EP3301520A1 - Timepiece component having a high-entropy alloy - Google Patents

Timepiece component having a high-entropy alloy Download PDF

Info

Publication number
EP3301520A1
EP3301520A1 EP16191867.7A EP16191867A EP3301520A1 EP 3301520 A1 EP3301520 A1 EP 3301520A1 EP 16191867 A EP16191867 A EP 16191867A EP 3301520 A1 EP3301520 A1 EP 3301520A1
Authority
EP
European Patent Office
Prior art keywords
entropy alloy
high entropy
atomic
alloy
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16191867.7A
Other languages
German (de)
French (fr)
Inventor
Christian Charbon
Guido Plankert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP16191867.7A priority Critical patent/EP3301520A1/en
Priority to CN201780059624.2A priority patent/CN109804321B/en
Priority to PCT/EP2017/069219 priority patent/WO2018059795A1/en
Priority to US16/331,038 priority patent/US20190235441A1/en
Priority to RU2019112854A priority patent/RU2715832C1/en
Priority to EP17745346.1A priority patent/EP3519900B1/en
Priority to JP2019513437A priority patent/JP6892914B2/en
Publication of EP3301520A1 publication Critical patent/EP3301520A1/en
Priority to US16/775,657 priority patent/US11042120B2/en
Priority to US17/177,426 priority patent/US20210263470A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • G04B29/02Plates; Bridges; Cocks
    • G04B29/027Materials and manufacturing
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B5/00Automatic winding up
    • G04B5/02Automatic winding up by self-winding caused by the movement of the watch
    • G04B5/16Construction of the weights

Definitions

  • the present invention relates to a clock component comprising a high entropy alloy, and a method of manufacturing such a clock component.
  • the invention also relates to the use of a high entropy alloy for manufacturing a watch component.
  • the watch components, and particularly the barrel springs, are subject to strong constraints, in particular during their manufacturing processes, but also during their use.
  • the invention aims to overcome the drawbacks of the state of the art by providing a watch component having a higher mechanical strength and greater ductility.
  • a timepiece component comprising a high entropy alloy, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the high entropy alloy having a concentration in each main element between 1 and 55 atomic%.
  • a timepiece component comprising a high entropy alloy, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the high entropy alloy having a concentration in each main element between 1 and 55 atomic%.
  • the concentration in each main element is between 10 and 55 atomic%.
  • the high entropy alloy may comprise one or more interstitial elements among the following: C, N, B. These interstitial elements make it possible to further increase the mechanical strength of the alloy.
  • the high entropy alloy may comprise one or more elements of structural hardening among the following: Ti, Al, Be, Nb, preferably in a mass concentration of between 0.1 and 3%.
  • the watch component may be one of the following: a spring, a mainspring, a jumper spring, an anchor, a plate, an anchor, a rod, an anchor rod, an anchor fork , a wheel, an escape wheel, a shaft, a pinion, an oscillating weight, a winding stem, a crown, a watch case, a bracelet link, a watch bezel, a bracelet clasp.
  • a second aspect of the invention also relates to the use of a high entropy alloy for manufacturing a watch component, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the alloy having a concentration in each main element between 1 and 55 atomic%.
  • the figure 1 represents a barrel spring 1 according to one embodiment.
  • This barrel spring 1 is made of a high entropy alloy.
  • the entropy of mixing is high and makes the single phase thermodynamically more stable than the mixing of several phases.
  • the mainspring is preferably made of the high entropy alloy described in the publication " Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Zhiming Li et al, Nature 534, 227-230 (09 June 2016 ).
  • This high entropy alloy has the following formula: Fe 80-x Mn x Co 10 Cr 10 .
  • x is preferably between 25 and 79 atomic%.
  • the mainspring can be made of a Fe 35 Mn 45 Co 10 Cr 10 alloy.
  • the barrel spring thus produced has the advantage of combining a high limit at break and a high ductility.
  • the mainspring can be made of a Fe 40 Mn 40 Co 10 Cr 10 alloy.
  • the spring thus produced presents the advantage of having a high breaking strength and high ductility. It also operates according to a TWIN mechanism ("twinning induced plasticity").
  • the mainspring can be made of a Fe 45 Mn 35 Co 10 Cr 10 alloy.
  • the barrel spring thus produced has the advantage of still having greater breaking strength and greater ductility. It also works according to a TRIP mechanism ("transformation induced plasticity").
  • the mainspring can be made of a Fe 50 Mn 30 Co 10 Cr 10 alloy.
  • the barrel spring thus produced has the advantage of still having greater breaking strength and greater ductility. It operates according to a TRIP mechanism with the appearance of two phases, cfc and hc, by a clipping mechanism.
  • the invention is not limited to the manufacture of a mainspring. Indeed, other watch components could be made in the high entropy alloy Fe 80-x Mn x Co 10 Cr 10 , such as a spring, a rod, an ankle, a balance, an axis, a plate, an anchor, an anchor rod, an anchor fork, an escape wheel, a shaft, a pinion, an oscillating weight, a winding stem, a crown, a jumping spring, a watch case, a bracelet link, a watch bezel, a bracelet clasp ...
  • the figure 2 schematically represents the steps of a method of manufacturing the barrel spring of the figure 1 .
  • This method comprises a first step 101 for manufacturing a high entropy alloy ingot. To do this, the elements are mixed in pure form or pre-alloy, then they are fused and the whole is cast to form an ingot.
  • the method then comprises a step 102 of hot forging of the ingot.
  • the method then comprises a step 103 of hot rolling.
  • the process then comprises a cold rolling step 104.
  • the method then comprises a drawing step 105.
  • the process then comprises a cold rolling step 106.

Abstract

Composant horloger comportant un alliage haute entropie, l'alliage haute entropie comportant entre 4 et 13 éléments principaux formant une unique solution solide, l'alliage haute entropie présentant une concentration en chaque élément principal comprise entre 1 et 55 % atomique.A clockwork component comprising a high entropy alloy, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the high entropy alloy having a concentration in each main element of between 1 and 55 atomic%.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un composant horloger comportant un alliage haute entropie, ainsi qu'un procédé de fabrication d'un tel composant horloger. L'invention concerne également l'utilisation d'un alliage haute entropie pour fabriquer un composant horloger.The present invention relates to a clock component comprising a high entropy alloy, and a method of manufacturing such a clock component. The invention also relates to the use of a high entropy alloy for manufacturing a watch component.

ART ANTERIEURPRIOR ART

Les composants horlogers, et particulièrement les ressorts de barillet, sont soumis à de fortes contraintes, notamment au cours de leurs procédés de fabrication, mais aussi pendant leur utilisation.The watch components, and particularly the barrel springs, are subject to strong constraints, in particular during their manufacturing processes, but also during their use.

Ils doivent notamment présenter une résistance mécanique élevée et une grande ductilité. Or actuellement, les composants horlogers présentent rarement simultanément ces caractéristiques antagonistes.In particular, they must have high mechanical strength and high ductility. Nowadays, watch components rarely simultaneously exhibit these antagonistic characteristics.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention vise à remédier aux inconvénients de l'état de la technique en proposant un composant horloger présentant une résistance mécanique plus élevée et une plus grande ductilité.The invention aims to overcome the drawbacks of the state of the art by providing a watch component having a higher mechanical strength and greater ductility.

Pour ce faire, est proposé selon un premier aspect de l'invention, un composant horloger comportant un alliage haute entropie, l'alliage haute entropie comportant entre 4 et 13 éléments principaux formant une unique solution solide, l'alliage haute entropie présentant une concentration en chaque élément principal comprise entre 1 et 55 % atomique. En effet, un tel composant présente une plus grande résistance mécanique et une plus grande ductilité que ceux de l'art antérieur.To do this, is proposed according to a first aspect of the invention, a timepiece component comprising a high entropy alloy, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the high entropy alloy having a concentration in each main element between 1 and 55 atomic%. Indeed, such component has greater strength and ductility than those of the prior art.

Avantageusement, la concentration en chaque élément principal est comprise entre 10 et 55 % atomique.Advantageously, the concentration in each main element is between 10 and 55 atomic%.

Selon différents modes de réalisation préférentiels:

  • l'alliage haute entropie peut répondre à la formule suivante : FeaMnbCocCrd dans laquelle a, b, c et d sont compris entre 1 et 55 % atomique;
  • l'alliage haute entropie peut présenter la formule suivante : Fe50Mn30Co10Cr10 ;
  • l'alliage haute entropie peut répondre à la formule suivante: Fe80-xMnxCo10Cr10, avec x compris entre 25 et 79% atomique, et de préférence x compris entre 25 et 45% atomique;
  • l'alliage haute entropie peut répondre à la formule suivante : FeaMnbNieCocCrd dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique ;
  • l'alliage haute entropie peut répondre à la formule suivante Fe20Mn20Ni20Co20Cr20 ;
  • l'alliage haute entropie peut répondre à la formule suivante Fe40Mn27Ni26Co5Cr2 ;
  • l'alliage haute entropie peut répondre à la formule suivante : TaaNbbHfcZrdCre dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique;
  • l'alliage haute entropie peut en particulier répondre à la formule suivante Ta20Nb20Hf20Zr20Ti20 ;
  • l'alliage haute entropie peut répondre à la formule suivante : AlaLibMgcScdTie dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique ;
  • l'alliage haute entropie peut en particulier répondre à la formule suivante Al20Li20Mg10Sc20Ti30 ;
  • l'alliage haute entropie peut répondre à la formule suivante : AlaCobCrcCudFeeNif dans laquelle a, b, c, d, e et f sont compris entre 1 et 55 % atomique.
  • l'alliage haute entropie peut répondre à la formule suivante Cr18.2Fe18.2Co18.2Ni18.2Cu18.2Al9.0
According to various preferred embodiments:
  • the high entropy alloy may have the following formula: Fe a Mn b Co c Cr d in which a, b, c and d are between 1 and 55 atomic%;
  • the high entropy alloy may have the following formula: Fe 50 Mn 30 Co 10 Cr 10 ;
  • the high entropy alloy may have the following formula: Fe 80 - x Mn x Co 10 Cr 10 , with x ranging from 25 to 79 atomic%, and preferably x from 25 to 45 atomic%;
  • the high entropy alloy may have the following formula: Fe a Mn b Ni e Co c Cr d in which a, b, c, d and e are between 1 and 55 atomic%;
  • the high entropy alloy may have the following formula Fe 20 Mn 20 Ni 20 Co 20 Cr 20 ;
  • the high entropy alloy can meet the following formula Fe 40 Mn 27 Ni 26 Co 5 Cr 2 ;
  • the high entropy alloy can meet the following formula: Ta Nb Hf b c Zr d Cr e wherein a, b, c, d and e are between 1 and 55 atomic%;
  • the high entropy alloy may in particular be of the following formula Ta 20 Nb 20 Hf 20 Zr 20 Ti 20 ;
  • the high entropy alloy can meet the following formula: Al a Li b Mg c Sc d Ti e wherein a, b, c, d and e are between 1 and 55 atomic%;
  • the high entropy alloy may in particular correspond to the following formula Al 20 Li 20 Mg 10 Sc 20 Ti 30 ;
  • the high entropy alloy can meet the following formula: Al a Co b Cr c Fe d Cu e Ni f wherein a, b, c, d, e and f are from 1 to 55 atomic%.
  • the high entropy alloy can meet the following formula Cr 18.2 Fe 18.2 Co 18.2 Ni 18.2 Cu 18.2 Al 9.0

Avantageusement, l'alliage haute entropie peut comporter un ou plusieurs éléments interstitiels parmi les suivants : C, N, B. Ces éléments interstitiels permettent d'augmenter encore la résistance mécanique de l'alliage.Advantageously, the high entropy alloy may comprise one or more interstitial elements among the following: C, N, B. These interstitial elements make it possible to further increase the mechanical strength of the alloy.

Avantageusement, l'alliage haute entropie peut comporter un ou plusieurs éléments de durcissement structural parmi les suivants :Ti, Al, Be, Nb, de préférence dans une concentration massique comprise entre 0.1 et 3%.Advantageously, the high entropy alloy may comprise one or more elements of structural hardening among the following: Ti, Al, Be, Nb, preferably in a mass concentration of between 0.1 and 3%.

Selon différents modes de réalisation, le composant horloger peut être un des suivants: un ressort, un ressort de barillet, un ressort sautoir, une cheville, un plateau, une ancre, une tige, une baguette d'ancre, une fourchette d'ancre, une roue, une roue d'échappement, un arbre, un pignon, une masse oscillante, une tige de remontoir, une couronne, une boite de montre, un maillon de bracelet, une lunette de montre, un fermoir de bracelet.According to various embodiments, the watch component may be one of the following: a spring, a mainspring, a jumper spring, an anchor, a plate, an anchor, a rod, an anchor rod, an anchor fork , a wheel, an escape wheel, a shaft, a pinion, an oscillating weight, a winding stem, a crown, a watch case, a bracelet link, a watch bezel, a bracelet clasp.

Un deuxième aspect de l'invention concerne également l'utilisation d'un alliage haute entropie pour fabriquer un composant horloger, l'alliage haute entropie comportant entre 4 et 13 éléments principaux formant une unique solution solide, l'alliage présentant une concentration en chaque élément principal comprise entre 1 et 55 % atomique.A second aspect of the invention also relates to the use of a high entropy alloy for manufacturing a watch component, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the alloy having a concentration in each main element between 1 and 55 atomic%.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement dans la description détaillée suivante des modes de réalisation préférés, présentés à titre d'exemple non limitatifs en référence aux figures annexées, parmi lesquelles:

  • la figure 1 représente schématiquement un ressort de barillet selon un mode de réalisation de l'invention ;
  • la figure 2 représente schématiquement les étapes d'un procédé de fabrication d'un ressort de barillet selon un mode de réalisation de l'invention.
Other characteristics and advantages of the present invention will appear more clearly in the following detailed description of the preferred embodiments, presented by way of non-limiting example with reference to the appended figures, among which:
  • the figure 1 schematically represents a mainspring according to one embodiment of the invention;
  • the figure 2 schematically represents the steps of a method of manufacturing a mainspring according to one embodiment of the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

La figure 1 représente un ressort de barillet 1 selon un mode de réalisation. Ce ressort de barillet 1 est réalisé dans un alliage haute entropie.The figure 1 represents a barrel spring 1 according to one embodiment. This barrel spring 1 is made of a high entropy alloy.

Dans un tel alliage haute entropie, l'entropie de mélange est élevée et elle rend thermodynamiquement plus stable la phase unique que le mélange de plusieurs phases.In such a high entropy alloy, the entropy of mixing is high and makes the single phase thermodynamically more stable than the mixing of several phases.

Le ressort de barillet est de préférence réalisé dans l'alliage haute entropie décrit dans la publication " Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off", Zhiming Li et al, Nature 534, 227-230 (09 June 2016 ). Cet alliage haute entropie présente la formule suivante: Fe80-xMnxCo10Cr10. x est de préférence compris entre 25 et 79% atomique.The mainspring is preferably made of the high entropy alloy described in the publication " Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Zhiming Li et al, Nature 534, 227-230 (09 June 2016 ). This high entropy alloy has the following formula: Fe 80-x Mn x Co 10 Cr 10 . x is preferably between 25 and 79 atomic%.

Plus précisément, selon un premier mode de réalisation, le ressort de barillet peut être réalisé dans un alliage Fe35Mn45Co10Cr10. Le ressort de barillet ainsi réalisé présente l'avantage de combiner une haute limite à la rupture et une grande ductilité.More specifically, according to a first embodiment, the mainspring can be made of a Fe 35 Mn 45 Co 10 Cr 10 alloy. The barrel spring thus produced has the advantage of combining a high limit at break and a high ductility.

Selon un deuxième mode de réalisation, le ressort de barillet peut être réalisé dans un alliage Fe40Mn40Co10Cr10. Le ressort ainsi réalisé présente l'avantage d'avoir une grande résistance à la rupture et une grande ductilité. Il fonctionne en outre suivant un mécanisme TWIP (« twinning induced plasticity »).According to a second embodiment, the mainspring can be made of a Fe 40 Mn 40 Co 10 Cr 10 alloy. The spring thus produced presents the advantage of having a high breaking strength and high ductility. It also operates according to a TWIN mechanism ("twinning induced plasticity").

Selon un troisième mode de réalisation, le ressort de barillet peut être réalisé dans un alliage Fe45Mn35Co10Cr10. Le ressort de barillet ainsi réalisé présente l'avantage d'avoir encore une plus grande résistance à la rupture et une plus grande ductilité. Il fonctionne en outre suivant un mécanisme TRIP (« transformation induced plasticity »).According to a third embodiment, the mainspring can be made of a Fe 45 Mn 35 Co 10 Cr 10 alloy. The barrel spring thus produced has the advantage of still having greater breaking strength and greater ductility. It also works according to a TRIP mechanism ("transformation induced plasticity").

Selon un quatrième mode de réalisation, le ressort de barillet peut être réalisé dans un alliage Fe50Mn30Co10Cr10. Le ressort de barillet ainsi réalisé présente l'avantage d'avoir encore une plus grande résistance à la rupture et une plus grande ductilité. Il fonctionne selon un mécanisme TRIP avec l'apparition de deux phases, cfc et hc, par un mécanisme de mâclage.According to a fourth embodiment, the mainspring can be made of a Fe 50 Mn 30 Co 10 Cr 10 alloy. The barrel spring thus produced has the advantage of still having greater breaking strength and greater ductility. It operates according to a TRIP mechanism with the appearance of two phases, cfc and hc, by a clipping mechanism.

L'invention n'est pas limitée à la fabrication d'un ressort de barillet. En effet, d'autres composants horlogers pourraient être fabriqués dans l'alliage haute entropie Fe80-xMnxCo10Cr10, comme un ressort, une tige, une cheville, un balancier, un axe, un plateau, une ancre, une baguette d'ancre, une fourchette d'ancre, une roue d'échappement, un arbre, un pignon, une masse oscillante, une tige de remontoir, une couronne, un ressort sautoir, une boite de montre, un maillon de bracelet, une lunette de montre, un fermoir de bracelet...The invention is not limited to the manufacture of a mainspring. Indeed, other watch components could be made in the high entropy alloy Fe 80-x Mn x Co 10 Cr 10 , such as a spring, a rod, an ankle, a balance, an axis, a plate, an anchor, an anchor rod, an anchor fork, an escape wheel, a shaft, a pinion, an oscillating weight, a winding stem, a crown, a jumping spring, a watch case, a bracelet link, a watch bezel, a bracelet clasp ...

La figure 2 représente schématiquement les étapes d'un procédé de fabrication du ressort de barillet de la figure 1.The figure 2 schematically represents the steps of a method of manufacturing the barrel spring of the figure 1 .

Ce procédé comporte une première étape 101 de fabrication d'un lingot en alliage haute entropie. Pour ce faire, on mélange les éléments sous forme pure ou en préalliage, puis ils sont fusionnés et l'ensemble est coulé pour former un lingot.This method comprises a first step 101 for manufacturing a high entropy alloy ingot. To do this, the elements are mixed in pure form or pre-alloy, then they are fused and the whole is cast to form an ingot.

Le procédé comporte ensuite une étape 102 de forgeage à chaud du lingot.The method then comprises a step 102 of hot forging of the ingot.

Le procédé comporte ensuite une étape 103 de laminage à chaud.The method then comprises a step 103 of hot rolling.

Le procédé comporte ensuite une étape 104 de laminage à froid.The process then comprises a cold rolling step 104.

Le procédé comporte ensuite une étape 105 de tréfilage.The method then comprises a drawing step 105.

Le procédé comporte ensuite une étape 106 de laminage à froid.The process then comprises a cold rolling step 106.

Naturellement l'invention n'est pas limitée aux modes de réalisation décrits en référence aux figures et des variantes pourraient être envisagées sans sortir du cadre de l'invention.Naturally, the invention is not limited to the embodiments described with reference to the figures and variants could be envisaged without departing from the scope of the invention.

Ainsi, dans les exemples précédents, l'alliage Fe80-xMnxCo10Cr10 a été utilisé. Toutefois, d'autres alliages haute entropie pourraient être utilisés, comme par exemple :

  • Fe2Mn20Ni20Co20Cr20,
  • Fe40Mn27Ni26Co5Cr2,
  • Ta20Nb20Hf20Zr20Ti20,
  • Al20Li20Mg10Sc20Ti30,
  • Cr18.2Fe18.2Co18.2Ni18.2Cu18.2Al9.0.
Thus, in the preceding examples, the alloy Fe 80-x Mn × Co 10 Cr 10 was used. However, other high entropy alloys could be used, such as:
  • Fe 2 Mn 20 Ni 20 Co 20 Cr 20 ,
  • Fe 40 Mn 27 Ni 26 Co 5 Cr 2 ,
  • Ta 20 Nb 20 Hf 20 Zr 20 Ti 20 ,
  • Li Al 20 Mg 20 10 20 Ti 30 Sc,
  • Cr 18.2 Fe 18.2 Co 18.2 Ni 18.2 Cu 18.2 Al 9.0 .

Claims (10)

Composant horloger comportant un alliage haute entropie, l'alliage haute entropie comportant entre 4 et 13 éléments principaux formant une unique solution solide, l'alliage haute entropie présentant une concentration en chaque élément principal comprise entre 1 et 55 % atomique.A clockwork component comprising a high entropy alloy, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the high entropy alloy having a concentration in each main element of between 1 and 55 atomic%. Composant horloger selon la revendication précédente, dans lequel l'alliage haute entropie répond à la formule suivante : FeaMnbCocCrd avec a, b, c et d compris entre 1 et 55 % atomique.Watch component according to the preceding claim, in which the high entropy alloy has the following formula: Fe a Mn b Co c Cr d with a, b, c and d between 1 and 55 atomic%. Composant horloger selon la revendication 1, dans lequel l'alliage haute entropie répond à la formule suivante: Fe80-xMnxCo10Cr10, avec x compris entre 25 et 79% atomique, et de préférence x compris entre 25 et 45% atomique.The watch component according to claim 1, wherein the high entropy alloy has the following formula: Fe 80-x Mn x Co 10 Cr 10 , with x ranging from 25 to 79 at%, and preferably x from 25 to 45 atomic%. Composant horloger selon la revendication 1, dans lequel l'alliage haute entropie répond à la formule suivante: FeaMnbNieCocCrd dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique.The watch component according to claim 1, wherein the high entropy alloy has the following formula: Fe a Mn b Ni e Co c Cr d wherein a, b, c, d and e are from 1 to 55 atomic%. Composant horloger selon la revendication 1, dans lequel l'alliage haute entropie répond à la formule suivante: TaaNbbHfcZrdCre dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique.Timepiece component according to claim 1, wherein the high entropy alloy corresponds to the following formula: Ta Nb Hf b c Zr d Cr e wherein a, b, c, d and e are between 1 and 55 atomic%. Composant horloger selon la revendication 1, dans lequel l'alliage haute entropie répond à la formule suivante : AlaLibMgcScdTie dans laquelle a, b, c, d et e sont compris entre 1 et 55 % atomique.Timepiece component according to claim 1, wherein the high entropy alloy corresponds to the following formula: Al a Li b Mg c Sc d Ti e wherein a, b, c, d and e are between 1 and 55 atomic%. Composant horloger selon la revendication 1, dans lequel l'alliage haute entropie répond à la formule suivante : AlaCobCrcCudFeeNif dans laquelle a, b, c, d, e et f sont compris entre 1 et 55 % atomique.Timepiece component according to claim 1, wherein the high entropy corresponds to the following formula alloy: Al a Co b Cr c Fe d Cu e Ni f wherein a, b, c, d, e and f are from 1 to 55% atomic. Composant horloger selon l'une des revendications précédentes, dans lequel l'alliage haute entropie comporte un ou plusieurs éléments interstitiels parmi les suivants : C, N, B.Watch component according to one of the preceding claims, in which the high entropy alloy comprises one or more interstitial elements among the following: C, N, B. Composant horloger selon l'une des revendications précédentes, dans lequel l'alliage haute entropie comporte un ou plusieurs éléments de durcissement structural parmi les suivants :Ti, Al, Be, Nb.The watch component according to one of the preceding claims, wherein the high entropy alloy comprises one or more of the following structural hardening elements: Ti, Al, Be, Nb. Utilisation d'un alliage haute entropie pour fabriquer un composant horloger, l'alliage haute entropie comportant entre 4 et 13 éléments principaux formant une unique solution solide, l'alliage présentant une concentration en chaque élément principal comprise entre 1 et 55 % atomique.Use of a high entropy alloy to manufacture a watch component, the high entropy alloy comprising between 4 and 13 main elements forming a single solid solution, the alloy having a concentration in each main element of between 1 and 55 atomic%.
EP16191867.7A 2016-09-30 2016-09-30 Timepiece component having a high-entropy alloy Withdrawn EP3301520A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP16191867.7A EP3301520A1 (en) 2016-09-30 2016-09-30 Timepiece component having a high-entropy alloy
CN201780059624.2A CN109804321B (en) 2016-09-30 2017-07-28 Timepiece component comprising a high-entropy alloy
PCT/EP2017/069219 WO2018059795A1 (en) 2016-09-30 2017-07-28 Timepiece component comprising a high-entropy alloy
US16/331,038 US20190235441A1 (en) 2016-09-30 2017-07-28 Timepiece component containing a high-entropy alloy
RU2019112854A RU2715832C1 (en) 2016-09-30 2017-07-28 Watch part containing high-entropy alloy
EP17745346.1A EP3519900B1 (en) 2016-09-30 2017-07-28 Timepiece component having a high-entropy alloy
JP2019513437A JP6892914B2 (en) 2016-09-30 2017-07-28 Timekeeper parts containing high entropy alloy
US16/775,657 US11042120B2 (en) 2016-09-30 2020-01-29 Timepiece component containing a high-entropy alloy
US17/177,426 US20210263470A1 (en) 2016-09-30 2021-02-17 Timepiece component containing a high-entropy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16191867.7A EP3301520A1 (en) 2016-09-30 2016-09-30 Timepiece component having a high-entropy alloy

Publications (1)

Publication Number Publication Date
EP3301520A1 true EP3301520A1 (en) 2018-04-04

Family

ID=57103844

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16191867.7A Withdrawn EP3301520A1 (en) 2016-09-30 2016-09-30 Timepiece component having a high-entropy alloy
EP17745346.1A Active EP3519900B1 (en) 2016-09-30 2017-07-28 Timepiece component having a high-entropy alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17745346.1A Active EP3519900B1 (en) 2016-09-30 2017-07-28 Timepiece component having a high-entropy alloy

Country Status (6)

Country Link
US (3) US20190235441A1 (en)
EP (2) EP3301520A1 (en)
JP (1) JP6892914B2 (en)
CN (1) CN109804321B (en)
RU (1) RU2715832C1 (en)
WO (1) WO2018059795A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073023A1 (en) * 2017-10-13 2019-04-18 Hublot Sa, Genève High entropy alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060425A1 (en) 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement
US20220307114A1 (en) * 2021-03-23 2022-09-29 City University Of Hong Kong High entropy alloy, method of preparation and use of the same
CN114058888B (en) * 2021-10-25 2022-07-05 重庆大学 Smelting method of FeCrCoNiAl high-entropy alloy
CN115121801B (en) * 2022-06-15 2023-06-23 中国人民解放军陆军装甲兵学院 Laser additive repairing method for iron-based material damaged part and repairing powder adopted by same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB647783A (en) * 1947-05-03 1950-12-20 Elgin Nat Watch Co Process of making power springs and other articles of high elastic strength
CH299223A (en) * 1952-01-14 1954-05-31 Reinhard Dr Straumann Process for the production of a mainspring for watches and mainspring obtained by this process.
US3928085A (en) * 1972-05-08 1975-12-23 Suwa Seikosha Kk Timepiece mainspring of cobalt-nickel base alloys having high elasticity and high proportional limit
WO2005045532A2 (en) * 2003-11-07 2005-05-19 Seiko Epson Corporation Timepiece and mainspring

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1151350A (en) * 1955-06-11 1958-01-29 Genevoise Degrossissage D Or Stainless alloy with high resistance to fatigue and deformation and spring for watch movement in this alloy
CH621577A5 (en) * 1976-07-15 1981-02-13 Straumann Inst Ag
DE69911913T2 (en) * 1999-03-26 2004-09-09 Rolex Sa Self-compensating coil spring for clockwork coil spring balance and method for treating the same
US20030168138A1 (en) * 2001-12-14 2003-09-11 Marquardt Brian J. Method for processing beta titanium alloys
FR2905707B1 (en) * 2006-09-08 2009-01-23 Centre Nat Rech Scient PROCESS FOR DEPOSITING ON A SUBSTRATE A THIN LAYER OF METAL ALLOY AND METAL ALLOY IN THE FORM OF A THIN LAYER.
CN101320617A (en) * 2007-06-08 2008-12-10 财团法人工业技术研究院 Soft magnetic film inductor and magnetic multi-component alloy thin film
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same
US8684594B2 (en) * 2008-11-17 2014-04-01 The Foundation: The Research Institute For Electric And Magnetic Materials Magnetically insensitive, highly hard and constant-modulus alloy, and its production method, as well as hair spring, mechanical driving apparatus and watch and clock
CN102776430B (en) * 2012-08-20 2014-08-06 太原理工大学 AlCoCrFeNiTix high-entropy alloy material and method for preparing same
CN102787266A (en) * 2012-09-04 2012-11-21 四川大学 Titanium carbonitride based metal ceramic based on high-entropy alloy binder phase and preparation method of metal ceramic
CN102796933A (en) * 2012-09-04 2012-11-28 四川大学 High-entropy alloy binder phase-based nitrogen-containing hard alloy and preparation method thereof
CN103194656A (en) * 2013-04-19 2013-07-10 梧州漓佳铜棒有限公司 AlxCrFeNiCuVTi high-entropy alloy material and preparation method thereof
EP2813906A1 (en) * 2013-06-12 2014-12-17 Nivarox-FAR S.A. Part for clockwork
CN103556146B (en) * 2013-11-06 2016-01-20 四川建筑职业技术学院 Prepare the method for high-entropy alloy coating
CN104651828B (en) * 2013-11-22 2017-06-06 沈阳工业大学 A kind of ferrous alloy surface prepares high-entropy alloy-base composite material modified layer powder
JP6459272B2 (en) * 2014-07-23 2019-01-30 日立金属株式会社 Alloy structure
KR101728936B1 (en) * 2014-07-28 2017-04-21 세종대학교산학협력단 High entropy alloy having excellent strength and ductility
CN104213013B (en) * 2014-09-28 2016-09-21 哈尔滨工业大学 A kind of TiZrNbMoxhfymany pivots high temperature alloy and preparation method thereof
CN105671392B (en) * 2014-11-19 2017-11-03 北京科技大学 A kind of TiZrHfNb base high-entropy alloys of nitrogen reinforcing and preparation method thereof
US10190197B2 (en) 2015-12-11 2019-01-29 The Trustees Of Dartmouth College Oxidation resistant high-entropy alloys
CN105950946B (en) * 2016-07-01 2017-11-21 广西大学 A kind of method that high-entropy alloy composition design is carried out based on segregation situation between constituent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB647783A (en) * 1947-05-03 1950-12-20 Elgin Nat Watch Co Process of making power springs and other articles of high elastic strength
CH299223A (en) * 1952-01-14 1954-05-31 Reinhard Dr Straumann Process for the production of a mainspring for watches and mainspring obtained by this process.
US3928085A (en) * 1972-05-08 1975-12-23 Suwa Seikosha Kk Timepiece mainspring of cobalt-nickel base alloys having high elasticity and high proportional limit
WO2005045532A2 (en) * 2003-11-07 2005-05-19 Seiko Epson Corporation Timepiece and mainspring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073023A1 (en) * 2017-10-13 2019-04-18 Hublot Sa, Genève High entropy alloy

Also Published As

Publication number Publication date
RU2715832C1 (en) 2020-03-03
US11042120B2 (en) 2021-06-22
EP3519900A1 (en) 2019-08-07
JP6892914B2 (en) 2021-06-23
US20200241475A1 (en) 2020-07-30
US20210263470A1 (en) 2021-08-26
US20190235441A1 (en) 2019-08-01
WO2018059795A1 (en) 2018-04-05
CN109804321A (en) 2019-05-24
EP3519900B1 (en) 2021-05-05
CN109804321B (en) 2021-07-27
JP2019534378A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
EP3519900B1 (en) Timepiece component having a high-entropy alloy
CH713034A2 (en) Watchmaking component comprising a high entropy alloy.
CH711398A2 (en) Solid amorphous alloy based on nickel free zirconium.
CH713924B1 (en) Clockwork spiral spring.
BE1006333A3 (en) New ternary alloy based money.
EP3241078B1 (en) Timepiece or jewellery item made from lightweight precious alloy comprising titanium
EP3147378A1 (en) Nickel-free austenitic stainless steel
CN106399871B (en) Nickel-free zirconium and/or hafnium-based bulk amorphous alloys
EP3315620B1 (en) Non-magnetic precious alloy for clockmaking applications
JP2013531736A (en) Gold alloy with improved hardness
WO2014198466A2 (en) Part for timepiece movement
CN112981263A (en) Paramagnetic hard stainless steel and method for manufacturing same
CH716938B1 (en) Paramagnetic hard stainless steel and method of making same.
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
EP3796101A1 (en) Hairspring for clock movement
CH714494A2 (en) Spiral clock spring, in particular a mainspring or a spiral spring.
EP3422115A1 (en) Timepiece hairspring
EP0379061B1 (en) Exterior cover part for a watch, and method for manufacturing the same
EP3885842B1 (en) Non-magnetic timepiece component with improved wear resistance
WO2022096178A1 (en) Hard paramagnetic stainless steel and method for manufacturing same
CH716937A2 (en) Paramagnetic hard stainless steel and its manufacturing process.
CH716622A2 (en) Spiral spring for watch movement made of niobium and titanium alloy and process for its manufacture.
CH717261A2 (en) Non-magnetic watch component with wear resistance
CH710575A2 (en) lightweight alloy of titanium and precious gold and watch component or jewelry made of precious light alloy of titanium and gold.
CH327367A (en) Alloy based on nickel and chromium and use of said alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181005