refroidissement supplémentaire du gaz naturel liquéfié avant le transfert du gaz naturel liquéfié.
Procédé selon la revendication 4, dans lequel le gaz naturel liquéfié est sous-refroidi avant son transfert, lors de la phase de chargement, à une température inférieure d'au moins 1 °C, de préférence d'au moins 2°C, de préférence d'au moins 3°C, de préférence d'au moins 4°C, de préférence d'au moins 5°C, par rapport à la température de sous- refroidissement du gaz naturel liquéfié pendant la phase de stockage. Procédé selon la revendication 4 ou 5, dans lequel l'étape de sous- refroidissement supplémentaire du gaz naturel liquéfié est effectuée par prélèvement d'une fraction de gaz naturel liquéfié, détente de cette fraction et échange thermique entre le gaz naturel liquéfié et la fraction de gaz naturel liquéfié prélevée et détendue.
Installation de transport de gaz naturel liquéfié, comprenant :
- une unité terrestre (1 ), située à terre et comprenant :
une ligne d'amenée de gaz naturel liquéfié (9) ;
des moyens de sous-refroidissement du gaz naturel liquéfié (10) adaptés à sous-refroidir le gaz naturel liquéfié à une température inférieure à -161 °C ;
- une unité maritime (2), située en mer et comprenant :
une structure de stockage de gaz naturel liquéfié (12) ;
des moyens de chargement du gaz naturel liquéfié (13) dans un navire de transport (16) ;
- une conduite de transfert (1 1 ) adaptée à transférer du gaz naturel liquéfié de l'unité terrestre (1 ) vers l'unité maritime (2).
Installation selon la revendication 7, dans laquelle la structure de stockage (12) est un navire ou une barge échouée ou une barge flottante ou une plateforme.
Installation selon l'une des revendications 7 à 8, dans laquelle la structure de stockage (12) est pourvue de moyens de liquéfaction de gaz naturel (14).
Installation selon l'une des revendications 7 à 9, dans laquelle l'unité terrestre (1 ) comprend une unité de refroidissement et de liquéfaction de gaz naturel (3) comportant au moins une section d'échange thermique (101 , 102, 129) et alimentant la ligne d'amenée de gaz naturel liquéfié (9), et dans laquelle les moyens de sous-refroidissement du gaz naturel liquéfié (10) sont constitués par une section d'échange thermique (129) de l'unité de refroidissement et de liquéfaction de gaz naturel (3).
11. Installation selon l'une des revendications 7 à 10, dans laquelle l'unité terrestre (1 ) comprend des moyens de sous-refroidissement supplémentaire du gaz naturel liquéfié (19), susceptibles d'être alternativement actionnés et arrêtés.
12. Installation selon la revendication 1 1 , dans laquelle les moyens de sous-refroidissement supplémentaire du gaz naturel liquéfié (19) comprennent une ligne de dérivation de gaz naturel liquéfié sous- refroidi (131 ) pourvue de moyens de détente (132), et un échangeur de sous-refroidissement supplémentaire (133) entre la ligne d'amenée de gaz naturel (9) et la ligne de dérivation de gaz naturel liquéfié sous- refroidi (131 ) en aval des moyens de détente (132).
PCT/IB2011/055062 2010-11-16 2011-11-14 Procede et installation de transport de gaz naturel liquefie WO2012066460A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059404A FR2967484B1 (fr) 2010-11-16 2010-11-16 Procede et installation de transport de gaz naturel liquefie
FR1059404 2010-11-16

Publications (2)

Publication Number Publication Date
WO2012066460A2 true WO2012066460A2 (fr) 2012-05-24
WO2012066460A3 WO2012066460A3 (fr) 2013-09-12

Family

ID=44317945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/055062 WO2012066460A2 (fr) 2010-11-16 2011-11-14 Procede et installation de transport de gaz naturel liquefie

Country Status (2)

Country Link
FR (1) FR2967484B1 (fr)
WO (1) WO2012066460A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059773A (ko) * 2012-09-21 2015-06-02 우드사이드 에너지 테크놀로지스 피티와이 리미티드 Lng 생산 플랜트용 일체형 저장/하역 설비
US9168494B2 (en) 2010-10-11 2015-10-27 Total S.A. Unit for establishing contact between a gas and a liquid for a floating platform

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749806A1 (fr) * 2012-12-27 2014-07-02 Shell Internationale Research Maatschappij B.V. Procédé d'alimentation d'une charge d'hydrocarbures à partir d'un emplacement de départ vers une destination
WO2014135702A2 (fr) * 2013-03-08 2014-09-12 Linde Aktiengesellschaft Terminal de transfert de gaz naturel liquéfié et procédé correspondant
CN105570685B (zh) * 2015-12-16 2019-03-26 中国石油大学(北京) 一种集气站放空天然气的回收系统及工艺
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) * 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system
FR3080906B1 (fr) * 2018-05-07 2021-01-15 Air Liquide Procede et installation de stockage et de distribution d'hydrogene liquefie
CN111256028A (zh) * 2019-12-26 2020-06-09 中国科学院理化技术研究所 一种氢加注系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2111750A1 (en) * 1970-10-21 1972-06-09 Liquid Gas Anlagen Union Liquefied natural gas - production and storage on floating installation
US3766583A (en) * 1970-07-02 1973-10-23 Gulf Oil Corp Offshore liquefied gas terminal
US4778497A (en) * 1987-06-02 1988-10-18 Union Carbide Corporation Process to produce liquid cryogen
GB2229262A (en) * 1989-03-15 1990-09-19 Foster Wheeler Energy Ltd Gas processing system
US20030154739A1 (en) * 2002-01-30 2003-08-21 Fanning Robert A. Processes and systems for liquefying natural gas
US20030177786A1 (en) * 2002-02-15 2003-09-25 O'brien John V. Separating nitrogen from methane in the production of LNG
AU2008219347A1 (en) * 2007-09-28 2009-04-23 Woodside Energy Limited Linked LNG production facility
FR2928719A1 (fr) * 2008-03-11 2009-09-18 Total Sa Sa Procede segmente de production de gaz naturel liquefie.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766583A (en) * 1970-07-02 1973-10-23 Gulf Oil Corp Offshore liquefied gas terminal
FR2111750A1 (en) * 1970-10-21 1972-06-09 Liquid Gas Anlagen Union Liquefied natural gas - production and storage on floating installation
US4778497A (en) * 1987-06-02 1988-10-18 Union Carbide Corporation Process to produce liquid cryogen
GB2229262A (en) * 1989-03-15 1990-09-19 Foster Wheeler Energy Ltd Gas processing system
US20030154739A1 (en) * 2002-01-30 2003-08-21 Fanning Robert A. Processes and systems for liquefying natural gas
US20030177786A1 (en) * 2002-02-15 2003-09-25 O'brien John V. Separating nitrogen from methane in the production of LNG
AU2008219347A1 (en) * 2007-09-28 2009-04-23 Woodside Energy Limited Linked LNG production facility
FR2928719A1 (fr) * 2008-03-11 2009-09-18 Total Sa Sa Procede segmente de production de gaz naturel liquefie.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168494B2 (en) 2010-10-11 2015-10-27 Total S.A. Unit for establishing contact between a gas and a liquid for a floating platform
KR20150059773A (ko) * 2012-09-21 2015-06-02 우드사이드 에너지 테크놀로지스 피티와이 리미티드 Lng 생산 플랜트용 일체형 저장/하역 설비
KR102115632B1 (ko) * 2012-09-21 2020-05-27 우드사이드 에너지 테크놀로지스 피티와이 리미티드 Lng 생산 플랜트용 일체형 저장/하역 설비

Also Published As

Publication number Publication date
FR2967484A1 (fr) 2012-05-18
WO2012066460A3 (fr) 2013-09-12
FR2967484B1 (fr) 2012-11-16

Similar Documents

Publication Publication Date Title
WO2012066460A2 (fr) Procede et installation de transport de gaz naturel liquefie
EP3743652B1 (fr) Pompe à chaleur cryogénique et son utilisation pour le traitement de gaz liquéfié
KR102116718B1 (ko) 액체 질소를 저장하는 lng 운반선에서의 천연 가스 액화 방법
US7119460B2 (en) Floating power generation system
KR102082362B1 (ko) 극저온 저장 선박에 있는 보일 오프 가스 속의 잠열의 수집, 이용, 배출을 위한 장치, 시스템, 방법
US20160231050A1 (en) Expandable lng processing plant
WO2019145342A1 (fr) Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
EP3271635B1 (fr) Procédé de refroidissement d'un gaz liquéfié
AU2006241566B2 (en) Large distance offshore LNG export terminal with boil-off vapour collection and utilization capacities
WO2018206510A1 (fr) Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
KR101388871B1 (ko) 가스 및 전기 생산설비가 구비된 부유식 엘엔지 급유시설
WO2017037400A1 (fr) Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique
WO2020109580A1 (fr) Systeme de traitement de gaz d'un terminal de reception equipe d'une unite de regazeification et procede de traitement de gaz correspondant
US20200386473A1 (en) Apparatus, system and method for reliquefaction of previously regasified lng
WO2014152720A1 (fr) Système de conversion de l'énergie thermique pour regazéification de liquides cryogéniques
EP3322948A1 (fr) Procédé de détente et de stockage d'un courant de gaz naturel liquéfié issu d'une installation de liquéfaction de gaz naturel, et installation associée
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
EP4327037A1 (fr) Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre
FR3066249A1 (fr) Dispositif et procede de refroidissement de gaz liquefie et/ou de gaz d'evaporation naturelle de gaz liquefie
FR2928719A1 (fr) Procede segmente de production de gaz naturel liquefie.
WO2022253961A1 (fr) Procédé de production d'électricité au moyen d'une installation destinée à être placée dans une étendue deau
WO2024084154A1 (fr) Procede de gestion d'un fluide sous forme liquide contenu dans une cuve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11799133

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11799133

Country of ref document: EP

Kind code of ref document: A2