EP3303203B1 - Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis - Google Patents

Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis Download PDF

Info

Publication number
EP3303203B1
EP3303203B1 EP16738478.3A EP16738478A EP3303203B1 EP 3303203 B1 EP3303203 B1 EP 3303203B1 EP 16738478 A EP16738478 A EP 16738478A EP 3303203 B1 EP3303203 B1 EP 3303203B1
Authority
EP
European Patent Office
Prior art keywords
value
linear element
load
parameter
pulleys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16738478.3A
Other languages
English (en)
French (fr)
Other versions
EP3303203A1 (de
Inventor
Stéphane REAU
Bernard Hautesserres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodimas SA
Original Assignee
Sodimas SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodimas SA filed Critical Sodimas SA
Publication of EP3303203A1 publication Critical patent/EP3303203A1/de
Application granted granted Critical
Publication of EP3303203B1 publication Critical patent/EP3303203B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/068Cable weight compensating devices

Definitions

  • the invention relates to the monitoring of a closed-loop elevator installation.
  • This type of installation comprises a linear drive element driven by a motor, supporting a cabin and/or a counterweight, and forming a closed loop extending over the entire travel of the cabin. This can make it possible to place the motor in a location other than at one end of the duct.
  • counterweight we mean both a counterweight in the classic sense of the term and a balancing mass.
  • the installation may include a counterweight having a mass less than that of the cabin, equal to that of the cabin, or greater than that of the cabin.
  • the installation can also be without counterweight.
  • the linear element of the closed loop may comprise a belt, of relatively flat section, and comprising cables, for example metallic, embedded in a matrix.
  • the closed loop pulleys can thus be chosen to be relatively small in diameter, for greater compactness.
  • belt noise For example, cable tension is likely to change over time. If the belt is relatively loose, there is a risk of the belt slipping on a drive pulley, and therefore the cabin drifting. In addition, users of the installation may be likely to hear a noise called belt noise.
  • This method can also allow monitoring of a parameter relating to an elevator installation without a sensor dedicated to this monitoring.
  • This at least one parameter relating to the elevator installation can for example comprise a tension of a linear element, a parameter representative of the adhesion of a linear element on a pulley secured to a shaft of the drive motor , a parameter representative of the aging of a linear element, a parameter representative of a cabin load, and/or other.
  • the installation may also include a tensioner for tensioning the linear element.
  • a tensioner for tensioning the linear element.
  • the sheath can be vertical, that is to say extend in a direction parallel to the gravity vector, or not.
  • An installation can be planned with one or more load elements in the closed loop.
  • the installation may also include one or more load elements outside the closed loop, or not.
  • the installation may be devoid of counterweight.
  • the linear element may for example comprise a belt, or the like.
  • the linear element can be unique, that is to say that the closed loop is then produced with a single linear element, for example a single belt.
  • a linear element in several parts, possibly of different natures, for example a belt part passing through one of the two pulleys of the closed loop, and a cable part passing through the other of the two pulleys of the loop closed.
  • the drive motor may or may not be part of the closed loop.
  • the invention is not limited to a particular location of the drive motor, provided that this motor makes it possible to drive the linear element in movement.
  • the motor can be mounted on one of the two pulleys, for example at the top or bottom of the shaft.
  • the measured value of the parameter representative of the motor torque can for example come from a value of current consumed by the drive motor, a value of power consumed by this drive motor, and/or other.
  • the value received in step (a) can be measured when the cabin is stopped. We can thus improve the precision of the estimate to the extent that certain factors such as friction or other then exert relatively little influence on the engine torque.
  • the method can comprise, prior to estimation step (b), a step of receiving a measured value of a parameter representative of the position of the charging element in the sheath.
  • the value of the parameter relating to the elevator installation can be estimated as a function in addition of this value of the parameter representative of the position of the load element in the shaft.
  • the value received in step (a) may have been measured while the car is at the position corresponding to the parameter value relating to the elevator installation received.
  • the value received in step (a) can be measured for a cabin position value imposed by a control device.
  • the method may comprise, prior to step (a), a step of verifying that the position value received is equal to a desired position value.
  • the value of the parameter relating to the elevator installation can be estimated by comparing the value received in step (a) to a value of the parameter representative of the motor torque stored in memory, this value having advantageously been measured while the cabin was in this same position.
  • the difference between these motor torque values may in fact be attributable to one or more parameters relating to the elevator installation.
  • the process can thus be relatively simple to implement.
  • the parameter value estimated in step (b) comprises a value of a parameter relating to at least the linear drive element.
  • this parameter relating to at least one linear training element is written as a sum of a parameter representative of a linear element tension and of term(s) representative) of a force d 'elasticity.
  • this parameter relating to at least one linear drive element is equal to or proportional to a parameter representative of a linear element voltage.
  • this parameter relating to at least one linear training element is equal to or proportional to a sum comprising a term representative of an elastic force, this term being proportional to a product of an average driving element section value and an elongation value.
  • this parameter value relating to at least one linear drive element can be estimated as a function also of a current cabin load value when measuring the engine torque.
  • the engine torque value received in step (b) can be measured for a supposedly known cabin load value, for example a zero cabin load value.
  • the value of the parameter relating to at least one linear drive element can be estimated by comparing the value received in step (a) to a value of the parameter representative of the engine torque stored in memory and measured for the same cabin load , and advantageously for the same position in the cabin shaft.
  • the method may include, if the difference between these torque values is greater than a threshold, a step of emitting an alarm signal, so that a technician can come and measure the voltage of (or) the element. linear drive, and if necessary adapts the tensioner in order to reduce this tension value to a desired value.
  • the signal produced in step (c) then has a value corresponding to a request for a technician visit.
  • This process is advantageous in the sense that the number of human interventions can be limited compared to the prior art, in which regular checks are provided. This process can therefore make monitoring less restrictive than in the prior art, and in a relatively reliable manner.
  • the method may comprise a step of estimating the value of a parameter representative of the voltage of (or) the linear drive element as a function of the value received in step (a).
  • step (a) we can consider that the difference between the value received in step (a) and a value measured previously for the same cabin load and the same cabin position is attributable to a reduction in the voltage of the linear element d 'training.
  • the method may include a step of developing a tensioner control signal, based on the estimated tension value, in order to retension the linear element.
  • the number of technician interventions can then be much reduced than in the prior art, since the control of the tensioner is thus automated.
  • the method can comprise a step of estimating the adhesion of the linear element on a driving pulley, as a function of the value of the parameter relating to at least one element linear drive, for example as a function of the value of the parameter representative of the estimated voltage.
  • adhesion can in fact be estimated based on the cable tension and the load to be lifted.
  • the emission of an alarm signal and/or a tensioner control signal may be a function of this value. T 1 T 2 .
  • the parameter relating to at least one linear drive element may comprise a parameter characterizing the state of the linear drive element, for example a parameter depending on the average section of the cable(s) of the linear element. drive and/or the elongation of the linear drive element.
  • the parameter characterizing the state of the linear drive element can be estimated as a function in addition of a voltage value of the linear drive element.
  • the tension value of the linear element may for example have been measured, for example by an electronic tensioner, or else may be known following a command of the tensioner, for example after having been reduced to a determined value, for example after having applied a process described above.
  • an alarm signal can be generated calling for replacement of the linear drive element.
  • this process can make it possible to make savings compared to a process of the type known from the prior art in which the linear element is replaced after an arbitrary period of use, for example ten years.
  • the invention is not limited to a particular method of obtaining the values ⁇ L and S.
  • a signal is sent to a user interface so that an operator places a load of predetermined mass Q 0 in the cabin, for example 10% of the maximum authorized load, or even 100 kg.
  • a position sensor receives from a position sensor a value l t ( Q 0 ) of elongation of the linear element following this cabin loading.
  • This value l t ( Q 0 ) received is then compared to a value l i ( Q 0 ) stored in memory, measured initially, for example when the linear element was new, for the same cabin load Q 0 .
  • the difference ⁇ L (( Q 0 ) between these two values is kept at least momentarily in memory and/or compared to a threshold, so that an alarm signal can be issued depending on the result of the comparison.
  • This received value C' ( Q 0 ) is compared to a motor torque value stored in memory and measured initially, for example when the linear element was new, for the same cabin load Q 0 , for the same cabin position and for the same linear element voltage.
  • F ecr ( Q 0 ) we can estimate a current elastic force value F ecr ( Q 0 ) for this predetermined load.
  • This effective section value S of the linear element can be compared to a threshold, so that an alarm signal can be emitted according to the result of the comparison.
  • the parameter(s) relating to the estimated elevator installation may include a parameter representative of the cabin load.
  • the method described above can thus allow relatively precise measurement of this load, without a balance type sensor.
  • the value of the cabin load can be estimated as a function of a parameter relating to at least one linear drive element, for example a cable tension value.
  • Step (c) may include a step of comparing the value received in step (b) to a value of the parameter representative of the motor torque stored in memory and measured for the same cable tension, and advantageously for the same position cabin.
  • the elevator installation is arranged so that this linear element forms with the pulleys, and with this at least one load element mounted on the linear element, a closed loop.
  • the monitoring device may for example comprise or be integrated into one or more processor(s), for example a microcontroller, a microprocessor or the like.
  • processor(s) for example a microcontroller, a microprocessor or the like.
  • the reception means may for example comprise an input port, an input pin or the like.
  • the processing means can for example include a processor core or CPU (from the English “Central Processing Unit”), or other.
  • the transmission means may for example include an output port, an output pin, or the like.
  • the control device may for example comprise or be integrated into one or more processor(s), for example a microcontroller, a microprocessor or the like.
  • the monitoring device and the control device may or may not be integrated into the same processor. For example, we could provide remote devices.
  • control unit for an elevator installation comprising a monitoring device as described above and a control device capable of producing elevator system control signals.
  • This control device can for example comprise motor control means, for controlling the motor, in order to impose a determined cabin speed and/or a determined movement.
  • This control device can for example tensioner control means, to control a tensioner, in order to control the tension applied to the linear element.
  • FIG. 1 shows an example of elevator installation according to one embodiment of the invention.
  • FIG. 2 is a flowchart corresponding to an example of a method according to one embodiment of the invention.
  • FIG. 3 is a flowchart corresponding to an example of a method according to another embodiment of the invention.
  • FIG. 4 shows an example of elevator installation according to another embodiment of the invention.
  • FIG. 5 shows an example of elevator installation according to another embodiment of the invention.
  • FIG. 6 shows an example of elevator installation according to another embodiment of the invention.
  • FIG. 7 shows an example of elevator installation according to another embodiment of the invention.
  • an elevator installation 1 comprises a cabin 2 and a counterweight 3 mounted on a linear element 4 of cable or belt type.
  • a drive motor 5 is mounted on a first pulley 6 installed at the lower end of an elevator shaft not shown on the figure 1 .
  • a second pulley 7 is installed on a high end of this sheath.
  • the pulleys 6 and 7 are mounted on a belt-type linear element 8, and on which the counterweight 3 and a tensioning device 9 are also mounted.
  • the tensioner 9 makes it possible to apply tension to the belt 8.
  • the cabin 2 and the counterweight 3 are also mounted on the cable 4 by means of a third pulley 10 installed on the counterweight 3, a fourth pulley 11 installed at the upper end of the sheath and two fifth pulleys 12 , 13 installed on cabin 2.
  • the cable 4 is also fixed by its ends to the upper end of the sheath.
  • the tensioner, the counterweight 3 and the pulleys 6 and 7 form a closed loop.
  • the tensioner is part of the closed loop, but it could be otherwise.
  • a monitoring device 14 for example a microcontroller, is electrically connected to a control circuit not shown of the drive motor 5.
  • Step 100 thus corresponds to sending a command message S OUT to impose this stop at a given cabin position. It goes without saying that during cabin movement, current position values are received, during steps not shown, in order to control stopping at the desired position.
  • a power value consumed by the drive motor referenced 5 on the figure 1 while the cabin is stopped at the imposed position is then received by the processor referenced 14, and converted into an engine torque value C during a step 101.
  • step 100 it could be provided that the processor 14 determines each night at 4 a.m. if the cabin is in a given position, for example on the ground floor. pavement. In this case, a motor torque value is measured, as in step 101.
  • an initial belt tension value T i and an initial motor torque value C i are read from a memory, this motor torque value having been measured for this initial belt tension T i , for this same cabin position and for an empty load.
  • step 102 we calculate, based on the value of the torque value C received in step 101, these values T i , C i , stored in memory, and based on a value R of drive pulley radius stored in a memory, a parameter value relating to the belt P c .
  • step 103 the difference between the values P c and T i is compared to a threshold THR. If it turns out that the estimated value P c differs too much from the initial belt tension value T i , then it is considered that there is a risk that the belt tension is too low and/or that the belt has aged too much, and an alarm signal is issued during a step 104.
  • This signal is sent to a user interface, for example a server managed by a maintenance company, and a technician can then come and measure the belt tension using an appropriate tool and estimate the aging of the belt, for example. example by examining whether the cables are intact.
  • a user interface for example a server managed by a maintenance company
  • the technician activates the tensioner so that the effective cable tension is reduced to the desired value T i .
  • the processor after a waiting time of for example a day (step 105), or after a not shown step of manual reactivation carried out by the technician, then generates a new signal to impose a cabin stop at the same position, and always at a time such that we can assume that the cabin is empty, during a step 106.
  • a new value of engine torque C' is measured, while the cabin is at the same level as previously, for example on the first level or on the ground floor.
  • This current elasticity force value F ECR is assumed to be proportional to the cable section and the elongation. In other words, we can estimate from this second measurement of motor torque (step 107) an aging state of the cable. In the event of proven deterioration in the condition of the belt, provision can be made for the development and transmission of an alarm signal, during a step 109.
  • the signal S OUT produced in step 109 corresponds to a control signal for stopping the elevator installation.
  • the processor is initially in a sleep state.
  • the processor receives a position value of the cabin, this value having been measured by a sensor of the known type of the prior art. This measurement upon exiting the standby state is represented by steps 200, 201.
  • a belt tension value T is read from a memory, for example an initial value imposed by a technician, or even an estimated value.
  • an elasticity force value F ECR estimated by applying the method described with reference to the figure 2 is advantageous, but optional, embodiment.
  • step 203 These memory readings are represented by step 203.
  • step 203 it could be provided, instead of step 203, to read from memory the value P c estimated during the previous night, in step 102 of the method described with reference to there figure 2 .
  • a value of load to be lifted Q is estimated as a function of this value Mc estimated in step 202, of the motor torque value C" received in step 204, and advantageously in function of the parameter values relating to the belt T, F ECR read in step 203.
  • an installation according to another embodiment of the invention can comprise two pulleys 46, 47, a tensioner 49 and a cabin 42 mounted in a closed loop thanks to a belt 48. Another belt 48' passes through the pulley 47. mounted on a motor 45. The motor 45 is thus slightly offset from the closed loop.
  • the installation further comprises a counterweight 43, having for example a mass equal to that of the cabin 42.
  • a cable 44, mounted on a pulley 411 connects the cabin 42 to the counterweight 43.
  • a control cabinet 414 comprising one or more processors, makes it possible to control the motor 45.
  • the installation is devoid of counterweight.
  • a cabin 52 mounted in a closed loop with a tensioner not shown between two pulleys 57, 58 at the ends of the sheath.
  • One of these pulleys is driving, the corresponding motor being controlled by a processor not shown capable of determining a belt tension value from a current value consumed by the motor.
  • the cabin 62 is reeled thanks to two additional pulleys 612, 613.
  • a motor 65 is mounted offset, by means of two other pulleys 614, 615.
  • This motor is controlled by a processor 614 capable of estimating the load of the cabin 62 as a function of the power consumed by the engine and as a function of a cabin height value.
  • a belt part 78 and a cable part 79 are provided, forming a closed loop with pulleys 76, 77, a cabin 72 and a counterweight 73.
  • the pulley 76 is driving, and a processor 714 capable of monitoring the aging of the belt 78 from the applied engine torque, the cabin load, the cabin height and the belt tension, controls this driving pulley 76.
  • each include a tensioner (not shown in these figures) making it possible to ensure the tensioning of the corresponding linear element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Claims (10)

  1. Verfahren zum Überwachen einer Aufzugsanlage, wobei die Anlage mindestens ein Lastelement (2, 3) umfasst, wobei jedes Lastelement eine Kabine (2) oder ein Gegengewicht (3), zwei Seilrollen (6, 7), die dazu bestimmt sind, an den jeweiligen Enden eines Aufzugsschachts installiert zu werden, ein lineares Element (8), das durch die Seilrollen verläuft und an dem mindestens ein Lastelement (3) montiert ist, und einen Antriebsmotor (5), um dieses lineare Element in Bewegung zu setzen, umfasst, wobei das Verfahren Folgendes umfasst:
    (a) Empfangen (204) eines Messwerts eines Parameters, der ein vom Motor aufgebrachtes Motordrehmoment (C") darstellt,
    (b) Schätzen (202, 205) mindestens eines Parameterwerts, der sich auf die Aufzugsanlage (Q) bezieht, in Abhängigkeit des in Schritt (a) empfangenen Werts des Parameters, der das Motordrehmoment darstellt, und
    (c) Senden eines erzeugten Signals in Abhängigkeit des in Schritt (b) geschätzten Werts an eine Benutzerschnittstelle oder an eine Steuervorrichtung der Aufzugsanlage;
    dadurch gekennzeichnet, dass der mindestens eine Parameter, der sich auf die Aufzugsanlage bezieht, einen Parameter umfasst, der sich auf das lineare Element (Pc, FECR) bezieht, und der Parameter, der sich auf das lineare Element bezieht, ferner in Abhängigkeit eines aktuellen Kabinenlastwerts bei der Messung des Motordrehmoments geschätzt wird;
    und dadurch, dass das lineare Element mit den Seilrollen und mit dem mindestens einen am linearen Element montierten Lastelement (3) einen geschlossenen Kreis bildet.
  2. Verfahren nach Anspruch 1, wobei der Parameter, der sich auf das lineare Element bezieht, ein Parameter ist, der eine Spannung des linearen Elements darstellt.
  3. Verfahren nach Anspruch 1 oder 2, wobei das in Schritt (c) erzeugte Signal einen Wert aufweist, der einer Technikerbesuchsanforderung entspricht, wenn der in Schritt (b) geschätzte Parameterwert, der sich auf das lineare Element (Pc) bezieht, stark von einem erwarteten Wert (Ti) abweicht.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Parameter, der sich auf das lineare Element bezieht, einen Parameter umfasst, der für den Zustand des linearen Elements (FECR) charakteristisch ist, und wobei
    der Wert des Parameters, der für den Zustand des linearen Elements charakteristisch ist, ferner in Abhängigkeit eines Spannungswerts des linearen Elements geschätzt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der mindestens eine Parameter, der sich auf die Aufzugsanlage bezieht, eine Kabinenlast (Q) umfasst und wobei
    der Wert der Kabinenlast ferner in Abhängigkeit eines Werts eines Parameters geschätzt wird, der sich auf das lineare Element (Pc, FECR) bezieht.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei
    der Parameterwert, der sich auf die Aufzugsanlage (Pc, FECR, Q), ferner in Abhängigkeit eines im Speicher gespeicherten Parameterwerts geschätzt wird, der ein Motordrehmoment (Ci) darstellt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei
    der Parameterwert, der sich auf die Aufzugsanlage (Pc, FECR, Q) bezieht, ferner in Abhängigkeit eines Werts eines Parameters geschätzt wird, der die Position der Kabine im Schacht darstellt, wobei der bei Schritt (a) erhaltene Wert für eine Kabinenposition gemessen wurde, die dem Wert des Parameters entspricht, der die Position der Kabine im Schacht darstellt.
  8. Überwachungsvorrichtung (14) einer Aufzugsanlage (1), wobei die Anlage mindestens ein Lastelement (2, 3) umfasst, wobei jedes Lastelement eine Kabine (2) oder ein Gegengewicht (3), zwei Seilrollen (6, 7), die dazu bestimmt sind, an den jeweiligen Enden eines Aufzugsschachts installiert zu werden, ein lineares Element (8), das durch die Seilrollen verläuft und an dem mindestens ein Lastelement (3) montiert ist, und einen Antriebsmotor (5), um dieses lineare Element in Bewegung zu setzen, umfasst, wobei die Aufzugsanlage derart angeordnet ist, dass das lineare Element mit den Seilrollen und diesem mindestens einem am linearen Element montierten Lastelement (3) einen geschlossenen Kreis bildet, wobei die Vorrichtung Folgendes umfasst:
    ein Empfangsmittel, um einen Messwert eines Parameters zu empfangen, der ein vom Motor aufgebrachtes Motordrehmoment darstellt,
    ein Verarbeitungsmittel, das mit dem Empfangsmittel in Verbindung steht und angeordnet ist, um mindestens einen Parameterwert, der sich auf das lineare Element (Pc, FECR) bezieht, in Abhängigkeit des Werts des Parameters, der das Motordrehmoment darstellt, und in Abhängigkeit eines aktuellen Kabinenlastwerts während der Messung des Motordrehmoments zu schätzen, und
    ein Übertragungsmittel, um ein erzeugtes Signal in Abhängigkeit des von dem Verarbeitungsmittel geschätzten Werts an eine Benutzerschnittstelle oder an eine Steuervorrichtung der Aufzugsanlage zu übertragen.
  9. Steuereinheit einer Aufzugsanlage, umfassend eine Überwachungsvorrichtung (14) nach Anspruch 8 und eine Steuervorrichtung, die dazu geeignet ist, Steuersignale zur Steuerung der Aufzugsanlage zu erzeugen.
  10. Aufzugsanlage (1), umfassend
    mindestens ein Lastelement (2, 3), wobei jedes Lastelement eine Kabine (2) oder ein Gegengewicht (3) umfasst,
    zwei Seilrollen (6, 7), die dazu bestimmt sind, an den jeweiligen Enden eines Aufzugsschachts installiert zu werden,
    ein lineares Element (8), das durch die Seilrollen verläuft und an dem mindestens ein Lastelement (3) montiert ist,
    einen Antriebsmotor (5), um dieses lineare Element in Bewegung zu setzen, und
    eine Überwachungsvorrichtung (14) nach Anspruch 8,
    wobei die Aufzugsanlage derart angeordnet ist, dass das lineare Element mit den Seilrollen und dem mindestens einen auf dem linearen Element montierten Lastelement (3) einen geschlossenen Kreis bildet.
EP16738478.3A 2015-06-04 2016-06-02 Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis Active EP3303203B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555109A FR3037052B1 (fr) 2015-06-04 2015-06-04 Surveillance d'une installation d'ascenseur a boucle fermee
PCT/FR2016/051322 WO2016193631A1 (fr) 2015-06-04 2016-06-02 Surveillance d'une installation d'ascenseur a boucle fermee

Publications (2)

Publication Number Publication Date
EP3303203A1 EP3303203A1 (de) 2018-04-11
EP3303203B1 true EP3303203B1 (de) 2023-09-20

Family

ID=53801050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16738478.3A Active EP3303203B1 (de) 2015-06-04 2016-06-02 Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis

Country Status (3)

Country Link
EP (1) EP3303203B1 (de)
FR (1) FR3037052B1 (de)
WO (1) WO2016193631A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036251A1 (de) * 2006-08-03 2008-02-07 TÜV Rheinland Industrie Service GmbH Seilrutsch / Treibfähigkeits-Indikator
EP2865629A1 (de) * 2013-10-24 2015-04-29 Kone Corporation Strömungsabrisszustandserkennung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120193B (fi) * 2008-01-09 2009-07-31 Kone Corp Hissijärjestelmän liikkeenohjaus
EP2636628A1 (de) * 2012-03-09 2013-09-11 ThyssenKrupp Aufzugswerke GmbH Spannvorrichtung für ein Zugmittel einer Aufzuganlage
EP2676915B1 (de) * 2012-06-22 2016-08-10 Kone Corporation Aufzug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036251A1 (de) * 2006-08-03 2008-02-07 TÜV Rheinland Industrie Service GmbH Seilrutsch / Treibfähigkeits-Indikator
EP2865629A1 (de) * 2013-10-24 2015-04-29 Kone Corporation Strömungsabrisszustandserkennung

Also Published As

Publication number Publication date
EP3303203A1 (de) 2018-04-11
FR3037052A1 (fr) 2016-12-09
FR3037052B1 (fr) 2017-07-07
WO2016193631A1 (fr) 2016-12-08

Similar Documents

Publication Publication Date Title
EP1153877B1 (de) Verfahren und Vorrichtung für das Simulieren von Lasten an Hebezeugen
FR2811970A1 (fr) Procede de determination des parametres de freinage, de traction et d'autres parametres de performance associes d'un ascenseur
FR2713193A1 (fr) Procédé et dispositif pour détecter un dépassement des charges de dimensionnement d'un aéronef.
EP2105367B1 (de) Verfahren zur Steuerung eines zusätzlichen Brems- oder Antriebsorgans einer Seilbahnanlage
EP3303203B1 (de) Überwachung einer aufzugseinrichtung mit geschlossenem regelkreis
FR2918173A1 (fr) Mise en charge d'une machine d'essai de fluage
EP0713474B1 (de) Verfahren zur kontrolle von schwingungen einer pendelnden last und vorrichtung zur durchführung des verfahrens
CA2564373C (fr) Dispositif d'impression d'une bande de papier conformee en un rouleau autour d'une bobine
EP0378489A1 (de) Seiltransporteinrichtung mit kontrollierter Zugspannung
EP3470361A1 (de) Sicherungsverfahren einer hubbewegung einer last, und entsprechende hubvorrichtung
EP2086810B1 (de) Verfahren zur simulation des bremsens eines kabeltransportsystems, verfahren zur diagnose des bremsens des systems und steuervorrichtung für das system
EP0611211A1 (de) Kontroll- und Steuersystem für die Geschwindigkeit einer bewegten, pendelnden Ladung und Hebevorrichtung mit einem solchen System
FR2770465A1 (fr) Procede et dispositif de determination du patinage dans un embrayage
FR2782481A1 (fr) Procede et dispositif d'identification du sens de roulement d'un vehicule automobile
EP0930493B1 (de) Prüfstand für Radaufhängungen von Zweiradfahrzeugen
FR2890929A1 (fr) Procede et dispositif de controle d'un organe de freinage ou de mise en mouvement auxiliaire pour installation de transport a cable
EP3068717A1 (de) Aufzugssystem mit reduzierter ausbalancierung
EP1065506B1 (de) Vorrichtung zum Messen der Parameter beim Öffnen eines Teils und Kalibriermethode für diese Vorrichtung
EP3014779B1 (de) Überwachung der qualität eines durch einen gleitkontakt gestützten kommunikationskanals
EP3878707B1 (de) Verfahren zur kontrolle einer fahrzeug-transportanlage mittels eines sich kontinuierlich bewegenden kabels, und vorrichtung, die für die durchführung des verfahrens konfiguriert ist
FR2645517A1 (fr) Procede et dispositif pour ajuster la vitesse de rotation d'un devidoir de fil metallique en fonction de la demande en fil
EP3572295B1 (de) Verfahren und system zur regulierung der momentanen elektrischen gesamtleistung, die von einer schienenfahrzeugflotte verbraucht wird
FR3075753A1 (fr) Dispositif electrique solidarise a un arbre tournant
EP0726223A1 (de) Verfahren und Vorrichtung zum Kontrollieren der Wirkung eines Hebezeuges
FR2656692A1 (fr) Equipement d'un treuil de peche sur un chalutier pour mesurer les tractions dans les cables vers le train de peche.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REAU, STEPHANE

Inventor name: HAUTESSERRES, BERNARD

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210720

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016082883

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231218

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1613299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240122