EP3305593B1 - Illumination device for vehicle - Google Patents

Illumination device for vehicle Download PDF

Info

Publication number
EP3305593B1
EP3305593B1 EP17194605.6A EP17194605A EP3305593B1 EP 3305593 B1 EP3305593 B1 EP 3305593B1 EP 17194605 A EP17194605 A EP 17194605A EP 3305593 B1 EP3305593 B1 EP 3305593B1
Authority
EP
European Patent Office
Prior art keywords
light
person
vehicle
distance
illuminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17194605.6A
Other languages
German (de)
French (fr)
Other versions
EP3305593A1 (en
Inventor
Fumihiko Mouri
Susumu Yamamoto
Takeshi Masuda
Misako Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Toyota Motor Corp
Original Assignee
Koito Manufacturing Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Toyota Motor Corp filed Critical Koito Manufacturing Co Ltd
Publication of EP3305593A1 publication Critical patent/EP3305593A1/en
Application granted granted Critical
Publication of EP3305593B1 publication Critical patent/EP3305593B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/525Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking automatically indicating risk of collision between vehicles in traffic or with pedestrians, e.g. after risk assessment using the vehicle sensor data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions
    • B60Q2300/45Special conditions, e.g. pedestrians, road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]

Definitions

  • the present invention relates to an illumination device for a vehicle that is installed in a vehicle and illuminates light.
  • JP-A No. 2013-203251 proposes a light illumination control device that acquires information relating to the position of an obstacle such as a pedestrian in the vicinity of a vehicle and illuminates a light that is provided at the vehicle, with a different color from a headlamp of the vehicle, in a direction toward the location of the obstacle.
  • JP-A No. 2013-203251 both a driver at the vehicle side and a person at the obstacle side may be informed that a hazard is imminent by seeing the light with the different color from the headlamp.
  • situations in which positional relationships between obstacles and the vehicle become dangerous may be suppressed.
  • JP-A No. 2013-203251 when the light with the different color from the headlamp is illuminated onto an obstacle, notice is given that a hazard is imminent. However, when the light is illuminated onto a person, if the illuminated person does not see the light source or their own position, the person is unlikely to notice the illuminated light. Therefore, there is scope for improvement.
  • US2013/154815 discloses a system and a method of providing warning to pedestrian using laser beam.
  • the present invention is made in consideration of the circumstances described above and an object of the present invention is to provide an illumination device for a vehicle that may illuminate light that a person is more likely to notice than light illuminated toward the person.
  • a first aspect for solving the problem described above is defined by the illumination device of claim 1.
  • a person is detected by the detection unit.
  • a camera and a millimeter wave radar or the like are used to detect a person.
  • the illumination unit illuminates the light in the direction toward the road surface; an illumination region of the light is alterable.
  • the person's attention may be drawn to the approach of the vehicle or the like by the light illuminated from the illumination unit.
  • the control unit controls the illumination unit so as to illuminate the light at a region separated by the pre-specified distance from the detected person within a range of view of the person, and so as to move the light in the movement direction of the detected person while maintaining the pre-specified distance.
  • the light is illuminated at the region that is separated by the pre-specified distance from the person when the person is detected and there is a possibility of collision, attention may be drawn more strongly by the light.
  • this light because the light is illuminated at the region separated by the pre-specified distance from the person in the range of view of the person, the illuminated person is more likely to notice the light than if the light were illuminated toward the person.
  • the light is controlled so as to move in the movement direction of the person while maintaining the pre-specified distance, the person is more likely to be aware of the light even though the person is moving, and their attention may be drawn effectively.
  • control unit controls the illumination unit so as to illuminate the light at a region that is separated by the pre-specified distance from the detected person toward a road center in the vehicle width direction.
  • control unit may control the illumination unit so as not to move the light.
  • the light is not moved unnecessarily and a processing load may be moderated.
  • the light is not illuminated without purpose for the illuminated person, difficulties caused by the illumination of unnecessary light are avoided.
  • control unit may calculate each of a relative distance and a relative speed between the vehicle and the detected person on the basis of detection results from the detection unit, and the control unit may determine that there is a possibility of collision between the detected person and the vehicle when a value that is the relative distance divided by the relative speed is less than or equal to a pre-specified threshold value. Thus, whether or not there is a possibility of collision with the vehicle may be determined easily.
  • the pre-specified distance may be a distance at which the person is likely to see the light illuminated on the road surface, being at least a distance corresponding to an angle of view downward of the person. That is, because the light is illuminated within their field of view, the illuminated person is more likely to be aware of the light.
  • a program causing a computer in a vehicle to execute a process for illuminating light from the vehicle illumination device is defined by claim 5 and its dependent claims 6 to 8.
  • an illumination device for a vehicle may illuminate light that a person is more likely to notice than light illuminated toward the person.
  • FIG. 1 is a block diagram showing schematic structures of an illumination device for a vehicle according to the present exemplary embodiment.
  • a marking light illumination unit 16 that serves as an example of an illumination unit is connected to a control device 18.
  • the marking light illumination unit 16 is controlled by the control device 18.
  • the marking light illumination unit 16 illuminates light in a direction toward the road surface in order to draw the attention of a person.
  • the marking light illumination unit 16 illuminates the light within a range of view of a person who is located in a progress direction of the vehicle, drawing the person's attention to the approach of the vehicle.
  • a color and brightness of the light illuminated from the marking light illumination unit 16 may be the same color and brightness as light from a headlamp, or light of a different color and/or brightness from the headlamp may be illuminated.
  • the color and brightness are the same as the color and brightness of the headlamp, then when the headlamp is in a low-beam state, the attention of a person located in a high-beam region may be drawn, and when the headlamp is in a high-beam state, the attention of a person located beyond the high beam may be drawn.
  • the marking light illumination unit 16 is provided separately from a light source of the headlamp.
  • the marking light illumination unit 16 may use the same light source as the headlamp.
  • the control device 18 is constituted by a microcomputer including a CPU 18A, a ROM 18B, a RAM 18C and an I/O unit 18D.
  • the control device 18 controls lighting, extinguishing and illumination directions of the marking light illumination unit 16.
  • Tables for control of the marking light illumination unit 16, a program for executing illumination control, and so forth are memorized in the ROM 18B of the control device 18.
  • the RAM 18C is used as a working memory that memorizes intermediate data, produced by calculations and the like carried out by the CPU 18A, and so forth.
  • a camera 12 that images in front of the vehicle and a millimeter wave radar 14 are connected to the I/O unit 18D. Imaging results from the camera 12 and detection results from the millimeter wave radar 14 are inputted to the control device 18.
  • the camera 12 and the control device 18 correspond to an example of a detection unit, and the millimeter wave radar 14 and the control device 18 correspond to an example of a control unit.
  • the CPU 18A which is a hardware processor, loads and executes the program for executing illumination control.
  • the CPU 18A functions as the detection unit and the control unit.
  • the control device 18 detects a person, who may be a pedestrian, a cyclist or the like.
  • the control device 18 From detection results of millimeter waves that are transmitted from the millimeter wave radar 14 and reflected by an obstacle, which may be a person, the control device 18 detects a relative distance and a relative speed between the vehicle and the obstacle.
  • the control device 18 When the control device 18 detects a person, as shown in Fig. 2 , the control device 18 controls the marking light illumination unit 16 so as to illuminate light L at a region that is separated by a pre-specified distance d from the person within a range of view of the person. If the person is moving, then as shown in the lower part of Fig. 2 , the control device 18 controls the marking light illumination unit 16 so as to move the light while keeping the separation between the person and the light illuminated from the marking light illumination unit 16 at the pre-specified distance.
  • the pre-specified distance d is a distance such that the person is likely to see the light projected onto the road surface.
  • the distance d is a distance roughly equivalent to the height of the person (a variable distance), or a distance of 1.5 to 2 m or the like (a fixed distance) or the like.
  • a person's angle of view ⁇ to downward is around 70°. Therefore, it is preferable to employ a pre-specified distance d that is at least a distance corresponding to an angle of view of 70°. If the light is too far from the person, the person is less likely to see the light illuminated onto the road surface. Therefore, a distance at which the person is likely to see the light, in a range of a few meters from the distance corresponding to the angle of view of 70°, is preferable.
  • a marking light is illuminated at a region in front of the pedestrian in their range of view (a region that is separated by the pre-specified distance from the pedestrian toward the road center in the vehicle width direction). If a pedestrian is walking along a road or the like, a marking light is illuminated at a region in front of the pedestrian in their range of view to draw their attention, in order to discourage sudden crossing of the road or the like.
  • the marking light the light illuminated at a region that is separated from a person by a pre-specified distance.
  • Fig. 3 is a diagram illustrating an example of the marking light illumination unit 16 of an LED array type in which plural LEDs are arrayed.
  • a plural number of LEDs 22 are arrayed on a substrate 20.
  • the plural LEDs 22 output lights with vertical length in the vehicle vertical direction, or plural numbers of the LEDs 22 are also arrayed in the vehicle vertical direction and output lights with vertical length.
  • the plural LEDs 22 are arrayed in the vehicle width direction of the vehicle.
  • a lens 24 is provided on light emission directions of the plural LEDs 22. Light is emitted to the front of the vehicle from the LEDs 22 through the lens 24.
  • light with a linear shape may be illuminated in arbitrary directions by selectively lighting the plural LEDs 22. That is, by lighting the LED 22 that corresponds to a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate the light with a linear shape on the road surface in the region separated from the person by the pre-specified distance.
  • Fig. 4 is a diagram illustrating an example of the marking light illumination unit 16 of a type in which a light source is turned.
  • the type of the marking light illumination unit 16 in Fig. 4 in which a light source is turned is provided with a light source 26 of a type such as an LED or the like, a lens 28 provided at the light emission side of the light source 26, and a swivel actuator 30 that turns the light source 26 and the lens 28 in the vehicle width direction.
  • the light source 26 outputs a light with vertical length in the vehicle vertical direction, or light sources 26 such as LEDs or the like are arrayed in the vehicle vertical direction and output a light with vertical length in the vehicle vertical direction.
  • the lens 28 is provided on the light emission direction of the light source 26. Light is emitted to the front of the vehicle from the light source 26 through the lens 28.
  • the light emitted from the light source 26 may be converted by the lens 28 to a light with vertical length in the vehicle vertical direction and outputted.
  • the light source 26 is lit and illuminates light with a linear shape, and the illumination direction of the light with a linear shape in the vehicle vertical direction is moved in the vehicle width direction by driving of the swivel actuator 30. That is, by controlling the swivel actuator 30 so as to illuminate the light with a linear shape at a position corresponding to a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate the light with a linear shape at the region separated from the person by the pre-specified distance.
  • Fig. 5 is a diagram illustrating an example of the marking light illumination unit 16 of a blade beam-scanning type in which a reflecting mirror is turned.
  • the marking light illumination unit 16 of the blade beam-scanning type in Fig. 5 is provided with a light source 32 such as an LED or the like, a reflecting mirror 34 and a lens 36.
  • the light source 32 outputs a light with vertical length in the vehicle vertical direction, or light sources 32 such as LEDs or the like are arrayed in the vehicle vertical direction and output a light with vertical length in the vehicle vertical direction.
  • the reflecting mirror 34 and the lens 36 are provided on the light emission direction of the light source 32.
  • the light emitted from the light source 32 is reflected by the reflecting mirror 34 and light in a linear shape is emitted to the front of the vehicle through the lens 36.
  • the reflected direction can be altered in the vehicle width direction by turning of the reflecting mirror 34.
  • light in a fan shape may be illuminated to the front of the vehicle by, for example, employing the technology recited in JP-A No. 2016-074235 and turning the reflecting mirror 34 at high speed while the light source 32 is lit.
  • a light with a linear shape may be illuminated at a region separated from a person by the pre-specified distance by, rather than lighting the light source 32 continuously, lighting the light source 32 synchronously with positions of the turning reflecting mirror 34 that reflect the light in the direction of the region separated from the person by the pre-specified distance.
  • the control device 18 may illuminate a light with a linear shape on the road surface in the region separated from the person by the pre-specified distance.
  • the reflecting mirror 34 may be turned so as to reflect and illuminate the light in the linear shape at the region separated from the detected person by the pre-specified distance, and the light source 32 may be lit in a state in which the reflecting mirror 34 is stopped.
  • Fig. 6 is a diagram illustrating an example of the marking light illumination unit 16 of a type that employs a digital micromirror device (DMD).
  • DMD digital micromirror device
  • the marking light illumination unit 16 of the type that employs a DMD in Fig. 6 is provided with a light source 38 such as an LED or the like, a reflector 40, a DMD mirror 42 and a lens 44. Light emitted from the light source 38 is reflected by the reflector 40 and is incident on the DMD mirror 42. As shown in Fig. 6 , the DMD mirror 42 is a device provided with numerous micromirrors 46, in which turning of each micromirror 46 is controllable. Thus, a region at which light is illuminated, a light distribution and the like may be controlled by lighting the light source 38 and controlling turning of the micromirrors 46 of the DMD mirror 42.
  • the micromirrors 46 when angles of the micromirrors 46 are turned to the direction of a light-absorbing plate 48 provided inside a casing, light from the light source 38 is reflected in the direction of the dotted line in Fig. 6 and absorbed by the light-absorbing plate 48. Thus, light from the marking light illumination unit 16 is not illuminated but turned off.
  • the micromirrors 46 when the micromirrors 46 are turned to the direction of the lens 44, the light may be illuminated at arbitrary positions.
  • control device 18 may illuminate light in an arbitrary shape on the road surface in the region that is separated from the person by the pre-specified distance.
  • Fig. 7 is a diagram illustrating an example of the marking light illumination unit 16 of a scanning microelectromechanical system (MEMS) type.
  • MEMS microelectromechanical system
  • the marking light illumination unit 16 of the scanning MEMS type in Fig. 7 is provided with a blue laser 50 that emits blue laser light, a MEMS mirror 52, a fluorescent body 54 and a lens 56. Light emitted from the blue laser 50 is reflected by the MEMS mirror 52 and is emitted through the fluorescent body 54 and the lens 56. The blue laser light is converted to white light by the fluorescent body 54 and emitted through the lens 56.
  • the MEMS mirror 52 is a device in which, for example, mirrors are formed using a silver alloy on silicon, and the piezoelectric effect of PZT (lead zirconate titanate) thin films or the like is employed to move the mirrors.
  • Laser light that is incident on the MEMS mirror 52 is reflected by resonant driving with the mirrors.
  • the light may be illuminated in an arbitrary shape by raster scanning. That is, by controlling the MEMS mirror 52 so as to illuminate the light at a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate light in a linear shape or light in an arbitrary shape on the road surface in the region separated from the person by the pre-specified distance.
  • the marking light illumination unit 16 of the blade beam-scanning type in Fig. 5 , the marking light illumination unit 16 of the type that employs a DMD in Fig. 6 , or the marking light illumination unit 16 of the scanning MEMS type in Fig. 7 may share a light source with a headlamp.
  • sharing of the light source with a headlamp is enabled by providing a high-beam light source, a low-beam light source and a marking light light source.
  • an example of illuminating light in a linear shape is described as an example of the marking light, but light in a linear shape is not a limitation.
  • An image, characters or the like may be projected onto the road surface. This may be implemented by using, for example, the marking light illumination unit 16 of the blade beam-scanning type in Fig. 5 , the marking light illumination unit 16 of the type that employs a DMD in Fig. 6 , or the marking light illumination unit 16 of the scanning MEMS type in Fig. 7 .
  • FIG. 8 is a flowchart showing an example of a flow of processing that is executed by the control device 18 of the illumination device for a vehicle 10 according to the present exemplary embodiment.
  • the processing in Fig. 8 is started when an ignition switch is turned on.
  • step 100 the CPU 18A acquires a captured image from the camera 12 and starts detection of people in the captured image. That is, the CPU 18A starts detection of a person from the captured image using various image processing technologies such as pattern matching and the like.
  • step 102 the CPU 18A makes a determination as to whether a person has been detected. If the result of this determination is affirmative, the CPU 18A proceeds to step 104, and if the result is negative, the CPU 18A proceeds to step 116.
  • step 104 the CPU 18A calculates a relative distance and relative speed between the vehicle and the person, and then proceeds to step 106.
  • the CPU 18A calculates the relative distance and relative speed between the detected person and the vehicle on the basis of detection signals from the millimeter wave radar 14.
  • step 106 the CPU 18A divides the relative distance by the relative speed and makes a determination as to whether the calculated value is less than a pre-specified threshold value. This determination calculates a value representing a probability of collision by dividing the relative distance by the relative speed to make a determination as to whether the probability of a collision is high. If the result of this determination is affirmative, the CPU 18A proceeds to step 108, and if the result is negative, the CPU 18A proceeds to step 116.
  • a method for determining a probability of collision is not limited thus and may be a determination using a value other than the value found by dividing the relative distance by the relative speed.
  • step 108 the CPU 18A executes processing, which is described below, to make a determination as to whether the marking light is already being illuminated by the marking light illumination unit 16. If the result of this determination is negative, the CPU 18A proceeds to step 110, and if the result is affirmative, the CPU 18A proceeds to step 112.
  • step 110 the CPU 18A lights the marking light by control of the marking light illumination unit 16, and then proceeds to step 112.
  • light is illuminated at a region separated from the detected person by the pre-specified distance.
  • the light is illuminated in the range of view of the person. Therefore, the illuminated light is easy to notice and may draw the person's attention effectively.
  • the marking light may be illuminated at a region separated to the front side of the person by the pre-specified distance.
  • the marking light is illuminated at a region separated from the person toward a road center in the vehicle width direction by the pre-specified distance.
  • the marking light is illuminated at the front side of the person, the illuminated person is likely to notice the marking light.
  • the marking light is illuminated at the region separated from the person toward the center of the road in the vehicle width direction by the pre-specified distance, the person's attention may be drawn with regard to crossing the road. It may be that the marking light is illuminated to the front side of the person when the front of the person can be identified, but if a direction in which the person is likely to move and the front of the person are difficult to identify, the marking light is illuminated toward the center of the road in the vehicle width direction from the person, in order to warn against crossing the road.
  • step 112 the CPU 18A makes a determination as to whether the detected person is moving. This determination may be made by, for example, determining movement in the vehicle width direction from captured images from the camera 12, and by determining movement in a direction along the running direction of the vehicle by calculating an absolute movement speed of the person from a speed of the vehicle and the relative speed between the vehicle and the person. If the result of this determination is affirmative, the CPU 18A proceeds to step 114, and if the result is negative, the CPU 18A returns to step 102 and repeats the processing described above.
  • step 114 the CPU 18A controls the marking light illumination unit so as to move the marking light to keep the distance between the person and the marking light at a constant distance (the pre-specified distance). Then the CPU 18A returns to step 102 and repeats the processing described above. That is, the CPU 18A controls the marking light illumination unit 16 so as to follow movement of the person. Therefore, even when the person is moving, their attention may be drawn to the approach of the vehicle by the marking light.
  • step 116 the CPU 18A executes the processing described above to make a determination as to whether the marking light is already being illuminated by the marking light illumination unit 16. If the result of this determination is affirmative, the CPU 18A proceeds to step 118, and if the result is negative, the CPU 18A returns to step 102 and repeats the processing described above.
  • the light follows movements of the person and is illuminated while maintaining the pre-specified distance, it is easy for a moving person to notice the light, and the attention of a person who is moving may be drawn effectively.
  • the marking light is lit when a person is detected, the marking light is moved in association with movements of the person, and the marking light is moved to follow the person even if the person is moving away from the vehicle.
  • this is not limiting.
  • a person is moving in a direction away from the vehicle in the vehicle width direction, the marking light need not be moved.
  • a step 113 may be added between step 112 and step 114.
  • Fig. 9 is a flowchart showing a variant example of the flow of processing that is executed by the control device 18 of the illumination device for a vehicle 10 according to the present exemplary embodiment.
  • step 113 the CPU 18A makes a determination as to whether the person is moving in a direction toward the vehicle in the vehicle width direction and the absolute speed of the person is greater than a threshold value (which may be zero). If the result of this determination is affirmative, the CPU 18A proceeds to step 114 and moves the marking light. On the other hand, if the result of the determination is negative, the CPU 18A returns to step 102 and repeats the processing described above without moving the marking light. Thus, the marking light is not moved unnecessarily and a processing load may be moderated. Moreover, because a light that is not important for the illuminated person is not illuminated, difficulties caused by the illumination of light that is not important are avoided.
  • a relative distance and relative speed between the vehicle and an obstacle such as a person or the like are detected by the camera 12 and the millimeter wave radar 14, but this is not limiting.
  • a relative distance and relative speed between the vehicle and an obstacle may be detected without using a millimeter wave radar.
  • the processing illustrated in Fig. 8 and Fig. 9 that is executed by the control device 18 of the illumination device for a vehicle 10 in the above exemplary embodiment is described as being software processing that is implemented by a program being executed, but the processing may be implemented in hardware. Alternatively, the processing may combine both software and hardware. Further, the program memorized in the ROM may be memorized and distributed in any of various non-volatile storage media such as a CD-ROM, a DVD or the like.

Description

    BACKGROUND TECHNICAL FIELD
  • The present invention relates to an illumination device for a vehicle that is installed in a vehicle and illuminates light.
  • RELATED ART
  • Japanese Patent Application Laid-Open ( JP-A) No. 2013-203251 proposes a light illumination control device that acquires information relating to the position of an obstacle such as a pedestrian in the vicinity of a vehicle and illuminates a light that is provided at the vehicle, with a different color from a headlamp of the vehicle, in a direction toward the location of the obstacle. According to JP-A No. 2013-203251 , both a driver at the vehicle side and a person at the obstacle side may be informed that a hazard is imminent by seeing the light with the different color from the headlamp. Thus, situations in which positional relationships between obstacles and the vehicle become dangerous may be suppressed.
  • In JP-A No. 2013-203251 , when the light with the different color from the headlamp is illuminated onto an obstacle, notice is given that a hazard is imminent. However, when the light is illuminated onto a person, if the illuminated person does not see the light source or their own position, the person is unlikely to notice the illuminated light. Therefore, there is scope for improvement.
  • US2013/154815 discloses a system and a method of providing warning to pedestrian using laser beam.
  • US2014/062685 and JP 2010 277123 A disclose a pedestrian notification apparatus.
  • SUMMARY
  • The present invention is made in consideration of the circumstances described above and an object of the present invention is to provide an illumination device for a vehicle that may illuminate light that a person is more likely to notice than light illuminated toward the person.
  • A first aspect for solving the problem described above is defined by the illumination device of claim 1.
  • According to the first aspect, a person is detected by the detection unit. For example, a camera and a millimeter wave radar or the like are used to detect a person.
  • The illumination unit illuminates the light in the direction toward the road surface; an illumination region of the light is alterable. The person's attention may be drawn to the approach of the vehicle or the like by the light illuminated from the illumination unit.
  • When a person is detected by the detection unit and there is a possibility of collision between the detected person and the vehicle, the control unit controls the illumination unit so as to illuminate the light at a region separated by the pre-specified distance from the detected person within a range of view of the person, and so as to move the light in the movement direction of the detected person while maintaining the pre-specified distance.
  • As a result, because the light is illuminated at the region that is separated by the pre-specified distance from the person when the person is detected and there is a possibility of collision, attention may be drawn more strongly by the light. When this light is being illuminated, because the light is illuminated at the region separated by the pre-specified distance from the person in the range of view of the person, the illuminated person is more likely to notice the light than if the light were illuminated toward the person.
  • Moreover, because the light is controlled so as to move in the movement direction of the person while maintaining the pre-specified distance, the person is more likely to be aware of the light even though the person is moving, and their attention may be drawn effectively.
  • Additionally, when the light is to be illuminated at the region that is separated from the detected person by the pre-specified distance, the control unit controls the illumination unit so as to illuminate the light at a region that is separated by the pre-specified distance from the detected person toward a road center in the vehicle width direction. Thus, the person's attention is drawn with regard to crossing the road.
  • In a second aspect, when the person detected by the detection unit is moving in a direction away from the vehicle in a vehicle width direction, the control unit may control the illumination unit so as not to move the light. Thus, the light is not moved unnecessarily and a processing load may be moderated. Moreover, because the light is not illuminated without purpose for the illuminated person, difficulties caused by the illumination of unnecessary light are avoided.
  • In a third aspect, the control unit may calculate each of a relative distance and a relative speed between the vehicle and the detected person on the basis of detection results from the detection unit, and the control unit may determine that there is a possibility of collision between the detected person and the vehicle when a value that is the relative distance divided by the relative speed is less than or equal to a pre-specified threshold value. Thus, whether or not there is a possibility of collision with the vehicle may be determined easily.
  • In a fourth aspect, the pre-specified distance may be a distance at which the person is likely to see the light illuminated on the road surface, being at least a distance corresponding to an angle of view downward of the person. That is, because the light is illuminated within their field of view, the illuminated person is more likely to be aware of the light.
  • In a fifth aspect, a program causing a computer in a vehicle to execute a process for illuminating light from the vehicle illumination device is defined by claim 5 and its dependent claims 6 to 8.
  • According to the present invention as described above, an illumination device for a vehicle can be provided that may illuminate light that a person is more likely to notice than light illuminated toward the person.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 is a block diagram showing schematic structures of an illumination device for a vehicle according to a present exemplary embodiment.
    • Fig. 2 is a diagram for describing illumination of light from a marking light illumination unit of the illumination device for a vehicle according to the present exemplary embodiment.
    • Fig. 3 is a diagram illustrating an example of a marking light illumination unit of an LED array type in which plural LEDs are arrayed.
    • Fig. 4 is a diagram illustrating an example of a marking light illumination unit of a type in which a light source is turned.
    • Fig. 5 is a diagram illustrating an example of a marking light illumination unit of a blade beam-scanning type in which a reflecting mirror is turned.
    • Fig. 6 is a diagram illustrating an example of a marking light illumination unit of a type that employs a digital micromirror device.
    • Fig. 7 is a diagram illustrating an example of a marking light illumination unit of a scanning microelectromechanical system type.
    • Fig. 8 is a flowchart showing an example of a flow of processing that is executed by a control device of the illumination device for a vehicle according to the present exemplary embodiment.
    • Fig. 9 is a flowchart showing a variant example of the flow of processing that is executed by the control device of the illumination device for a vehicle according to the present exemplary embodiment.
    DESCRIPTION OF EMBODIMENTS
  • Herebelow, an example of an exemplary embodiment of the present invention is described in detail with reference to the attached drawings. Fig. 1 is a block diagram showing schematic structures of an illumination device for a vehicle according to the present exemplary embodiment.
  • In an illumination device for a vehicle 10 according to the present exemplary embodiment, as shown in Fig. 1, a marking light illumination unit 16 that serves as an example of an illumination unit is connected to a control device 18. The marking light illumination unit 16 is controlled by the control device 18.
  • The marking light illumination unit 16 illuminates light in a direction toward the road surface in order to draw the attention of a person. In the present exemplary embodiment, the marking light illumination unit 16 illuminates the light within a range of view of a person who is located in a progress direction of the vehicle, drawing the person's attention to the approach of the vehicle. A color and brightness of the light illuminated from the marking light illumination unit 16 may be the same color and brightness as light from a headlamp, or light of a different color and/or brightness from the headlamp may be illuminated. If the color and brightness are the same as the color and brightness of the headlamp, then when the headlamp is in a low-beam state, the attention of a person located in a high-beam region may be drawn, and when the headlamp is in a high-beam state, the attention of a person located beyond the high beam may be drawn.
  • In the present exemplary embodiment, an example is described in which the marking light illumination unit 16 is provided separately from a light source of the headlamp. However, the marking light illumination unit 16 may use the same light source as the headlamp.
  • The control device 18 is constituted by a microcomputer including a CPU 18A, a ROM 18B, a RAM 18C and an I/O unit 18D. The control device 18 controls lighting, extinguishing and illumination directions of the marking light illumination unit 16.
  • Tables for control of the marking light illumination unit 16, a program for executing illumination control, and so forth are memorized in the ROM 18B of the control device 18. The RAM 18C is used as a working memory that memorizes intermediate data, produced by calculations and the like carried out by the CPU 18A, and so forth.
  • A camera 12 that images in front of the vehicle and a millimeter wave radar 14 are connected to the I/O unit 18D. Imaging results from the camera 12 and detection results from the millimeter wave radar 14 are inputted to the control device 18. The camera 12 and the control device 18 correspond to an example of a detection unit, and the millimeter wave radar 14 and the control device 18 correspond to an example of a control unit. The CPU 18A, which is a hardware processor, loads and executes the program for executing illumination control. The CPU 18A functions as the detection unit and the control unit.
  • By image processing of imaging results from the camera 12, such as pattern matching of images and the like, the control device 18 detects a person, who may be a pedestrian, a cyclist or the like.
  • From detection results of millimeter waves that are transmitted from the millimeter wave radar 14 and reflected by an obstacle, which may be a person, the control device 18 detects a relative distance and a relative speed between the vehicle and the obstacle.
  • When the control device 18 detects a person, as shown in Fig. 2, the control device 18 controls the marking light illumination unit 16 so as to illuminate light L at a region that is separated by a pre-specified distance d from the person within a range of view of the person. If the person is moving, then as shown in the lower part of Fig. 2, the control device 18 controls the marking light illumination unit 16 so as to move the light while keeping the separation between the person and the light illuminated from the marking light illumination unit 16 at the pre-specified distance. The pre-specified distance d is a distance such that the person is likely to see the light projected onto the road surface. For example, the distance d is a distance roughly equivalent to the height of the person (a variable distance), or a distance of 1.5 to 2 m or the like (a fixed distance) or the like. A person's angle of view α to downward is around 70°. Therefore, it is preferable to employ a pre-specified distance d that is at least a distance corresponding to an angle of view of 70°. If the light is too far from the person, the person is less likely to see the light illuminated onto the road surface. Therefore, a distance at which the person is likely to see the light, in a range of a few meters from the distance corresponding to the angle of view of 70°, is preferable.
  • When, for example, a pedestrian is moving so as to cross in front of the vehicle as illustrated in Fig. 2, the pedestrian's attention is drawn to the approach of the vehicle by a marking light being illuminated at a region in front of the pedestrian in their range of view (a region that is separated by the pre-specified distance from the pedestrian toward the road center in the vehicle width direction). If a pedestrian is walking along a road or the like, a marking light is illuminated at a region in front of the pedestrian in their range of view to draw their attention, in order to discourage sudden crossing of the road or the like.
  • In the descriptions below, the light illuminated at a region that is separated from a person by a pre-specified distance is referred to simply as "the marking light".
  • Now, examples of five types of the marking light illumination unit 16 are described with reference to Fig. 3 to Fig. 7.
  • Fig. 3 is a diagram illustrating an example of the marking light illumination unit 16 of an LED array type in which plural LEDs are arrayed.
  • In the LED array-type marking light illumination unit 16 shown in Fig. 3, a plural number of LEDs 22 are arrayed on a substrate 20. The plural LEDs 22 output lights with vertical length in the vehicle vertical direction, or plural numbers of the LEDs 22 are also arrayed in the vehicle vertical direction and output lights with vertical length. The plural LEDs 22 are arrayed in the vehicle width direction of the vehicle. A lens 24 is provided on light emission directions of the plural LEDs 22. Light is emitted to the front of the vehicle from the LEDs 22 through the lens 24. In this type of the marking light illumination unit 16, light with a linear shape may be illuminated in arbitrary directions by selectively lighting the plural LEDs 22. That is, by lighting the LED 22 that corresponds to a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate the light with a linear shape on the road surface in the region separated from the person by the pre-specified distance.
  • Fig. 4 is a diagram illustrating an example of the marking light illumination unit 16 of a type in which a light source is turned.
  • The type of the marking light illumination unit 16 in Fig. 4 in which a light source is turned is provided with a light source 26 of a type such as an LED or the like, a lens 28 provided at the light emission side of the light source 26, and a swivel actuator 30 that turns the light source 26 and the lens 28 in the vehicle width direction. The light source 26 outputs a light with vertical length in the vehicle vertical direction, or light sources 26 such as LEDs or the like are arrayed in the vehicle vertical direction and output a light with vertical length in the vehicle vertical direction. The lens 28 is provided on the light emission direction of the light source 26. Light is emitted to the front of the vehicle from the light source 26 through the lens 28. In order to output light with vertical length in the vehicle vertical direction, the light emitted from the light source 26 may be converted by the lens 28 to a light with vertical length in the vehicle vertical direction and outputted. In this type of the marking light illumination unit 16, the light source 26 is lit and illuminates light with a linear shape, and the illumination direction of the light with a linear shape in the vehicle vertical direction is moved in the vehicle width direction by driving of the swivel actuator 30. That is, by controlling the swivel actuator 30 so as to illuminate the light with a linear shape at a position corresponding to a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate the light with a linear shape at the region separated from the person by the pre-specified distance.
  • Fig. 5 is a diagram illustrating an example of the marking light illumination unit 16 of a blade beam-scanning type in which a reflecting mirror is turned.
  • The marking light illumination unit 16 of the blade beam-scanning type in Fig. 5 is provided with a light source 32 such as an LED or the like, a reflecting mirror 34 and a lens 36. The light source 32 outputs a light with vertical length in the vehicle vertical direction, or light sources 32 such as LEDs or the like are arrayed in the vehicle vertical direction and output a light with vertical length in the vehicle vertical direction. The reflecting mirror 34 and the lens 36 are provided on the light emission direction of the light source 32. The light emitted from the light source 32 is reflected by the reflecting mirror 34 and light in a linear shape is emitted to the front of the vehicle through the lens 36. The reflected direction can be altered in the vehicle width direction by turning of the reflecting mirror 34. In this type of the marking light illumination unit 16, light in a fan shape may be illuminated to the front of the vehicle by, for example, employing the technology recited in JP-A No. 2016-074235 and turning the reflecting mirror 34 at high speed while the light source 32 is lit. Hence, a light with a linear shape may be illuminated at a region separated from a person by the pre-specified distance by, rather than lighting the light source 32 continuously, lighting the light source 32 synchronously with positions of the turning reflecting mirror 34 that reflect the light in the direction of the region separated from the person by the pre-specified distance. That is, by controlling lighting of the light source 32 such that the light source 32 lights synchronously with the positions of the reflecting mirror 34 corresponding to the region separated from the detected person by the pre-specified distance, the control device 18 may illuminate a light with a linear shape on the road surface in the region separated from the person by the pre-specified distance. Alternatively, the reflecting mirror 34 may be turned so as to reflect and illuminate the light in the linear shape at the region separated from the detected person by the pre-specified distance, and the light source 32 may be lit in a state in which the reflecting mirror 34 is stopped.
  • Fig. 6 is a diagram illustrating an example of the marking light illumination unit 16 of a type that employs a digital micromirror device (DMD).
  • The marking light illumination unit 16 of the type that employs a DMD in Fig. 6 is provided with a light source 38 such as an LED or the like, a reflector 40, a DMD mirror 42 and a lens 44. Light emitted from the light source 38 is reflected by the reflector 40 and is incident on the DMD mirror 42. As shown in Fig. 6, the DMD mirror 42 is a device provided with numerous micromirrors 46, in which turning of each micromirror 46 is controllable. Thus, a region at which light is illuminated, a light distribution and the like may be controlled by lighting the light source 38 and controlling turning of the micromirrors 46 of the DMD mirror 42. For example, when angles of the micromirrors 46 are turned to the direction of a light-absorbing plate 48 provided inside a casing, light from the light source 38 is reflected in the direction of the dotted line in Fig. 6 and absorbed by the light-absorbing plate 48. Thus, light from the marking light illumination unit 16 is not illuminated but turned off. On the other hand, when the micromirrors 46 are turned to the direction of the lens 44, the light may be illuminated at arbitrary positions. Therefore, by controlling the angles of the micromirrors 46 of the DMD mirror 42 so as to illuminate light at positions corresponding to a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate light in an arbitrary shape on the road surface in the region that is separated from the person by the pre-specified distance.
  • Fig. 7 is a diagram illustrating an example of the marking light illumination unit 16 of a scanning microelectromechanical system (MEMS) type.
  • The marking light illumination unit 16 of the scanning MEMS type in Fig. 7 is provided with a blue laser 50 that emits blue laser light, a MEMS mirror 52, a fluorescent body 54 and a lens 56. Light emitted from the blue laser 50 is reflected by the MEMS mirror 52 and is emitted through the fluorescent body 54 and the lens 56. The blue laser light is converted to white light by the fluorescent body 54 and emitted through the lens 56. The MEMS mirror 52 is a device in which, for example, mirrors are formed using a silver alloy on silicon, and the piezoelectric effect of PZT (lead zirconate titanate) thin films or the like is employed to move the mirrors. Laser light that is incident on the MEMS mirror 52 is reflected by resonant driving with the mirrors. Thus, the light may be illuminated in an arbitrary shape by raster scanning. That is, by controlling the MEMS mirror 52 so as to illuminate the light at a region separated from a detected person by the pre-specified distance, the control device 18 may illuminate light in a linear shape or light in an arbitrary shape on the road surface in the region separated from the person by the pre-specified distance.
  • The marking light illumination unit 16 of the blade beam-scanning type in Fig. 5, the marking light illumination unit 16 of the type that employs a DMD in Fig. 6, or the marking light illumination unit 16 of the scanning MEMS type in Fig. 7 may share a light source with a headlamp. However, for the blade beam-scanning type, sharing of the light source with a headlamp is enabled by providing a high-beam light source, a low-beam light source and a marking light light source.
  • In the present exemplary embodiment, an example of illuminating light in a linear shape is described as an example of the marking light, but light in a linear shape is not a limitation. An image, characters or the like may be projected onto the road surface. This may be implemented by using, for example, the marking light illumination unit 16 of the blade beam-scanning type in Fig. 5, the marking light illumination unit 16 of the type that employs a DMD in Fig. 6, or the marking light illumination unit 16 of the scanning MEMS type in Fig. 7.
  • Now, processing that is executed by the control device 18 of the illumination device for a vehicle 10 according to the present exemplary embodiment structured as described above is described. Fig. 8 is a flowchart showing an example of a flow of processing that is executed by the control device 18 of the illumination device for a vehicle 10 according to the present exemplary embodiment. The processing in Fig. 8 is started when an ignition switch is turned on.
  • In step 100, the CPU 18A acquires a captured image from the camera 12 and starts detection of people in the captured image. That is, the CPU 18A starts detection of a person from the captured image using various image processing technologies such as pattern matching and the like.
  • In step 102, the CPU 18A makes a determination as to whether a person has been detected. If the result of this determination is affirmative, the CPU 18A proceeds to step 104, and if the result is negative, the CPU 18A proceeds to step 116.
  • In step 104, the CPU 18A calculates a relative distance and relative speed between the vehicle and the person, and then proceeds to step 106. In the present exemplary embodiment, the CPU 18A calculates the relative distance and relative speed between the detected person and the vehicle on the basis of detection signals from the millimeter wave radar 14.
  • In step 106, the CPU 18A divides the relative distance by the relative speed and makes a determination as to whether the calculated value is less than a pre-specified threshold value. This determination calculates a value representing a probability of collision by dividing the relative distance by the relative speed to make a determination as to whether the probability of a collision is high. If the result of this determination is affirmative, the CPU 18A proceeds to step 108, and if the result is negative, the CPU 18A proceeds to step 116. A method for determining a probability of collision is not limited thus and may be a determination using a value other than the value found by dividing the relative distance by the relative speed.
  • In step 108, the CPU 18A executes processing, which is described below, to make a determination as to whether the marking light is already being illuminated by the marking light illumination unit 16. If the result of this determination is negative, the CPU 18A proceeds to step 110, and if the result is affirmative, the CPU 18A proceeds to step 112.
  • In step 110, the CPU 18A lights the marking light by control of the marking light illumination unit 16, and then proceeds to step 112. Thus, light is illuminated at a region separated from the detected person by the pre-specified distance. The light is illuminated in the range of view of the person. Therefore, the illuminated light is easy to notice and may draw the person's attention effectively. When the marking light is lit, the marking light may be illuminated at a region separated to the front side of the person by the pre-specified distance. According to the invention, the marking light is illuminated at a region separated from the person toward a road center in the vehicle width direction by the pre-specified distance. When the marking light is illuminated at the front side of the person, the illuminated person is likely to notice the marking light. On the other hand, since the marking light is illuminated at the region separated from the person toward the center of the road in the vehicle width direction by the pre-specified distance, the person's attention may be drawn with regard to crossing the road. It may be that the marking light is illuminated to the front side of the person when the front of the person can be identified, but if a direction in which the person is likely to move and the front of the person are difficult to identify, the marking light is illuminated toward the center of the road in the vehicle width direction from the person, in order to warn against crossing the road.
  • In step 112, the CPU 18A makes a determination as to whether the detected person is moving. This determination may be made by, for example, determining movement in the vehicle width direction from captured images from the camera 12, and by determining movement in a direction along the running direction of the vehicle by calculating an absolute movement speed of the person from a speed of the vehicle and the relative speed between the vehicle and the person. If the result of this determination is affirmative, the CPU 18A proceeds to step 114, and if the result is negative, the CPU 18A returns to step 102 and repeats the processing described above.
  • In step 114, the CPU 18A controls the marking light illumination unit so as to move the marking light to keep the distance between the person and the marking light at a constant distance (the pre-specified distance). Then the CPU 18A returns to step 102 and repeats the processing described above. That is, the CPU 18A controls the marking light illumination unit 16 so as to follow movement of the person. Therefore, even when the person is moving, their attention may be drawn to the approach of the vehicle by the marking light.
  • Alternatively, in step 116, the CPU 18A executes the processing described above to make a determination as to whether the marking light is already being illuminated by the marking light illumination unit 16. If the result of this determination is affirmative, the CPU 18A proceeds to step 118, and if the result is negative, the CPU 18A returns to step 102 and repeats the processing described above.
  • Thus, in the present exemplary embodiment, when a person is detected and there is a possibility of collision with the vehicle, light is illuminated at a region separated from the person by the pre-specified distance that is within the range of view of the detected person. Therefore, the person is more likely to notice the light than if the light were illuminated toward the person. Moreover, because the light is easy to notice, attention may be drawn to the approach of the vehicle effectively.
  • Because the light follows movements of the person and is illuminated while maintaining the pre-specified distance, it is easy for a moving person to notice the light, and the attention of a person who is moving may be drawn effectively.
  • In the processing in Fig. 8, the marking light is lit when a person is detected, the marking light is moved in association with movements of the person, and the marking light is moved to follow the person even if the person is moving away from the vehicle. However, this is not limiting. For example, if a person is moving in a direction away from the vehicle in the vehicle width direction, the marking light need not be moved. As an example, as shown in Fig. 9, a step 113 may be added between step 112 and step 114. Fig. 9 is a flowchart showing a variant example of the flow of processing that is executed by the control device 18 of the illumination device for a vehicle 10 according to the present exemplary embodiment. In this example, in step 113, the CPU 18A makes a determination as to whether the person is moving in a direction toward the vehicle in the vehicle width direction and the absolute speed of the person is greater than a threshold value (which may be zero). If the result of this determination is affirmative, the CPU 18A proceeds to step 114 and moves the marking light. On the other hand, if the result of the determination is negative, the CPU 18A returns to step 102 and repeats the processing described above without moving the marking light. Thus, the marking light is not moved unnecessarily and a processing load may be moderated. Moreover, because a light that is not important for the illuminated person is not illuminated, difficulties caused by the illumination of light that is not important are avoided.
  • In the exemplary embodiment described above, an example is described in which a relative distance and relative speed between the vehicle and an obstacle such as a person or the like are detected by the camera 12 and the millimeter wave radar 14, but this is not limiting. For example, if a stereo camera is employed, a relative distance and relative speed between the vehicle and an obstacle may be detected without using a millimeter wave radar.
  • The processing illustrated in Fig. 8 and Fig. 9 that is executed by the control device 18 of the illumination device for a vehicle 10 in the above exemplary embodiment is described as being software processing that is implemented by a program being executed, but the processing may be implemented in hardware. Alternatively, the processing may combine both software and hardware. Further, the program memorized in the ROM may be memorized and distributed in any of various non-volatile storage media such as a CD-ROM, a DVD or the like.
  • The present invention is not limited by the above recitations. In addition to the above recitations, it will be clear that numerous modifications may be embodied within a technical scope not departing from the scope of the claims.

Claims (8)

  1. An illumination device for a vehicle (10), comprising:
    a detection unit (12, 18) configured to be mounted in the vehicle (10) and configured to detect a person;
    an illumination unit (16) configured to be mounted in the vehicle (10) and configured to illuminate light in a direction toward a road surface, an illumination region of the light being alterable; and
    a control unit (14, 18) configured be mounted in the vehicle (10) and configured to, in a case in which a person is detected by the detection unit and there is a possibility of collision between the detected person and the vehicle (10), control the illumination unit (16) so as to illuminate light at a region in a range of view of the detected person that is separated from the person by a pre-specified distance, and so as to move the light in a direction of movement of the detected person while maintaining the separation at the pre-specified distance,
    characterized in that, in a case in which the light is to be illuminated at the region that is separated from the detected person by the pre-specified distance, the control unit (14, 18) is configured to control the illumination unit (16) so as to illuminate the light at a region that is separated by the pre-specified distance from the detected person toward a road center in the vehicle width direction.
  2. The illumination device for a vehicle (10) according to claim 1, wherein, in a case in which the person detected by the detection unit (12, 18) is moving in a direction away from the vehicle (10) in a vehicle width direction, the control unit (14, 18) is configured to control the illumination unit (16) so as not to move the light.
  3. The illumination device for a vehicle (10) according to claim 1 or claim 2, wherein: the control unit (14, 18) is configured to calculate each of a relative distance and a relative speed between the vehicle (10) and the detected person on the basis of detection results from the detection unit (12, 18); and the control unit (14, 18) is configured to determine that there is a possibility of collision between the detected person and the vehicle (10) in a case in which a value that is the relative distance divided by the relative speed is less than or equal to a pre-specified threshold value.
  4. The illumination device for a vehicle (10) according to any one of claims 1 to 3, wherein the pre-specified distance is a distance at which the person is likely to see the light illuminated on the road surface, being at least a distance corresponding to an angle of view downward of the person.
  5. A program causing a computer in a vehicle (10) with an illumination device according to claim 1 to execute a process for illuminating light from the vehicle (10), the process comprising:
    detecting a person; and
    in a case in which there is a possibility of collision between the detected person and the vehicle (10), controlling an illumination unit (16) so as to illuminate light at a region in a range of view of the detected person that is separated from the person by a pre-specified distance, and so as to move the light in a direction of movement of the detected person while maintaining the separation at the pre-specified distance,
    characterized in that the process further comprises, in a case in which the light is to be illuminated at the region that is separated from the detected person by the pre-specified distance, controlling the illumination unit (16) so as to illuminate the light at a region that is separated by the pre-specified distance from the detected person toward a road center in the vehicle width direction..
  6. The program according to claim 5, wherein the process further comprises, in a case in which the detected person is moving in a direction away from the vehicle (10) in a vehicle width direction, controlling the illumination unit (16) so as not to move the light.
  7. The program according to claim 5 or claim 6, wherein the process further comprises:
    calculating each of a relative distance and a relative speed between the vehicle (10) and the detected person on the basis of detection results of the person; and
    determining that there is a possibility of collision between the detected person and the vehicle (10) in a case in which a value that is the relative distance divided by the relative speed is less than or equal to a pre-specified threshold value.
  8. The program according to any one of claims 5 to 7, wherein the pre-specified distance is a distance at which the person is likely to see the light illuminated on the road surface, being at least a distance corresponding to an angle of view downward of the person.
EP17194605.6A 2016-10-07 2017-10-03 Illumination device for vehicle Active EP3305593B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199077A JP6538635B2 (en) 2016-10-07 2016-10-07 Vehicle lighting system

Publications (2)

Publication Number Publication Date
EP3305593A1 EP3305593A1 (en) 2018-04-11
EP3305593B1 true EP3305593B1 (en) 2023-02-22

Family

ID=60019758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17194605.6A Active EP3305593B1 (en) 2016-10-07 2017-10-03 Illumination device for vehicle

Country Status (4)

Country Link
US (1) US10214134B2 (en)
EP (1) EP3305593B1 (en)
JP (1) JP6538635B2 (en)
CN (1) CN107914634B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223434B4 (en) * 2017-12-20 2019-08-08 Audi Ag Shortening of light guiding functions
KR102589027B1 (en) * 2018-05-18 2023-10-16 현대자동차주식회사 Outer display lighting apparatus of vehicle
JP7352341B2 (en) * 2018-09-28 2023-09-28 株式会社小糸製作所 automotive lighting
JP7258564B2 (en) * 2019-01-16 2023-04-17 スタンレー電気株式会社 Vehicle lighting control device, vehicle lighting control method, vehicle lighting system
JP7250621B2 (en) 2019-05-31 2023-04-03 株式会社小糸製作所 vehicle lamp
WO2021006217A1 (en) * 2019-07-05 2021-01-14 株式会社小糸製作所 Vehicular lamp
KR20230101247A (en) * 2021-12-29 2023-07-06 에스엘 주식회사 Lamp for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102214A1 (en) * 2005-09-06 2007-05-10 Marten Wittorf Method and system for improving traffic safety
JP2010277123A (en) * 2009-05-26 2010-12-09 Mazda Motor Corp Driving support system for vehicle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281806B1 (en) * 2000-10-12 2001-08-28 Ford Global Technologies, Inc. Driver road hazard warning and illumination system
WO2005119622A1 (en) * 2004-06-01 2005-12-15 Persen Technologies Incorporated Vehicle warning system
JP5262057B2 (en) 2006-11-17 2013-08-14 株式会社豊田中央研究所 Irradiation device
JP4964195B2 (en) * 2008-07-10 2012-06-27 パナソニック株式会社 Vehicle lighting device
EP2482250B1 (en) * 2009-04-15 2015-05-20 Toyota Jidosha Kabushiki Kaisha Object detection device
US9341338B2 (en) * 2011-01-24 2016-05-17 Honda Motor Co., Ltd. Light distribution-controlling device of vehicle headlight
US10223915B2 (en) * 2011-01-29 2019-03-05 Russell Haines System that warns in advance of occupants exiting or entering a parked vehicle
US8635010B2 (en) * 2011-02-15 2014-01-21 Telenav, Inc. Navigation system with accessory control mechanism and method of operation thereof
KR101338075B1 (en) 2011-12-14 2013-12-06 현대자동차주식회사 Method for warning pedestrian using laser beam
JP5486031B2 (en) * 2012-03-06 2014-05-07 本田技研工業株式会社 Light distribution control device
JP2013203251A (en) 2012-03-28 2013-10-07 Denso Corp Light emission control device, emission warning system, light control system, and light emission control program
JP5696701B2 (en) * 2012-08-31 2015-04-08 株式会社デンソー Anti-pedestrian notification device
JP5790698B2 (en) * 2013-04-11 2015-10-07 トヨタ自動車株式会社 Information display device and information display method
JP6137001B2 (en) * 2014-03-14 2017-05-31 株式会社デンソー In-vehicle device
US20150329043A1 (en) * 2014-05-13 2015-11-19 Continental Automotive Systems, Inc. Warning to a Pedestrian in Dangerous Situation
JP6434740B2 (en) * 2014-08-11 2018-12-05 株式会社小糸製作所 Vehicle display system
JP2016068792A (en) * 2014-09-30 2016-05-09 富士重工業株式会社 Headlight device for vehicle
JP6396160B2 (en) 2014-10-02 2018-09-26 株式会社小糸製作所 Vehicle lamp and its lighting circuit
DE102014226254A1 (en) * 2014-12-17 2016-06-23 Robert Bosch Gmbh Method for operating a motor vehicle, in particular autonomously or partially autonomously driving / driving, signaling device, motor vehicle
JP6366497B2 (en) * 2014-12-24 2018-08-01 三菱電機株式会社 Vehicle notification system and vehicle notification method
CN205365399U (en) * 2016-02-25 2016-07-06 张朝锋 Crashproof warning system behind dangerization article vehicle based on laser radar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102214A1 (en) * 2005-09-06 2007-05-10 Marten Wittorf Method and system for improving traffic safety
JP2010277123A (en) * 2009-05-26 2010-12-09 Mazda Motor Corp Driving support system for vehicle

Also Published As

Publication number Publication date
US10214134B2 (en) 2019-02-26
JP6538635B2 (en) 2019-07-03
US20180099604A1 (en) 2018-04-12
CN107914634A (en) 2018-04-17
CN107914634B (en) 2021-04-27
EP3305593A1 (en) 2018-04-11
JP2018058542A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
EP3305593B1 (en) Illumination device for vehicle
US11333743B2 (en) Lamp device, sensor system, and sensor device
US7791458B2 (en) Alerting illumination device
JP6746270B2 (en) Vehicle display system
US9785042B2 (en) Vehicular lighting apparatus
US9849827B2 (en) Vehicle headlight system
US20160090023A1 (en) Information display device and information display method
RU2724935C1 (en) METHOD AND SYSTEM OF NOTIFICATION OF A LOAD CAR DRIVER
US10596953B2 (en) Display device for vehicle
JP6595445B2 (en) Vehicle lighting device
KR20180132668A (en) Method for controlling automatic display of a pictogram indicating the presence of a distress situation in front of a vehicle
US20120134164A1 (en) Apparatus and method for controlling head lamp for vehicles
WO2020067337A1 (en) Illuminating lamp for vehicle
JP4479532B2 (en) Fog detection device by night image
US10151438B2 (en) Lighting device for vehicle
JP7139309B2 (en) lighting equipment
JP6730174B2 (en) Vehicle lighting system
JP2013166467A (en) Device for detecting obstacle around vehicle and obstacle detection system
JP6687502B2 (en) Vehicle lighting system
WO2022196296A1 (en) Vehicle lamp control device, vehicle lamp control method and vehicle lamp system
JP7444636B2 (en) vehicle headlights
JP7458820B2 (en) Vehicle headlights
JP2022022556A (en) Vehicle lighting fixture
JP2022152259A (en) vehicle lamp
JP2017177942A (en) Vehicular light distribution control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1549314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017066165

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1549314

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230831

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017066165

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 7