EP3286128B1 - Arbeitsbühne mit schlagloch-schutz - Google Patents
Arbeitsbühne mit schlagloch-schutz Download PDFInfo
- Publication number
- EP3286128B1 EP3286128B1 EP16720460.1A EP16720460A EP3286128B1 EP 3286128 B1 EP3286128 B1 EP 3286128B1 EP 16720460 A EP16720460 A EP 16720460A EP 3286128 B1 EP3286128 B1 EP 3286128B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- work platform
- bars
- aerial work
- actuator
- chassis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 49
- 230000000694 effects Effects 0.000 claims description 4
- 238000013459 approach Methods 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 102100027123 55 kDa erythrocyte membrane protein Human genes 0.000 description 1
- 101001057956 Homo sapiens 55 kDa erythrocyte membrane protein Proteins 0.000 description 1
- 241000287107 Passer Species 0.000 description 1
- JOBBTVPTPXRUBP-UHFFFAOYSA-N [3-(3-sulfanylpropanoyloxy)-2,2-bis(3-sulfanylpropanoyloxymethyl)propyl] 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(COC(=O)CCS)(COC(=O)CCS)COC(=O)CCS JOBBTVPTPXRUBP-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F11/00—Lifting devices specially adapted for particular uses not otherwise provided for
- B66F11/04—Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
- B66F11/042—Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations actuated by lazy-tongs mechanisms or articulated levers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F17/00—Safety devices, e.g. for limiting or indicating lifting force
- B66F17/006—Safety devices, e.g. for limiting or indicating lifting force for working platforms
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G1/00—Scaffolds primarily resting on the ground
- E04G1/18—Scaffolds primarily resting on the ground adjustable in height
- E04G1/22—Scaffolds having a platform on an extensible substructure, e.g. of telescopic type or with lazy-tongs mechanism
Definitions
- the present invention relates to the field of mobile elevating work platforms (also referred to as PEMP) still commonly referred to as aerial work platforms. It relates more particularly wheeled aerial work platforms by means of which the aerial platform is supported on the ground and movable on it.
- PEMP mobile elevating work platforms
- aerial work platforms still commonly referred to as aerial work platforms. It relates more particularly wheeled aerial work platforms by means of which the aerial platform is supported on the ground and movable on it.
- Aerial work platforms are machines designed to allow one or more people to work at height. They include a frame, a work platform and a lifting mechanism of the work platform.
- the work platform includes a tray surrounded by a railing. It is intended to accommodate one or more people and possibly also loads such as tools or other material, materials such as paint, cement, etc ...
- the working platform is supported by the lifting mechanism which is mounted on the chassis. In this case, the chassis rests on the ground through the aforementioned wheels.
- the lifting mechanism lifts the work platform from a lowered position on the frame to the desired working height, usually by means of one or more hydraulic cylinders.
- the motorization for moving the aerial platform to the ground is usually mounted directly on the chassis.
- aerial work platforms There are several types of work platform lifting mechanisms which are referred to as aerial work platforms.
- the invention primarily relates to, but is not limited to, scissor lifts and aerial work platforms with vertical poles.
- the lifting mechanism comprises centrally scissor-shaped beams, which scissors mechanisms are mounted one above the other at their ends which are pivotally connected to each other. reach the desired working height.
- the figures 1 and 2 illustrate an example of a scissor lift: the frame is referenced 1, the scissor lift mechanism 2, the work platform 3, the front wheels 4, the rear wheels 5 and the hydraulic actuator cylinder of the mechanism of lifting of the working platform 6.
- the maximum working height generally varies between 6 and 18 meters.
- the lifting mechanism is designed as an extensible mast with vertical parts sliding on one side. others to extend vertically to the desired working height.
- Their lifting mechanism sometimes comprises a turret on which are mounted the vertical sliding parts, the turret being pivotally mounted on the frame about a vertical axis in order to vary the orientation of the work platform relative to the frame.
- the work platform is mounted on the uppermost vertical part sometimes by means of a pendulum arm - that is to say an arm articulated to the vertical mast around a horizontal axis - in order to give more flexibility to the user to reach the working position.
- the maximum working height generally varies between 6 and 12 meters.
- the ground clearance is large enough to allow the aerial platform to cross, during its movement, obstacles such as potholes or curbs without the frame does not contact the ground.
- a first approach is to use a mechanical connection between the lifting mechanism of the work platform and the bars, as well as springs.
- the operating energy of the lifting mechanism of the work platform is used to move the bars from the raised position to the lowered position. Examples of this approach are described by US 6,425,459 B1 , WO 2005/068347 A1 and CA 2 646 412 A1 .
- These solutions are mechanically complex, especially since they must include a bar locking system in their lowered position to maintain this position if an external force tending to return to the raised position is applied to them.
- the second approach is to use actuators assigned only to the actuation of the bars; they are therefore independent of that or those of the lifting mechanism of the work platform.
- Each bar is actuated by a respective actuator to move it from the raised position to the lowered position and vice versa, in particular according to the signal of a position sensor detecting whether the work platform is in the lowered position or not.
- FIG 3 illustrates this approach as it is implemented on the machines of the Optimum range marketed by the applicant.
- Each bar 10 is secured to each of its longitudinal ends to a support 11 which is pivotally mounted to the frame 1 about an axis 12.
- the bars 10 pass from the raised position to the lowered position and vice versa by pivoting about the axes 12.
- Each bar 10 is moved between these two positions by a corresponding hydraulic cylinder 13 whose rod is mounted in pivot connection on the support 11 about an axis 14 and whose body is mounted in pivot connection on the frame around
- This solution is simpler than those of the first approach and provides reliable protection against the overturning of the aerial work platform, but it is still expensive because of the cost of the cylinders.
- US 2002/0185850 A1 discloses another implementation of this second approach.
- Each bar is mounted to the frame by a first pair of links articulated together forming a first toggle mechanism and a second pair of links articulated together forming a second toggle mechanism.
- the bar When the two toggle mechanisms are folded, the bar is in the raised position while the bar is in the lowered position when the toggle mechanisms are in the unfolded position.
- An actuator specific to each bar is mounted between the two toggle mechanisms to move them from the folded position to the unfolded position and vice versa. In unfolded position, the links of the toggle mechanisms are placed in abutment beyond the alignment position of their axes.
- EP 831 054 A2 discloses an aerial platform according to the preamble of claim 1.
- the jack is mounted under the frame and extends parallel to mid-distance between the two bars, the cylinder body being fixed to the frame while its rod actuates pivotally the two bars through a mechanism of kneepad angle return which converts the movement of the rod parallel to the bars in a movement perpendicular to the bars.
- this solution is still complex and cumbersome because of the knee-lever angle mechanism.
- An object of the present invention is to provide a technical solution for protection against potholes for aerial work platforms that at least partially overcomes the aforementioned drawbacks.
- the invention aims to provide a solution that is both reliable while being simpler and more economical.
- the lowered position of the side bars makes it possible to limit the risk that the aerial platform will overturn if a wheel rolls in a pothole during its displacement on the ground with the work platform raised.
- the fact that the actuator is assigned solely to the actuation of the two lateral bars is advantageous because, being distinct from the actuator (s) of the lifting mechanism of the working platform, it avoids resorting to a complex mechanical connection between the lifting mechanism of the platform and the side bars as is the case of the prior arts implementing the first approach described above.
- the fact of using a single actuator to operate both bars is more economical and limits assembly operations compared to the prior art using two actuators as is the case of those implementing the second. approach described above.
- the actuator has two opposite ends through which it actuates the two lateral bars by varying the distance between the two ends, the actuator acting on each of the two side bars through another of the two ends and the actuator being maintained only through the two ends.
- the actuation mechanism of the bars is simpler, more economical and more compact compared to the teaching of EP 831 054 A2 mentioned above.
- the aerial platform comprises an elongated chassis, mounted on wheels to allow the displacement of the aerial platform.
- the two narrow ends define the front AV and the rear rear of the aerial lift with regard to the direction of ground travel that two front wheels 4 and two rear wheels 5 give to the aerial platform.
- the lifting platform comprises on each side side a bar 10 for protection against potholes.
- One of these two bars is visible on the figure 2 where is she in the lowered position while they are not visible on the figure 1 because they are in the raised position under the frame 1.
- Each side bar 10 is arranged under the frame 1 and extends horizontally over substantially the entire length between the front wheel and the rear wheel, whether in the lowered position or in position identified.
- Each bar 10 is secured to each of its longitudinal ends to a support 21 which is pivotally mounted to the frame 1 about a respective axis 22.
- the bars 10 pass from the raised position to the lowered position and vice versa by pivoting about the axes 22.
- Each bar 10 is moved between these two positions by the same actuator, in this case a hydraulic cylinder 30.
- This is assigned only to the actuation of the bars 10.
- the body of the jack 30 is mounted in pivot connection about an axis 33 on a support 21 of one of the bars 10.
- the body of the jack 30 has been lengthened by a rod 32 which is fixedly arranged on the body of the jack 30.
- the rod 31 of the jack 30 is mounted in pivot connection about an axis 34 on a support 21 of the other bar 10.
- the rod 31 of the jack 30 and / or the body of the jack 30 are mounted - preferably in pivot connection - directly to the corresponding bar 10 or to a piece other than a support 21 to which the corresponding
- the jack 30 can be mounted to the supports 21 so that it is the output of the rod 31 which causes the displacement of the bars 10 in the lowered position and the retraction of the rod 31 which causes their displacement 10 in the raised position. .
- the jack 30 extends horizontally and perpendicularly to the longitudinal direction of the frame 1, which limits the space necessary for housing the jack 30.
- the jack 30 is only held to the frame by the supports 21 to which it is mounted, which simplifies assembly operations.
- the hydraulic supply of the jack 30 is made by flexible hoses, which allows the cylinder body to move relative to the frame 1 when the rod 31 out or retracts.
- the cylinder 30 is a double-acting cylinder. It is supplied with hydraulic fluid by means of two connectors 36, 37 mounted in our example on a housing 35.
- the housing 35 is itself mounted on the body of the jack 30 by two rigid tubes feeding each of the chambers of the jack 30 from the fittings 36, 37 via a respective nonreturn valve contained in the housing 35.
- each bar 10 As a safety measure, a position sensor 50 is provided for each bar 10 to verify that it is in the lowered position. This makes it possible to trigger an alarm and prevent the platform from moving on the ground if one of the bars 10 is not in the lowered position when it should be. In this case, each sensor 50 cooperates with a surface of the support 21 of the bar 10.
- the lower edge 10a of the bars 10 when in the lowered position, to be offset towards the outside of the frame with respect to the vertical V passing through the axis 22 of pivoting of the support 21.
- the forces Fv external to the aerial platform exerted vertically upwards on the lower edge 10a of the bars 10 are directly countered by the frame 1 at 41 where the bar 10 is supported. It is therefore not the jack 30 against the vertical forces.
- the lateral forces F LE and F LI are generally less than the vertical forces Fv, which makes it possible to use a less powerful jack 30 and therefore less expensive.
- the system for actuating the bars 10 is preferably dimensioned so as to be able to keep the bars 10 in the lowered position for vertical forces Fv exerted on each of them by at least half the weight of the aerial lift with his work platform loaded to his maximum allowed load.
- the system for actuating the bars 10 is preferably dimensioned so as to be able to keep the bars 10 in the lowered position for lateral forces F LE , F LI exerted on each of them from less than one quarter of the weight of the aerial work platform with its working platform loaded to its maximum authorized load.
- the cylinder 30 may be powered by the hydraulic supply circuit of the aerial platform which serves to supply the actuators of the lifting mechanism 2 and / or actuators controlling the orientation of the steering wheels 4 of the aerial platform.
- the jack can be classically controlled by a hydraulic distributor preferably electrically controlled.
- the dispenser can then be controlled by an electrical circuit depending for example on a position sensor - not shown - which detects whether the lifting mechanism 2 of the working platform 3 is in the lowered position and / or commands triggered by the operator at the control station of the aerial work platform.
- the control circuit can cause the raising of the bars 10 in the case where a control movement of the aerial platform on the ground is triggered by the operator and that the aforementioned position sensor detects that the lifting mechanism 2 is in the lowered position.
- the control circuit can cause the lowering of the bars 10 in the case where a lifting control of the work platform 3 is triggered by the operator. If the position sensor of the lifting mechanism signals that the work platform 3 is raised and one of the position sensors 50 indicates that a bar is not in the lowered position, the control circuit prohibits the movement to the the platform and triggers an alert to the operator, for example by lighting a fault light on the control station.
- FIGS. 9 and 10 schematically illustrates a variant of the embodiment described above. Only the left part of the actuating system is shown, it being specified that the right part not shown is made in the same way, except that it is the body of the jack 30 which is connected to the corresponding support 21 in the same way that the cylinder rod 31 for the left part of the actuating system.
- the bars 10 are mounted pivotally connected to the frame about an axis 22.
- the jack 30 actuates each bar 10 by means of a respective locking mechanism. It is constituted in this example by two links 61 and 62.
- the rod 61 is mounted in pivot connection to the support 22 about the axis 63.
- the rod 61 is pivotally mounted about the axis 64 at a end of the rod 62.
- the other end of the rod 62 is pivotally connected to the frame about the axis 65.
- the rod 31 is linked in pivot connection to the locking mechanism to the axis 64.
- the figure 10 illustrates the unlocked position of the locking mechanism in which the rods 61 and 62 are in a folded position while the bar 10 is raised.
- the jack 30 moves the locking mechanism and the bar 10 when it leaves its rod 31.
- the locking mechanism When the jack 30 retracts its rod 31, it moves the locking mechanism in the locked position which is illustrated by the figure 9 .
- the axis 64 has exceeded the alignment position with the axes 63, 65 and one of the rods 61, 62 is in abutment against a stop 66 of the frame 1.
- the rods 61, 62 are in a self-locking position with respect to any external force exerted on the lifting platform exerted on the bar 10 which tends to rotate it from the lowered position to the raised position.
- the locked position the locking mechanism against these forces independently of the cylinder.
- the jack 30 Since the jack 30 does not intervene in maintaining the position of the bar 10 vis-à-vis these efforts, it can be a much lower power since it must only be able to actuate the locking mechanisms . In this case, it is possible to replace the hydraulic cylinder 30 with a pneumatic cylinder, see an electromechanical actuator.
- the actuator may be of any suitable type other than a hydraulic cylinder. Although particularly suitable for scissor lifts and vertical boom lifts, the invention can be applied to any other type of mobile elevating work platforms, including towed or pushed aerial work platforms to move them to the ground.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Forklifts And Lifting Vehicles (AREA)
Claims (15)
- Hebebühne, umfassend:- ein Chassis (1), das auf Rädern (4, 5) montiert ist, um die Hebebühne am Boden zu bewegen;- eine Arbeitsbühne (3);- einen Hubmechanismus (2), der am Rahmen montiert ist und die Arbeitsplattform (3) trägt, um sie in der Höhe zu bewegen;- zwei Querstreben (10), die unter dem Rahmen angeordnet sind und jeweils relativ zum Rahmen beweglich sind zwischen:∘ einer angehobenen Position; und∘ einer abgesenkten Position, in der die Querstrebe aus dem Chassis in Richtung Boden ragt; und- ein Stellglied (30), das ausschließlich der Betätigung der beiden Querstreben zugeordnet ist, um sie aus der angehobenen Position in die abgesenkte Position und umgekehrt zu bewegen,dadurch gekennzeichnet, dass das Stellglied zwei entgegengesetzte Enden aufweist, durch die es die beiden Querstreben betätigt, indem es den Abstand zwischen den beiden Enden variiert, wobei das Stellglied auf jede der beiden Querstreben durch ein anderes der beiden Enden wirkt und das Stellglied nur durch die beiden Enden gehalten wird.
- Hebebühne nach Anspruch 1, bei welcher:- jede der Streben (10) mit Hilfe von Kopplungselementen (21, 22; 21, 22, 61-65) am Chassis (1) befestigt ist; und- das Stellglied (30) nur durch die Kopplungselemente an dem Chassis gehalten ist/wird.
- Hebebühne nach Anspruch 1 oder 2, bei welcher die Streben (10) schwenkgekoppelt an dem Rahmen (1) montiert sind.
- Hebebühne nach einem der Ansprüche 1 bis 3, bei welcher das Stellglied (30) jede Strebe (10) in einer abgesenkten Position gegen einen jeweiligen Festanschlag des Chassis (1) beaufschlagt.
- Hebebühne nach Anspruch 3 und 4, bei welcher in abgesenkter Position, die Unterkante (10a) jeder Strebe (10) gegenüber einer Vertikalen (V) durch die Schwenkachse versetzt ist, so dass den Kräften außerhalb der Hubarbeitsbühne, die vertikal nach oben auf die Unterkante der Strebe ausgeübt sind/werden, durch den jeweiligen Festanschlag des Chassis entgegengewirkt wird.
- Hebebühne nach einem der Ansprüche 1 bis 5, bei welcher das Stellglied (30) die Streben (10) in angehobener Position gegen einen Festanschlag des Chassis beaufschlagt.
- Hebebühne nach einem der Ansprüche 1 bis 6, bei welcher jede Strebe (10) horizontal vorliegt und sich zwischen zwei Seitenrädern (4, 5) erstreckt, im Wesentlichen über die gesamte Länge, die die beiden Seitenräder trennt.
- Hebebühne nach einem der Ansprüche 1 bis 7, bei welcher das Stellglied (30) ein Zylinder oder ein Hydraulikzylinder ist.
- Hebebühne nach Anspruch 8, bei welcher sich der Zylinder (30) horizontal und senkrecht zur Längsrichtung des Chassis (1) erstreckt.
- Hebebühne nach einem der Ansprüche 1 bis 9, bei welcher das Stellglied (30) Kräften, extern zur Hebebühne, entgegenwirkt, die die Streben (10) veranlassen könnten, sich aus der abgesenkten Position in die angehobene Position zu bewegen.
- Hebebühne nach einem der Ansprüche 1 bis 10, bei welcher jedes der beiden Enden des Stellglieds montiert ist, vorzugsweise schwenkgekoppelt, an einer der beiden jeweiligen Streben oder an einem Teil, an dem eine der beiden Streben festgelegt/vereinheitlicht ist.
- Hebebühne nach einem der Ansprüche 1 bis 11, bei welcher jedes der beiden Enden des Stellglieds (30) schwenkgekoppelt an einer jeweiligen Halterung (21) montiert, an der eine weitere der beiden Querstreben (10) festgelegt/vereinheitlicht ist, wobei die Halterung schwenkbar am Rahmen (1) montiert ist.
- Hebebühne nach Anspruch 12, bei welcher jede der Streben(10) an der jeweiligen Halterung (21) mit einem ihrer Längsenden befestigt ist, wobei jede der Querstreben (10) weiter zum anderen ihrer Längsenden an einer jeweiligen zweiten Halterung (21) festgelegt/vereinheitlicht ist, die schwenkbar am Rahmen (1) montiert ist.
- Hebebühne nach einem der Ansprüche 1 bis 9, bei welcher das Stellglied (30) jede der beiden Querstreben mittels eines entsprechenden Verriegelungsmechanismus (61-65) betätigt, wobei jeder Verriegelungsmechanismus über eine entriegelte Position und eine verriegelte Position verfügt, wobei das Stellglied die Verriegelungsmechanismen betätigt, um sie von ihrer entriegelten Position in ihre verriegelte Position und umgekehrt zu bewegen, wobei der Übertritt in die entriegelte Position den Effekt hat, die Querstreben in die angehobene Position und der Übertritt in die verriegelte Position den Effekt hat, die Streben (10) in die abgesenkte Position zu bewegen, wobei die Verriegelungsmechanismen in der verriegelten Position unabhängig vom Stellglied jedweder Kraft (FV, FLI, FLE), extern zur Hebebühne, entgegenwirken, die auf die Stangen (10) ausgeübt wird und sie veranlassen würden sich aus der abgesenkten Position in Richtung der angehobenen Position zu bewegen.
- Hebebühne nach einem der Ansprüche 1 bis 14, die eine Scheren- oder Vertikalstrebenbühne ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1553476A FR3035099A1 (fr) | 2015-04-18 | 2015-04-18 | Nacelle elevatrice a protection contre les nids de poule |
PCT/FR2016/050893 WO2016170255A1 (fr) | 2015-04-18 | 2016-04-15 | Nacelle elevatrice a protection contre les nids de poule |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3286128A1 EP3286128A1 (de) | 2018-02-28 |
EP3286128B1 true EP3286128B1 (de) | 2019-09-11 |
Family
ID=53484015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16720460.1A Active EP3286128B1 (de) | 2015-04-18 | 2016-04-15 | Arbeitsbühne mit schlagloch-schutz |
Country Status (7)
Country | Link |
---|---|
US (1) | US10676334B2 (de) |
EP (1) | EP3286128B1 (de) |
CN (1) | CN107531471B (de) |
AU (1) | AU2016252094B2 (de) |
CA (1) | CA2982883C (de) |
FR (1) | FR3035099A1 (de) |
WO (1) | WO2016170255A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3050193B1 (fr) * | 2016-04-15 | 2020-11-06 | Haulotte Group | Pupitre de commande avec protection anti-ecrasement de l'operateur pour plate-forme de travail de nacelle elevatrice |
CA3051408C (en) * | 2017-01-31 | 2021-10-12 | Jlg Industries, Inc. | Pothole protection mechanism for a lift machine |
USD844278S1 (en) * | 2017-03-29 | 2019-03-26 | Manitou Italia S.R.L. | Lifting device |
USD858025S1 (en) * | 2017-07-13 | 2019-08-27 | Jcb Access Limited | Controller cradle |
USD856623S1 (en) * | 2017-07-13 | 2019-08-13 | Jcb Access Limited | Scissor lift |
USD859773S1 (en) * | 2017-07-13 | 2019-09-10 | Jcb Access Limited | Scissor lift |
USD863710S1 (en) * | 2018-02-19 | 2019-10-15 | Michael Stoner | Combined tilt loader and carrier |
USD924780S1 (en) | 2019-07-23 | 2021-07-13 | Michael Stoner | Tilt loading game carrier |
CN110792251B (zh) * | 2019-10-28 | 2021-07-30 | 山东天成钢结构有限公司 | 移动便捷的悬挑工作平台 |
CN110885041A (zh) * | 2019-11-20 | 2020-03-17 | 国网山东省电力公司烟台市牟平区供电公司 | 带电作业用液压升降式绝缘平台 |
USD984775S1 (en) * | 2020-03-19 | 2023-04-25 | Terex South Dakota, Inc. | Combined lift vehicle and chassis |
USD984774S1 (en) * | 2020-03-19 | 2023-04-25 | Terex South Dakota, Inc. | Combined lift vehicle or chassis |
CN111779251B (zh) * | 2020-06-19 | 2021-09-24 | 安徽电气集团股份有限公司 | 一种机电安装装置 |
CN112744762B (zh) * | 2021-01-26 | 2024-05-07 | 浙江加力仓储设备股份有限公司 | 一种剪叉式高空作业平台的坑洼保护装置 |
CN113738084B (zh) * | 2021-09-29 | 2022-11-04 | 青岛九合重工机械有限公司 | 一种高防护型高空作业车以及工作方法 |
CN114215329A (zh) * | 2022-01-06 | 2022-03-22 | 上海吉朗景观工程有限公司 | 一种钢结构工程施工用可移动式作业平台 |
WO2023146945A1 (en) * | 2022-01-26 | 2023-08-03 | California Manufacturing And Engineering Co., Llc | Mobile elevated work platform vehicles with novel steering system and related methods |
GB2616640A (en) * | 2022-03-16 | 2023-09-20 | Jcb Access Ltd | A stability system |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5318374A (en) * | 1992-09-23 | 1994-06-07 | The Boeing Company | Composite tube structure |
EP0831054A3 (de) * | 1996-09-19 | 1999-06-16 | MBB Förder- und Hebesysteme GmbH | Hubvorrichtung, insbesondere Scherenbühne |
US5890737A (en) | 1997-01-31 | 1999-04-06 | Skyjack, Inc | Pothole protection mechanism for a lifting device |
US6586854B1 (en) * | 1998-08-10 | 2003-07-01 | Fuji Jukogyo Kabushiki Kaisha | Vibrating apparatus and simulator apparatus using vibrating apparatus |
DE19849222B4 (de) * | 1998-10-26 | 2004-02-12 | Zf Sachs Ag | Selbstpumpendes hydropneumatisches Federbein mit innerer Niveauregelung |
US6425459B1 (en) * | 2001-05-18 | 2002-07-30 | Snorkel International, Inc. | Aerial work platform apparatus with anti-tipping supplement |
US6561546B2 (en) * | 2001-06-08 | 2003-05-13 | Jlg Industries, Inc. | Pothole protection mechanism |
US6985795B2 (en) * | 2001-09-21 | 2006-01-10 | Schlage Lock Company | Material handler with center of gravity monitoring system |
US20090273159A1 (en) * | 2007-05-05 | 2009-11-05 | American Heavy Moving and Rigging, Inc. | Dual lane multi-axle transport vehicle |
US7281736B2 (en) | 2004-01-06 | 2007-10-16 | Jlg Industries, Inc. | Pothole protection mechanism |
US8205315B2 (en) * | 2006-11-01 | 2012-06-26 | Tyee Aircraft | Composite tube assemblies and methods of forming the same |
CN100549345C (zh) * | 2006-12-29 | 2009-10-14 | 西北工业大学 | 一种用于高空升降平台的楔块安全装置 |
US8448432B2 (en) * | 2007-02-13 | 2013-05-28 | The Board Of Regents Of The University Of Texas System | Actuators |
US7703784B2 (en) * | 2007-03-21 | 2010-04-27 | Nissan Technical Center North America, Inc. | Vehicle structure |
CN100506680C (zh) * | 2007-09-12 | 2009-07-01 | 许树根 | 带防坑洼倾斜装置的高空作业平台 |
JP5133674B2 (ja) * | 2007-12-13 | 2013-01-30 | 株式会社アイチコーポレーション | 転倒防止装置 |
US7950695B2 (en) * | 2008-01-03 | 2011-05-31 | Kan Cui | Safety guard mechanism for lifting device |
CA2646412C (en) | 2008-01-03 | 2011-09-13 | Kan Cui | Safety guard mechanism for lifting device |
CN201206097Y (zh) | 2008-01-09 | 2009-03-11 | 许树根 | 升降机械的防坑洼倾斜装置 |
US8074768B2 (en) * | 2008-11-07 | 2011-12-13 | Caterpillar Inc. | Powered operator access system |
US8919497B2 (en) * | 2008-11-07 | 2014-12-30 | Caterpillar Inc. | Powered operator access system |
CN101700863B (zh) * | 2009-02-05 | 2013-05-01 | 崔侃 | 结构紧凑型剪叉式高空作业举升车 |
WO2010091449A1 (en) * | 2009-02-16 | 2010-08-19 | Tefol Pty Ltd | A ladder deployment system |
KR100942593B1 (ko) * | 2009-07-27 | 2010-02-25 | 주식회사 수성 | 고소작업차용 포트홀 바 |
US20110198141A1 (en) * | 2010-02-16 | 2011-08-18 | Genie Industries, Inc. | Hydraulic electric hybrid drivetrain |
CN104040095B (zh) | 2011-10-17 | 2016-08-17 | Jlg工业公司 | 坑洞保护组件以及具有坑洞保护组件的剪刀式升降机 |
AT514081B1 (de) * | 2013-03-28 | 2014-10-15 | Mark Hydraulik Gmbh | Zylindergehäuse in Leichtbau-Mischbauweise sowie Verfahren zur Herstellung desselben |
JP6170755B2 (ja) * | 2013-06-18 | 2017-07-26 | 住友精密工業株式会社 | 電動油圧アクチュエータ |
US9222493B2 (en) * | 2013-10-14 | 2015-12-29 | Brian Riskas | Statically stable walking machine and power system therefor |
CN204778700U (zh) * | 2015-05-26 | 2015-11-18 | 浙江鼎力机械股份有限公司 | 一种坑洞保护结构的高空作业平台 |
JP6509693B2 (ja) * | 2015-09-11 | 2019-05-08 | 株式会社日立建機ティエラ | シリンダ装置 |
US9914626B2 (en) * | 2015-11-16 | 2018-03-13 | Zhejiang Dingli Machinery Co., Ltd. | Order picker with a wiring mechanism |
US9914627B2 (en) * | 2015-11-16 | 2018-03-13 | Zhejiang Dingli Machinery Co., Ltd. | Three-mast order picker |
US10167181B2 (en) * | 2016-07-22 | 2019-01-01 | Chejiang Dingli Machinery Co., Ltd. | Hydraulic steering shear-fork type aerial work platform |
-
2015
- 2015-04-18 FR FR1553476A patent/FR3035099A1/fr active Pending
-
2016
- 2016-04-15 WO PCT/FR2016/050893 patent/WO2016170255A1/fr active Application Filing
- 2016-04-15 US US15/567,369 patent/US10676334B2/en active Active
- 2016-04-15 AU AU2016252094A patent/AU2016252094B2/en active Active
- 2016-04-15 CN CN201680022429.8A patent/CN107531471B/zh active Active
- 2016-04-15 EP EP16720460.1A patent/EP3286128B1/de active Active
- 2016-04-15 CA CA2982883A patent/CA2982883C/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3286128A1 (de) | 2018-02-28 |
CA2982883C (fr) | 2024-01-23 |
US20180162708A1 (en) | 2018-06-14 |
AU2016252094B2 (en) | 2020-04-02 |
CN107531471B (zh) | 2019-08-09 |
WO2016170255A1 (fr) | 2016-10-27 |
CN107531471A (zh) | 2018-01-02 |
US10676334B2 (en) | 2020-06-09 |
CA2982883A1 (fr) | 2016-10-27 |
AU2016252094A1 (en) | 2017-11-30 |
FR3035099A1 (fr) | 2016-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3286128B1 (de) | Arbeitsbühne mit schlagloch-schutz | |
EP3908547B1 (de) | Hubarbeitsbühne mit abnehmbarer steuerkonsole, mit einer schutzvorrichtung zur verhinderung von quetschungen der bedienperson | |
BE1014630A3 (fr) | Engin de manutention de type diable. | |
FR3066223A1 (fr) | Systeme de fixation de roulette escamotable de marchepied, et marchepied comprenant au moins un systeme de fixation de roulette escamotable | |
EP2178484B1 (de) | Hebevorrichtung für einen rollstuhl | |
EP1301431B9 (de) | Kran mit aus gliedern bestehendem kranarm | |
WO2016207767A1 (fr) | Dispositif de relevage avant pour engin agricole et procede de commande associe | |
EP2734389B1 (de) | Amphibienfahrzeug | |
FR2598142A1 (fr) | Chariot elevateur a fourche avec un bloc de commande orientable et un ensemble porte-charge mobile en hauteur. | |
FR2690883A1 (fr) | Mécanisme d'actionnement pour le bras arrière basculant de levage/tractage d'un véhicule de dépannage. | |
FR2882622A1 (fr) | Andaineuse a bras porte-rotors telescopiques | |
EP3141517B1 (de) | Schnellmontage-kran ohne ballastierung | |
EP1352870B1 (de) | Vorrichtung zum Anheben und Aufklappen von dem Mast und zum Anheben von dem Ausleger eines Kranes | |
EP1043267B1 (de) | Flurförderfahrzeug für ein Transportfahrzeug wie z.B. ein Sattelzug | |
EP2910513A1 (de) | Hebevorrichtung mit einer Regulierung der Höhenlage | |
EP0377222B1 (de) | Ausziehleiter auf einem Fahrgestell | |
FR2761970A1 (fr) | Dispositif de relevage de mat pour grue a tour telescopique | |
WO2022259194A1 (fr) | Ensemble de dépannage-remorquage pour véhicule remorqueur, et véhicule remorqueur le comprenant | |
WO2024105573A1 (fr) | Ensemble de dépannage-remorquage perfectionné pour véhicule remorqueur, et véhicule remorqueur le comprenant | |
FR2857638A1 (fr) | Dispositif de relevage d'un moyen de protection arriere d'un vehicule industriel et vehicule industriel equipe d'un tel dispositif | |
EP2485977B1 (de) | Hebegerät für einen mäher mit extern montiertem heber | |
EP0707548A1 (de) | Flurförderzeug | |
FR2509711A1 (fr) | Dispositif elevateur a cabine ou plate-forme de travail | |
FR2936237A1 (fr) | Grue deployable de manutention d'objets | |
FR3025773A1 (fr) | Remorque avec plateforme de chargement abaissable et interchangeable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66F 17/00 20060101ALI20190304BHEP Ipc: E04G 1/22 20060101ALI20190304BHEP Ipc: B66F 11/04 20060101AFI20190304BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190415 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1178232 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016020363 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191212 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1178232 Country of ref document: AT Kind code of ref document: T Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200113 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016020363 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200112 |
|
26N | No opposition filed |
Effective date: 20200615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200415 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190911 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230424 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230411 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240329 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240424 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240415 Year of fee payment: 9 |