EP3301210B1 - Light sensor yarn - Google Patents
Light sensor yarn Download PDFInfo
- Publication number
- EP3301210B1 EP3301210B1 EP17172464.4A EP17172464A EP3301210B1 EP 3301210 B1 EP3301210 B1 EP 3301210B1 EP 17172464 A EP17172464 A EP 17172464A EP 3301210 B1 EP3301210 B1 EP 3301210B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarn
- sensor
- conductor
- capacitance
- sensor yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 110
- 239000004020 conductor Substances 0.000 claims description 86
- 239000004753 textile Substances 0.000 claims description 48
- 230000008859 change Effects 0.000 claims description 37
- 239000004065 semiconductor Substances 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 5
- 239000005083 Zinc sulfide Substances 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 3
- 239000002305 electric material Substances 0.000 claims 2
- 230000001953 sensory effect Effects 0.000 description 19
- 239000004744 fabric Substances 0.000 description 15
- 230000007704 transition Effects 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/441—Yarns or threads with antistatic, conductive or radiation-shielding properties
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/12—Threads containing metallic filaments or strips
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0076—Photovoltaic fabrics
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0088—Fabrics having an electronic function
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/242—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
- D03D15/25—Metal
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/41—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/547—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads with optical functions other than colour, e.g. comprising light-emitting fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/10—Patterned fabrics or articles
- D04B1/12—Patterned fabrics or articles characterised by thread material
- D04B1/123—Patterned fabrics or articles characterised by thread material with laid-in unlooped yarn, e.g. fleece fabrics
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/36—Cored or coated yarns or threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/18—Physical properties including electronic components
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2403/00—Details of fabric structure established in the fabric forming process
- D10B2403/02—Cross-sectional features
- D10B2403/024—Fabric incorporating additional compounds
- D10B2403/0243—Fabric incorporating additional compounds enhancing functional properties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2403/00—Details of fabric structure established in the fabric forming process
- D10B2403/02—Cross-sectional features
- D10B2403/024—Fabric incorporating additional compounds
- D10B2403/0243—Fabric incorporating additional compounds enhancing functional properties
- D10B2403/02431—Fabric incorporating additional compounds enhancing functional properties with electronic components, e.g. sensors or switches
Definitions
- the present invention relates to a sensor yarn for use in a textile material part.
- the sensor yarn has a thread core whose longitudinal central axis extends in an extension direction.
- the thread core may be monofilament or formed of several fibers or filaments.
- the thread core is preferably elastically extensible in the direction of extension.
- the extensibility of the sensor yarn can be adapted to the material in which the sensor yarn is integrated and can therefore vary within a wide range.
- a first conductor and a second conductor are each helically or helically wound with respect to the direction of extent.
- the sensor yarn can be designed as a thread or as Umwindegarn.
- the two conductors can therefore be wound in and / or around the thread core.
- the two conductors are electrically isolated from each other.
- at least one of the two conductors can be insulated by a lacquer or a coating around the electrically conductive core.
- a sensor yarn is for example in DE 10 2008 003 122 A1 described.
- the yarn is there to determine tensile stresses in a medical knit or knitted fabric.
- the yarn has a core thread about which a binding thread may be wound in one embodiment. If the yarn is bent or stretched in its direction of extent, the electrical property of the yarn, for example the electrical conductivity and / or the capacitance, changes.
- a bimetallic thread can be used as the binding thread.
- Another electrically conductive yarn is in DE 10 2006 017 340 A1 disclosed.
- a non-conductive multifilament yarn is wrapped, which should preferably lay flat on the core thread, so that when touching two electrically conductive yarns in a textile material no accidental electrically conductive contact.
- WO 2007/020511 A1 describes an energy-active composite yarn with a data core and a functional filament.
- the composite yarn may have, for example, electrically, optically or magnetically active material.
- sensory textile materials are used in a wide variety of applications.
- such sensory textile materials can detect pressure forces, tensile forces or the like.
- a localization of the applied force is advantageous or necessary.
- sensory yarns are then incorporated into the fabric in a dense matrix pattern to form a two-dimensional pattern of intersecting sensory yarns. If a force acts on this surface at a certain point or approaches an object to this surface, it can depend on the density of the sensory A local determination of the force or the approach of an object by the sensory matrix.
- copper-doped zinc sulfide (ZnS: Cu) or a doped semiconductor material may be used.
- ZnS: Cu copper-doped zinc sulfide
- the limited mobile free charges in the material form dipoles in the electric field depending on the intensity of the light irradiation, whereby the dielectric constant and thus the measurable total capacitance changes.
- the photostrictive material may be a polymer material and / or a semiconductor material and / or a ferroelectric material and / or a magnetic material and / or a magnetoelectric material.
- the thread core may be made of a polymer material doped with a semiconductor material.
- the polymer material may additionally or alternatively be doped with a semiconductor material also doped with another suitable material, for example with bismuth ferrite.
- a sensory textile material part may have at least one above-described sensor yarn according to the invention and optionally at least one sensor yarn according to another embodiment explained below.
- the textile material part can be designed as a knit fabric or as a fabric.
- the sensor yarns can be introduced into a fabric, for example, as a weft thread or as a warp thread.
- the sensor yarns can also be placed in a fabric or knitwear and held by non-sensory yarns or threads in the fabric.
- the sensor yarns are arranged without crossing in a direction of the textile material, preferably in the direction of the weft threads.
- the at least one sensor yarn can be incorporated, for example, as standing thread.
- the sensor yarn according to a further embodiment can be executed as a Umwindegarn with a thread core or as a thread.
- the sensor yarn has at least one first and at least one second conductor, wherein at least one of the two conductors is helically wound with respect to the extension direction of the sensor yarn.
- the two conductors can be crossing and / or each with the same Windungsste Trent next to each other without crossing wound on the thread core or the thread core can have or form one of the two conductors (Umwindegarn).
- one or both conductors may be helically wound.
- the two conductors are electrically insulated from each other, whereby the conductor pair of at least one first conductor and at least one second conductor together forms further yarn components, for example with the thread core, a capacitive component.
- the further yarn components or the thread core represents the dielectric of the capacitive component.
- This capacitive component is characterized in that its capacitance per unit length changes in the extension direction of the thread core and thus in the extension direction of the sensor yarn.
- the change in the capacitance per unit length of the capacitive component can be provided continuously and / or in stages or sections.
- the capacitive component in the extension direction may have successive yarn sections which have different capacities.
- the capacity per unit length in a yarn section can be constant. It is also possible, at least in sections, to continuously change the capacitance per unit length of the capacitive component, for example initially to increase continuously from a minimum value to a maximum value of the capacitance per unit length and / or from the maximum value to Minimize the minimum value of the capacity per unit length.
- the pattern of the continuously or sectionally changing capacity per unit length can be repeated from a certain yarn length of the sensor yarn.
- Any two portions of the sensor yarn according to the further embodiment have a mutually different capacity per unit length, if they have different total capacities for the same length.
- a force acting on the sensor yarn force such as compressive force and / or tensile force, a force change, media exposure to a liquid or vapor medium or an approach of an object, a change in temperature (due to the change in length of Sensorgarns) or the like be determined.
- the sensor yarn according to the further embodiment provides a sensory textile material part, in which the sensor yarns can no longer be crossed in a matrix, but only parallel to each other in one direction can be arranged. In the case of an action to be sensed, the total capacity of a sensor yarn incorporated in the textile material part changes.
- the capacitance per unit length of the capacitive component in a first yarn section is different from the capacitance per unit length in another second yarn section of the sensor yarn according to the further embodiment.
- at least two yarn sections may be present, to each of which a substantially constant capacitance per unit length is assigned.
- the first yarn section may have a first capacity per unit length
- the second yarn section may have a second capacity per unit length
- a third yarn section may have a third capacity per unit length, and so on.
- a transition section may be present in each case in which the capacitance changes continuously.
- the change in the capacitance per unit length in the direction of extent in one embodiment according to the further embodiment is at least 0.03 pF and / or at most 250 pF.
- the difference between a minimum capacity yarn section per unit length and a maximum capacity yarn section per unit length may be up to 250 pF or more.
- the change of the capacitance per unit length can be effected by providing a change in the number of turns per unit length of the thread core.
- a change in the pitch of the helical winding of the at least one first conductor and / or the at least one second conductor may be provided.
- the slopes of the helical winding of the two conductors can have the same amount and / or the same value in a common yarn section.
- the pitch of the two conductors in a common yarn section is different in size in terms of magnitude and / or value.
- An additional or alternative measure for changing the capacitance per unit length of the capacitive component can be achieved in that the dielectric constant of the thread core changes in the direction of extent. This can be done, for example, that different materials or material combination with a each other dielectric constant be used for the thread core.
- a plastic used for producing the thread core can be combined or doped in sections with at least one further material in order to change the relative permittivity. By the material and / or the proportion of doping relative to the base material of the thread core, a change in the dielectric constant can be achieved.
- the thread core may contain or be made of a polymeric material.
- the thread core may comprise polyurethane and be made in one embodiment of spandex.
- the at least one first conductor and / or the at least one second conductor may contain metal and be made, for example, from wires, in particular copper wires.
- the wires can be provided with a paint or a coating for electrical insulation.
- the conductors preferably have a diameter of not more than 0.1 mm.
- the at least one first conductor and / or the at least one second conductor can each run around the thread core in a multi-start helix.
- the two conductors can also be formed by a respective conductor layer which is applied to the thread core, wherein the conductor layers are electrically insulated from one another.
- the capacity per unit length can be changed.
- the shape and in particular the layer thickness of at least one of the conductor layers can also be varied to change the capacity per unit length.
- the sensor yarn 10 has a thread core 11 extending in an extension direction E.
- the thread core 11 may be monofilament or formed by a plurality of fibers or filaments. It can consist of one single material or a combination of several materials.
- the thread core 11 comprises a polymeric material.
- the thread core 11 is preferably elastically stretchable in the extension direction E and can be elastically stretched in the direction of extension E.
- the thread core 11 in the extension direction E different materials and / or different material combinations and / or different proportions of the materials have a combination of materials, which will be discussed later in more detail.
- At least one first conductor 12 and at least one second conductor 13 are wound around the thread core 11.
- first conductor 12 and a single second conductor 13 are illustrated in each case.
- a plurality of first conductor 12 and second conductor 13 may be present.
- the conductors 12, 13 comprise or are made of an electrically conductive material, in particular metal Material produced.
- the conductors 12, 13 are made of a metallic wire, preferably a copper wire.
- the conductors 12, 13 have on their outer surface an electrically insulating coating or an electrically insulating lacquer.
- the conductors have a diameter of up to 0.1 mm or 0.2 mm.
- the first conductor 12 and the second conductor 13 form a conductor pair 14.
- the conductor pair 14 is part of a capacitive component 15.
- the capacitive component 15 of a sensor yarn of a specific length has a total capacitance CG.
- FIG. 1b the electrical circuit diagram for the sensor yarn 10 with the capacitive component 15 is illustrated.
- FIGS. 2 and 3 1 illustrates a first embodiment of the sensor yarn 10, which is referred to as the first sensor yarn 10a.
- the capacitive component 15 has a capacitance C1 changing in the extension direction E per unit length l of the sensor yarn.
- the capacitance C1 per unit length l indicates the capacitance of the capacitive component 15 at the viewing point of the sensor yarn 10a, wherein this capacitance C1 changes per unit length l in the extension direction E.
- the total capacity CG is therefore not only dependent on the length of a sensor yarn 10 in the direction of extent E, but additionally varies spatially in the direction of extent E. Two equal-length sections of a sensor yarn 10 can thus have a different total capacity CG.
- the capacitance C1 per unit length l changes in sections.
- a first yarn section 21, a second yarn section 22 and a third yarn section 23 are illustrated.
- the sensor yarn 10 or its capacitive component 15 has a different capacitance C 1 per unit length l.
- the capacitance C1 per unit length l in a respective yarn section 21, 22, 23 is substantially constant.
- the sensor yarn 10 in the first yarn section 21 has a first capacity Cl 1 per unit length l, in the second yarn section 22 a second capacity Cl 2 per unit length l and in the third yarn section 23 a third capacity Cl 3 per unit length l.
- the capacity Cl per unit length l can be at least partially continuously increased or decreased.
- the capacitance C L per unit length L may be steadily increased from a minimum value of, for example, 10 pF to a maximum value of 250 pF or more, and / or conversely continuously reduced from the maximum value to the minimum value.
- Such continuously changing sections may also be provided sequentially in the sensor yarn 10.
- the value of the capacitance Cl per unit length l, which changes in the extension direction E, is determined at the in FIG. 2 illustrated embodiment of the first sensor yarn 10a achieved in that the slope S of a helix of the helically wound first conductor 12 and / or the second conductor 13 with respect to the extension direction E, ie the longitudinal central axis of the sensor yarn 10 varies.
- the pitch S of a helical turn of the two conductors 12, 13 has a first slope amount S 1 .
- the pitch S of the helical turns of the first and second conductors 12, 13 in the second yarn section 22 has a second pitch amount S 2 and in the third yarn section 23 a third pitch amount S 3 .
- the slope amounts are substantially constant in the respective yarn section 21, 22, 23. Since the pitch between two adjacent in the extension direction yarn sections 21 and 22 or 22 and 23 for manufacturing reasons often can not be changed suddenly, between two adjacent yarn sections 21 and 22 and 22 and 23 each have a transition section 24 is present. In this transition section 24, the pitch of the first conductor 12 and / or the second conductor 13 is continuously increased or decreased to provide a transition between the respective slope amounts S 1 and S 2 or S 2 and S 3 . These transitional sections 24 could optionally also be dispensed with if a transition point with an abruptly changing pitch between two yarn sections 21, 22 with different pitch amounts can be produced by the manufacturing process of the sensor yarn 10.
- the slope amounts for the two conductors 12, 13 are the same size, but have different signs. As a result, intersection points in the windings of the two conductors 12, 13 are formed. It is not absolutely necessary that the pitch amounts for the two conductors 12, 13 in a yarn section 21 are equal, but the pitch amounts of the two conductors 12, 13 may also be different from each other. In addition, only the pitch of the first conductor 12 or the second conductor 13 can be changed between two adjacent yarn sections with different capacitance Cl per unit length l.
- FIG. 3 is another way to change the capacitance C1 per unit length l for the capacitive element 15 illustrated.
- the pitch of the winding of the two conductors 12, 13 in the different yarn sections 21, 22, 23 can remain essentially unchanged.
- the dielectric constant or permittivity ⁇ is changed according to the example.
- the dielectric which is formed, for example, by the thread core 11, changed in sections.
- the thread core 11 has, for example, in the first yarn section 21 a first dielectric constant ⁇ 1 , in the second yarn section 22 a second dielectric constant ⁇ 2 and in the third yarn section 23 a third dielectric constant ⁇ 3 .
- the different dielectric constants are achieved by different materials or material compositions in the yarn sections 21, 22, 23.
- the thread core 11 may have an at least partially doped base material. It is expedient here if the dielectric constant of the base material differs sufficiently from the added doping material, for example by at least 10 to 30%. To change the dielectric constant ⁇ , for example, the proportion of the doping material relative to the base material can be increased. Additionally or alternatively, different doping materials or different combinations of doping materials in the different yarn sections 21, 22, 23 may be used.
- the material that changes the dielectric constant is introduced into the base material of the thread core 11 as a doping material. Furthermore, it would also be possible to provide a coating enclosing the thread core 11 and the conductors 12, 13, which has the material which alters the dielectric constant contains or consists of such.
- a sensory textile material part 16 can be produced, as shown schematically in FIGS FIGS. 5 and 6 is illustrated.
- effects such as a force, for example, a compressive force and / or a tensile force, influences by liquid media, such as water, approaches by objects, etc. can be detected.
- location information is already provided by the sensor yarn 10a, via which it is possible to determine the position of the action.
- the effect when several of the sensor yarns 10 in a textile material part 16 are arranged parallel to one another, the effect usually has an effect not only on the total capacity CG of a single sensor yarn 10 but on the total capacity CG of several sensor yarns 10.
- a very precise location determination of the action on the textile material part 16 can take place without a matrix-like arrangement of sensor yarns 10 with intersection points being necessary.
- This has the advantage that the textile material part 16 only has to be electrically contacted on one side for connection to the evaluation unit 17. This considerably simplifies the construction of a sensory textile material part 16.
- the textile material part 16 may be in the textile material part 16 to knitwear, such as a knitted fabric or a knitted fabric ( FIG. 5 ) or a tissue ( FIG. 6 ) act.
- the sensor yarns 10 are inserted as Steherfäden in the fabric and do not participate in the stitch formation itself.
- the sensor yarns 10 are incorporated as weft threads in a fabric.
- one or more conventional, non-sensory textile threads 25 can be woven in between two sensor yarns 10 in each case.
- the number and density of the sensor yarns in a textile material part 16 depend on the specific application.
- the textile material 16 has, in addition to the sensor yarns 10 arranged in parallel, one or more conventional textile threads 25.
- the non-sensory textile thread 25 can be used for stitch formation ( FIG. 5 ) or as a weft thread and warp thread ( FIG. 6 ) be used.
- the representations in the FIGS. 5 and 6 are not to scale and only schematic.
- the sensor yarns 10 may have the same or a different thickness (titre) than the other textile threads 25 used.
- FIG. 2 illustrates a second embodiment of the sensor yarn 10 according to the invention, referred to as the second sensor yarn 10b.
- the capacitance C1 per unit length l which has the capacitive component 15 of the sensor yarn 10
- the extension direction E changing capacity Cl per unit length l as the first sensor yarn 10a provide.
- the second sensor yarn 10b contains a photosensitive material 30.
- This photosensitive material 30 can be attached anywhere on the sensor yarn 10b or introduced into the sensor yarn 10b.
- the photosensitive material 30 is introduced as doping material into the base material of the thread core 11.
- the thread core 11 could also consist of photosensitive material.
- FIGS. 4a and 4b Based on FIGS. 4a and 4b is schematically seen that takes place by the irradiation of the second sensor yarn 10b with light L, a change in length of the thread core 11 by photostriction.
- the length of a longitudinal section A changes by a difference d when the second sensor yarn 10b is irradiated with the light L.
- This causes a change in the total capacity CG of the sensor yarn 10b irradiated with light L. If the intensity of the incident light L changes, the total capacity CG also changes.
- the photorefractive material 30 for example, a polymer material, a semiconductor material, a ferroelectric material, a magnetic material, or a magnetoelectric material may be used.
- a polymer material for example, a polymer material, a semiconductor material, a ferroelectric material, a magnetic material, or a magnetoelectric material may be used.
- bismuth ferrite can be used as a photostrictive material.
- the photosensitive material is selected there in such a way that the intensity of the light causes a change in the dielectric constant.
- a doped semiconductor material such as copper-doped zinc sulfide (ZnS: Cu) may be used.
- ZnS copper-doped zinc sulfide
- dipoles form in the electric field and change the dielectric constant, which in turn alters the detectable total capacitance of the second sensor path 10b.
- the photosensitive second sensor yarn 10b can thus be used to detect the presence of incident light L or a change in intensity.
- a lighting sensor or even a brightness sensor could thereby be realized.
- Such a sensor could be integrated by means of the sensor yarn 10b into a shading textile, for example a roller blind or the like, which is moved into its extended or retracted position as a function of the solar radiation.
- the sensors could therefore be an integral part of a sun blinds and could be dispensed with a separate sensor.
- one of the two conductors for example the second conductor 13 can also be formed by the thread core 11 ( FIG. 7 ).
- the sensor yarn 10a, 10b can also be embodied as a thread without a thread core 11 (FIG. FIG. 8 not according to the invention). If no thread core 11 is present, the two conductors 12, 13 with other filaments (hatching in FIG. 8 ) combined to form the twine.
- At least one of the two conductors is wound helically with respect to the extension direction E.
- the first sensor yarn 10a and the second sensor yarn 10b can also be used together in a textile material part 16 if both the action of light L, and an approach of an article to the textile material part 16 and / or a force on the textile material part 16 and / or a Influence by a liquid or vaporous medium and / or another influence affecting the total capacity CG of a sensor yarn 10 is to be detected.
- the invention relates to a sensor yarn 10.
- the sensor yarn 10b has photosensitive material 30, so that a change in length can be effected by incident light L.
- a change in length or a different deformation of the sensor yarn 10b causes the total capacity CG of the respective sensor yarn 10b to change, which can be determined by an evaluation unit 17.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Woven Fabrics (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
Die vorliegende Erfindung betrifft ein Sensorgarn zur Verwendung in einem Textilmaterialteil. Das Sensorgarn weist einen Fadenkern auf, dessen Längsmittelachse sich in einer Erstreckungsrichtung erstreckt. Der Fadenkern kann monofil oder aus mehreren Fasern bzw. Filamenten gebildet sein. Der Fadenkern ist vorzugsweise in Erstreckungsrichtung elastisch dehnbar. Die Dehnbarkeit des Sensorgarns kann an das Material angepasst werden, in das das Sensorgarn integriert wird und kann daher in einem weiten Bereich variieren.The present invention relates to a sensor yarn for use in a textile material part. The sensor yarn has a thread core whose longitudinal central axis extends in an extension direction. The thread core may be monofilament or formed of several fibers or filaments. The thread core is preferably elastically extensible in the direction of extension. The extensibility of the sensor yarn can be adapted to the material in which the sensor yarn is integrated and can therefore vary within a wide range.
Zur Ausbildung eines kapazitiven Bauteils sind ein erster Leiter und ein zweiter Leiter jeweils schraubenförmig bzw. helixförmig gegenüber der Erstreckungsrichtung gewickelt. Das Sensorgarn kann als Zwirn oder als Umwindegarn ausgeführt sein. Die beiden Leiter können daher in dem und/oder um den Fadenkern gewickelt sein. Die beiden Leiter sind einander gegenüber elektrisch isoliert. Beispielsweise kann zumindest einer der beiden Leiter durch einen Lack oder eine Beschichtung um den elektrisch leitfähigen Kern isoliert sein.To form a capacitive component, a first conductor and a second conductor are each helically or helically wound with respect to the direction of extent. The sensor yarn can be designed as a thread or as Umwindegarn. The two conductors can therefore be wound in and / or around the thread core. The two conductors are electrically isolated from each other. For example, at least one of the two conductors can be insulated by a lacquer or a coating around the electrically conductive core.
Ein Sensorgarn ist beispielsweise in
Ein weiteres elektrisch leitfähiges Garn ist in
Aus
Heutzutage werden in verschiedensten Anwendungsbereichen sensorische Textilmaterialien eingesetzt. Beispielsweise können derartige sensorische Textilmaterialen Drucckräfte, Zugkräfte oder dergleichen erfassen. Bei vielen Anwendungen ist auch eine Lokalisierung der einwirkenden Kraft vorteilhaft oder erforderlich. Häufig werden dann sensorische Garne in einem dichten matrixförmigen Muster in das Textilmaterial eingearbeitet, so dass ein zweidimensionales Muster von sich kreuzenden sensorischen Garnen entsteht. Wirkt an einer bestimmten Stelle eine Kraft auf diese Fläche ein oder nähert sich ein Gegenstand an diese Fläche an, so kann abhängig von der Dichte der sensorischen Garne eine Ortsbestimmung der Kraft bzw. der Annäherung eines Gegenstands durch die sensorische Matrix erfolgen.Nowadays, sensory textile materials are used in a wide variety of applications. For example, such sensory textile materials can detect pressure forces, tensile forces or the like. In many applications, a localization of the applied force is advantageous or necessary. Often, sensory yarns are then incorporated into the fabric in a dense matrix pattern to form a two-dimensional pattern of intersecting sensory yarns. If a force acts on this surface at a certain point or approaches an object to this surface, it can depend on the density of the sensory A local determination of the force or the approach of an object by the sensory matrix.
Der Aufwand für derartige sensorische Textilmaterialien ist groß, wodurch das Textilmaterial entsprechend teuer wird. Als Folge hiervon ist die Verbreitung von sensorischen Textilmaterialien nach wie vor gering.The cost of such sensory textile materials is large, whereby the textile material is correspondingly expensive. As a result, the distribution of sensory textile materials is still low.
Es kann daher als Aufgabe der vorliegenden Erfindung angesehen werden, ein Sensorgarn zu verbessern.It can therefore be regarded as an object of the present invention to improve a sensor yarn.
Diese Aufgabe wird durch ein Sensorgarn mit den Merkmalen des Patentanspruche 1 gelöst.This object is achieved by a sensor yarn having the features of
Das Sensorgarn weist ein photosensitives Material auf. Das photosensitive Material kann beispielsweise Bestandteil eines Fadenkerns sein oder am Fadenkern angeordnet sein. Das photosensitive Material kann durch einen oder beide nachfolgend beschriebene Effekte die Gesamtkapazität des kapazitiven Bauteils des Sensorgarns ändern:
- a) Das photosensitive Material ist photostriktiv und bewirkt eine Längenänderung des Sensorgarns in Erstreckungsrichtung und/oder schräg oder quer hierzu, wenn sich die Intenstität des auf das Sensorgarn einfallenden Lichts ändert.
- b) Das photosensitive Material ändert seine Dielektrizitätszahl, wenn sich die Intensität des auf das Sensorgarn einfallenden Lichts ändert.
- a) The photosensitive material is photostrictive and causes a change in length of the sensor yarn in the direction of extent and / or obliquely or transversely thereto, when the intensity of the light incident on the sensor yarn changes.
- b) The photosensitive material changes its dielectric constant as the intensity of incident light on the sensor yarn changes.
Dadurch verändert sich die Gesamtkapazität des kapazitiven Bauteils des Sensorgarns. Somit lässt sich auf das Sensorgarn einfallendes Licht detektieren.This changes the total capacity of the capacitive component of the sensor yarn. Thus, light incident on the sensor yarn can be detected.
Für den unter b) beschriebenen Effekt kann beispielsweise mit Kupfer dotiertes Zinksulfid (ZnS:Cu) oder ein dotiertes Halbleitermaterial verwendet werden. Die eingeschränkt beweglichen freien Ladungen in dem Material bilden abhängig von der Intensität der Lichteinstrahlung Dipole im elektrischen Feld, wodurch sich die Dielektrizitätszahl und somit die messbare Gesamtkapazität ändert.For example, for the effect described under b) copper-doped zinc sulfide (ZnS: Cu) or a doped semiconductor material may be used. The limited mobile free charges in the material form dipoles in the electric field depending on the intensity of the light irradiation, whereby the dielectric constant and thus the measurable total capacitance changes.
Bei dem photostriktiven Material kann es sich um ein Polymermaterial und/oder ein Halbleitermaterial und/oder ein ferroelektrisches Material und/oder ein magnetisches Material und/oder ein magnetoelektrisches Material handeln. Beispielsweise kann der Fadenkern aus einem Polymermaterial hergestellt sein, das mit einem Halbleitermaterial dotiert ist. Das Polymermaterial kann zusätzlich oder alternativ zur Dotierung mit einem Halbleitermaterial auch mit einem anderen geeigneten Material dotiert sein, beispielsweise mit Bismutferrit.The photostrictive material may be a polymer material and / or a semiconductor material and / or a ferroelectric material and / or a magnetic material and / or a magnetoelectric material. For example, the thread core may be made of a polymer material doped with a semiconductor material. The polymer material may additionally or alternatively be doped with a semiconductor material also doped with another suitable material, for example with bismuth ferrite.
Ein sensorisches Textilmaterialteil kann wenigstens ein vorstehend beschriebenes erfindungsgemäßes Sensorgarn und optional wenigstens ein Sensorgarn gemäß einer anderen, nachfolgend erläuterten Ausgestaltung aufweisen. Das Textilmaterialteil kann als Maschenware oder als Gewebe ausgeführt sein. Die Sensorgarne können beispielsweise als Schussfaden oder als Kettfaden in ein Gewebe eingebracht werden. Die Sensorgarne können auch in ein Gewebe oder eine Maschenware eingelegt werden und durch nicht-sensorische Garne oder Fäden im Textilmaterial gehalten werden. Bevorzugt sind die Sensorgarne dabei kreuzungsfrei in einer Richtung des Textilmaterials angeordnet, vorzugsweise in Richtung der Schussfäden. Bei einer Maschenware kann das wenigstens eine Sensorgarn beispielsweise als Steherfaden eingearbeitet werden.A sensory textile material part may have at least one above-described sensor yarn according to the invention and optionally at least one sensor yarn according to another embodiment explained below. The textile material part can be designed as a knit fabric or as a fabric. The sensor yarns can be introduced into a fabric, for example, as a weft thread or as a warp thread. The sensor yarns can also be placed in a fabric or knitwear and held by non-sensory yarns or threads in the fabric. Preferably, the sensor yarns are arranged without crossing in a direction of the textile material, preferably in the direction of the weft threads. In a knitted fabric, the at least one sensor yarn can be incorporated, for example, as standing thread.
Das Sensorgarn gemäß einer weiteren Ausgestaltung kann als Umwindegarn mit einem Fadenkern oder als Zwirn ausgeführt sein. Das Sensorgarn hat wenigstens einen ersten und wenigstens einen zweiten Leiter, wobei zumindest einer der beiden Leiter gegenüber der Erstreckungsrichtung des Sensorgarns schraubenförmig gewickelt ist. Die beiden Leiter können dabei kreuzend und/oder mit jeweils derselben Windungssteigung nebeneinander kreuzungsfrei auf den Fadenkern gewickelt sein oder der Fadenkern kann einen der beiden Leiter aufweisen oder bilden (Umwindegarn). Bei einem Zwirn kann einer oder beide Leiter schraubenförmig gewickelt sein.The sensor yarn according to a further embodiment can be executed as a Umwindegarn with a thread core or as a thread. The sensor yarn has at least one first and at least one second conductor, wherein at least one of the two conductors is helically wound with respect to the extension direction of the sensor yarn. The two conductors can be crossing and / or each with the same Windungssteigung next to each other without crossing wound on the thread core or the thread core can have or form one of the two conductors (Umwindegarn). In a twisted yarn, one or both conductors may be helically wound.
Die beiden Leiter sind einander gegenüber elektrisch isoliert, wodurch das Leiterpaar aus wenigstens einem ersten Leiter und wenigstens einem zweiten Leiter gemeinsam weiteren Garnbestandteilen, beispielsweise mit dem Fadenkern, ein kapazitives Bauteil bildet. Die weiteren Garnbestandteile bzw. der Fadenkern stellt das Dielektrikum des kapazitiven Bauteils dar.The two conductors are electrically insulated from each other, whereby the conductor pair of at least one first conductor and at least one second conductor together forms further yarn components, for example with the thread core, a capacitive component. The further yarn components or the thread core represents the dielectric of the capacitive component.
Dieses kapazitive Bauteil ist dadurch gekennzeichnet, dass sich seine Kapazität pro Längeneinheit in Erstreckungsrichtung des Fadenkerns und somit in Erstreckungsrichtung des Sensorgarns ändert. Die Änderung der Kapazität pro Längeneinheit des kapazitiven Bauteils kann kontinuierlich und/oder stufen- oder abschnittsweise vorgesehen sein. Beispielsweise kann das kapazitive Bauteil in Erstreckungsrichtung aufeinanderfolgende Garnabschnitte aufweisen, die unterschiedliche Kapazitäten aufweisen. Dabei kann die Kapazität pro Längeneinheit in einem Garnabschnitt konstant sein. Es ist auch möglich, zumindest abschnittsweise die Kapazität pro Längeneinheit des kapazitiven Bauteils kontinuierlich zu ändern, beispielsweise zunächst stetig von einem Minimalwert bis zu einem Maximalwert der Kapazität pro Längeneinheit zu erhöhen und/oder vom Maximalwert bis zum Minimalwert der Kapazität pro Längeneinheit zu verringern. Das Muster der sich kontinuierlich oder abschnittsweise ändernden Kapazität pro Längeneinheit kann sich ab einer bestimmten Garnlänge des Sensorgarns wiederholen.This capacitive component is characterized in that its capacitance per unit length changes in the extension direction of the thread core and thus in the extension direction of the sensor yarn. The change in the capacitance per unit length of the capacitive component can be provided continuously and / or in stages or sections. For example, the capacitive component in the extension direction may have successive yarn sections which have different capacities. In this case, the capacity per unit length in a yarn section can be constant. It is also possible, at least in sections, to continuously change the capacitance per unit length of the capacitive component, for example initially to increase continuously from a minimum value to a maximum value of the capacitance per unit length and / or from the maximum value to Minimize the minimum value of the capacity per unit length. The pattern of the continuously or sectionally changing capacity per unit length can be repeated from a certain yarn length of the sensor yarn.
Zwei beliebige Abschnitte des Sensorgarns gemäß der weiteren Ausgestaltung haben eine voneinander verschiedene Kapazität pro Längeneinheit, wenn sie bei gleicher Länge voneinander verschiedene Gesamtkapazitäten aufweisen.Any two portions of the sensor yarn according to the further embodiment have a mutually different capacity per unit length, if they have different total capacities for the same length.
Mit dem Sensorgarn gemäß der weiteren Ausgestaltung kann eine auf das Sensorgarn einwirkende Kraft, beispielsweise Druckkraft und/oder Zugkraft, eine Kraftänderung, eine Medienbeaufschlagung mit einem flüssigen oder dampfförmigen Medium oder eine Annäherung eines Objekt, eine Temperaturänderung (aufgrund der Längenänderung des Sensorgarns) oder dergleichen ermittelt werden.With the sensor yarn according to the further embodiment, a force acting on the sensor yarn force, such as compressive force and / or tensile force, a force change, media exposure to a liquid or vapor medium or an approach of an object, a change in temperature (due to the change in length of Sensorgarns) or the like be determined.
Durch die sich in Erstreckungsrichtung gezielt ändernde Kapazität pro Längeneinheit kann eine Ortsauflösung in Erstreckungsrichtung erreicht werden. Denn eine zu sensierende Einwirkung auf das Sensorgarn hängt nunmehr nicht nur von der Art und dem Betrag der Einwirkung, sondern auch von der Stelle ab, an der auf das Sensorgarn eingewirkt wird. Beispielsweise ändert sich die Gesamtkapazität des Sensorgarns einer bestimmten Länge abhängig davon, welche Kapazität pro Längeneinheit das kapazitive Bauteil an der Stelle der Einwirkung aufweist. Somit ist es durch das Sensorgarn gemäß der weiteren Ausgestaltung möglich, ein sensorisches Textilmaterialteil zu schaffen, bei dem die Sensorgarne nicht mehr gekreuzt in einer Matrix, sondern lediglich parallel zueinander in einer Richtung angeordnet werden können. Bei einer zu sensierenden Einwirkung ändert sich die Gesamtkapazität eines in das Textilmaterialteil eingearbeiteten Sensorgarns. In der Regel werden beispielsweise bei einer Berührung des Textilmaterialteils oder einer Annäherung an das Textilmaterialteil die Gesamtkapazitäten mehrerer Sensorgarne beeinträchtigt. Dadurch, dass sich die Kapazität jedes kapazitiven Sensors eines Sensorgarns in Erstreckungsrichtung ändert, lässt sich daraus eine Positionsbestimmung durchführen. Die Herstellung eines sensorischen Textilmaterialteils wird durch das Sensorgarn deutlich vereinfacht. Insbesondere genügt die elektrische Kontaktierung eines sensorischen Textilmaterialteils an einer einzigen Seite, da die Sensorgarne nicht mehr wie bisher gekreuzt in zwei Richtungen übereinander gelegt werden müssen. Dadurch wird das Herstellen eines sensorischen Textilmaterials deutlich vereinfacht.As a result of the capacitance per unit of length that selectively changes in the extension direction, a spatial resolution in the direction of extent can be achieved. For a sensory impact on the sensor yarn now depends not only on the type and amount of impact, but also on the place where the sensor yarn is acted upon. For example, the total capacity of the sensor yarn of a certain length varies depending on what capacity per unit length the capacitive component has at the location of the impact. Thus, it is possible by the sensor yarn according to the further embodiment to provide a sensory textile material part, in which the sensor yarns can no longer be crossed in a matrix, but only parallel to each other in one direction can be arranged. In the case of an action to be sensed, the total capacity of a sensor yarn incorporated in the textile material part changes. In general, for example at a contact of the textile material part or an approach to the textile material part affects the overall capacity of several sensor yarns. The fact that the capacitance of each capacitive sensor of a sensor yarn changes in the direction of extent allows a position determination to be carried out therefrom. The production of a sensory textile material part is significantly simplified by the sensor yarn. In particular, the electrical contacting of a sensory textile material part on a single side is sufficient since the sensor yarns no longer need to be laid over one another in two directions as previously crossed. As a result, the production of a sensory textile material is significantly simplified.
Bevorzugt ist die Kapazität pro Längeneinheit des kapazitiven Bauteils in einem ersten Garnabschnitt verschieden von der Kapazität pro Längeneinheit in einem anderen zweiten Garnabschnitt des Sensorgarns gemäß der weiteren Ausgestaltung. Insbesondere können zumindest zwei Garnabschnitte vorhanden sein, denen jeweils eine im Wesentlichen konstante Kapazität pro Längeneinheit zugeordnet ist. Beispielsweise kann der erste Garnabschnitt eine erste Kapazität pro Längeneinheit, der zweite Garnabschnitt eine zweite Kapazität pro Längeneinheit, ein dritter Garnabschnitt eine dritte Kapazität pro Längeneinheit, usw. aufweisen. Zwischen solchen Garnabschnitten mit unterschiedlicher Kapazität pro Längeneinheit kann jeweils ein Übergangsabschnitt vorhanden sein, in dem sich die Kapazität stetig ändert. Abhängig davon, durch welche Maßnahme die Kapazität pro Längeneinheit geändert wird, kann es aus herstellungstechnischen Gründen notwendig sein, einen solchen Übergangsabschnitt vorzusehen. Denn es ist nicht immer möglich, die Kapazität pro Längeneinheit an einer Stelle des Sensorgarns gemäß der weiteren Ausgestaltung sozusagen sprungähnlich zu vergrößern oder verringern.Preferably, the capacitance per unit length of the capacitive component in a first yarn section is different from the capacitance per unit length in another second yarn section of the sensor yarn according to the further embodiment. In particular, at least two yarn sections may be present, to each of which a substantially constant capacitance per unit length is assigned. For example, the first yarn section may have a first capacity per unit length, the second yarn section may have a second capacity per unit length, a third yarn section may have a third capacity per unit length, and so on. Between such yarn sections with different capacitance per unit length, a transition section may be present in each case in which the capacitance changes continuously. Depending on which measure the capacity per unit length is changed, it may be necessary for manufacturing reasons, to provide such a transition section. Because it is not always possible to increase or decrease the capacity per unit length at one point of the sensor yarn according to the further embodiment so to speak jump-like.
Die Änderung der Kapazität pro Längeneinheit in Erstreckungsrichtung beträgt bei einem Ausführungsbeispiel gemäß der weiteren Ausgestaltung mindestens 0,03 pF und/oder maximal 250 pF. Zum Beispiel können zwei oder mehr Garnabschnitte vorhanden sein, wobei sich die Kapazität zwischen aufeinanderfolgenden Garnabschnitten - mit gegebenenfalls dazwischen liegendem Übergangsabschnitt - um jeweils mindestens 0,03 pF ändert. Die Differenz zwischen einem Garnabschnitt mit minimaler Kapazität pro Längeneinheit und einem Garnabschnitt mit maximaler Kapazität pro Längeneinheit kann bis zu 250 pF oder mehr betragen.The change in the capacitance per unit length in the direction of extent in one embodiment according to the further embodiment is at least 0.03 pF and / or at most 250 pF. For example, there may be two or more yarn sections, with the capacity between successive yarn sections, with any transition section therebetween, varying by at least 0.03 pF each. The difference between a minimum capacity yarn section per unit length and a maximum capacity yarn section per unit length may be up to 250 pF or more.
Zur Änderung der Kapazität pro Längeneinheit des kapazitiven Bauteils in Erstreckungsrichtung können eine oder mehrere Maßnahmen vorgesehen werden. Bei einem Ausführungsbeispiel gemäß der weiteren Ausgestaltung kann die Änderung der Kapazität pro Längeneinheit dadurch bewirkt werden, dass eine Änderung der Anzahl von Windungen pro Längeneinheit des Fadenkerns vorgesehen ist. Alternativ oder zusätzlich kann auch eine Änderung der Steigung der schraubenförmigen Wicklung des wenigstens einen ersten Leiters und/oder des wenigstens einen zweiten Leiters vorgesehen sein. Die Steigungen der schraubenförmigen Wicklung der beiden Leiter können in einem gemeinsamen Garnabschnitt denselben Betrag und/oder denselben Wert aufweisen. Es ist allerdings auch möglich, dass die Steigung der beiden Leiter in einem gemeinsamen Garnabschnitt im Hinblick auf den Betrag und/oder den Wert verschieden groß ist.To change the capacitance per unit length of the capacitive component in the direction of extension, one or more measures can be provided. In an embodiment according to the further embodiment, the change of the capacitance per unit length can be effected by providing a change in the number of turns per unit length of the thread core. Alternatively or additionally, a change in the pitch of the helical winding of the at least one first conductor and / or the at least one second conductor may be provided. The slopes of the helical winding of the two conductors can have the same amount and / or the same value in a common yarn section. However, it is also possible that the pitch of the two conductors in a common yarn section is different in size in terms of magnitude and / or value.
Eine zusätzliche oder alternative Maßnahme zur Änderung der Kapazität pro Längeneinheit des kapazitiven Bauteils kann dadurch erreicht werden, dass sich die Dielektrizitätszahl des Fadenkerns in Erstreckungsrichtung ändert. Dies kann beispielsweise dadurch erfolgen, dass unterschiedliche Materialien bzw. Materialkombination mit einer jeweils anderen Dielektrizitätszahl für den Fadenkern verwendet werden. Beispielsweise kann ein zur Herstellung des Fadenkerns verwendeter Kunststoff abschnittsweise mit wenigstens einem weiteren Material kombiniert bzw. dotiert werden, um die Dielektrizitätszahl zu ändern. Durch das Material und/oder den Anteil der Dotierung gegenüber dem Grundwerkstoff des Fadenkerns lässt sich eine Veränderung der Dielektrizitätszahl erreichen.An additional or alternative measure for changing the capacitance per unit length of the capacitive component can be achieved in that the dielectric constant of the thread core changes in the direction of extent. This can be done, for example, that different materials or material combination with a each other dielectric constant be used for the thread core. By way of example, a plastic used for producing the thread core can be combined or doped in sections with at least one further material in order to change the relative permittivity. By the material and / or the proportion of doping relative to the base material of the thread core, a change in the dielectric constant can be achieved.
Bei einem Ausführungsbeispiel kann der Fadenkern ein Polymermaterial enthalten bzw. aus einem Polymermaterial herstellt sein. Beispielsweise kann der Fadenkern Polyurethan aufweisen und bei einem Ausführungsbeispiel aus Elasthan hergestellt sein. Der wenigstens eine erste Leiter und/oder der wenigstens eine zweite Leiter können Metall enthalten und beispielsweise aus Drähten, insbesondere Kupferdrähten hergestellt sein. Die Drähte können zur elektrischen Isolation mit einem Lack oder einer Beschichtung versehen werden. Die Leiter haben vorzugsweise einen Durchmesser von maximal 0,1 mm.In one embodiment, the thread core may contain or be made of a polymeric material. For example, the thread core may comprise polyurethane and be made in one embodiment of spandex. The at least one first conductor and / or the at least one second conductor may contain metal and be made, for example, from wires, in particular copper wires. The wires can be provided with a paint or a coating for electrical insulation. The conductors preferably have a diameter of not more than 0.1 mm.
Der wenigstens eine erste Leiter und/oder der wenigstens eine zweite Leiter können bei einem Ausführungsbeispiel jeweils in einer mehrgängigen Schraubenlinie um den Fadenkern herum verlaufen.In one embodiment, the at least one first conductor and / or the at least one second conductor can each run around the thread core in a multi-start helix.
Alternativ zu den bisher beschriebenen Ausführungsformen können die beiden Leiter auch durch jeweils eine Leitungsschicht gebildet sein, die auf den Fadenkern aufgebracht ist, wobei die Leitungsschichten gegeneinander elektrisch isoliert sind. Durch das Dielektrikum des Fadenkerns und/oder einer zusätzlichen Schicht kann die Kapazität pro Längeneinheit verändert werden. Alternativ oder zusätzlich kann auch die Gestalt und insbesondere die Schichtdicke zumindest einer der Leitungsschichten variiert werden, um die Kapazität pro Längeneinheit zu verändern.As an alternative to the previously described embodiments, the two conductors can also be formed by a respective conductor layer which is applied to the thread core, wherein the conductor layers are electrically insulated from one another. Through the dielectric of the thread core and / or an additional layer, the capacity per unit length can be changed. Alternatively or additionally, the shape and in particular the layer thickness of at least one of the conductor layers can also be varied to change the capacity per unit length.
Bevorzugte Ausführungen der Erfindung ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung und der Zeichnung. Die Beschreibung erläutert wesentliche Merkmale der Erfindung anhand von Ausführungsbeispielen. Die Ausführungsbeispiele werden nachfolgend anhand der beigefügten Zeichnung im Einzelnen erläutert. Es zeigen:
-
Figur 1a eine schematische Teildarstellung eines Sensorgarns mit einem kapazitiven Bauteil, -
Figur 1b ein elektrisches Ersatzschaltbild des kapazitiven Bauteils, -
Figur 2 eine schematische Teildarstellung eines Sensorgarns gemäß einem Ausführungsbeispiel, -
Figur 3 eine schematische Teildarstellung eines Sensorgarns gemäß einem weiteren Ausführungsbeispiel, -
Figuren 4a und 4b eine schematische Teildarstellung eines erfindungsgemäßen Sensorgarns, das ein photostriktives Material aufweist, -
Figur 4c eine schematische Teildarstellung eines weiteren erfindungsgemäßen Sensorgarns, das ein photosensitives Material aufweist, -
Figur 5 eine schematische Darstellung eines Textilmaterialteils als Maschenware mit mehreren Sensorgarnen, -
Figur 6 eine schematische Darstellung eines Textilmaterialteils in Form eines Gewebes mit mehreren Sensorgarnen gemäß einem Ausführungsbeispiel der vorliegenden Erfindung und -
Figuren 7 und 8 jeweils ein abgewandeltes Ausführungsbeispiel eines Sensorgarns in schematischer Darstellung.
-
FIG. 1a a schematic partial view of a sensor yarn with a capacitive component, -
FIG. 1b an electrical equivalent circuit diagram of the capacitive component, -
FIG. 2 a schematic partial view of a sensor yarn according to an embodiment, -
FIG. 3 a schematic partial view of a sensor yarn according to a further embodiment, -
FIGS. 4a and 4b a schematic partial view of a sensor yarn according to the invention comprising a photostrictive material, -
Figure 4c a schematic partial view of another sensor yarn according to the invention comprising a photosensitive material, -
FIG. 5 a schematic representation of a textile material part as a knitted fabric with multiple sensor yarns, -
FIG. 6 a schematic representation of a textile material part in the form of a fabric having a plurality of sensor yarns according to an embodiment of the present invention and -
FIGS. 7 and 8 in each case a modified embodiment of a sensor yarn in a schematic representation.
In den
Um den Fadenkern 11 ist wenigstens ein erster Leiter 12 und wenigstens ein zweiter Leiter 13 gewickelt. Bei den hier veranschaulichten Ausführungsbeispielen ist jeweils lediglich ein einziger erster Leiter 12 und ein einziger zweiter Leiter 13 veranschaulicht. In Abwandlung hierzu könnten jeweils auch mehrere erste Leiter 12 bzw. zweite Leiter 13 vorhanden sein.At least one
Die Leiter 12, 13 weisen ein elektrisch leitfähiges Material, insbesondere Metall, auf bzw. sind aus einem solchen Material hergestellt. Beim Ausführungsbeispiel werden die Leiter 12, 13 aus einem metallischen Draht, vorzugsweise einem Kupferdraht, hergestellt. Um eine elektrische Verbindung zwischen den beiden Leitern 12, 13 und zwischen den Leitern 12, 13 und dem Fadenkern 11 zu vermeiden, weisen die Leiter 12, 13 an ihrer Außenfläche eine elektrisch isolierende Beschichtung oder einen elektrisch isolierenden Lack auf. Die Leiter haben beispielsgemäß einen Durchmesser von bis zu 0,1 mm oder 0,2 mm.The
Der erste Leiter 12 und der zweite Leiter 13 bilden beispielsgemäß ein Leiterpaar 14. Das Leiterpaar 14 ist Bestandteil eines kapazitiven Bauteils 15. Das kapazitive Bauteil 15 eines Sensorgarns einer bestimmten Länge hat eine Gesamtkapazität CG. In
Die Kapazität des kapazitiven Bauteils 15 hängt von dem konstruktiven Aufbau des Sensorgarns 10 ab. Das Sensorgarn 10 kann in nahezu beliebiger Länge hergestellt und auf eine Spule aufgewickelt werden. Bei der Einarbeitung des Sensorgarns 10 in ein Textilmaterialteil 16 hat ein Sensorgarn 10 einer bestimmten Länge die Gesamtkapazität CG. Diese Gesamtkapazität CG ändert sich, wenn das Sensorgarn 10 beaufschlagt wird, beispielsweise durch eine Kraft, wie etwa eine Druckkraft oder eine Zugkraft. Durch eine Längenänderung des Fadenkerns 11, der als Dielektrikum für das kapazitive Bauelement 15 dient und/oder eine Relativverschiebung des wenigstens einen ersten Leiters 12 relativ zum wenigstens einen zweiten Leiter 13, kann sich die Gesamtkapazität CG ändern. Dadurch stellt das Sensorgarn somit einen kapazitiven Sensor dar. Über eine Auswerteeinheit 17, die von einem Ende des Sensorgarns 10 an die beiden Leiter 12, 13 elektrisch angeschlossen ist, kann die aktuelle Gesamtkapazität CG ermittelt werden. Daraus lässt sich eine Einwirkung auf das Sensorgarn 10 ermitteln. Als sensierbare Einwirkung auf das Sensorgarn 10 lassen sich eine oder mehrere der folgenden Einwirkungen ermitteln:
- eine Kraft, wie beispielsweise Druckkraft oder/oder Zugkraft, oder eine Kraftänderung,
- eine Medienbeaufschlagung mit einem flüssigen oder dampfförmigen Medium,
- eine Annäherung eines Objekt,
- eine Temperaturänderung,
- und bei einer Ausführung des Sensorgarns auch eine Bestrahlung mit elektromagnetischen Wellen, insbesondere mit Licht.
- a force, such as compressive force and / or tensile force, or a force change,
- a medium with a liquid or vapor medium,
- an approach of an object,
- a temperature change,
- and in an embodiment of the sensor yarn also irradiation with electromagnetic waves, in particular with light.
In den
Bei den in den
In Abwandlung zu abschnittsweise konstanten Kapazitäten Cl pro Längeneinheit l kann die Kapazität Cl pro Längeneinheit l auch zumindest abschnittsweise kontinuierlich vergrößert oder verringert werden. Beispielsweise kann die Kapazität Cl pro Längeneinheit L von einem Minimalwert von beispielsweise 10 pF bis zu einem Maximalwert von 250 pF oder mehr stetig vergrößert und/oder umgekehrt vom Maximalwert bis zu dem Minimalwert stetig verringert werden. Solche sich kontinuierlich ändernden Abschnitte können auch aufeinanderfolgend im Sensorgarn 10 vorgesehen sein.In a modification to sections constant capacities Cl per unit length l, the capacity Cl per unit length l can be at least partially continuously increased or decreased. For example, the capacitance C L per unit length L may be steadily increased from a minimum value of, for example, 10 pF to a maximum value of 250 pF or more, and / or conversely continuously reduced from the maximum value to the minimum value. Such continuously changing sections may also be provided sequentially in the
Der sich in Erstreckungsrichtung E ändernde Wert der Kapazität Cl pro Längeneinheit l wird bei der in
Bei dem in
In
Bei dem hier beschriebenen bevorzugten Ausführungsbeispiel ist der die Dielektrizitätszahl verändernde Werkstoff als Dotierungsmaterial in den Grundwerkstoff des Fadenkerns 11 eingebracht. Weiterhin könnte auch eine den Fadenkern 11 und die Leiter 12, 13 umhüllende Beschichtung vorgesehen sein, die den die Dielektrizitätszahl verändernden Werkstoff enthält oder aus solchem besteht.In the preferred embodiment described here, the material that changes the dielectric constant is introduced into the base material of the
Bei einem nicht explizit veranschaulichten Ausführungsbeispiel ist es ferner möglich, sowohl die Dielektrizitätszahl ε, als auch die Steigung der Windungen zur Veränderung der Kapazität Cl pro Längenabschnitt l zu variieren und mithin die in den
Mit Hilfe des ersten Sensorgarns 10a lässt sich ein sensorisches Textilmaterialteil 16 herstellen, wie es schematisch in den
Wie in den
Das Textilmaterial 16 weist neben den parallel angeordneten Sensorgarnen 10 einen oder mehrere herkömmliche Textilfäden 25 auf. Der nicht-sensorische Textilfaden 25 kann zur Maschenbildung (
Die Darstellungen in den
In den
Das zweite Sensorgarn 10b enthält ein photosensitives Material 30. Dieses photosensitive Material 30 kann an einer beliebigen Stelle an dem Sensorgarn 10b angebracht bzw. in das Sensorgarn 10b eingebracht werden. Bei dem hier beschriebenen bevorzugten Ausführungsbeispiel ist das photosensitive Material 30 als Dotierungsmaterial in den Grundwerkstoff des Fadenkerns 11 eingebracht. Alternativ hierzu könnte der Fadenkern 11 auch aus photosensitivem Material bestehen. Weiterhin könnte auch eine den Fadenkern 11 und die Leiter 12, 13 umhüllende Beschichtung vorgesehen sein, die photosensitives Material 30 enthält oder aus solchem besteht.The
Anhand der
Als photostriktives Material 30 kann beispielsweise ein Polymermaterial, ein Halbleitermaterial, ein ferroelektrisches Material, ein magnetisches Material oder ein magnetoelektrisches Material verwendet werden. Beispielsweise kann Bismutferrit als photostriktives Material verwendet werden.As the
Bei dem in
Das photosensitive zweite Sensorgarn 10b kann somit dazu verwendet werden, das Vorhandensein von einfallendem Licht L bzw. eine Intensitätsänderung zu detektieren. Beispielsweise könnte dadurch ein Beleuchtungssensor oder auch ein Helligkeitssensor realisiert werden. Ein solcher Sensor ließe sich mit Hilfe des Sensorgarns 10b in ein Beschattungstextil, beispielsweise ein Sonnenrollo oder dergleichen integrieren, das abhängig von der Sonneinstrahlung in seine ausgefahrene oder eingefahrene Position bewegt wird. Die Sensorik könnte daher integraler Bestandteil eines Sonnenschutzrollos sein und auf einen separaten Sensor könnte verzichtet werden.The photosensitive
Bei beiden Sensorgarnen 10a, 10b kann auch einer der beiden Leiter, beispielsweise der zweite Leiter 13 durch den Fadenkern 11 gebildet sein (
Bei allen Ausführungsformen des ersten Sensorgarns 10a und auch beim zweiten Sensorgarn 10b ist zumindest einer der beiden Leiter schraubenförmig zur Erstreckungsrichtung E gewickelt.In all embodiments of the
Das erste Sensorgarn 10a und das zweite Sensorgarn 10b können auch gemeinsam in einem Textilmaterialteil 16 eingesetzt werden, wenn sowohl die Einwirkung von Licht L, als auch eine Annäherung eines Gegenstands an das Textilmaterialteil 16 und/oder eine Krafteinwirkung auf das Textilmaterialteil 16 und/oder eine Einwirkung durch ein flüssiges oder dampfförmiges Medium und/oder eine andere die Gesamtkapazität CG eines Sensorgarns 10 beeinflussende Einwirkung erfasst werden soll.The
Die Erfindung betrifft ein Sensorgarn 10. Das Sensorgarn 10b weist photosensitives Material 30 auf, so dass durch einfallendes Licht L eine Längenänderung bewirkt werden kann. Eine Längenänderung bzw. eine andere Verformung des Sensorgarns 10b führt dazu, dass sich die Gesamtkapazität CG des betreffenden Sensorgarns 10b ändert, was durch eine Auswerteeinheit 17 ermittelt werden kann.The invention relates to a
- 1010
- SensorgarnSensorgarn
- 10a10a
- erstes Sensorgarnfirst sensor yarn
- 10b10b
- zweites Sensorgarnsecond sensor yarn
- 1111
- Fadenkernthread core
- 1212
- erster Leiterfirst leader
- 1313
- zweiter Leitersecond conductor
- 1414
- Leiterpaarconductor pair
- 1515
- kapazitives Bauteilcapacitive component
- 1616
- TextilmaterialteilFabric part
- 1717
- Auswerteeinheitevaluation
- 2121
- erster Garnabschnittfirst yarn section
- 2222
- zweiter Garnabschnittsecond yarn section
- 2323
- dritter Garnabschnittthird yarn section
- 2424
- ÜbergangsabschnittTransition section
- 2525
- Textilfadentextile yarn
- 3030
- photosensitives Materialphotosensitive material
- AA
- Längenabschnittlongitudinal section
- ClCl
- Kapazität pro LängeneinheitCapacity per unit length
- Cl1 Cl 1
- erste Kapazität pro Längeneinheitfirst capacity per unit length
- Cl2 Cl 2
- zweite Kapazität pro Längeneinheitsecond capacity per unit length
- Cl3 Cl 3
- dritte Kapazität pro Längeneinheitthird capacity per unit length
- CGCG
- Gesamtkapazitättotal capacity
- dd
- Differenzdifference
- Ee
- Erstreckungsrichtungextension direction
- εε
- Dielektrizitätszahlpermittivity
- ε1 ε 1
- erste Dielektrizitätszahlfirst dielectric constant
- ε2 ε 2
- zweite Dielektrizitätszahlsecond dielectric constant
- ε3 ε 3
- dritte Dielektrizitätszahlthird dielectric constant
- ll
- Längeneinheitunit of length
- LL
- Lichtlight
- S1 S 1
- erster Steigungsbetragfirst increase amount
- S2 S 2
- zweiter Steigungsbetragsecond increase amount
- S3 S 3
- dritter Steigungsbetragthird increase amount
Claims (14)
- Sensor yarn (10b),
with a thread core (11) extending in an extension direction (E),
with at least a first conductor (12) and a second conductor (13), wherein at least one of the two conductors (12, 13) is wound helically relative to the first extension direction (E),
wherein the at least one first conductor (12) and the at least one second conductor (13) are electrically isolated from each other and are part of a capacitative component (15), and wherein the sensor yarn (10b) comprises a photosensitive material (30) so that on irradiation of the sensor yarn (10b) with light (L), a change occurs in the total capacitance (CG) of the capacitative component (15). - Sensor yarn according to claim 1, characterised in that the photosensitive material (30) is copper-doped zinc sulphide, a polymer material, a semiconductor material, a ferro-electric material, a magnetic material or a magneto-electric material.
- Sensor yarn according to claim 1 or 2, characterised in that the photosensitive material (30) is present in or on the thread core (11).
- Textile material part (16) with several sensor yarns (10, 10b) according to any of the preceding claims.
- Textile material part according to claim 4, characterised in that the sensor yarns (10, 10a, 10b) are arranged without crossing.
- Textile material part according to claim 4 or 5, characterised in that at least one further sensor yarn (10a) is present in addition to the several sensor yarns (10), wherein the at least one additional sensor yarn (10a) comprises:a thread core (11) extending in an extension direction (E),at least a first conductor (12) and a second conductor (13), wherein at least one of the two conductors (12, 13) is wound helically relative to the first extension direction (E),wherein the at least one first conductor (12) and the at least one second conductor (13) are electrically isolated from each other and are part of a capacitative component (15),and wherein the capacitative component (15) has a capacitance (Cl) per length unit (1) of the sensor yarn (10) which changes in the extension direction (E).
- Textile material part according to claim 6, characterised in that one of the two conductors (12) of the at least one additional sensor yarn (10a) is formed by the thread core (11) and the other conductor (13) of the sensor yarn (10a) is wound around the thread core (11), or that both conductors (12, 13) of the at least one additional sensor yarn (10a) are wound around the thread core (11), or that one of the two conductors (13) of the at least one additional sensor yarn (10a) is part of the thread core (11) and the other conductor (13) of the additional sensor yarn (10a) is wound around the thread core (11).
- Textile material part according to claim 6 or 7, characterised in that the capacitance (Cl) per length unit (l) in a first yarn portion (21) of the at least one additional sensor yarn (10a) is different from the capacitance (Cl) per length unit (l) in another yarn portion (22, 23) of the additional sensor yarn (10a).
- Textile material part according to claim 8, characterised in that the at least one additional sensor yarn (10a) comprises at least two yarn portions (21, 22, 23) in which the capacitative component (15) has a substantially constant capacitance (Cl1, Cl2, Cl3) per length unit (l).
- Textile material part according to claim 9, characterised in that between two adjacent yarn portions (21, 22 or 22, 23) with different capacitance (Cl1, Cl2, Cl3) per length unit (l), a transitional portion (24) is present in which the capacitance (Cl) per length unit (l) changes continuously.
- Textile material part according to any of claims 6 to 10, characterised in that the amount of the capacitance (Cl) per length unit (l) of the at least one additional sensor yarn (10a) in the extension direction (E) changes by at least 0.03 pF and/or by up to maximum 250 pF.
- Textile material part according to claim 11 and any of claims 8 to 10, characterised in that the at least one additional sensor yarn (10a) has at least three yarn portions (21, 22, 23) with different capacitances (Cl1, Cl2, Cl3) per length unit (l), wherein the capacitance (Cl) per length unit (l) changes by at least 10 pF between yarn portions (21, 22 or 22, 23) which are adjacent in the extension direction (E).
- Textile material part according to any of claims 6 to 12, characterised in that the change of capacitance (Cl) per length unit (l) of the at least one additional sensor yarn (10a) is caused by a change in the number of windings per length unit of the thread core (11) in the extension direction (E) and/or by a change in pitch (S) of the helical winding of the at least one first conductor (12) and/or the at least one second conductor (13) in the extension direction (E).
- Textile material part according to any of claims 6 to 13, characterised in that the change of capacitance (Cl) per length unit (l) is caused by a change in the dielectric constant (ε) of the at least one additional sensor yarn (10a) in the extension direction (E).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014103978.5A DE102014103978A1 (en) | 2014-03-24 | 2014-03-24 | Sensorgarn |
EP15712110.4A EP3122923B1 (en) | 2014-03-24 | 2015-03-20 | Textile material part with several sensor yarns |
PCT/EP2015/055985 WO2015144597A2 (en) | 2014-03-24 | 2015-03-20 | Sensor yarn |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15712110.4A Division-Into EP3122923B1 (en) | 2014-03-24 | 2015-03-20 | Textile material part with several sensor yarns |
EP15712110.4A Division EP3122923B1 (en) | 2014-03-24 | 2015-03-20 | Textile material part with several sensor yarns |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3301210A2 EP3301210A2 (en) | 2018-04-04 |
EP3301210A3 EP3301210A3 (en) | 2018-05-30 |
EP3301210B1 true EP3301210B1 (en) | 2019-05-15 |
Family
ID=52737094
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15712110.4A Active EP3122923B1 (en) | 2014-03-24 | 2015-03-20 | Textile material part with several sensor yarns |
EP17172464.4A Active EP3301210B1 (en) | 2014-03-24 | 2015-03-20 | Light sensor yarn |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15712110.4A Active EP3122923B1 (en) | 2014-03-24 | 2015-03-20 | Textile material part with several sensor yarns |
Country Status (8)
Country | Link |
---|---|
US (1) | US10487423B2 (en) |
EP (2) | EP3122923B1 (en) |
JP (2) | JP6592502B2 (en) |
KR (1) | KR102314909B1 (en) |
CN (1) | CN106661780B (en) |
DE (1) | DE102014103978A1 (en) |
TR (2) | TR201908701T4 (en) |
WO (1) | WO2015144597A2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2561490B (en) * | 2016-04-07 | 2019-02-27 | Advanced E Textiles Ltd | Improvements relating to textiles incorporating electronic devices |
US10145036B1 (en) * | 2016-05-04 | 2018-12-04 | Apple Inc. | Items with conductive yarn |
WO2017194391A1 (en) * | 2016-05-13 | 2017-11-16 | Nv Bekaert Sa | Product provided with electrodes for wetness detection of the product |
US10402020B1 (en) * | 2016-11-15 | 2019-09-03 | Google Llc | Detecting twist input with an interactive cord |
DE102017206156B4 (en) | 2017-04-11 | 2019-01-24 | Festo Ag & Co. Kg | Actuating device, method of manufacturing an actuator, and arrangement equipped therewith |
EP3473976B1 (en) * | 2017-10-20 | 2019-09-25 | C.R.F. Società Consortile per Azioni | Deformation detecting device comprising a multi-functional fabric with flocked conductive weft yarns |
TW201930672A (en) * | 2018-01-12 | 2019-08-01 | 智能紡織科技股份有限公司 | Signaling yarn and manufacturing method thereof |
TW201935939A (en) * | 2018-02-06 | 2019-09-01 | 智能紡織科技股份有限公司 | Cable device |
US11042233B2 (en) * | 2018-05-09 | 2021-06-22 | Apple Inc. | Finger-mounted device with fabric |
US10754486B2 (en) * | 2018-05-16 | 2020-08-25 | Sanko Tekstil Isletmeleri San. Ve Tic. A.S. | Composite yarn for the position sensitive capacitive touch sensing |
DE102018114465A1 (en) * | 2018-06-15 | 2019-12-19 | Osram Opto Semiconductors Gmbh | OPTOELECTRONIC FIBER AND DEVICE AND METHOD FOR PRODUCING AN OPTOELECTRONIC FIBER |
CN110863306B (en) * | 2018-08-27 | 2021-08-03 | 重庆大学 | Weaving method of functional electronic fabric |
CN109341736B (en) * | 2018-09-10 | 2021-04-16 | 中原工学院 | Flexible wearable strain sensor and preparation method thereof |
US20210355613A1 (en) * | 2018-10-15 | 2021-11-18 | Drexel University | Knitted capacitive touch sensor and capacitive touch sensor (active) textile |
CN111623806A (en) * | 2019-02-28 | 2020-09-04 | 智能纺织科技股份有限公司 | Sensing element and sensing control system thereof |
WO2020210648A1 (en) * | 2019-04-10 | 2020-10-15 | Propel, LLC | Machine-knittable conductive hybrid yarns |
IT201900021993A1 (en) * | 2019-11-22 | 2021-05-22 | Martur Italy Srl | Intelligent vehicle seat cover and vehicle seat including such smart cover |
CN112522837B (en) * | 2020-11-05 | 2022-06-07 | 青岛大学 | Multi-stress sensing type intelligent electronic textile and preparation method thereof |
WO2023235644A2 (en) * | 2022-06-03 | 2023-12-07 | Virginia Tech Intellectual Properties, Inc. | Flexible miniature strain sensors based on helix structures and their scalable fabrication |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2114496A (en) * | 1936-07-09 | 1938-04-19 | Western Electric Co | Method of and apparatus for combining strands |
DE2902545C2 (en) * | 1979-01-24 | 1985-04-04 | Akzo Gmbh, 5600 Wuppertal | Thread with conductive layers |
US5753381A (en) * | 1995-12-22 | 1998-05-19 | Add Vision Inc | Electroluminescent filament |
US5927060A (en) * | 1997-10-20 | 1999-07-27 | N.V. Bekaert S.A. | Electrically conductive yarn |
US6913713B2 (en) * | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
WO2002002855A1 (en) * | 2000-07-06 | 2002-01-10 | Zellweger Luwa Ag | Method for creating markings on a planar textile body |
DE60331523D1 (en) * | 2002-01-25 | 2010-04-15 | Konarka Technologies Inc | PHOTOVOLTAIC FIBERS |
WO2004027132A1 (en) | 2002-09-14 | 2004-04-01 | W. Zimmermann Gmbh & Co. Kg | Electrically conductive thread |
US7516605B2 (en) | 2004-03-10 | 2009-04-14 | Makani Power, Inc. | Electronic elongation-sensing rope |
ATE444384T1 (en) * | 2004-11-15 | 2009-10-15 | Textronics Inc | ELASTIC COMPOSITE YARN, PRODUCTION PROCESS THEREOF AND PRODUCTS BASED THEREOF |
DE202006020401U1 (en) | 2005-04-11 | 2008-07-24 | W. Zimmermann Gmbh & Co. Kg | Electrically conductive yarn |
WO2006128633A1 (en) * | 2005-06-02 | 2006-12-07 | Nv Bekaert Sa | Electrically conductive elastic composite yarn |
US7413802B2 (en) * | 2005-08-16 | 2008-08-19 | Textronics, Inc. | Energy active composite yarn, methods for making the same, and articles incorporating the same |
GB2440738A (en) * | 2006-08-08 | 2008-02-13 | Univ Manchester | Electroluminescent fabric |
JP4967108B2 (en) * | 2007-10-11 | 2012-07-04 | 尾池工業株式会社 | Anti-shoplifting detector |
DE102008003122A1 (en) | 2008-01-02 | 2009-07-09 | Ofa Bamberg Gmbh | Thread for use in e.g. shirt, has flexible core thread part provided with liner that changes its electrical resistance and/or capacitance during length variation of core thread part, and outer lining formed by winding thread part |
JP5413561B2 (en) * | 2008-10-24 | 2014-02-12 | 学校法人立命館 | Pressure-sensitive conductive yarn and biological information measurement clothing |
JP5284834B2 (en) * | 2009-03-13 | 2013-09-11 | 秀夫 渡辺 | Capacitive proximity sensor |
PL214362B1 (en) * | 2009-03-23 | 2013-07-31 | Politechnika Lodzka | Woven fabric with the property of screening against electromagnetic radiation |
JP5352795B2 (en) * | 2009-09-29 | 2013-11-27 | 福井県 | Woven knitted fabric using conductive yarn for e-textile |
JP5708045B2 (en) * | 2011-03-04 | 2015-04-30 | トヨタ紡織株式会社 | Cloth material |
US10081887B2 (en) * | 2012-12-14 | 2018-09-25 | Intel Corporation | Electrically functional fabric for flexible electronics |
-
2014
- 2014-03-24 DE DE102014103978.5A patent/DE102014103978A1/en not_active Ceased
-
2015
- 2015-03-20 JP JP2017501483A patent/JP6592502B2/en active Active
- 2015-03-20 US US15/128,854 patent/US10487423B2/en active Active
- 2015-03-20 CN CN201580016000.3A patent/CN106661780B/en active Active
- 2015-03-20 EP EP15712110.4A patent/EP3122923B1/en active Active
- 2015-03-20 TR TR2019/08701T patent/TR201908701T4/en unknown
- 2015-03-20 TR TR2018/16444T patent/TR201816444T4/en unknown
- 2015-03-20 KR KR1020167029441A patent/KR102314909B1/en active IP Right Grant
- 2015-03-20 WO PCT/EP2015/055985 patent/WO2015144597A2/en active Application Filing
- 2015-03-20 EP EP17172464.4A patent/EP3301210B1/en active Active
-
2019
- 2019-07-10 JP JP2019128150A patent/JP6723418B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR102314909B1 (en) | 2021-10-21 |
CN106661780B (en) | 2019-10-25 |
WO2015144597A3 (en) | 2016-01-21 |
JP2019203237A (en) | 2019-11-28 |
EP3122923B1 (en) | 2018-10-10 |
JP2017510731A (en) | 2017-04-13 |
WO2015144597A2 (en) | 2015-10-01 |
EP3301210A2 (en) | 2018-04-04 |
US20170107647A1 (en) | 2017-04-20 |
JP6723418B2 (en) | 2020-07-15 |
TR201816444T4 (en) | 2018-11-21 |
DE102014103978A1 (en) | 2015-09-24 |
EP3122923A2 (en) | 2017-02-01 |
TR201908701T4 (en) | 2019-07-22 |
EP3301210A3 (en) | 2018-05-30 |
JP6592502B2 (en) | 2019-10-16 |
US10487423B2 (en) | 2019-11-26 |
KR20160136402A (en) | 2016-11-29 |
CN106661780A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3301210B1 (en) | Light sensor yarn | |
EP2885018B1 (en) | Mr-capable or hf-capable medical guide wire | |
EP2434050B1 (en) | Rope comprising a sensor | |
DE112015003110B4 (en) | Sensor unit that uses an electroactive polymer for wireless transmission / reception of deformation information, and sensor that uses this | |
EP3176055A2 (en) | Steering wheel cover | |
DE102016106074A1 (en) | Fabric with several layers of fabric | |
EP2118349B1 (en) | Electrically conductive, elastic compound thread, particularly for rfid textile labels, the use thereof, and the production of a woven fabric, knitted fabric, or meshwork therewith | |
DE102006036405B4 (en) | Textile leader | |
EP3097570A1 (en) | Cable arrangement | |
DE2530009A1 (en) | BRAIDED TAPE WITH CABLE ELEMENTS | |
DE102011111061A1 (en) | Fabric, particularly band fabric, has fabric layers, which are connected together, particularly by extending pile threads between fabric layers | |
DE102006015878B4 (en) | Flexible electrical control line | |
EP2441867A1 (en) | Elongation sensor and method for measuring the elongation of a textile | |
EP2362920B1 (en) | Conductive textile fabric having leno weave | |
DE102006043714B4 (en) | Technical narrow textile, such as safety belt, strap, girth, lashing or the like means of woven textile filaments | |
DE3234730C2 (en) | ||
EP3588516A1 (en) | Electric fence conductor, electric fence device, method of making and operating same | |
WO2020114891A1 (en) | Antenna | |
WO2018091620A1 (en) | Sensor thread structure | |
EP3358674A1 (en) | Flexible antenna arrangement | |
DE102017206156B4 (en) | Actuating device, method of manufacturing an actuator, and arrangement equipped therewith | |
DE974002C (en) | High-resistance, heavy-duty resistor, especially for high-voltage purposes | |
DE102017111464B4 (en) | COMPACT CAPACITORS AND PROCESS FOR THEIR MANUFACTURE | |
DE1640743A1 (en) | Electrical contact cable | |
DE8621216U1 (en) | Statically one hundred percent shielded electric round cable for power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170523 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3122923 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D02G 3/44 20060101ALI20180423BHEP Ipc: D02G 3/36 20060101AFI20180423BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3122923 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015009100 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190816 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015009100 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1133551 Country of ref document: AT Kind code of ref document: T Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 10 Ref country code: GB Payment date: 20240320 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240311 Year of fee payment: 10 Ref country code: FR Payment date: 20240328 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 10 |