EP3279603B1 - Elektromagnetisches mobiles wirksystem - Google Patents

Elektromagnetisches mobiles wirksystem Download PDF

Info

Publication number
EP3279603B1
EP3279603B1 EP17001096.1A EP17001096A EP3279603B1 EP 3279603 B1 EP3279603 B1 EP 3279603B1 EP 17001096 A EP17001096 A EP 17001096A EP 3279603 B1 EP3279603 B1 EP 3279603B1
Authority
EP
European Patent Office
Prior art keywords
stator coil
detonation
effector system
explosive charge
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17001096.1A
Other languages
English (en)
French (fr)
Other versions
EP3279603B2 (de
EP3279603A1 (de
Inventor
Markus Graswald
Raphael Gutser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59296660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3279603(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP3279603A1 publication Critical patent/EP3279603A1/de
Application granted granted Critical
Publication of EP3279603B1 publication Critical patent/EP3279603B1/de
Publication of EP3279603B2 publication Critical patent/EP3279603B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0838Primers or igniters for the initiation or the explosive charge in a warhead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0093Devices generating an electromagnetic pulse, e.g. for disrupting or destroying electronic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/09Primers or detonators containing a hollow charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used

Definitions

  • Various embodiments generally relate to an electromagnetic mobile impact system for placement in a missile having a detonation-driven magnetic field compressor.
  • Hard-kill-based active protection systems such as AFGANIT use radar systems with multiple active phase grating antennas installed on the tower that can detect and track multiple targets simultaneously.
  • Weapons such as multi-EFP active charges and a 12.7 mm rapid-fire cannon are integrated via the command and control system.
  • further sensor systems for the detection of oncoming threats and for weather data and communication devices can come.
  • other electro-optical Protective systems such as SHTORA-1 with laser sensors, sensors for the detection of the radiation of the control channel of antitank missiles and infrared lights be integrated.
  • the DE 195 28 112 C1 describes a non-lethal ammunition with a MHD generator as an energy source, a detonation charge, a coaxially disposed within this coaxial coil and a directional antenna.
  • the DE 199 16 952 A1 describes an active body with an enveloping body in the interior of a piezoelectric crystal and an axially adjacent to this detonator is arranged.
  • the detonator has an explosive and an explosive accelerated by the explosives Activation mass for the deformation of the piezoelectric crystal.
  • the piezoelectric crystal is connected via electrodes to a discharge circuit.
  • the discharge circuit has a series connection of capacitances and inductances, wherein the inductance is realized in the form of a coil which surrounds the detonator and is arranged radially spaced therefrom.
  • antennas for directional radiation may be present.
  • the invention relates to an electromagnetic mobile operating system for accommodation in a missile with a detonation-driven magnetic field compressor.
  • the magnetic field compressor has at least one stator coil. Furthermore, the magnetic field compressor has at least one fitting shell. The fitting shell is at least partially surrounded by the stator coil and radially spaced therefrom.
  • the magnetic field compressor further has at least one explosive charge. The explosive charge is embedded in the fitting shell. More specifically, the explosive charge is at least largely surrounded by the fitting shell.
  • the magnetic field compressor has at least one power source.
  • To activate the detonation of the explosive charge is further provided a trigger system.
  • the trigger system can be controlled by a current pulse from the current source as a function of a distance signal supplied by the missile. Due to the detonation, a high electrical energy can be generated in the stator coil.
  • the active system on at least one directional antenna.
  • stator coil and the valve cover as a stator, form an electromagnetic generator or compressor. Through a current source, a magnetic field is built up in the stator coil.
  • the invention is based on the idea that the detonation of the explosive charge causes a magnetic field change in the stator coil, thereby indicating high electrical energy in the coil. This high electrical energy is emitted via the directional antenna directed to a target.
  • the detonation takes place in response to a distance signal which is provided to the active system by, for example, a distance sensor of the missile in which the active system is installed.
  • the dimensions, volumes, masses and energy requirements of the device are preferably such that the device is suitable for mobile transport with missiles, UAVs or similar mobile systems on land or underwater. Due to a sufficient miniaturization of all components of the electromagnetic active system in terms of space, mass and energy requirements, integration into mobile systems is only possible.
  • electromagnetic systems offer the advantage in an urban environment, in the maritime coastal area and / or in port facilities where the use of traditional conventional weapon systems can be associated with major collateral damage to uninvolved civilians, vehicles and buildings.
  • directed electromagnetic activity systems is primarily directed against electrical and electronic components, so that depending on the concept used, one can speak of non-lethal or low-lethal systems.
  • the stator coil has a high ductility. Due to a high ductility, the mechanical integrity of the stator coil during the detonation of the explosive charge and the subsequent expansion can be maintained as long as possible.
  • the radial distance of the fitting shell to the stator coil has the advantage of allowing a sufficient expansion of the stator coil as a result of the detonative conversion, so that a current in the coil can be induced as long as possible via the magnetic field change.
  • the coil should remain intact for as long as possible (here in the microsecond range).
  • the stator coil has at least one winding.
  • the stator coil has, for example, copper or another material which has a high electrical conductivity.
  • stator coil and / or the armature sheath may comprise copper, gold, aluminum or comparable materials, or an alloy with one or more of the aforementioned materials. This has the advantage that the ductility of the stator coil is very high and the current conduction between the stator coil and the valve housing during the detonation can be maintained as long as possible.
  • the fitting shell for example, depressions, notches or the like, through which a controlled disassembly of the fitting shell is possible.
  • the fitting shell and / or the stator coil may be surrounded by inert, non-metallic materials such as plastics such as PVC, PTFE or others, and / or composites such as CFRP, GFRP or others. This has the advantage that the collateral damage area can be controlled by fragmentation, for example, and thus also reduced.
  • the stator coil has a single-layer or multi-layer winding.
  • the spacing of the windings of the stator coil preferably increases at least partially in the direction of the active system front.
  • the current in the stator coil increases starting from the location of the initiation of the detonation, so that the stator coil preferably has a higher winding density with the direction of the active system front.
  • the current source comprises a Marx generator, capacitor banks, a dielectric generator and / or a ferroelectric generator.
  • the power source is a high-performance, pulsed power source that provides the initial magnetic flux density to the stator coil.
  • the explosive charge has a detonator.
  • the explosive charge comprises an explosive mixture based on RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaza-isovurtzitane), TKX-50 (5,50-bistetrazole-1,10-diolate ), FOX-7 (1,1-diamino-2,2-dinitroethylene), TATB (triaminotrinitrobenzene), PETN (nitropenta or pentaerythrityl tetranitrate) and / or TNT (trinitrotoluene or 2-methyl-1,3,5-trinitrobenzene ) or comparable explosives preferably having a high detonation rate.
  • the active system has at least one switching device.
  • the switching device is preferably set up to forward the electrical energy generated by the detonation in the stator coil to the directional antenna.
  • the active system according to a preferred embodiment, a cascade circuit and triggering for the targeted generation of a target-adapted waveform.
  • the directional antenna serves to increase the distance effect, which radiates the power generated by the magnetic field compressor concentrated by electromagnetic waves against a target located at a distance.
  • the electrical power released by the explosive in a short time is preferably delivered in corresponding pulses.
  • a corresponding switching device or power electronics is advantageous, which can convert a short-time and high current pulse.
  • the distance signal supplied by the missile is triggered as a function of a predetermined distance of the active system to the destination.
  • the electromagnetic effect can be optimally utilized in accordance with the target to be combated.
  • the choice of spacing may extend the effect of a momentary disturbance of the electrical system to near complete destruction.
  • the distance between the active system and the target, in which the active system is the detonation of the explosive charge between 5 and 100 meters.
  • the distance is at least 5 to 100 meters, preferably at least 10 meters and, more preferably at least 30 meters.
  • the maximum distance may be over 100 meters. This depends on the amount of explosive charge used and the type of target to be controlled.
  • the sensors of modern active protection systems can be destroyed or at least effectively damaged, for example, to blind a modern weapon system such as a main battle tank. This is preferably done outside the control removal of modern active protection systems. With, for example, a subsequent volley shot by an anti-tank missile or multi-role missile can then be overcome, for example, modern reactive protection systems and passive armor protection.
  • the active system has at least one application device.
  • the application device is preferably configured to deliver the electromagnetic pulse generated by the detonation by direct contact or spark strike directly or over distances of, for example, up to 5 meters into a target.
  • the application device may have one or more coiled electrically conductive wire coil which are connected at one end to the active system and at the other end, for example, have an arrowhead. Shortly before the target, the arrowheads are fired at the target and provide an electrical connection to the active system via the electrically conductive wire. This has the advantage that, for example, escalation tactics can be realized in times of increasing political and military tensions by varying the effective distance to the target.
  • the explosive charge is arranged in the form of a shaped charge.
  • the explosive charge has means for generating a blast effect and / or fragmentation effect. This has the advantage that the overall performance of the active system can be increased.
  • the active system has an electrically insulated sheath.
  • the shell preferably has a magnetized and / or magnetizable material. This has the advantage that the magnetic flux in the system and thus the overall performance of the active system can be increased.
  • an active system arrangement is specified that has at least two previously described active systems.
  • the effects of the at least two active systems are preferably simultaneously available for a cumulative effect. Further preferably, the at least two active systems are timed shortly after one another for a multiple effect.
  • Cascading and corresponding triggering makes it possible, for example, to adapt the waveform to the region susceptible to the sensor. For example, escalation tactics can be realized in times of increasing political and military tensions by the cumulative effects of multiple electromagnetic energy charges.
  • the cascading of multiple generators therefore has the advantage, for example, of significantly increasing both the potential effective range and enabling the setting of an application-specific electromagnetic waveform.
  • a missile having at least one previously described active system or a previously described active system arrangement is specified.
  • a method for scalability of a generated electromagnetic effect in the target comprises the step of generating an electromagnetic effect by detonating at least one explosive charge in a previously described active system. Furthermore, the method comprises the step of triggering one or more explosive charges at the same time or at short intervals in succession. The detonation is preferably triggered as a function of a predetermined distance of the active system from the target. The amount of at least one charged charge is preferably preselected depending on the target to be hit.
  • a volley shot is subsequently carried out by means of at least one antitank missile and / or multi-role missile.
  • an anti-tank missile or multi-role missile can then be overcome, for example, modern reactive protection systems and passive armor protection.
  • connection As used herein, the terms “connected,” “connected,” and “coupled” are used to describe both direct and indirect connection, direct or indirect connection, and direct or indirect coupling.
  • connection As used herein, the terms “connected,” “connected,” and “coupled” are used to describe both direct and indirect connection, direct or indirect connection, and direct or indirect coupling.
  • identical or similar elements are provided with identical reference numerals, as appropriate.
  • Step A, Step B, Step C, Step D and Step E are listed are to be understood so that Step A is executed first, Step E is executed last, and Steps B, C and D can be performed in any order between steps A and E, and that the sequence falls within the formulated scope of the claimed method.
  • a step for performing X in the claim and a step for performing Y in the claim may be performed simultaneously within a single operation, and the resulting process falls within the formulated scope of the claimed method.
  • FIG. 1 A first embodiment of the electromagnetic active system 100 is shown.
  • the active system 100 includes a detonation-driven magnetic field compressor 101.
  • the Magnetic field compressor 101 has a stator coil 102 and a fitting shell 103 in the illustrated embodiment.
  • the fitting shell 103 is surrounded in the illustrated embodiment of the stator coil 102 and radially spaced therefrom. According to one embodiment, not shown, one or more stator coils also surround the fitting shell only partially.
  • an explosive charge 104 is embedded in the fitting shell 103.
  • the stator coil 102 is electrically connected to a power source 105.
  • a triggering system 106 is provided, wherein the triggering system 106 can be controlled by a current pulse from the current source 105 as a function of a signal supplied by the missile (not shown).
  • the triggering system 106 can be controlled by a current pulse from the current source 105 as a function of a signal supplied by the missile (not shown).
  • the active system 100 has a directional antenna 107 for the directed radiation of the electrical energy generated by the detonation of the explosive charge 104.
  • FIG. 2 another more detailed embodiment of an electromagnetic activity system 200 is shown.
  • the active system 200 includes a detonation-driven magnetic field compressor 201.
  • the magnetic field compressor 201 has a fitting shell 203 filled with an explosive charge 204, which is surrounded by a stator coil 202.
  • the magnetic field compressor 201 is coupled to a current source 205, for example a capacitor bank, through which a magnetic field can be induced in the stator coil 202.
  • the magnetic field compressor 201 is further connected to a triggering system 206.
  • the explosive charge 204 is initiated via the trigger system 206.
  • the trigger system 206 may include, for example, a delay function.
  • the initiation of the magnetic field in the stator coil 204 can also be controlled via the trigger system 206, for example.
  • the detonation of the explosive charge 204 causes a change in the stator coil 202 established magnetic field causes the sudden generation of a large amount of electrical energy.
  • This energy is conducted via a switching device 208, for example by a corresponding power electronics, to a transmitter 209, for this purpose, the stator coil 202 is electrically connected to the switching device 208 and the transmitter 209 is electrically coupled to the switching device.
  • the transmitter 209 generates electromagnetic radiation emitted by the directional antenna 207 to a target.
  • FIG. 3 schematically shows the action 300 of an embodiment of the electromagnetic active system 301 on a target 302.
  • the active system 301 is housed in a missile 303 in the illustrated embodiment.
  • the active system 301 has a detonation-driven magnetic field compressor 304, which emits an electromagnetic radiation 306 to the target 302 to be controlled when a detonating charge is detonated via a directional antenna 305 in the missile 303.
  • the detonation of the explosive charge takes place at a predetermined distance D of the missile 303 to the target 302.
  • At least two or more previously described active systems may be provided, wherein the effects of the active systems are simultaneously available for a cumulative effect or timed in quick succession for a multiple effect.
  • individual components such as the power source, the switching device, the trigger system and the directional antenna can also be provided in common for multiple active systems.
  • two or more active systems may have a common current source through which the magnetic field is induced in the stator coil.
  • the trigger system can be set up to ignite several explosive charges simultaneously or in quick succession. In this case, for example, in the case of a plurality of explosive charges, some explosive charges can be ignited at the same time and further explosive charges can be fired one after the other in chronological succession.
  • an application device can be provided, which is set up to emit the electromagnetic pulse generated by the detonation directly or over distances of up to 5 meters into the target D by conducting contact or sparking.
  • a detonation-powered magnetic field compressor 304 with about 8 kg of high-energy explosive is suitable for applications with about 12 to 18 kg of active material mass to combat specific sensors.
  • the aim is, for example, to combat demanding targets with complex sensor systems whose electronics are destroyed or at least temporarily disturbed by the electromagnetic radiation generated during the detonation of the explosive charge 306.
  • the effects of the active systems are simultaneously retrievable for a cumulative effect or ignited in quick succession for a multiple effect.
  • FIG. 4 schematically shows an action plot 400 of the damage area of an electromagnetic active system.
  • the distance of the active system to the target to be combatted is shown on the X-axis.
  • the extent of the damage area is shown schematically on the Y-axis.
  • a target 1 401 the detonation of the explosive charge is initiated at a short distance from the target.
  • the target 2 402 the detonation of the explosive charge is initiated at a comparatively large distance.
  • Objective 1 401 and Objective 2 402 different destruction limits were assumed (for example, the larger ellipse of damage area 2 404 with 50% and the smaller ellipse of damage area 1 403 with 100% damage probability).
  • effect criteria can be used in addition to, for example, a physical destruction of the electronic components and electrical failure due to short circuits or a pure interference due to interference due to the interference.
  • FIG. 5 schematically shows a flowchart 500 of a method for scaling a generated electromagnetic effect in the target.
  • the method for scaling a generated electromagnetic activity in the target comprises the step of generating an electromagnetic effect by detonating at least one explosive charge in an active system according to any one of the preceding claims 501.
  • the method further comprises the step of initiating one or more explosive charges simultaneously or simultaneously short time interval one behind the other 502.
  • the detonation is triggered in response to a predetermined distance of the active system from the target.
  • the amount of at least one charged explosive charge is preselected depending on the target to be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

  • Verschiedene Ausführungsformen betreffen allgemein ein elektromagnetisches mobiles Wirksystem zur Unterbringung in einem Flugkörper mit einem detonationsbetriebenen Magnetfeldkompressor.
  • In modernen Waffen- und Aufklärungs- und Kommunikationssystemen und dazugehörigen Plattformen werden zunehmend hochintegrierte elektrische und elektronische Komponenten eingesetzt. Genannt sei hierfür das Konzept eines All-Electric Ships, das neben Energieverteilungssystemen über elektronische Sensoren (z.B. Überwachungs- und Feuerleitradare), Kommunikationseinrichtungen und elektrische Antriebe verfügt sowie künftige Waffensysteme wie Hochenergielaser und sogenannte Railguns verfügen wird. Ein aktuelles Beispiel sind die neuen amerikanischen Zerstörer der Zumwalt-Klasse. Ähnliches gilt auch für stationäre landbasierte Systeme wie Radarsysteme, Führungswaffeneinsatzsysteme (Command and Control-Systeme / C2-Systeme) und Flugabwehrstellungen. Eine Besonderheit stellen die derzeit in Russland entwickelten, hochmobilen T-14 Armata Kampfpanzer dar, die neben passivem und reaktivem Schutz auch über moderne aktive Schutzsysteme verfügen können.
  • Aktivschutzsysteme auf Hard-Kill-Basis wie zum Beispiel AFGANIT benutzen Radarsysteme mit mehreren am Turm installierten aktiven Phasengitter-Antennen, die mehrere Ziele gleichzeitig erfassen und verfolgen können. Über das Führungswaffeneinsatzsystem sind Waffen wie beispielsweise Multi-EFP-Wirkladungen und eine 12,7- mm-Schnellfeuerkanone eingebunden. Hinzu können weitere Sensorsysteme zur Detektion anfliegender Bedrohungen und für Wetterdaten sowie Kommunikationseinrichtungen kommen. Daneben können weitere elektrooptische Schutzsysteme wie beispielsweise SHTORA-1 mit Lasersensoren, Sensoren für die Erkennung der Strahlung des Steuerkanals von Panzerabwehrflugkörpern und Infrarotscheinwerfer integriert sein.
  • Daraus ergibt sich ein breites Anwendungsfeld für elektromagnetische Wirksysteme. Die hohe Packungsdichte heutiger elektronischer Systeme erhöht zudem die Empfindlichkeit gegen elektromagnetische Angriffe deutlich im Vergleich zu früheren analogen Schaltungen.
  • Konventionelle, elektrische Systeme auf Basis von hoch performanten Marxgeneratoren zum Dauerbetrieb erlauben beispielsweise die zeitweise Störung elektronischer Bauelemente in vergleichsweise geringen Abständen von einigen Metern. Hauptnachteil solcher Systeme ist, dass die erzeugten Feldstärken zu gering sind, um beispielsweise Sensoren und elektronische Komponenten dauerhaft zu zerstören. Dies gilt umso mehr für gehärtete Elektroniken. Sie eigenen sich beispielsweise auch nicht zur mobilen Verbringung mit Flugkörpern oder UAV (Unmanned Aerial Vehicle), da beispielsweise der Platzbedarf zur Energieerzeugung zu groß ist.
  • Sprengstoff-basierte Systeme durch Magnetfeldkompression erzeugen zwar einen elektromagnetischen Puls mit Hilfe von Sprengladungen, weisen jedoch den Nachteil auf, dass eine praktikable militärische Nutzung nicht möglich ist.
  • Die DE 195 28 112 C1 beschreibt eine nicht letale Munition mit einem MHD-Generator als Energiequelle, einer Detonationsladung, einer koaxial innerhalb dieser angeordneten einer Koaxialspule und einer Richtantenne.
  • Die DE 199 16 952 A1 beschreibt einen Wirkkörper mit einem Hüllkörper in dessen Inneren ein Piezokristall und ein axial zu diesem benachbarter Detonator angeordnet ist. Der Detonator weist einen Explosivstoff und eine durch den Explosivstoff beschleunigbare Aktivierungsmasse zur Verformung des Piezokristalls auf. Der Piezokristall ist über Elektroden an einen Entladekreis angeschlossen. Der Entladekreis weist eine Reihenschaltung von Kapazitäten und Induktivitäten auf, wobei die Induktivität in Form einer Spule realisiert ist, welche den Detonator umgibt und radial beabstandet zu diesem angeordnet ist. Ferner können Antennen zur gerichteten Abstrahlung vorhanden sein.
  • Davon ausgehend ist es Aufgabe der Erfindung, ein Wirksystem anzugeben, das die genannten Nachteile verbessert.
  • Diese Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 bzw. einem Verfahren nach Anspruch 13 gelöst. Beispielhafte Ausführungsformen sind in den abhängigen Ansprüchen dargestellt. Es sei darauf hingewiesen, dass die Merkmale der Ausführungsbeispiele der Vorrichtungen auch für Ausführungsformen des Verfahrens sowie Anordnung der Vorrichtung gelten und umgekehrt.
  • Es wird ein elektromagnetisches mobiles Wirksystem zur Unterbringung in einem Flugkörper mit einem detonationsbetriebenen Magnetfeldkompressor angegeben. Der Magnetfeldkompressor weist wenigstens eine Statorspule auf. Weiter weist der Magnetfeldkompressor wenigstens eine Armaturhülle auf. Die Armaturhülle ist wenigstens teilweise von der Statorspule umgeben und von dieser radial beabstandet. Der Magnetfeldkompressor weist weiter wenigstens eine Sprengladung auf. Die Sprengladung ist in der Armaturhülle eingebettet. Genauer gesagt, ist die Sprengladung von der Armaturhülle wenigstens größtenteils umgeben. Der Magnetfeldkompressor weist wenigstens eine Stromquelle auf. Zur Aktivierung der Detonation der Sprengladung ist weiter ein Triggersystem vorgesehen. Das Triggersystem ist durch einen Strompuls aus der Stromquelle abhängig von einem von dem Flugkörper zugeführten Abstandssignal steuerbar. Durch die Detonation ist in der Statorspule eine hohe elektrische Energie erzeugbar. Zur gerichteten Abstrahlung der durch die Detonation der Sprengladung erzeugten elektrischen Energie weist das Wirksystem wenigstens eine Richtantenne auf.
  • Die Statorspule und die Armaturhülle, als Stator, bilden ein elektromagnetischen Generator bzw. Kompressor. Durch eine Stromquelle wird in der Statorspule ein Magnetfeld aufgebaut.
  • Der Erfindung liegt der Gedanke zugrunde, dass durch die Detonation der Sprengladung eine Magnetfeldänderung in der Statorspule erfolgt und dadurch eine hohe elektrische Energie in der Spule indiziert wird. Diese hohe elektrische Energie wird über die Richtantenne gerichtet auf ein Ziel abgegeben. Die Detonation erfolgt auf ein Abstandssignal hin, das dem Wirksystem durch beispielsweise einen Abstandssensor des Flugkörpers, in dem das Wirksystem eingebaut ist, bereitgestellt wird. Durch die Unterbringung des Wirksystems in einem mobilen Flugkörper und die Abstandswirkung ist eine militärische Nutzung erst sinnvoll möglich.
  • Abmessungen, Volumen, Massen und Energiebedarf der Vorrichtung sind vorzugsweise so zu bemessen, dass sich die Vorrichtung zur mobilen Verbringung mit Flugkörpern, UAVs oder ähnlichen mobilen Systemen an Land oder Unterwasser eignet. Durch eine hinreichende Miniaturisierung aller Komponenten des elektromagnetischen Wirksystems hinsichtlich des Bauraums, Massen und Energiebedarf ist erst eine Integration in mobile Systeme möglich.
  • Aufgrund des 1/R2-Gesetzes führt eine omnidirektionale Abstrahlung der elektromagnetischer Wellen mit zunehmenden Abständen zu drastisch reduzierten Leistungen im Ziel. Mittels beispielsweise entsprechender Antennen können Systeme zur Fokussierung durch Richtwirkung zu einer deutlichen Erhöhung der Stör- oder Wirkentfernung führen. Hierbei sind beispielsweise entweder der Flugkörper / UAV selbst und / oder die Richtantenne zum Ziel auszurichten. Elektromagnetische Systeme bieten unter anderem den Vorteil in einem urbanen Umfeld, im maritimen küstennahen Gebiet und/ oder in Hafenanlagen, in denen der Einsatz klassischer konventioneller Waffensysteme mit großen kollateralen Schäden an unbeteiligten Zivilpersonen, Fahrzeugen und Gebäuden einhergehen kann. Die Wirkung gerichteter elektromagnetischer Wirksysteme richtet sich dagegen in erster Linie gegen elektrische und elektronische Bauteile, so dass man je nach eingesetztem Konzept von nicht oder gering letalen Systemen sprechen kann.
  • Erfindungsgemäß weist die Statorspule eine hohe Duktilität auf. Durch eine hohe Duktilität lässt sich die mechanische Integrität der Statorspule während der Detonation der Sprengladung und der anschließenden Expansion möglichst lange aufrechterhalten.
  • Der radiale Abstand der Armaturhülle zur Statorspule hat den Vorteil, eine hinreichende Aufweitung der Statorspule infolge der detonativen Umsetzung zu ermöglichen, so dass möglichst lange über die Magnetfeldänderung ein Strom in der Spule induziert werden kann. Dazu sollte die Spule so lang wie möglich intakt bleiben (hier im Mikrosekundenbereich).
  • Gemäß einer bevorzugten Ausführungsform der Vorrichtung weist die Statorspule wenigstens eine Wicklung auf. Die Statorspule weist beispielsweise Kupfer oder ein anderes Material aufweist, das eine hohe elektrische Leitfähigkeit aufweist.
  • Alternativ kann die Statorspule und/ oder die Armaturhülle Kupfer, Gold, Aluminium oder vergleichbare Materialien, oder eine Legierung mit einem oder mehreren der zuvor genannten Materialien aufweisen. Dies hat den Vorteil, dass die Duktilität der Statorspule sehr hoch ist und die Stromführung zwischen der Statorspule und der Armaturhülle während der Detonation möglichst lange erhalten bleiben kann.
  • Gemäß einer bevorzugten Ausführungsform weist die Armaturhülle beispielsweise Vertiefungen, Kerben oder dergleichen auf, durch die eine kontrollierte Zerlegung der Armaturhülle möglich ist. Gemäß einer bevorzugten Ausführungsform können die Armaturhülle und/ oder die Statorspule durch inerte, nichtmetallische Materialien wie Kunststoffe, wie beispielsweise PVC, PTFE oder andere, und/ oder Verbundwerkstoffe, wie beispielsweise CFK, GFK oder andere, umgeben sein. Dies hat den Vorteil, dass sich der Kollateralschadensbereich durch Splitterwirkung beispielsweise kontrollieren und dadurch auch reduzieren lässt.
  • Gemäß einer bevorzugten Ausführungsform weist die Statorspule eine einlagige oder mehrlagige Wicklung auf. Der Abstand der Wicklungen der Statorspule nimmt vorzugsweise in Richtung Wirksystemfront wenigstens teilweise zu. Mit der Wirksystemfront nimmt ausgehend von dem Ort der Initiierung der Detonation der Strom in der Statorspule zu, so dass die Statorspule mit der Richtung der Wirksystemfront vorzugsweise eine höhere Wicklungsdichte aufweist. Durch einen heterogenen Aufbau der Statorspule kann beispielsweise ein Überzünden verhindert werden.
  • Gemäß einer bevorzugten Ausführungsform umfasst die Stromquelle einen Marxgenerator, Kondensatorbänke, einen dielektrischen Generator und/ oder einen ferroelektrischen Generator. Vorzugsweise ist die Stromquelle eine hoch performante, gepulste Stromquelle, die die initiale magnetische Flussdichte für die Statorspule bereitstellt.
  • Gemäß einer bevorzugten Ausführungsform weist die Sprengladung einen Detonator auf. Vorzugsweise weist die Sprengladung eine Sprengstoffmischung basierend auf RDX (1,3,5-Trinitro-1,3,5-triazacyclohexan), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctan), CL-20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaza-isowurtzitan), TKX-50 (5,50-Bistetrazol-1,10-diolat), FOX-7 (1,1-Diamino-2,2-dinitroethylen), TATB (Triaminotrinitrobenzol), PETN (Nitropenta bzw. Pentaerythrityltetranitrat)und/ oder TNT (Trinitrotoluol bzw. 2-Methyl-1,3,5-trinitrobenzol) oder vergleichbaren Sprengstoffen mit vorzugsweise hoher Detonationsgeschwindigkeit auf.
  • Gemäß einer bevorzugten Ausführungsform weist das Wirksystem wenigstens eine Schaltvorrichtung auf. Die Schaltvorrichtung ist vorzugsweise eingerichtet, die durch die Detonation in der Statorspule erzeugte elektrische Energie an die Richtantenne weiterzuleiten.
  • Weiter weist das Wirksystem gemäß einer bevorzugten Ausführungsform eine Kaskadenschaltung und Triggerung zur gezielten Erzeugung einer zielangepassten Wellenform auf.
  • Gemäß einer bevorzugten Ausführungsform dient die Richtantenne zur Erhöhung der Abstandswirkung, die die vom Magnetfeldkompressor erzeugte Leistung durch elektromagnetische Wellen konzentriert gegen ein in einer Entfernung befindliches Ziel abstrahlt. Die durch den Sprengstoff in kurzer Zeit freigesetzte elektrische Leistung wird vorzugsweise in entsprechenden Pulsen abgegeben. Hierzu ist eine dementsprechende Schaltvorrichtung bzw. Leistungselektronik von Vorteil, die einen kurzzeitigen und hohen Strompuls konvertieren kann.
  • Gemäß einer bevorzugten Ausführungsform ist das von dem Flugkörper zugeführte Abstandssignal in Abhängigkeit eines vorbestimmten Abstandes des Wirksystems zum Ziel ausgelöst wird. Durch die Triggerung der Detonation in einem vorbestimmten Abstand zum Ziel kann die elektromagnetische Wirkung entsprechend dem zu bekämpfenden Ziel optimal genutzt werden. Hierbei kann je nach der Art des Ziels durch die Wahl des Abstands die Wirkung von einer kurzzeitigen Störung des elektrischen Systems bis zu einer nahezu vollständigen Zerstörung reichen.
  • Gemäß einer bevorzugten Ausführungsform beträgt der Abstand zwischen dem Wirksystem und dem Ziel, bei dem das Wirksystem die Detonation der Sprengladung auslöst, zwischen 5 und 100 Metern. Vorzugsweise beträgt der Abstand mindestens 5 bis 100 Metern, vorzugsweise mindestens 10 Meter und, besonders bevorzugt mindestens 30 Meter. Je nach zu bekämpfenden Ziel kann der maximale Abstand auch über 100 Meter hinaus erfolgen. Dies ist jeweils Abhängig von der Menge der eingesetzten Sprengladung und der Art des zu bekämpfenden Ziels. Bei einem Abstand der Detonation zwischen 5 und 100 Metern können beispielsweise die Sensoriken moderner aktiver Schutzsysteme zerstört oder zumindest effektiv geschädigt werden, um beispielsweise ein modernes Waffensystem wie einen Kampfpanzer erblinden zu lassen. Dies erfolgt vorzugsweise außerhalb der Bekämpfungsentfernung moderner Aktivschutzsysteme. Mit beispielsweise einem nachfolgenden Salvenschuss durch einen Panzerabwehrflugkörper oder Multi-Rollen-Flugkörper lassen sich dann beispielsweise moderne Reaktivschutzsysteme und der passive Panzerschutz überwinden.
  • Gemäß einer bevorzugten Ausführungsform weist das Wirksystem wenigstens eine Ausbringungseinrichtung auf. Die Ausbringungseinrichtung ist vorzugsweise dazu eingerichtet, den durch die Detonation erzeugten elektromagnetischen Puls durch leitenden Kontakt oder Funkenschlag direkt oder über Entfernungen von beispielweise bis zu 5 Metern in ein Ziel abzugeben. Beispielsweise kann die Ausbringungsvorrichtung eine oder mehrere aufgerollte elektrisch leitfähige Drahtspule aufweisen die mit einem Ende mit dem Wirksystem verbunden sind und am anderen Ende beispielsweise eine Pfeilspitze aufweisen. Kurz vor dem Ziel werden die Pfeilspitzen auf das Ziel abgeschossen und stellen über den elektrisch leitfähigen Draht eine elektrische Verbindung zu dem Wirksystem bereit. Dies hat den Vorteil, dass sich durch Variation des Wirkabstandes zum Ziel beispielsweise Eskalationstaktiken in Zeiten zunehmender politischer und militärischer Spannungen realisieren lassen.
  • Gemäß einer bevorzugten Ausführungsform ist die Sprengladung in Form einer Hohlladung angeordnet. Alternativ und/ oder ergänzend weist die Sprengladung Mittel zur Erzeugung einer Blastwirkung und/ oder Splitterwirkung auf. Dies hat den Vorteil, dass die Gesamtleistung des Wirksystems gesteigert werden kann.
  • Gemäß einer bevorzugten Ausführungsform weist das Wirksystem eine elektrisch isolierte Hülle auf. Die Hülle weist vorzugsweise ein magnetisiertes und/ oder magnetisierbares Material auf. Dies hat den Vorteil, dass der magnetische Fluss im System und damit der Gesamtleistung des Wirksystems gesteigert werden können.
  • Weiter wird eine Wirksystem-Anordnung angegeben, die wenigstens zwei zuvor beschriebene Wirksysteme aufweist. Die Wirkungen der wenigstens zwei Wirksysteme sind vorzugsweise gleichzeitig für einen kumulierenden Effekt abrufbar. Weiter vorzugsweise sind die wenigstens zwei Wirksysteme zeitlich kurz nacheinander für einen multiplen Effekt zündbar.
  • Eine Kaskadierung und entsprechende Triggerung ermöglicht beispielsweise eine Anpassung der Wellenform an den durch die Sensorik suszeptiblen Bereich. Durch kumulierende Effekte multipler elektromagnetischer Wirkladungen lassen sich beispielsweise Eskalationstaktiken in Zeiten zunehmender politischer und militärischer Spannungen realisieren. Die Kaskadierung mehrerer Generatoren hat daher beispielsweise den Vorteil, sowohl den potenziellen Wirkbereich signifikant zu steigern als auch, um die Einstellung einer anwendungsspezifischen elektromagnetischen Wellenform zur ermöglichen.
  • Weiter wird ein Flugkörper aufweisend wenigstens ein zuvor beschriebenes Wirksystem oder eine zuvor beschrieben Wirksystem-Anordnung angegeben.
  • Weiter wird ein Verfahren zur Skalierbarkeit einer erzeugten elektromagnetischen Wirkung im Ziel angegeben. Das Verfahren weist den Schritt des Erzeugens einer elektromagnetischen Wirkung durch Detonation wenigstens einer Sprengladung in einem zuvor beschriebenen Wirksystem auf. Weiter weist das Verfahren den Schritt des Auslösens einer oder mehrerer Sprengladungen zeitgleich oder in kurzem zeitlichen Abstand hintereinander auf. Die Detonation wird vorzugsweise in Abhängigkeit eines vorbestimmten Abstands des Wirksystems vom dem Ziel ausgelöst. Die Menge der wenigsten einen eingesetzten Sprengladung wird vorzugsweise in Abhängigkeit des zu treffenden Ziels vorausgewählt.
  • Erfindungsgemäß erfolgt nachfolgend ein Salvenschuss mittels wenigstens eines Panzerabwehrflugkörpers und/ oder Multi-Rollen-Flugkörpers. Mit beispielsweise einen Panzerabwehrflugkörper oder Multi-Rollen-Flugkörper lassen sich dann beispielsweise moderne Reaktivschutzsysteme und der passive Panzerschutz überwinden.
  • In den Zeichnungen beziehen sich im Allgemeinen gleiche Bezugszeichen auf die gleichen Teile über die verschiedenen Ansichten hinweg. Die Zeichnungen sind nicht notwendigerweise maßstabsgetreu; Wert wird stattdessen im Allgemeinen auf die Veranschaulichung der Prinzipien der Erfindung gelegt. In der folgenden Beschreibung werden verschiedene Ausführungsformen der Erfindung beschrieben unter Bezugnahme auf die folgenden Zeichnungen, in denen:
  • FIG. 1
    eine erste Ausführungsform des elektromagnetischen Wirksystems zeigt;
    FIG. 2
    eine weitere detailliertere Ausführungsform des elektromagnetischen Wirksystems zeigt;
    Fig. 3
    schematisch die Einwirkung einer Ausführungsform des elektromagnetischen Wirksystems auf ein Ziel zeigt;
    FIG. 4
    schematisch einen Wirkungsplot des Schadensbereichs eines elektromagnetischen Wirksystems zeigt; und
    Fig. 5
    schematisch ein Ablaufdiagramm eines Verfahrens zur Skalierbarkeit einer erzeugten elektromagnetischen Wirkung im Ziel zeigt.
  • Die folgende detaillierte Beschreibung nimmt Bezug auf die beigefügten Zeichnungen, welche zur Erläuterung spezifische Details und Ausführungsformen zeigen, in welchem die Erfindung praktiziert werden kann.
  • Das Wort "beispielhaft" wird hierin verwendet mit der Bedeutung "als ein Beispiel, Fall oder Veranschaulichung dienend". Jede Ausführungsform oder Ausgestaltung, die hierin als "beispielhaft" beschrieben ist, ist nicht notwendigerweise als bevorzugt oder vorteilhaft gegenüber anderen Ausführungsformen oder Ausgestaltungen auszulegen.
  • In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die einen Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsformen gezeigt sind, in denen die Erfindung ausgeübt werden kann. Es versteht sich, dass andere Ausführungsformen benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen beispielhaften Ausführungsformen miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert.
  • Im Rahmen dieser Beschreibung werden die Begriffe "verbunden", "angeschlossen" sowie "gekoppelt" verwendet zum Beschreiben sowohl einer direkten als auch einer indirekten Verbindung, eines direkten oder indirekten Anschlusses sowie einer direkten oder indirekten Kopplung. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist.
  • Bei den hier beschriebenen Verfahren können die Schritte in nahezu jeder beliebigen Reihenfolge ausgeführt werden, ohne von den Prinzipien der Erfindung abzuweichen, wenn nicht ausdrücklich eine zeitliche oder funktionale Abfolge aufgeführt ist. Wenn in einem Patentanspruch dargelegt wird, dass zuerst ein Schritt ausgeführt wird und dann mehrere andere Schritte nacheinander ausgeführt werden, so ist dies so zu verstehen, dass der erste Schritt vor allen anderen Schritten durchgeführt wird, die anderen Schritte jedoch in jeder beliebigen geeigneten Reihenfolge durchgeführt werden können, wenn nicht innerhalb der anderen Schritte eine Abfolge dargelegt ist. Teile von Ansprüchen, in denen beispielsweise "Schritt A, Schritt B, Schritt C, Schritt D und Schritt E" aufgeführt sind, sind so zu verstehen, dass Schritt A zuerst ausgeführt wird, Schritt E zuletzt ausgeführt wird und die Schritte B, C und D in jeder beliebigen Reihenfolge zwischen den Schritten A und E ausgeführt werden können, und dass die Abfolge in den formulierten Schutzumfang des beanspruchten Verfahrens fällt. Des Weiteren können angegebene Schritte gleichzeitig ausgeführt werden, wenn nicht eine ausdrückliche Formulierung im Anspruch darlegt, dass sie separat auszuführen sind. Beispielsweise können ein Schritt zum Ausführung von X im Anspruch und ein Schritt zum Ausführen von Y im Anspruch gleichzeitig innerhalb eines einzelnen Vorgangs durchgeführt werden, und der daraus resultierende Prozess fällt in den formulierten Schutzumfang des beanspruchten Verfahrens.
  • In Figur 1 ist eine erste Ausführungsform des elektromagnetischen Wirksystems 100 gezeigt. Das Wirksystem 100 weist einen detonationsbetriebenen Magnetfeldkompressor 101 auf. Der Magnetfeldkompressor 101 weist in der dargestellten Ausführungsform eine Statorspule 102 und eine Armaturhülle 103 auf. Die Armaturhülle 103 ist in der dargestellten Ausführungsform von der Statorspule 102 umgeben ist und von dieser radial beabstandet. Gemäß einer nicht dargestellten Ausführungsform kann eine oder mehrere Statorspulen die Armaturhülle auch nur teilweise umgeben. In der Armaturhülle 103 ist eine Sprengladung 104 eingbettet. Die Statorspule 102 ist elektrisch mit einer Stromquelle 105 verbunden. Zur Detonation der Sprengladung 104 ist ein Triggersystem 106 vorgesehen, wobei das Triggersystem 106 durch einen Strompuls aus der Stromquelle 105 abhängig von einem von dem Flugkörper (nicht dargestellt) zugeführten Signal steuerbar ist. Durch die Detonation der Sprengladung 104 wird in der Statorspule 102 eine hohe elektrische Energie erzeugt. Genauer gesagt erfolgt durch die Detonation der Sprengladung 104 eine schnelle Änderung des in der Statorspule 102 durch die Stromquelle 105 aufgebauten Magnetfeldes. Das Wirksystem 100 weist in der dargestellten Ausführungsform eine Richtantenne 107 zur gerichteten Abstrahlung der durch die Detonation der Sprengladung 104 erzeugten elektrischen Energie auf. In Figur 2 ist eine weitere detailliertere Ausführungsform eines elektromagnetischen Wirksystems 200 dargestellt. Das Wirksystem 200 weist einen detonationsbetriebenen Magnetfeldkompressor 201 auf. Der Magnetfeldkompressor 201 weist eine mit einer Sprengladung 204 gefüllte Armaturhülle 203 auf, die von einer Statorspule 202 umgeben ist. Der Magnetfeldkompressor 201 ist mit einer Stromquelle 205, beispielsweise einer Kondensatorbank gekoppelt, durch die in der Statorspule 202 ein Magnetfeld induzierbar ist. Der Magnetfeldkompressor 201 ist weiter mit einem Triggersystem 206 verbunden. Auf ein vorbestimmtes Signal hin wird über das Triggersystem 206 die Sprengladung 204 initiiert. Das Triggersystem 206 kann beispielsweise eine Delayfunkion aufweisen. Die Initiierung des Magnetfelds in der Statorspule 204 kann beispielsweise ebenfalls über das Triggersystem 206 gesteuert werden. Durch die Detonation der Sprengladung 204 wird eine Änderung des in der Statorspule 202 aufgebauten Magnetfeldes bewirkt, die schlagartig eine große Menge an elektrischer Energie erzeugt. Diese Energie wird über eine Schaltvorrichtung 208, beispielsweise durch eine entsprechende Leistungselektronik, zu einem Sender 209 geleitet, hierzu ist die Statorspule 202 elektrisch mit der Schaltvorrichtung 208 verbunden und der Sender 209 ist elektrisch an die Schaltvorrichtung gekoppelt. Der Sender 209 erzeugt eine elektromagnetische Strahlung, die durch die Richtantenne 207 auf ein Ziel abgestrahlt wird.
  • In Figur 3 ist schematisch die Einwirkung 300 einer Ausführungsform des elektromagnetischen Wirksystems 301 auf ein Ziel 302 gezeigt. Das Wirksystem 301 ist in der dargestellten Ausführungsform in einem Flugkörper 303 untergebracht. Das Wirksystem 301 weist einen detonationsbetriebenen Magnetfeldkompressor 304 auf, der bei Detonation einer Sprengladung über eine Richtantenne 305 im Flugkörper 303 eine elektromagnetische Strahlung 306 an das zu bekämpfende Ziel 302 abgibt. Die Detonation der Sprengladung erfolgt in einem vorbestimmten Abstand D des Flugkörpers 303 zu dem Ziel 302.
  • Bei einer nicht dargestellten Ausführungsform des Wirksystems können wenigstens zwei oder mehrere zuvor beschriebene Wirksysteme vorgesehen sein, wobei die Wirkungen der Wirksysteme gleichzeitig für einen kumulierenden Effekt abrufbar sind oder zeitlich kurz nacheinander für einen multiplen Effekt zündbar sind. Hierbei können einzelne Komponenten, wie beispielsweise die Stromquelle, die Schaltvorrichtung, das Triggersystem und die Richtantenne auch gemeinsam für mehrere Wirksysteme vorgesehen sein. Beispielsweise können zwei oder mehrere Wirksysteme eine gemeinsame Stromquelle aufweisen, über die das Magnetfeld in der Statorspule induziert wird. Beispielsweise kann das Triggersystem dazu eingerichtet sein mehrere Sprengladungen gleichzeitig oder kurz nacheinander zu zünden. Hierbei können beispielsweise bei einer Mehrzahl von Sprengladungen einige Sprengladungen gleichzeitig und weitere Sprengladungen zeitlich anschließend nacheinander gezündet werden.
  • Bei einer nicht dargestellten Ausführungsform des Wirksystems kann beispielsweise eine Ausbringungseinrichtung vorgesehen sein, die eingerichtet ist, den durch die Detonation erzeugten elektromagnetischen Puls durch leitenden Kontakt oder Funkenschlag direkt oder über Entfernungen bis zu 5 Metern in das Ziel D abzugeben.
  • Ein detonationsbetriebener Magnetfeldkompressor 304 mit ca. 8 kg hochenergetischem Sprengstoff, ist beispielsweise für Anwendungen mit ca. 12 bis 18 kg Wirksystemmasse zur Bekämpfung spezifischer Sensoren geeignet. Ein detonationsbetriebener Magnetfeldkompressor 304 mit ca. 50 kg hochenergetischem Sprengstoff in Kaskadenschaltung, ist beispielsweise für Anwendungen mit bis zu ca. 120 kg Wirksystemmasse geeignet.
  • Ziel ist beispielsweise die Bekämpfung anspruchsvoller Ziele mit komplexen Sensorsystemen deren Elektronik durch die bei der Detonation der Sprengladung erzeugt elektromagnetische Strahlung 306 zerstört oder wenigstens zeitweise gestört wird. Die Wirkungen der Wirksysteme sind hierbei gleichzeitig für einen kumulierenden Effekt abrufbar oder zeitlich kurz nacheinander für einen multiplen Effekt zündbar.
  • In Figur 4 ist schematisch einen Wirkungsplot 400 des Schadensbereichs eines elektromagnetischen Wirksystems dargestellt. Hierbei ist auf der X-Achse die Entfernung des Wirksystems zu dem zu bekämpfenden Ziel dargestellt. Auf der Y-Achse ist schematisch das Ausmaß des Schadensbereichs dargestellt. Bei einem Ziel 1 401 erfolgt die Initiierung der Detonation der Sprengladung in geringen Abstand vom Ziel. Bei dem Ziel 2 402 erfolgt die Initiierung der Detonation der Sprengladung in einem vergleichsweißen großen Abstand.
  • Bei Ziel 1 401 und Ziel 2 402 wurden hierbei unterschiedliche Zerstörungsgrenzen angenommen (z.B. die größere Ellipse des Schadenbereichs 2 404 mit 50% und die kleinere Ellipse des Schadenbereichs 1 403 mit 100% Zerstörungs- bzw. Schadenwahrscheinlichkeit). Als Wirkungskriterien können neben beispielsweise einer physikalischen Zerstörung der Elektronikbauteile auch elektrisches Versagen durch Kurzschlüsse oder eine reine Störung durch Interferenzen infolge der Störstrahlung herangezogen werden.
  • In Figur 5 ist schematisch ein Ablaufdiagramm 500 eines Verfahrens zur Skalierbarkeit einer erzeugten elektromagnetischen Wirkung im Ziel gezeigt.
  • Das Verfahren zur Skalierbarkeit einer erzeugten elektromagnetischen Wirkung im Ziel weist den Schritt auf, Erzeugen einer elektromagnetischen Wirkung durch Detonation wenigstens einer Sprengladung in einem Wirksystem gemäß einem der vorherstehenden Ansprüche 501. Weiter weist das Verfahren den Schritt auf, Auslösen einer oder mehrerer Sprengladungen zeitgleich oder in kurzem zeitlichen Abstand hintereinander 502. Die Detonation wird in Abhängigkeit eines vorbestimmten Abstands des Wirksystems vom dem Ziel ausgelöst wird. Die Menge der wenigsten einen eingesetzten Sprengladung wird in Abhängigkeit des zu treffenden Ziels vorausgewählt.
  • Obwohl die Erfindung vor allem unter Bezugnahme auf bestimmte Ausführungsformen gezeigt und beschrieben worden ist, sollte von denjenigen, die mit dem Fachgebiet vertraut sind, verstanden werden, dass zahlreiche Änderungen bezüglich Ausgestaltung und Details daran vorgenommen werden können, ohne vom Wesen und Bereich der Erfindung, wie durch die angefügten Ansprüche definiert, abzuweichen. Der Bereich der Erfindung wird somit durch die angefügten Ansprüche bestimmt, und es ist daher beabsichtigt, dass sämtliche Änderungen, welche unter den Wortsinn der Ansprüche fallen, umfasst werden.
  • Bezugszeichenliste
  • 100, 200, 301
    Wirksystem
    101, 201, 304
    Magnetfeldkompressor
    102, 202
    Statorspule
    103, 203
    Armaturhülle
    104, 204
    Sprengladung
    105, 205
    Stromquelle
    106, 206
    Triggersystem
    107, 207, 305
    Richtantenne
    208
    Schaltvorrichtung
    209
    Sender
    300
    Anordnung
    302
    Ziel
    303
    Flugkörper
    306
    elektromagnetische Strahlung
    400
    Wirkungsplot
    401
    Ziel 1
    402
    Ziel 2
    403
    Schadensbereich 1
    404
    Schadensbereich 2
    500
    Ablaufdiagramm
    501, 502
    Verfahrensschritte
    D
    Abstand

Claims (13)

  1. Elektromagnetisches mobiles Wirksystem (100) zur Unterbringung in einem Flugkörper mit einem detonationsbetriebenen Magnetfeldkompressor (101) aufweisend:
    wenigstens eine Statorspule (102);
    wenigstens eine Armaturhülle (103), wobei die Armaturhülle (103) von der Statorspule (102) wenigstens teilweise umgeben ist und von dieser radial beabstandet ist; und
    wenigstens eine Sprengladung (104), wobei die Sprengladung (104) in der Armaturhülle (103) eingebettet ist;
    wenigstens eine Stromquelle (105), mit welcher die Statorspule (102) elektrisch verbunden ist;
    ein Triggersystem (106) zur Detonation der Sprengladung (104), wobei das Triggersystem (106) durch einen Strompuls aus der Stromquelle (105) abhängig von einem von dem Flugkörper zugeführten Abstandssignal steuerbar ist;
    wobei durch die Detonation in der Statorspule (102) eine hohe elektrische Energie erzeugbar ist;
    wobei die Statorspule (102) eine hohe Duktilität aufweist, um die mechanische Integrität der Statorspule (102) während der Detonation der Sprengladung (104) und der anschließenden Expansion möglichst lange aufrecht zu erhalten; und
    wenigstens eine Richtantenne (107) zur gerichteten Abstrahlung der durch die Detonation der Sprengladung (104) erzeugten elektrischen Energie.
  2. Wirksystem nach Anspruch 1, wobei die Statorspule (102) wenigstens eine Wicklung aufweist, und wobei die Statorspule (102) Kupfer, Gold, Aluminium oder ein anderes Material aufweist, das eine hohe elektrische Leitfähigkeit und mechanische Eigenschaften aufweist, um die Stromführung zwischen der Statorspule (102) und der Armaturhülle (104) während der Detonation möglichst lange zu erhalten; und/ oder wobei die Armaturhülle (104) Vertiefungen, Kerben oder dergleichen zur kontrollierte Zerlegung der Armaturhülle aufweist.
  3. Wirksystem nach einem der vorherstehenden Ansprüche, wobei die Statorspule (102) eine einlagige oder mehrlagige Wicklung aufweist und wobei der Abstand der Windungen der Statorspule (102) in Richtung Wirksystemfront wenigstens teilweise zunimmt.
  4. Wirksystem nach einem der vorherstehenden Ansprüche, wobei die Stromquelle (105) einen Marxgenerator, Kondensatorbänke, einen dielektrischen Generator und/ oder einen ferroelektrischen Generator umfasst.
  5. Wirksystem nach einem der vorherstehenden Ansprüche, wobei die Sprengladung (104) einen Detonator aufweist und eine Sprengstoffmischung basierend auf HMX, TKX-50, CL-20, RDX, FOX-7, TATB, PETN und/ oder TNT mit hoher Detonationsgeschwindigkeit aufweist.
  6. Wirksystem nach einem der vorherstehenden Ansprüche, aufweisend wenigstens eine Schaltvorrichtung (208), die eingerichtet ist, die durch die Detonation in der Statorspule (202) erzeugte elektrische Energie an die Richtantenne (207) weiterzuleiten.
  7. Wirksystem nach einem der vorherstehenden Ansprüche, wobei das Abstandssignal in Abhängigkeit eines vorbestimmten Abstandes (D) des Wirksystems (301) zum Ziel (302) ausgelöst wird.
  8. Wirksystem nach Anspruch 7, wobei der Abstand (D) zwischen dem Wirksystem (301) und dem Ziel (302) zwischen 5 und 100 Metern beträgt.
  9. Wirksystem nach einem der vorherstehenden Ansprüche, aufweisend wenigstens eine Ausbringungseinrichtung, die eingerichtet ist, den durch die Detonation erzeugten elektromagnetischen Puls durch leitenden Kontakt oder Funkenschlag direkt oder über Entfernungen bis zu 5 Metern in ein Ziel (D) abzugeben.
  10. Wirksystem nach einem der vorherstehenden Ansprüche, wobei die Sprengladung (104) in Form einer Hohlladung angeordnet ist und/ oder Mittel zur Erzeugung einer Blastwirkung und/ oder Splitterwirkung aufweist; und/ oder
    aufweisend eine elektrisch isolierte Hülle, wobei die Hülle ein magnetisiertes und/ oder magnetisierbares Material aufweist.
  11. Wirksystem-Anordnung, aufweisend wenigstens zwei Wirksysteme nach einem der vorherstehenden Ansprüche, wobei die Wirkungen der wenigstens zwei Wirksysteme gleichzeitig für einen kumulierenden Effekt abrufbar sind oder die zeitlich kurz nacheinander für einen multiplen Effekt zündbar sind.
  12. Flugkörper (303) aufweisend wenigstens ein Wirksystem (301) oder eine Wirksystem-Anordnung nach einem der vorherstehenden Ansprüche.
  13. Verfahren (400) zur Skalierbarkeit einer erzeugten elektromagnetischen Wirkung im Ziel, aufweisend die Schritte: Erzeugen einer elektromagnetischen Wirkung durch Detonation wenigstens einer Sprengladung in einem Wirksystem gemäß einem der vorherstehenden Ansprüche (401); und
    Auslösen einer oder mehrerer Sprengladungen zeitgleich oder in kurzem zeitlichen Abstand hintereinander (402);
    wobei die Detonation in Abhängigkeit eines vorbestimmten Abstands des Wirksystems vom dem Ziel ausgelöst wird;
    wobei die Menge der wenigsten einen eingesetzten Sprengladung in Abhängigkeit des zu treffenden Ziels vorausgewählt wird; und
    wobei nachfolgend ein Salvenschuss mittels wenigstens eines Panzerabwehrflugkörpers und/ oder Multi-Rollen-Flugkörpers erfolgt.
EP17001096.1A 2016-08-04 2017-06-28 Elektromagnetisches mobiles wirksystem Active EP3279603B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016009408.7A DE102016009408B4 (de) 2016-08-04 2016-08-04 Elektromagnetisches mobiles Wirksystem

Publications (3)

Publication Number Publication Date
EP3279603A1 EP3279603A1 (de) 2018-02-07
EP3279603B1 true EP3279603B1 (de) 2018-12-26
EP3279603B2 EP3279603B2 (de) 2021-12-08

Family

ID=59296660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17001096.1A Active EP3279603B2 (de) 2016-08-04 2017-06-28 Elektromagnetisches mobiles wirksystem

Country Status (3)

Country Link
US (1) US10415937B2 (de)
EP (1) EP3279603B2 (de)
DE (1) DE102016009408B4 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022112269A1 (de) 2021-05-18 2022-11-24 Quantum Technologies UG (haftungsbeschränkt) Quanten-Computer-Stack für einen NV-Zentren basierenden Quantencomputer und PQC-Kommunikation von Quantencomputern
DE202023100401U1 (de) 2022-03-08 2023-02-14 Quantum Technologies Gmbh Verlegbarer Quantencomputer mit Mitteln zur Ermöglichung der Verlegbarkeit
DE202023101056U1 (de) 2022-03-08 2023-03-21 Quantum Technologies Gmbh Diamant-Chip für einen mobilen NV-Zentren-Quantencomputer mit einem Kryostaten
DE202023100801U1 (de) 2022-03-08 2023-03-29 Quantum Technologies Gmbh Drehbar gelagerter Quantencomputer auf NV-Zentren-Basis für mobile Anwendungen
DE102022105464A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem
DE102022004989A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem mit Schutz vor transienten Störungen der Energieversorgung
WO2023170054A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Quantencomputersystem und verfahren zum betrieb eines verlegbaren quantencomputers
DE102024103202A1 (de) 2023-02-06 2024-08-08 Quantum Technologies Gmbh Datenbank gesteuerte Gatter-Steuerung eines Quantencomputers basieren auf NV-Zentren und stark und schwach gekoppelten nuklearen Spins benachbarter Atomkerne

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689976B2 (en) * 2014-12-19 2017-06-27 Xidrone Systems, Inc. Deterent for unmanned aerial systems
US9715009B1 (en) 2014-12-19 2017-07-25 Xidrone Systems, Inc. Deterent for unmanned aerial systems
DE102016009408B4 (de) 2016-08-04 2020-06-18 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Elektromagnetisches mobiles Wirksystem
US10578413B1 (en) * 2017-06-23 2020-03-03 Douglas Burke Bullet projectile with internal electro-mechanical action producing combustion for warfare
US11378362B2 (en) * 2019-05-17 2022-07-05 The United States Of America, As Represented By The Secretary Of The Navy Counter UAV drone system using electromagnetic pulse
CN111013058A (zh) * 2019-12-04 2020-04-17 南京理工大学 电磁弹射式灭火弹
CN111359125B (zh) * 2020-03-19 2021-08-24 陕西大工旭航电磁科技有限公司 一种用于高楼灭火的电磁弹射灭火弹
DE102020003782B4 (de) 2020-06-24 2023-11-16 Mbda Deutschland Gmbh Gefechtskopf, Waffensystem mit einem Gefechtskopf und Verfahren zum Anwenden eines Gefechtskopfs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783316A1 (fr) 1998-09-15 2000-03-17 Tda Armements Sas Munition electromagnetique d'autoprotection
DE19916952A1 (de) 1999-04-15 2003-07-17 Diehl Stiftung & Co Nichtletaler elektromagnetischer Wirkkörper

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528338C1 (de) * 1985-08-07 1993-01-28 Messerschmitt Boelkow Blohm Vorrichtung mit schneller Magnetfeldkompression
US5125104A (en) * 1990-05-09 1992-06-23 General Atomics Electromagnetic pulse generator for use with exploding material
US5216695A (en) 1991-06-14 1993-06-01 Anro Engineering, Inc. Short pulse microwave source with a high prf and low power drain
US5192827A (en) * 1991-12-19 1993-03-09 The United States Of America As Represented By The Secretary Of The Army Microwave projectile
DE19528112C1 (de) * 1995-08-01 1996-12-19 Daimler Benz Aerospace Ag Munition
DE10044867A1 (de) 2000-09-12 2002-03-21 Rheinmetall W & M Gmbh Explosivstoffgetriebene RF-Strahlenquelle
US7051636B1 (en) * 2004-09-21 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Electromagnetic weapon
ES2379903T3 (es) * 2008-08-15 2012-05-04 Saab Ab Unidad de lanzamiento
FR2970072B1 (fr) * 2010-12-29 2013-02-08 Thales Sa Procede et dispositif de neutralisation d'une cible
FR3030904B1 (fr) * 2014-12-23 2017-01-27 Thales Sa Emetteur d'ondes electromagnetiques a cavite reverberante et procede d'emission associe
DE102016009408B4 (de) 2016-08-04 2020-06-18 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Elektromagnetisches mobiles Wirksystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783316A1 (fr) 1998-09-15 2000-03-17 Tda Armements Sas Munition electromagnetique d'autoprotection
DE19916952A1 (de) 1999-04-15 2003-07-17 Diehl Stiftung & Co Nichtletaler elektromagnetischer Wirkkörper

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Explosively Driven Pulsed Power - Helical Magnetic Flux Compression Generators", 10 March 2005, article ANDREAS A. NEUBER, pages: 97 - 109; 235 -245, XP055592631
"Explosively Driven Pulsed Power - Helical Magnetic Flux Compression Generators", 2005, article ANDREAS A. NEUBER, pages: 97 - 109; 235 -245, XP055592631
B.M. NOVAC ET AL.: "Practical Considerations in Helical Flux-Compression Generator Design", ELECTROMAGNETIC PHENOMENA, vol. 3, no. 4, 2003, pages 490 - 496, XP055592641
B.M. NOVAC ET AL.: "Practical Considerations in Helical Flux-Compression Generator Design", vol. 3, no. 4, 2003, pages 490 - 496, XP055592641

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022112269A1 (de) 2021-05-18 2022-11-24 Quantum Technologies UG (haftungsbeschränkt) Quanten-Computer-Stack für einen NV-Zentren basierenden Quantencomputer und PQC-Kommunikation von Quantencomputern
DE202023100401U1 (de) 2022-03-08 2023-02-14 Quantum Technologies Gmbh Verlegbarer Quantencomputer mit Mitteln zur Ermöglichung der Verlegbarkeit
DE202023101056U1 (de) 2022-03-08 2023-03-21 Quantum Technologies Gmbh Diamant-Chip für einen mobilen NV-Zentren-Quantencomputer mit einem Kryostaten
DE202023100801U1 (de) 2022-03-08 2023-03-29 Quantum Technologies Gmbh Drehbar gelagerter Quantencomputer auf NV-Zentren-Basis für mobile Anwendungen
DE202023100548U1 (de) 2022-03-08 2023-04-04 Quantum Technologies Gmbh Gatter-Steuerung eines Quantencomputers basieren auf NV-Zentren und nuklearen Spins benachbarter Atomkerne
DE102022105464A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem
DE102023102766A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Gatter-Steuerung eines Quantencomputers basieren auf NV-Zentren und nuklearen Spins benachbarter Atomkerne
DE102023102094A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Verlegbarer Quantencomputer mit Mitteln zur Ermöglichung der Verlegbarkeit
DE102022004989A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem mit Schutz vor transienten Störungen der Energieversorgung
WO2023170054A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Quantencomputersystem und verfahren zum betrieb eines verlegbaren quantencomputers
DE102023100265A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Mobiles, Quantenalgorithmen ausführendes Quantencomputersystem zur Sensorleistungsfähigkeitssteigerung und Sensordatenverarbeitungsbeschleunigung
DE102023104158A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Drehbar gelagerter Quantencomputer auf NV-Zentren-Basis für mobile Anwendungen
DE102023105496A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Diamant-Chip für einen mobilen NV-Zentren-Quantencomputer mit einem Kryostaten
DE102022112677A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem
DE102024103202A1 (de) 2023-02-06 2024-08-08 Quantum Technologies Gmbh Datenbank gesteuerte Gatter-Steuerung eines Quantencomputers basieren auf NV-Zentren und stark und schwach gekoppelten nuklearen Spins benachbarter Atomkerne
WO2024165108A1 (de) 2023-02-06 2024-08-15 Quantum Technologies Gmbh Datenbank gesteuerte gatter-steuerung eines quantencomputers basieren auf nv-zentren und stark und schwach gekoppelten nuklearen spins benachbarter atomkerne

Also Published As

Publication number Publication date
DE102016009408B4 (de) 2020-06-18
EP3279603B2 (de) 2021-12-08
DE102016009408A1 (de) 2018-02-08
US20180038675A1 (en) 2018-02-08
EP3279603A1 (de) 2018-02-07
US10415937B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
EP3279603B1 (de) Elektromagnetisches mobiles wirksystem
EP2118615B1 (de) Verfahren und vorrichtung zum schutz gegen fliegende angriffsmunitionskörper
DE69605539T2 (de) Zweifach wirkender explosionskopf und verfahren zum betreiben eines solchen gefechtskopfs
Kopp The electromagnetic bomb: a weapon of electrical mass destruction
DE69628759T2 (de) Verfahren zur erhöhung der luftabwehr-trefferwahrscheinlichkeit und danach entworfene waffe
US6845718B2 (en) Projectile capable of propelling a penetrator therefrom and method of using same
DE102007007404A1 (de) Verfahren und Vorrichtung zur Fernauslösung eines Geschosses
EP1816430B1 (de) Verfahren und System zur Abwehr von Flugkörpern
EP1752730B1 (de) Vorrichtung sowie Verfahren zum Schutz von Fahrzeugen vor Munition, insbesondere vor Hohlladungsgeschossen
EP0757224B1 (de) Nicht letale elektromagnetische Munition
Graswald et al. Defeating modern armor and protection systems
EP0708305B1 (de) Verfahren zum Schützen von eine Strahlung, insbesondere IR-Strahlung, abgebenden Objekten, insbesondere Schiffen, gegen Flugkörper
DE102008046432A1 (de) Vorrichtung und Verfahren zur Abwehr von sich einem Schiff unter oder auf dem Wasser nähernden Objekten
DE2209445C3 (de) Gefechtskopf
DE3739370C2 (de)
RU2812889C1 (ru) Реактивный снаряд
RU2824831C2 (ru) Устройство боевой части (бч) электромагнитного боеприпаса (бп) для функционального поражения радиоэлектронных систем (рэс) противника
EP0516007A2 (de) Verfahren und Einrichtung zum Vernichten von vollständig eingesandetem Kampfmittel
EP3882565B1 (de) Gefechtskopf und verfahren zur bekämpfung eines ziels mit dem gefechtskopf
DE3920016A1 (de) Gefechtskopf zur bekaempfung von seezielen
WO2020164869A1 (de) Verfahren zur bekämpfung von luftzielen mittels lenkflugkörpern
RU2721636C2 (ru) Многоствольный комплекс стрельбы
DE102021006176A1 (de) Multi-Effekt Precursor-Ladung
DE102012021671A1 (de) Wirksysteme gegen SICBM- und RAM-Bedrohungen
DE4123308A1 (de) Lenkbares projektil zum bekaempfen von insbesondere wiedereintritts-gefechtskoepfen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180629

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181008

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRASWALD, MARKUS

Inventor name: GUTSER, RAPHAEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1082003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000543

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017000543

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

26 Opposition filed

Opponent name: BAAINBW

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20190625

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 3

Ref country code: SE

Payment date: 20190619

Year of fee payment: 3

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190628

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200630

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017000543

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170628

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20211208

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502017000543

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210628

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1082003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240621

Year of fee payment: 8