EP3277060B1 - Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface - Google Patents

Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface Download PDF

Info

Publication number
EP3277060B1
EP3277060B1 EP17001095.3A EP17001095A EP3277060B1 EP 3277060 B1 EP3277060 B1 EP 3277060B1 EP 17001095 A EP17001095 A EP 17001095A EP 3277060 B1 EP3277060 B1 EP 3277060B1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic radiation
module
microelectronic
actuator
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17001095.3A
Other languages
German (de)
French (fr)
Other versions
EP3277060A1 (en
Inventor
Ralf Caspari
Robert Weichwald
Emanuel Ermann
Christian Karch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP3277060A1 publication Critical patent/EP3277060A1/en
Application granted granted Critical
Publication of EP3277060B1 publication Critical patent/EP3277060B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2425Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being flush with the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric

Definitions

  • Various embodiments relate generally to a microelectronic module for altering the electromagnetic signature of a surface, and a module array and method for altering the electromagnetic signature of a surface.
  • U.S. 2012/193483 A1 describes systems, apparatus, and software products and methods for controlling boundary layer flow across an aerodynamic structure that use plasmas to create separate areas of flow structures of different strengths be able.
  • An example of such a device provides plasma regions that can be individually voltage and/or frequency controlled and modulated for flow control purposes.
  • CHENG-XUN YUAN ET AL "Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure With Plasma- and Radar-Absorbing Material", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Vol. 39, No. 9, September 1, 2011 (2011-09-01 ) describes a setup of a multilayer radar absorbing structure with plasma and radar absorbing material (RAM) to investigate the camouflage mechanisms of the multilayer absorber.
  • the method of impedance transformation with multiple dielectrics is used to analyze the propagation of electromagnetic waves in the multilayer structure.
  • the dependencies of the attenuation of the EM waves on the parameters of the plasma and the RAMs are presented.
  • TED ANDERSON ET AL "Plasma Frequency Selective Surfaces", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Vol. 35, No. 2, April 1, 2007 (2007-04-01 ) describes the use of plasma as a replacement for metal in a frequency selective surface (FSS).
  • FSS frequency selective surface
  • FSS were used to filter electromagnetic waves.
  • Each FSS layer is modeled using numerical methods, and the layers are stacked to produce the desired filtering. Genetic algorithms are used to determine the stacking required for the desired filtering.
  • LEE SOO-MIN ET AL "Scattering characteristics of atmospheric pressure dielectric barrier discharge plasma", 2013 EUROPEAN RADAR CONFERENCE, EMA, 9 October 2013 (2013-10-09 ) describes the fabrication of a dielectric barrier discharge (DBD) plasma actuator at atmospheric pressure and a plasma is generated by applying a high AC voltage. In addition, its scattering properties are measured by comparing S-parameters. The antenna polarization is also taken into account because of the configuration of the proposed DBD actuator.
  • DBD dielectric barrier discharge
  • U.S. 7,255,062 B1 describes a plasma shielding system in the form of an apparatus that creates a prescribed plasma environment with a prescribed plasma density gradient and shields an object surrounded by that environment.
  • Surface microwaves are used to create this plasma environment and customize it for a specific application.
  • a radome with a plasma seal integrated therein which comprises a plasma-carrying layer and electrodes for plasma excitation, the radome having a sandwich structure made of honeycomb core and cover plates, the plasma-carrying layer being contained in the honeycomb core of the sandwich structure and the electrodes arranged between the honeycomb core and cover plates at least in the operating frequency range of the antenna are RF transparent.
  • CN 1 596 060 A describes a non-equilibrium plasma source that discharges strong ionization and a method of generating the plasma. It includes a ground electrode, a discharge electrode, and a dielectric layer. It supplies the discharge electrode with AC voltage and generates plasma with a density of 10 to 15 per cubic centimetre. Under the action of an external force transfer the plasma from the discharging electric field.
  • a microelectronic module for changing the electromagnetic signature of a surface has a thin-layer, flat substrate and at least one voltage converter for converting a first voltage provided into a higher or lower second voltage. Furthermore, the microelectronic module has at least one actuator. The actuator has at least one generator for generating an electrical plasma from the second voltage provided by the voltage converter. At least the voltage converter and the actuator are arranged on the thin-layer, flat substrate. The electrical plasma generated by the actuator interacts with electromagnetic radiation impinging on the surface, resulting in a change in the electromagnetic signature.
  • the invention is based on the idea of generating the electromagnetic signature of a surface of an electrical plasma interacting with electromagnetic radiation impinging on the surface.
  • the electric plasma can be generated as a function of the electromagnetic radiation impinging on the surface, and the electromagnetic signature of a surface can be changed as a result.
  • the electromagnetic signature radiated from the surface is preferential to a unaffected reflected electromagnetic signature, .ie, for example, the radar cross section of a vehicle appears changed, for example, on a radar screen, preferably reduced.
  • the electromagnetic signature can be actively adapted to the respective situation.
  • actuator can be understood as any type of device that is capable of converting an electrical signal into another physical quantity.
  • voltage converter can be understood as any electrical element capable of converting an input voltage to a higher or lower output voltage.
  • the microelectronic module also has at least one detection unit.
  • the detection unit has at least one sensor for detecting electromagnetic radiation impinging on the surface.
  • the sensor can be suitable, for example, for detecting electromagnetic interactions of photons impinging on the sensor with the electrons or atomic nuclei of a detector material of the sensor.
  • the microelectronic module also has a control unit.
  • the control unit is set up to control the generation of the electrical plasma as a function of a signal from the detection unit, a receiver, control commands from a higher-level transmitter and/or control element, and/or information from at least one other conventional sensor, an antenna and/or a control or regulation system.
  • the receiver is set up to receive external data containing information about the detection of the electromagnetic radiation impinging on the surface.
  • the microelectronic module can thus be controlled in a targeted manner according to the detected electromagnetic radiation in order to change the electromagnetic signature of a surface.
  • the actuator is further set up to detect the electromagnetic radiation impinging on the surface.
  • the actuator itself can also be able to detect the electromagnetic radiation impinging on the surface. This has the advantage that no further detectors or sensors are required, or the detection can be improved by combining with further detectors or sensors.
  • the electric plasma is generated as a function of the detected electromagnetic radiation and/or the received data on the electromagnetic radiation impinging on the surface.
  • the electrical plasma is generated as a function of the detected electromagnetic radiation and/or the received data on the electromagnetic radiation impinging on the surface.
  • the electromagnetic signature of the surface is changed by absorption and/or reflection of an external wave of the electromagnetic radiation.
  • the absorption and/or reflection of the electromagnetic radiation can be changed, for example, by reducing the backscattering of the electromagnetic radiation and/or by damping the surface wave of the electromagnetic radiation.
  • the electromagnetic signature of the surface can also be changed, for example, by a combination of the absorption or reflection described above with, for example, a conventional RAM (radar-absorbing material) coating or other radar-absorbing materials or also infrared camouflage. This has the advantage that, for example, the radar-absorbing properties of a RAM coating can be improved.
  • a frequency-selective surface is generated with the aid of the at least one actuator.
  • Distributed or periodically conductive plasma structures can be generated preferably on, in or under the surface by controlling the at least one actuator.
  • the generated plasma preferably has a specific frequency band.
  • the width of the frequency band and/or the center frequency can preferably be controlled by an applied magnetic field.
  • an active metamaterial is preferably formed.
  • the active metamaterial can be used, for example, as a band pass, band stop, high pass, low pass or a combination of these to change the electromagnetic waves. This has the advantage that the electromagnetic radiation can be changed in a targeted manner in order to falsify the radar image, for example.
  • the thin-layer, flat substrate is a flexible and/or multidimensionally deformable film or grid.
  • the lattice can have a flexible and/or multidimensionally deformable lattice structure.
  • the thin-layer, flat substrate can also consist of a comparable material that is suitable for the components of the module to be mounted, inserted or attached to it and that is as thin and stable as possible.
  • the substrate can also have a fabric, a lattice structure or a composite material. This has the advantage that the module can be kept small in terms of its geometric dimensions, with sufficient stability being provided to apply the module permanently or reversibly to a surface, for example by gluing it.
  • the module has a plurality of actuators.
  • the majority of the actuators preferably have a different and/or identical orientation. This has the advantage that the electromagnetic radiation striking the module from different directions, for example, can be changed in a targeted manner.
  • the module has at least one switching element for activating and/or deactivating the module and/or at least one of the plurality of actuators.
  • switching element can be understood as any type of device capable of changing a connection from an open state to a connected state. This can also be understood to mean a connection which is open on one side and which can be closed permanently or reversibly, for example, by connecting the module to an electronic unit for control, for example.
  • the actuators can be used to form an antenna that is freely definable on the surface or an antenna array for adapting the antenna gain, polarization and reception direction.
  • the antenna or the antenna array can be used as a transmitting and/or receiving antenna for electromagnetic radiation.
  • the transmitting and/or receiving antenna can be coupled to an external transmitter and/or receiver via a coupling and/or decoupling device.
  • the antenna or the antenna array which can be embodied as a transmitting and/or receiving antenna, for example, can be connected to an external transmitter and/or receiver. This allows, for example, data from the external transmitter via the as Transmitting antenna trained antenna or the antenna array, are sent and / or data are received from the external receiver via the trained as a receiving antenna antenna or the antenna array.
  • the voltage converter, the switching element, the actuator, the detection unit, the sensor, the receiver, the transmitter and/or the control element are designed as a MEMS (micro-electro-mechanical system) structure.
  • the voltage converter, the switching element, the actuator, the detection unit, the sensor, the receiver, the transmitter and/or the control element can also be designed as a nanoelectromechanical system.
  • Other advantageous components of the module can also be designed, for example, as a MEMS structure or as a nanoelectromechanical system, insofar as it is advantageous and applicable. This has the advantage that the dimensions of the module and its components can be kept very small. The space required for the module can thus be reduced to a minimum, for example.
  • a modular array having a plurality of microelectronic modules as described above.
  • the change in the electromagnetic structure of a surface can be amplified and/or used in a targeted manner.
  • a plurality of microelectronic modules can also be arranged on a common thin-layer, flat substrate. This has the advantage that, for example, the application of the module can be facilitated or accelerated on a surface, which means that the costs for assembly can be reduced.
  • the actuators of the plurality of modules can be controlled with a time offset and/or with a phase shift.
  • the intensity can be influenced, for example, by utilizing interference phenomena.
  • a time-delayed and/or phase-shifted activation of the actuators can make targeted use of interference phenomena when generating the electrical plasma.
  • the modular array has one or more switching elements that are set up to activate and/or deactivate one or more actuators of the modular array. This has the advantage that the modular array can be controlled individually and the geometric dimensions can be kept small depending on the application.
  • an arrangement of at least one previously described microelectronic module or at least one previously described modular array on and/or in a surface of a vehicle is specified.
  • the surface has a coating which at least partially absorbs electromagnetic radiation impinging on the surface.
  • the coating can consist of a RAM material, for example.
  • the vehicle is an aircraft, a watercraft or a land vehicle.
  • the electromagnetic signature can be changed so that, for example, the electromagnetic signature can be reduced and the radar image of the vehicle can be falsified as a result.
  • a method for changing the electromagnetic signature of a surface using at least one previously described microelectronic module or at least one previously described modular array is specified.
  • the method includes the step of converting a provided first voltage to a higher or lower one
  • the method also has the step of detecting electromagnetic radiation.
  • the method further includes the step of generating an electrical plasma from the second voltage.
  • the method also includes the step of changing the electromagnetic signature of the surface by interaction of the electrical plasma that is generated with electromagnetic radiation impinging on the surface.
  • connection means both a direct and an indirect connection, a direct or indirect connection and a direct or indirect coupling.
  • identical or similar elements are provided with identical reference symbols, insofar as this is appropriate.
  • the steps may be performed in almost any order without departing from the principles of the invention, unless a temporal or functional order is expressly stated.
  • a claim states that a step is performed first and then several other steps are performed in succession, it is to be understood that the first step is performed before all other steps, but the other steps are performed in any suitable order can be if not within the other steps one sequence is outlined.
  • Portions of claims that recite, for example, "Step A, Step B, Step C, Step D, and Step E" are to be understood as performing Step A first, Step E last, and Steps B, C, and D can be performed in any order between steps A and E, and that the order falls within the stated scope of the claimed method.
  • figure 1 shows a first embodiment of a microelectronic module 100.
  • the microelectronic module 100 for changing the electromagnetic signature of a surface has a voltage converter 101 in the illustrated embodiment.
  • the voltage converter 101 is used to convert a provided first voltage V1 into a higher or lower second voltage V2.
  • the microelectronic module 100 also has an actuator 102 .
  • the actuator 102 has a generator 103 for generating an electrical plasma from the second voltage V2 provided by the voltage converter 101 .
  • the voltage converter 101 and the actuator 102 are arranged on a thin-layer, flat substrate 104 .
  • the thin-layer, flat substrate 104 is a film, for example. That by the actuator 102 generated electrical plasma interacts with electromagnetic radiation impinging on the surface.
  • the electric plasma changes, preferably reduces, the electromagnetic signature of the electromagnetic radiation impinging on the surface.
  • Voltage converter 101 is electrically coupled to actuator 102 .
  • the microelectronic module 100 can also have more than one voltage converter 101, in which case the number of voltage converters can also be electrically connected to one another and can thus, for example, interact.
  • the microelectronic module 100 can also have a plurality of actuators 102, it being possible for each actuator 102 to have, for example, one or more generators 103 for generating an electrical plasma.
  • the microelectronic module 100 can have a detection unit for detecting the electromagnetic radiation impinging on the surface, and/or a control unit, set up for controlling the generation of the electric plasma depending on a signal from the detection unit, a receiver for receiving external data containing information about the detection of the electromagnetic radiation impinging on the surface, control commands from a higher-level transmitter and/or control element, and/or information from at least one other conventional sensor, an antenna and/or a control or control system.
  • FIG 2 shows a modular array 200 having a plurality of microelectronic modules 201.
  • Each of the Microelectronic modules 201 has a voltage converter 202 and an actuator 203, having a generator 204 on a thin-layer, flat substrate 205.
  • each of the modules 201 shown has its own switching element 204, according to an alternative embodiment (not shown), one switching element 204 can also be provided for two or more modules 201.
  • the microelectronic modules 201 of the modular array 200 are electrically connected to one another (not shown).
  • figure 3 3 shows the arrangement 300 of a plurality of microelectronic modules 301 on the underside of an aircraft 302.
  • FIG. 3 shows the arrangement 300 of a plurality of microelectronic modules 301 on the underside of an aircraft 302.
  • a plurality of microelectronic modules 301 are arranged almost over the entire surface on the underside of the wings 303, 304 of the aircraft 302 in order to change the electromagnetic signature of the aircraft surface.
  • microelectronic modules 301 can also be provided on the entire surface of the aircraft, both on the underside and on the top.
  • FIG. 4 shows a flow chart 400 of a method for changing the electromagnetic signature of a surface using at least one microelectronic module or at least one modular array.
  • a provided first voltage is converted into a higher or lower second voltage.
  • electromagnetic radiation is detected.
  • an electrical plasma is generated from the second voltage.
  • step 404 the electromagnetic signature of the surface generated by interaction electrical plasma altered with electromagnetic radiation impinging on the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)

Description

Verschiedene Ausführungsformen betreffen allgemein ein mikroelektronisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, sowie ein Modularray und ein Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche.Various embodiments relate generally to a microelectronic module for altering the electromagnetic signature of a surface, and a module array and method for altering the electromagnetic signature of a surface.

Die Entwicklung modernder Fahrzeuge, beispielsweise moderner Flugzeuge, geht immer weiter dahin, die Entdeckbarkeit durch beispielsweise gegnerisches Radar zu verringern. Beispielsweise wird dies durch die sogenannte Tarnkappen- oder Stealth-Technologie erreicht. Hierbei wird u.a. die geometrische Form eines Fahrzeugs, wie beispielsweise eines Schiffs, eines Landfahrzeugs oder eines Flugzeugs dahingehend optimiert, dass das Fahrzeug beispielsweise auf einem gegnerischen Radarschirm wesentlich kleiner erscheint, oder an einer anderen Position bzw. verzögert dargestellt wird. Derartige geometrische Optimierungen weisen beispielsweise jedoch den Nachteil auf, dass diese häufig nur passiv wirken und nicht an die jeweilige Situation anpassbar sind.The development of modern vehicles, such as modern aircraft, is increasingly aimed at reducing detectability by, for example, enemy radar. This is achieved, for example, by so-called stealth or stealth technology. Among other things, the geometric shape of a vehicle, such as a ship, a land vehicle or an aircraft, is optimized in such a way that the vehicle appears much smaller on an opposing radar screen, or is displayed in a different position or with a delay. However, such geometric optimizations have the disadvantage, for example, that they often only have a passive effect and cannot be adapted to the respective situation.

US 2012/193483 A1 beschreibt Systeme, Vorrichtungen und Programmprodukte und Verfahren zum Steuern der Grenzschichtströmung über eine aerodynamische Struktur, die separate Bereiche von Strömungsstrukturen mit unterschiedlichen Stärken mit Hilfe von Plasmen erzeugen können. Ein Beispiel einer solchen Vorrichtung stellt Plasmabereiche bereit, die einzeln durch Spannung und/oder Frequenz gesteuert und zum Zwecke der Flusssteuerung moduliert werden können. U.S. 2012/193483 A1 describes systems, apparatus, and software products and methods for controlling boundary layer flow across an aerodynamic structure that use plasmas to create separate areas of flow structures of different strengths be able. An example of such a device provides plasma regions that can be individually voltage and/or frequency controlled and modulated for flow control purposes.

CHENG-XUN YUAN ET AL: "Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure With Plasma- and Radar-Absorbing Material", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Bd. 39, Nr. 9, 1. September 2011 (2011-09-01 ) beschreibt einen Aufbau einer mehrschichtigen radarabsorbierenden Struktur mit Plasma und radarabsorbierendem Material (RAM), um die Tarnmechanismen des mehrschichtigen Absorbers zu untersuchen. Das Verfahren der Impedanztransformation mit mehreren Dielektrika wird verwendet, um die Ausbreitung von elektromagnetischen Wellen in der mehrschichtigen Struktur zu analysieren. Es werden die Abhängigkeiten der Dämpfung der EM-Wellen von den Parametern des Plasmas und der RAMs dargestellt. CHENG-XUN YUAN ET AL: "Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure With Plasma- and Radar-Absorbing Material", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Vol. 39, No. 9, September 1, 2011 (2011-09-01 ) describes a setup of a multilayer radar absorbing structure with plasma and radar absorbing material (RAM) to investigate the camouflage mechanisms of the multilayer absorber. The method of impedance transformation with multiple dielectrics is used to analyze the propagation of electromagnetic waves in the multilayer structure. The dependencies of the attenuation of the EM waves on the parameters of the plasma and the RAMs are presented.

TED ANDERSON ET AL: "Plasma Frequency Selective Surfaces", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Bd. 35, Nr. 2, 1. April 2007 (2007-04-01 ) beschreibt die Verwendung von Plasma als Ersatz für Metall in einer frequenzselektiven Oberfläche (FSS). FSS wurden zur Filterung elektromagnetischer Wellen eingesetzt. Jede FSS-Schicht wird mit numerischen Verfahren modelliert, und die Schichten werden so gestapelt, dass die gewünschte Filterung entsteht. Genetische Algorithmen werden eingesetzt, um die für die gewünschte Filterung erforderliche Stapelung zu bestimmen. TED ANDERSON ET AL: "Plasma Frequency Selective Surfaces", IEEE TRANSACTIONS ON PLASMA SCIENCE, IEEE SERVICE CENTER PISCATAWAY, NJ, US, Vol. 35, No. 2, April 1, 2007 (2007-04-01 ) describes the use of plasma as a replacement for metal in a frequency selective surface (FSS). FSS were used to filter electromagnetic waves. Each FSS layer is modeled using numerical methods, and the layers are stacked to produce the desired filtering. Genetic algorithms are used to determine the stacking required for the desired filtering.

LEE SOO-MIN ET AL: "Scattering characteristics of atmospheric pressure dielectric barrier discharge plasma", 2013 EUROPEAN RADAR CONFERENCE, EMA, 9. Oktober 2013 (2013-10-09 ) beschreibt die Herstellung eines Plasmaaktuators mit dielektrischer Barriereentladung (DBD) bei Atmosphärendruck und es wird ein Plasma durch Anlegen einer hohen Wechselspannung erzeugt. Außerdem werden seine Streueigenschaften durch Vergleich von S-Parametern gemessen. Die Antennenpolarisation wird ebenfalls berücksichtigt, wegen der Konfiguration des vorgeschlagenen DBD-Aktuators. LEE SOO-MIN ET AL: "Scattering characteristics of atmospheric pressure dielectric barrier discharge plasma", 2013 EUROPEAN RADAR CONFERENCE, EMA, 9 October 2013 (2013-10-09 ) describes the fabrication of a dielectric barrier discharge (DBD) plasma actuator at atmospheric pressure and a plasma is generated by applying a high AC voltage. In addition, its scattering properties are measured by comparing S-parameters. The antenna polarization is also taken into account because of the configuration of the proposed DBD actuator.

US 7 255 062 B1 beschreibt ein Plasmaabschirmsystem in Form einer Vorrichtung, die eine vorgeschriebene Plasmaumgebung mit einem vorgeschriebenen Plasmadichtegradienten erzeugt und ein von dieser Umgebung umgebenes Objekt mittels Abschirmung schützt. Oberflächenmikrowellen werden verwendet, um diese Plasmaumgebung zu erzeugen und für eine bestimmte Anwendung anzupassen. U.S. 7,255,062 B1 describes a plasma shielding system in the form of an apparatus that creates a prescribed plasma environment with a prescribed plasma density gradient and shields an object surrounded by that environment. Surface microwaves are used to create this plasma environment and customize it for a specific application.

DE 10 2007 051243 B3 beschreibt ein Radom mit darin integriertem Plasmaverschluss, welcher eine plasmaführende Schicht sowie Elektroden zur Plasmaanregung umfasst, wobei das Radom eine Sandwichstruktur aus Wabenkern und Deckplatten aufweist, wobei die plasmaführende Schicht im Wabenkern der Sandwichstruktur enthalten ist und die zwischen Wabenkern und Deckplatten angeordneten Elektroden zumindest im Betriebsfrequenzbereich der Antenne HF-transparent sind. DE 10 2007 051243 B3 describes a radome with a plasma seal integrated therein, which comprises a plasma-carrying layer and electrodes for plasma excitation, the radome having a sandwich structure made of honeycomb core and cover plates, the plasma-carrying layer being contained in the honeycomb core of the sandwich structure and the electrodes arranged between the honeycomb core and cover plates at least in the operating frequency range of the antenna are RF transparent.

CN 1 596 060 A beschreibt eine starke Ionisation entladende Nichtgleichgewichts-Plasmaquelle und ein Verfahren zur Erzeugung des Plasmas. Sie umfasst eine Erdungselektrode, eine Entladungselektrode und eine dielektrische Schicht. Sie versorgt die Entladungselektrode mit Wechselspannung und erzeugt Plasma mit einer Dichte von 10 bis 15 pro Kubikzentimeter. Unter der Wirkung einer äußeren Kraft wird das Plasma aus dem sich entladenden elektrischen Feld übertragen. CN 1 596 060 A describes a non-equilibrium plasma source that discharges strong ionization and a method of generating the plasma. It includes a ground electrode, a discharge electrode, and a dielectric layer. It supplies the discharge electrode with AC voltage and generates plasma with a density of 10 to 15 per cubic centimetre. Under the action of an external force transfer the plasma from the discharging electric field.

Davon ausgehend ist es Aufgabe der Erfindung, eine Vorrichtung anzugeben, die die vorgenannten Nachteile vermeidet.Proceeding from this, it is the object of the invention to specify a device which avoids the aforementioned disadvantages.

Diese Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 und mit einem Verfahren mit den Merkmalen des Anspruchs 13 gelöst. Beispielhafte Ausführungsformen sind in den abhängigen Ansprüchen sowie der nachfolgenden Beschreibung dargestellt. Es sei darauf hingewiesen, dass die Merkmale der Ausführungsbeispiele der Vorrichtungen auch für Ausführungsformen des Verfahrens gelten und umgekehrt.This object is achieved with a device having the features of claim 1 and with a method having the features of claim 13. Exemplary embodiments are presented in the dependent claims and the following description. It should be pointed out that the features of the exemplary embodiments of the devices also apply to embodiments of the method and vice versa.

Es wird ein mikroelektronisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche angegeben. Das mikroelektronische Modul weist ein dünnschichtiges flächiges Substrat und wenigstens einen Spannungswandler zur Umwandlung einer bereitgestellten ersten Spannung in eine höhere oder niedrigere zweite Spannung auf. Weiter weist das mikroelektronische Modul wenigstens einen Aktuator auf. Der Aktuator weist wenigstens einen Generator zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler bereitgestellten zweiten Spannung auf. Wenigstens der Spannungswandler und der Aktuator sind auf dem dünnschichtigen flächigen Substrat angeordnet. Das durch den Aktuator erzeugte elektrische Plasma interagiert mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung, wodurch eine Veränderung der elektromagnetischen Signatur erfolgt.A microelectronic module for changing the electromagnetic signature of a surface is specified. The microelectronic module has a thin-layer, flat substrate and at least one voltage converter for converting a first voltage provided into a higher or lower second voltage. Furthermore, the microelectronic module has at least one actuator. The actuator has at least one generator for generating an electrical plasma from the second voltage provided by the voltage converter. At least the voltage converter and the actuator are arranged on the thin-layer, flat substrate. The electrical plasma generated by the actuator interacts with electromagnetic radiation impinging on the surface, resulting in a change in the electromagnetic signature.

Der Erfindung liegt der Gedanke zugrunde, die elektromagnetische Signatur einer Oberfläche durch Erzeugung eines elektrischen Plasmas, das mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung interagiert, zu verändern. Hierbei kann das elektrische Plasma in Abhängigkeit von der auf die Oberfläche auftreffenden elektromagnetischen Strahlung erzeugt werden und die elektromagnetische Signatur einer Oberfläche dadurch verändert werden. Die von der Oberfläche abgestrahlte elektromagnetische Signatur ist durch die Interaktion mit dem elektrischen Plasma vorzugsweise gegenüber einer unbeeinflusst zurückreflektierten elektromagnetischen Signatur, .d.h. beispielsweise der Radarquerschnitt eines Fahrzeugs erscheint dadurch beispielsweise auf einem Radarschirm verändert, vorzugsweise verkleinert. Somit lässt sich beispielsweise die elektromagnetische Signatur aktiv an die jeweilige Situation anpassen.The invention is based on the idea of generating the electromagnetic signature of a surface of an electrical plasma interacting with electromagnetic radiation impinging on the surface. In this case, the electric plasma can be generated as a function of the electromagnetic radiation impinging on the surface, and the electromagnetic signature of a surface can be changed as a result. The electromagnetic signature radiated from the surface is preferential to a unaffected reflected electromagnetic signature, .ie, for example, the radar cross section of a vehicle appears changed, for example, on a radar screen, preferably reduced. Thus, for example, the electromagnetic signature can be actively adapted to the respective situation.

Die Bezeichnung "Aktuator" kann als jede Art von Vorrichtung verstanden werden, die geeignet ist, ein elektrisches Signal in eine andere physikalische Größe umzuwandeln.The term "actuator" can be understood as any type of device that is capable of converting an electrical signal into another physical quantity.

Die Bezeichnung "Spannungswandler" kann als jedes elektrische Element verstanden werden, das in der Lage ist, eine Eingangsspannung in eine höhere oder niedrigere Ausgangsspannung umzuwandeln.The term "voltage converter" can be understood as any electrical element capable of converting an input voltage to a higher or lower output voltage.

Gemäß einer bevorzugten Ausführungsform weist das mikroelektronische Modul weiter wenigstens eine Detektionseinheit auf. Die Detektionseinheit weist wenigstens einen Sensor zur Detektion einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung auf. Der Sensor kann beispielsweise dazu geeignet sein, elektromagnetische Wechselwirkungen von auf den Sensor auftreffenden Photonen mit den Elektronen bzw. Atomkernen eines Detektormaterials des Sensors zu detektieren.According to a preferred embodiment, the microelectronic module also has at least one detection unit. The detection unit has at least one sensor for detecting electromagnetic radiation impinging on the surface. The sensor can be suitable, for example, for detecting electromagnetic interactions of photons impinging on the sensor with the electrons or atomic nuclei of a detector material of the sensor.

Gemäß einer bevorzugten Ausführungsform weist das mikroelektronische Modul weiter eine Steuereinheit auf. Die Steuereinheit ist eingerichtet zur Steuerung der Erzeugung des elektrischen Plasmas in Abhängigkeit eines Signals von der Detektionseinheit, eines Empfängers, von Steuerbefehlen einer übergeordneten Sende- und/ oder Steuerelementes, und /oder Informationen von wenigstens einem weiteren konventionellen Sensors, einer Antenne und/ oder eines Steuer- oder Regelsystems auf. Der Empfänger ist eingerichtet zum Empfang von externen Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung. Das mikroelektronische Modul lässt sich somit entsprechend der detektierten elektromagnetischen Strahlung gezielt steuern um die elektromagnetische Signatur einer Oberfläche zu verändern.According to a preferred embodiment, the microelectronic module also has a control unit. The control unit is set up to control the generation of the electrical plasma as a function of a signal from the detection unit, a receiver, control commands from a higher-level transmitter and/or control element, and/or information from at least one other conventional sensor, an antenna and/or a control or regulation system. The receiver is set up to receive external data containing information about the detection of the electromagnetic radiation impinging on the surface. The microelectronic module can thus be controlled in a targeted manner according to the detected electromagnetic radiation in order to change the electromagnetic signature of a surface.

Gemäß einer bevorzugten Ausführungsform ist der Aktuator weiter eingerichtet, die auf die Oberfläche auftreffende elektromagnetische Strahlung zu detektieren. Alternativ zu externen Sensoren kann auch der Aktuator selbst in der Lage sein, die auf die Oberfläche auftreffende elektromagnetische Strahlung zu detektieren. Dies hat den Vorteil, dass keine weiteren Detektoren bzw. Sensoren benötigt werden, bzw. die Detektion durch Kombination mit weiteren Detektoren bzw. Sensoren verbessert werden kann.According to a preferred embodiment, the actuator is further set up to detect the electromagnetic radiation impinging on the surface. As an alternative to external sensors, the actuator itself can also be able to detect the electromagnetic radiation impinging on the surface. This has the advantage that no further detectors or sensors are required, or the detection can be improved by combining with further detectors or sensors.

Gemäß einer bevorzugten Ausführungsform erfolgt die Erzeugung des elektrischen Plasmas in Abhängigkeit von der detektierten elektromagnetischen Strahlung und/ oder den empfangenen Daten über die auf die Oberfläche auftreffende elektromagnetische Strahlung. Abhängig von der detektierten elektromagnetischen Strahlung und/ oder den empfangenen Daten über die auf die Oberfläche auftreffende elektromagnetische Strahlung wird das elektrische Plasma erzeugt. Dies hat den Vorteil, dass die Erzeugung des elektrischen Plasmas an die Anfordernisse angepasst werden kann.According to a preferred embodiment, the electric plasma is generated as a function of the detected electromagnetic radiation and/or the received data on the electromagnetic radiation impinging on the surface. The electrical plasma is generated as a function of the detected electromagnetic radiation and/or the received data on the electromagnetic radiation impinging on the surface. This has the advantage that the generation of the electric plasma can be adapted to the requirements.

Gemäß einer bevorzugten Ausführungsform erfolgt die Veränderung der elektromagnetischen Signatur der Oberfläche durch Absorption und/ oder Reflektion einer äußeren Welle der elektromagnetischen Strahlung. Durch Verringerung der Rückstreuung der elektromagnetischen Strahlung und/ oder durch Dämpfung der Oberflächenwelle der elektromagnetischen Strahlung kann beispielweise die Absorption und/ oder Reflektion der elektromagnetischen Strahlung verändert werden. Alternativ kann die Veränderung der elektromagnetischen Signatur der Oberfläche auch beispielweise durch eine Kombination der zuvor beschriebenen Absorption bzw. Reflektion mit beispielsweise einer konventionellen RAM-(radarabsorbierendes Material) Beschichtung oder anderweitigen radarabsorbierenden Materialien oder auch einer Infrarottarnung erfolgen. Dies hat den Vorteil, dass beispielsweise die radarabsorbierenden Eigenschaften einer RAM-Beschichtung verbessert werden können.According to a preferred embodiment, the electromagnetic signature of the surface is changed by absorption and/or reflection of an external wave of the electromagnetic radiation. The absorption and/or reflection of the electromagnetic radiation can be changed, for example, by reducing the backscattering of the electromagnetic radiation and/or by damping the surface wave of the electromagnetic radiation. Alternatively, the electromagnetic signature of the surface can also be changed, for example, by a combination of the absorption or reflection described above with, for example, a conventional RAM (radar-absorbing material) coating or other radar-absorbing materials or also infrared camouflage. This has the advantage that, for example, the radar-absorbing properties of a RAM coating can be improved.

Gemäß einer bevorzugten Ausführungsform wird mit Hilfe des wenigstens einen Aktuators eine frequenzselektive Oberfläche erzeugt. Durch Ansteuerung des wenigstens einen Aktuators sind verteilte oder periodisch leitfähige Plasmastrukturen bevorzugt auf, in oder unter der Oberfläche generierbar. Das erzeugte Plasma weist bevorzugt ein spezifisches Frequenzband auf. Die Breite des Frequenzbandes und/ oder die Mittelfrequenz sind bevorzugt durch ein angelegtes magnetisches Feld steuerbar. Durch die Beeinflussung des generierten Plasmas wird bevorzugt ein aktives Metamaterial gebildet. Das aktive Metamaterial ist beispielsweise als Bandpass, Bandstopp, Hochpass, Tiefpass oder einer Kombinationen dieser, zur Veränderung der elektromagnetischen Wellen einsetzbar. Dies hat den Vorteil, dass die elektromagnetische Strahlung gezielt verändert werden kann um dadurch beispielsweise das Radarbild zu verfälschen.According to a preferred embodiment, a frequency-selective surface is generated with the aid of the at least one actuator. Distributed or periodically conductive plasma structures can be generated preferably on, in or under the surface by controlling the at least one actuator. The generated plasma preferably has a specific frequency band. The width of the frequency band and/or the center frequency can preferably be controlled by an applied magnetic field. By influencing the generated plasma, an active metamaterial is preferably formed. The active metamaterial can be used, for example, as a band pass, band stop, high pass, low pass or a combination of these to change the electromagnetic waves. This has the advantage that the electromagnetic radiation can be changed in a targeted manner in order to falsify the radar image, for example.

Gemäß einer bevorzugten Ausführungsform ist das dünnschichtige flächige Substrat eine flexible und/ oder mehrdimensional verformbare Folie oder Gitter. Beispielsweise kann das Gitter eine flexible und/ oder mehrdimensional verformbare Gitterstruktur aufweisen. Das dünnschichtige flächige Substrat kann alternativ auch aus einem vergleichbaren Material bestehen, das geeignet ist, das die Bauteile des Moduls auf diesem auf-, ein- bzw. angebracht werden können und das möglichst dünn und stabil genug ist. Beispielsweise kann das Substrat auch ein Gewebe, eine Gitterstruktur oder einen Verbundwerkstoff aufweisen. Dies hat den Vorteil, dass das Modul in seinen geometrischen Abmessungen gering gehalten werden kann, wobei eine ausreichende Stabilität gegeben ist, um das Modul beispielsweise auf einer Oberfläche dauerhaft oder reversibel aufzubringen, beispielsweise zu kleben.According to a preferred embodiment, the thin-layer, flat substrate is a flexible and/or multidimensionally deformable film or grid. For example, the lattice can have a flexible and/or multidimensionally deformable lattice structure. Alternatively, the thin-layer, flat substrate can also consist of a comparable material that is suitable for the components of the module to be mounted, inserted or attached to it and that is as thin and stable as possible. For example, the substrate can also have a fabric, a lattice structure or a composite material. This has the advantage that the module can be kept small in terms of its geometric dimensions, with sufficient stability being provided to apply the module permanently or reversibly to a surface, for example by gluing it.

Gemäß einer bevorzugten Ausführungsform weist das Modul eine Mehrzahl von Aktuatoren auf. Die Mehrzahl der Aktuatoren weist bevorzugt eine unterschiedliche und/ oder identische Orientierung auf. Dies hat den Vorteil, dass die beispielsweise aus unterschiedlichen Richtungen auf das Modul auftreffende elektromagnetische Strahlung gezielt verändert werden kann.According to a preferred embodiment, the module has a plurality of actuators. The majority of the actuators preferably have a different and/or identical orientation. This has the advantage that the electromagnetic radiation striking the module from different directions, for example, can be changed in a targeted manner.

Gemäß einer bevorzugten Ausführungsform weist das Modul wenigstens ein Schaltelement zur Aktivierung und/ oder Deaktivierung des Moduls und/ oder wenigstens eines der Mehrzahl von Aktuatoren auf. Dies hat den Vorteil, dass das ein einzelnes Modul selbst, oder ein Modul bzw. mehrere Module einer Mehrzahl von Modulen gezielt aktiviert oder/ oder deaktiviert werden können.According to a preferred embodiment, the module has at least one switching element for activating and/or deactivating the module and/or at least one of the plurality of actuators. This has the advantage that a single module itself, or a module or several Modules of a plurality of modules can be specifically activated and / or deactivated.

Die Bezeichnung "Schaltelement" kann als jede Art von Vorrichtung verstanden werden, die geeignet ist, eine Verbindung von einem unterbrochenen Zustand in einen verbundenen Zustand zu verändern. Hierunter kann auch eine einseitig offene Verbindung zu verstehen sein, die beispielsweise durch anschließen des Moduls an beispielsweise eine elektronische Einheit zur Steuerung dauerhaft oder reversibel geschlossen werden kann.The term "switching element" can be understood as any type of device capable of changing a connection from an open state to a connected state. This can also be understood to mean a connection which is open on one side and which can be closed permanently or reversibly, for example, by connecting the module to an electronic unit for control, for example.

Gemäß einer bevorzugten Ausführungsform ist durch die Aktuatoren eine auf der Oberfläche frei definierbare Antenne oder ein Antennenarray zur Anpassung von Antennengewinn, Polarisation und Empfangsrichtung ausbildbar.According to a preferred embodiment, the actuators can be used to form an antenna that is freely definable on the surface or an antenna array for adapting the antenna gain, polarization and reception direction.

Die Antenne oder das Antennenarray ist gemäß einer bevorzugten Ausführungsform als Sende- und/ oder Empfangsantenne für elektromagnetische Strahlung einsetzbar. Dies hat den Vorteil, dass die Antenne oder das Antennenarray, falls erforderlich, zum Versenden und/ oder Empfangen von Daten eingesetzt werden kann. Dies hat den Vorteil, dass das Modul auch als Empfangs- bzw. Sendeantenne verwendbar ist.According to a preferred embodiment, the antenna or the antenna array can be used as a transmitting and/or receiving antenna for electromagnetic radiation. This has the advantage that the antenna or antenna array can be used to send and/or receive data, if necessary. This has the advantage that the module can also be used as a receiving or transmitting antenna.

Gemäß einer bevorzugten Ausführungsform ist die Sende- und/oder Empfangsantenne über eine Ein- und/ oder Auskopplungseinrichtung an einen externen Sender und/ oder Empfänger ankoppelbar. Dies hat den Vorteil, dass die Antenne bzw. das Antennenarray, das beispielsweise als Sende- und/ oder Empfangsantenne ausgebildet sein kann, mit einem externen Sender und/ oder Empfänger verbindbar ist. Dadurch können beispielsweise Daten von dem externen Sender über die, als Sendeantenne ausgebildete Antenne bzw. das Antennenarray, versandt werden und/ oder Daten von dem externen Empfänger über die als Empfangsantenne ausgebildete Antenne bzw. das Antennenarray, empfangen werden.According to a preferred embodiment, the transmitting and/or receiving antenna can be coupled to an external transmitter and/or receiver via a coupling and/or decoupling device. This has the advantage that the antenna or the antenna array, which can be embodied as a transmitting and/or receiving antenna, for example, can be connected to an external transmitter and/or receiver. This allows, for example, data from the external transmitter via the as Transmitting antenna trained antenna or the antenna array, are sent and / or data are received from the external receiver via the trained as a receiving antenna antenna or the antenna array.

Gemäß einer bevorzugten Ausführungsform sind der Spannungswandler, das Schaltelement, der Aktuator, die Detektionseinheit, der Sensor, der Empfänger, der Sender und/ oder das Steuerelement als MEMS-(Micro-Elektro-Mechanisches System) Struktur ausgeführt. Alternativ können der Spannungswandler, das Schaltelement, der Aktuator, die Detektionseinheit, der Sensor, der Empfänger, der Sender und/ oder das Steuerelement auch als Nanoelektromechanisches System ausgebildet sein. Weitere vorteilhafte Komponenten des Moduls können, soweit vorteilhaft und anwendbar, auch beispielsweise als MEMS-Struktur oder als Nanoelektromechanisches System ausgebildet sein. Dies hat den Vorteil, dass das Modul und dessen Komponenten in den Abmessungen sehr klein gehalten werden können. Der für das Modul notwendige Platz kann somit beispielsweise auf Minimum reduziert werden.According to a preferred embodiment, the voltage converter, the switching element, the actuator, the detection unit, the sensor, the receiver, the transmitter and/or the control element are designed as a MEMS (micro-electro-mechanical system) structure. Alternatively, the voltage converter, the switching element, the actuator, the detection unit, the sensor, the receiver, the transmitter and/or the control element can also be designed as a nanoelectromechanical system. Other advantageous components of the module can also be designed, for example, as a MEMS structure or as a nanoelectromechanical system, insofar as it is advantageous and applicable. This has the advantage that the dimensions of the module and its components can be kept very small. The space required for the module can thus be reduced to a minimum, for example.

Weiter wird ein Modularray, aufweisend eine Mehrzahl von zuvor beschriebenen mikroelektronischen Modulen angegeben. Durch die Anordnung einer Mehrzahl der Module in einem Array kann die Veränderung der elektromagnetischen Struktur einer Oberfläche verstärkt werden und/oder gezielt ausgerichtet eingesetzt werden.Furthermore, a modular array is specified, having a plurality of microelectronic modules as described above. By arranging a plurality of the modules in an array, the change in the electromagnetic structure of a surface can be amplified and/or used in a targeted manner.

Gemäß einer Ausführungsform können auch mehrere mikroelektronische Module auf einem gemeinsamen dünnschichtigen flächigen Substrat angeordnet sein. Dies hat den Vorteil, dass beispielsweise die Aufbringung des Moduls auf einer Oberfläche erleichtert, bzw. beschleunigt werden kann wodurch die Kosten für die Montage reduziert werden können.According to one embodiment, a plurality of microelectronic modules can also be arranged on a common thin-layer, flat substrate. This has the advantage that, for example, the application of the module can be facilitated or accelerated on a surface, which means that the costs for assembly can be reduced.

Gemäß einer bevorzugten Ausführungsform sind die Aktuatoren der Mehrzahl der Module zeitversetzt und/oder phasenverschoben ansteuerbar. Die Intensität ist beispielsweise durch Ausnutzung von Interferenzerscheinungen beeinflussbar. Durch eine zeitversetzte und/oder phasenverschobene Ansteuerung der Aktuatoren können gezielt Interferenzerscheinungen bei der Erzeugung des elektrischen Plasmas ausgenutzt werden.According to a preferred embodiment, the actuators of the plurality of modules can be controlled with a time offset and/or with a phase shift. The intensity can be influenced, for example, by utilizing interference phenomena. A time-delayed and/or phase-shifted activation of the actuators can make targeted use of interference phenomena when generating the electrical plasma.

Gemäß einer bevorzugten Ausführungsform weist das Modularray ein oder mehrere Schaltelemente auf, die eingerichtet sind, ein oder mehrere Aktuatoren des Modularrays zu aktivieren und/oder zu deaktivieren. Dies hat den Vorteil, dass das Modularray individuell gesteuert werden kann und die geometrischen Abmessungen je nach Anwendung gering gehalten werden können.According to a preferred embodiment, the modular array has one or more switching elements that are set up to activate and/or deactivate one or more actuators of the modular array. This has the advantage that the modular array can be controlled individually and the geometric dimensions can be kept small depending on the application.

Weiter wird eine Anordnung wenigstens eines zuvor beschriebenen mikroelektronischen Moduls oder wenigstens eines zuvor beschriebenen Modularrays auf und/ oder in einer Oberfläche eines Fahrzeugs angegeben.Furthermore, an arrangement of at least one previously described microelectronic module or at least one previously described modular array on and/or in a surface of a vehicle is specified.

Gemäß einer bevorzugten Ausführungsform weist die Oberfläche eine Beschichtung auf, die eine auf die Oberfläche auftreffende elektromagnetische Strahlung wenigstens Teilweise absorbiert. Die Beschichtung kann beispielsweise aus einem RAM-Material bestehen.According to a preferred embodiment, the surface has a coating which at least partially absorbs electromagnetic radiation impinging on the surface. The coating can consist of a RAM material, for example.

Gemäß einer bevorzugten Ausführungsform ist das Fahrzeug ein Luftfahrzeug, ein Wasserfahrzeug oder ein Landfahrzeug ist. Durch die Anordnung wenigstens eines Moduls oder wenigstens eines Modularrays kann die elektromagnetische Signatur verändert werden, so dass beispielsweise die elektromagnetische Signatur reduziert werden kann und dadurch das Radarabbild des Fahrzeugs verfälscht werden kann.According to a preferred embodiment, the vehicle is an aircraft, a watercraft or a land vehicle. By arranging at least one module or at least one modular array, the electromagnetic signature can be changed so that, for example, the electromagnetic signature can be reduced and the radar image of the vehicle can be falsified as a result.

Weiter wird ein Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche unter Verwendung wenigstens eines zuvor beschriebenen mikroelektronischen Moduls oder wenigstens eines zuvor beschriebenen Modularrays angegeben. Das Verfahren weist den Schritt Umwandeln einer bereitgestellten ersten Spannung in eine höhere oder niedrigereFurthermore, a method for changing the electromagnetic signature of a surface using at least one previously described microelectronic module or at least one previously described modular array is specified. The method includes the step of converting a provided first voltage to a higher or lower one

zweite Spannung auf. Weiter weist das Verfahren den Schritt Detektion einer elektromagnetischen Strahlung auf. Das Verfahren weist weiter den Schritt Erzeugen eines elektrischen Plasmas aus der zweiten Spannung auf. Weiter weist das Verfahren den Schritt Verändern der elektromagnetischen Signatur der Oberfläche durch Interaktion des erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung auf.second voltage up. The method also has the step of detecting electromagnetic radiation. The method further includes the step of generating an electrical plasma from the second voltage. The method also includes the step of changing the electromagnetic signature of the surface by interaction of the electrical plasma that is generated with electromagnetic radiation impinging on the surface.

In den Zeichnungen beziehen sich im Allgemeinen gleiche Bezugszeichen auf die gleichen Teile über die verschiedenen Ansichten hinweg. Die Zeichnungen sind nicht notwendigerweise maßstabsgetreu; Wert wird stattdessen im Allgemeinen auf die Veranschaulichung der Prinzipien der Erfindung gelegt. In der folgenden Beschreibung werden verschiedene Ausführungsformen der Erfindung beschrieben unter Bezugnahme auf die folgenden Zeichnungen, in denen:

FIG. 1
eine erste Ausführungsform eines mikroelektronischen Moduls zeigt;
FIG. 2
ein Modularray aufweisend eine Mehrzahl von mikroelektronischen Modulen zeigt;
FIG. 3
die Anordnung einer Mehrzahl mikroelektronischer Module auf der Oberfläche eines Flugzeugs zeigt; und
FIG. 4
ein Flussdiagramm eines Verfahrens zur Veränderung der elektromagnetischen Signatur einer Oberfläche zeigt.
In the drawings, the same reference numbers generally refer to the same parts throughout the different views. The drawings are not necessarily to scale; Instead, emphasis is generally placed on illustrating the principles of the invention. In the following description, various embodiments of the invention are described with reference to the following drawings, in which:
FIG. 1
shows a first embodiment of a microelectronic module;
FIG. 2
Figure 13 shows a modular array comprising a plurality of microelectronic modules;
FIG. 3
shows the arrangement of a plurality of microelectronic modules on the surface of an aircraft; and
FIG. 4
shows a flowchart of a method for changing the electromagnetic signature of a surface.

Die folgende detaillierte Beschreibung nimmt Bezug auf die beigefügten Zeichnungen, welche zur Erläuterung spezifische Details und Ausführungsformen zeigen, in welchem die Erfindung praktiziert werden kann.The following detailed description refers to the accompanying drawings that show, by way of illustration, specific details and embodiments in which the invention may be practiced.

Das Wort "beispielhaft" wird hierin verwendet mit der Bedeutung "als ein Beispiel, Fall oder Veranschaulichung dienend". Jede Ausführungsform oder Ausgestaltung, die hierin als "beispielhaft" beschrieben ist, ist nicht notwendigerweise als bevorzugt oder vorteilhaft gegenüber anderen Ausführungsformen oder Ausgestaltungen auszulegen.The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment or configuration described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or configurations.

In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die einen Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsformen gezeigt sind, in denen die Erfindung ausgeübt werden kann. In dieser Hinsicht wird Richtungsterminologie wie etwa "oben", "unten", "vorne", "hinten", "vorderes", "hinteres", usw. mit Bezug auf die Orientierung der beschriebenen Figur(en) verwendet. Da Komponenten von Ausführungsformen in einer Anzahl verschiedener Orientierungen positioniert werden können, dient die Richtungsterminologie zur Veranschaulichung und ist auf keinerlei Weise einschränkend. Es versteht sich, dass andere Ausführungsformen benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen beispielhaften Ausführungsformen miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert.In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology such as "top", "bottom", "front", "back", "front", "rear", etc. is used with reference to the orientation of the figure(s) being described. Because components of embodiments in a number can be positioned in various orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. It is understood that the features of the various exemplary embodiments described herein can be combined with one another unless specifically stated otherwise. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.

Im Rahmen dieser Beschreibung werden die Begriffe "verbunden", "angeschlossen" sowie "gekoppelt" verwendet zum Beschreiben sowohl einer direkten als auch einer indirekten Verbindung, eines direkten oder indirekten Anschlusses sowie einer direkten oder indirekten Kopplung. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist.Within the scope of this description, the terms "connected", "connected" and "coupled" are used to describe both a direct and an indirect connection, a direct or indirect connection and a direct or indirect coupling. In the figures, identical or similar elements are provided with identical reference symbols, insofar as this is appropriate.

Bei den hier beschriebenen Verfahren können die Schritte in nahezu jeder beliebigen Reihenfolge ausgeführt werden, ohne von den Prinzipien der Erfindung abzuweichen, wenn nicht ausdrücklich eine zeitliche oder funktionale Abfolge aufgeführt ist. Wenn in einem Patentanspruch dargelegt wird, dass zuerst ein Schritt ausgeführt wird und dann mehrere andere Schritte nacheinander ausgeführt werden, so ist dies so zu verstehen, dass der erste Schritt vor allen anderen Schritten durchgeführt wird, die anderen Schritte jedoch in jeder beliebigen geeigneten Reihenfolge durchgeführt werden können, wenn nicht innerhalb der anderen Schritte eine Abfolge dargelegt ist. Teile von Ansprüchen, in denen beispielsweise "Schritt A, Schritt B, Schritt C, Schritt D und Schritt E" aufgeführt sind, sind so zu verstehen, dass Schritt A zuerst ausgeführt wird, Schritt E zuletzt ausgeführt wird und die Schritte B, C und D in jeder beliebigen Reihenfolge zwischen den Schritten A und E ausgeführt werden können, und dass die Abfolge in den formulierten Schutzumfang des beanspruchten Verfahrens fällt. Des Weiteren können angegebene Schritte gleichzeitig ausgeführt werden, wenn nicht eine ausdrückliche Formulierung im Anspruch darlegt, dass sie separat auszuführen sind. Beispielsweise können ein Schritt zum Ausführung von X im Anspruch und ein Schritt zum Ausführen von Y im Anspruch gleichzeitig innerhalb eines einzelnen Vorgangs durchgeführt werden, und der daraus resultierende Prozess fällt in den formulierten Schutzumfang des beanspruchten Verfahrens. Figur 1 zeigt eine erste Ausführungsform eines mikroelektronischen Moduls 100. Das mikroelektronische Modul 100 zur Veränderung der elektromagnetischen Signatur einer Oberfläche weist in der dargestellten Ausführungsform einen Spannungswandler 101. Der Spannungswandler 101 dient zur Umwandlung einer bereitgestellten ersten Spannung V1 in eine höhere oder niedrigere zweite Spannung V2. Das mikroelektronische Modul 100 weist in der dargestellten Ausführungsform weiter einen Aktuator 102 auf. Der Aktuator 102 weist in der dargestellten Ausführungsform einen Generator 103 zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler 101 bereitgestellten zweiten Spannung V2 auf. Der Spannungswandler 101 und der Aktuator 102 sind auf einem dünnschichtigen flächigen Substrat 104 angeordnet. Das dünnschichtige flächige Substrat 104 ist beispielsweise eine Folie. Das durch den Aktuator 102 erzeugte elektrische Plasma interagiert mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung. Durch das elektrische Plasma wird hierbei die elektromagnetische Signatur der auf die Oberfläche auftreffenden elektromagnetischen Strahlung verändert, vorzugsweise reduziert. Der Spannungswandler 101 ist mit dem Aktuator 102 elektrisch gekoppelt.In the methods described herein, the steps may be performed in almost any order without departing from the principles of the invention, unless a temporal or functional order is expressly stated. When a claim states that a step is performed first and then several other steps are performed in succession, it is to be understood that the first step is performed before all other steps, but the other steps are performed in any suitable order can be if not within the other steps one sequence is outlined. Portions of claims that recite, for example, "Step A, Step B, Step C, Step D, and Step E" are to be understood as performing Step A first, Step E last, and Steps B, C, and D can be performed in any order between steps A and E, and that the order falls within the stated scope of the claimed method. Furthermore, specified steps may be performed simultaneously unless express language in the claim indicates that they are to be performed separately. For example, a step of performing X in the claim and a step of performing Y in the claim may be performed concurrently within a single operation, and the resulting process falls within the stated scope of the claimed method. figure 1 shows a first embodiment of a microelectronic module 100. The microelectronic module 100 for changing the electromagnetic signature of a surface has a voltage converter 101 in the illustrated embodiment. The voltage converter 101 is used to convert a provided first voltage V1 into a higher or lower second voltage V2. In the embodiment shown, the microelectronic module 100 also has an actuator 102 . In the embodiment shown, the actuator 102 has a generator 103 for generating an electrical plasma from the second voltage V2 provided by the voltage converter 101 . The voltage converter 101 and the actuator 102 are arranged on a thin-layer, flat substrate 104 . The thin-layer, flat substrate 104 is a film, for example. That by the actuator 102 generated electrical plasma interacts with electromagnetic radiation impinging on the surface. The electric plasma changes, preferably reduces, the electromagnetic signature of the electromagnetic radiation impinging on the surface. Voltage converter 101 is electrically coupled to actuator 102 .

Gemäß einer weiteren nicht dargestellten Ausführungsform kann das mikroelektronische Modul 100 auch mehr als einen Spannungswandler 101 aufweisen, wobei die mehreren Spannungswandler auch miteinander elektrisch verschaltet sein können und dadurch beispielsweise interagieren können. Das mikroelektronische Modul 100 kann auch mehrere Aktuatoren 102 aufweisen, wobei jeder Aktuator 102 beispielsweise ein oder mehrere Generatoren 103 zur Erzeugung eines elektrischen Plasmas aufweisen können. Weiter kann das mikroelektronische Modul 100 gemäß einer nicht dargestellten Ausführungsform eine Detektionseinheit zur Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung aufweisen, und/ oder eine Steuereinheit, eingerichtet zur Steuerung der Erzeugung des elektrischen Plasmas in Abhängigkeit eines Signals von der Detektionseinheit, eines Empfängers, eingerichtet zum Empfang von externen Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung, von Steuerbefehlen einer übergeordneten Sende- und/ oder Steuerelementes, und /oder Informationen von wenigstens einem weiteren konventionellen Sensors, einer Antenne und/ oder eines Steuer- oder Regelsystems.According to a further embodiment that is not shown, the microelectronic module 100 can also have more than one voltage converter 101, in which case the number of voltage converters can also be electrically connected to one another and can thus, for example, interact. The microelectronic module 100 can also have a plurality of actuators 102, it being possible for each actuator 102 to have, for example, one or more generators 103 for generating an electrical plasma. Furthermore, according to an embodiment that is not shown, the microelectronic module 100 can have a detection unit for detecting the electromagnetic radiation impinging on the surface, and/or a control unit, set up for controlling the generation of the electric plasma depending on a signal from the detection unit, a receiver for receiving external data containing information about the detection of the electromagnetic radiation impinging on the surface, control commands from a higher-level transmitter and/or control element, and/or information from at least one other conventional sensor, an antenna and/or a control or control system.

Figur 2 zeigt ein Modularray 200 aufweisend eine Mehrzahl von mikroelektronischen Modulen 201. Jedes der mikroelektronischen Module 201 weist einen Spannungswandler 202 und einen Aktuator 203, aufweisend einen Generator 204 auf einem dünnschichtigen flächigen Substrat 205 auf. Obwohl jedes der dargestellten Module 201 ein eigenes Schaltelement 204 aufweisen, kann gemäß einer alternativen Ausführungsform (nicht dargestellt) ein Schaltelement 204 auch für zwei oder mehrere Module 201 vorgesehen sein. Die mikroelektronischen Module 201 des Modularrays 200 sind untereinander elektrisch verbunden (nicht dargestellt). figure 2 shows a modular array 200 having a plurality of microelectronic modules 201. Each of the Microelectronic modules 201 has a voltage converter 202 and an actuator 203, having a generator 204 on a thin-layer, flat substrate 205. Although each of the modules 201 shown has its own switching element 204, according to an alternative embodiment (not shown), one switching element 204 can also be provided for two or more modules 201. The microelectronic modules 201 of the modular array 200 are electrically connected to one another (not shown).

Figur 3 zeigt die Anordnung 300 einer Mehrzahl mikroelektronischer Module 301 auf der Unterseite eines Flugzeugs 302 zeigt. Auf der Unterseite der Tragflächen 303, 304 des Flugzeugs 302 sind in der dargestellten Ausführungsform nahezu vollflächig mehrere mikroelektronische Module 301 angeordnet, um die elektromagnetischen Signatur der Flugzeugoberfläche zu verändern. figure 3 3 shows the arrangement 300 of a plurality of microelectronic modules 301 on the underside of an aircraft 302. FIG. In the illustrated embodiment, a plurality of microelectronic modules 301 are arranged almost over the entire surface on the underside of the wings 303, 304 of the aircraft 302 in order to change the electromagnetic signature of the aircraft surface.

In einer weiteren nicht dargestellten Ausführungsform können mikroelektronische Module 301 auch auf der gesamten Flugzeugoberfläche, sowohl auf der Unterseite als auch auf der Oberseite vorgesehen sein.In a further embodiment that is not shown, microelectronic modules 301 can also be provided on the entire surface of the aircraft, both on the underside and on the top.

Figur 4 zeigt ein Flussdiagramm 400 eines Verfahrens zur Veränderung der elektromagnetischen Signatur einer Oberfläche unter Verwendung wenigstens eines Mikroelektronischen-Moduls oder wenigstens eines Modularrays. In Schritt 401 wird eine bereitgestellte erste Spannung in eine höhere oder niedrigere zweite Spannung umgewandelt. In Schritt 402 wird eine elektromagnetische Strahlung detektiert. In Schritt 403 wird ein elektrisches Plasma aus der zweiten Spannung erzeugt. Weiter wird in Schritt 404 die elektromagnetische Signatur der Oberfläche durch Interaktion des erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung verändert. Obwohl die Erfindung vor allem unter Bezugnahme auf bestimmte Ausführungsformen gezeigt und beschrieben worden ist, wird der Bereich der Erfindung durch die angefügten Ansprüche bestimmt. figure 4 FIG. 4 shows a flow chart 400 of a method for changing the electromagnetic signature of a surface using at least one microelectronic module or at least one modular array. In step 401 a provided first voltage is converted into a higher or lower second voltage. In step 402 electromagnetic radiation is detected. In step 403, an electrical plasma is generated from the second voltage. Next, in step 404, the electromagnetic signature of the surface generated by interaction electrical plasma altered with electromagnetic radiation impinging on the surface. While the invention has been particularly shown and described with reference to specific embodiments, the scope of the invention is determined by the appended claims.

BezugszeichenlisteReference List

100, 201, 301100, 201, 301
Modulmodule
101, 202101, 202
Spannungswandlervoltage converter
102, 203102, 203
Aktuatoractuator
103, 204103, 204
Generatorgenerator
104, 205104, 205
Substratsubstrate
200200
Modularraymodular array
300300
Flugzeugairplane
303, 304303, 304
Tragflächewing
400400
Flussdiagrammflow chart
401 - 404401 - 404
Verfahrensschritteprocess steps
V1V1
erste Spannungfirst tension
V2v2
zweite Spannungsecond tension

Claims (13)

  1. Microelectronic module (100) for altering the electromagnetic signature of a surface, comprising:
    a thin-layered planar substrate (104);
    at least one voltage converter (101) for converting a first voltage (V1) provided into a higher or lower second voltage (V2);
    at least one actuator (102), comprising at least one generator (103) for generating an electrical plasma from the second voltage (V2) provided by the voltage converter (101);
    wherein at least the voltage converter (101) and the actuator (102) are arranged on the thin-layered planar substrate (104); and
    wherein the electromagnetic signature of the surface is altered by an interaction of the electrical plasma generated by the actuator (102) with an electromagnetic radiation impinging on the surface.
  2. Microelectronic module according to Claim 1,
    further comprising at least one detection unit comprising at least one sensor for detecting an electromagnetic radiation impinging on the surface; and
    a control unit, configured for controlling the generation of the electrical plasma depending on a signal from the detection unit.
  3. Microelectronic module according to Claim 2,
    further comprising a receiver, configured for receiving data, containing information about the detection of the electromagnetic radiation impinging on the surface.
  4. Microelectronic module according to Claim 3,
    wherein the electrical plasma is generated depending on the detected electromagnetic radiation and/or the received data about the electromagnetic radiation impinging on the surface.
  5. Microelectronic module according to any of the preceding claims,
    wherein the electromagnetic signature of the surface is altered by absorbing and/or reflecting an outer wave of the electromagnetic radiation, by reducing the backscattering of the electromagnetic radiation and/or by damping the surface wave of the electromagnetic radiation, or in a combination with a conventional RAM coating.
  6. Microelectronic module according to any of the preceding claims,
    wherein a frequency-selective surface is generated with the aid of the at least one actuator (102), wherein, by means of the driving of the at least one actuator (102), distributed or periodically conductive plasma structures are generatable on, in or below the surface, wherein the generated plasma has a specific frequency band, wherein the width of the frequency band and/or the centre frequency are/is controllable by means of an applied magnetic field, wherein an active metamaterial is formed by the influencing of the generated plasma, said metamaterial being usable as band-pass filter, bandstop filter, high-pass filter, low-pass filter or a combination thereof for altering the electromagnetic waves.
  7. Microelectronic module according to any of the preceding claims,
    wherein the thin-layered planar substrate (104) is a flexible and/or multidimensionally deformable film or lattice.
  8. Microelectronic module according to any of the preceding claims,
    wherein the module (100) comprises a plurality of actuators (102); and
    wherein the module (100) comprises at least one switching element for activating and/or deactivating the module and/or at least one of the plurality of actuators (102); and
    wherein an antenna that is freely definable on the surface or an antenna array for adapting antenna gain, polarization and receiving direction can be formed by the actuators (102), wherein the antenna or the antenna array is usable as transmitting and/or receiving antenna for electromagnetic radiation; and
    wherein the transmitting and/or receiving antenna can be coupled to an external transmitter and/or receiver via a coupling-in and/or coupling-out device.
  9. Microelectronic module according to Claim 2, wherein the voltage converter (101), the actuator (102), the detection unit and/or the sensor are/is embodied as MEMS structure.
  10. Module array (200),
    comprising a plurality of microelectronic modules (201) according to any of the preceding claims.
  11. Module array according to Claim 10,
    wherein the actuators (204) of the plurality of modules (201) are drivable in a time-staggered and/or phase-shifted manner.
  12. Arrangement (300) of at least one microelectronic module (301) or of at least one module array according to any of the preceding claims on and/or in a surface of a vehicle (302),
    wherein the surface has a coating that at least partly absorbs an electromagnetic radiation impinging on the surface, and/or
    wherein the vehicle is an aircraft, a watercraft or a land vehicle.
  13. Method (400) for altering the electromagnetic signature of a surface using at least one microelectronic module or at least one module array according to any of the preceding claims, comprising the following steps:
    converting a first voltage provided into a higher or lower second voltage by a voltage converter (401);
    detecting an electromagnetic radiation (402);
    generating an electrical plasma from the second voltage by a generator of an actuator (403), wherein at least the voltage converter and the actuator are arranged on a thin-layered planar substrate;
    altering the electromagnetic signature of the surface by interaction of the electrical plasma generated with an electromagnetic radiation impinging on the surface (404).
EP17001095.3A 2016-07-26 2017-06-28 Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface Active EP3277060B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016008945.8A DE102016008945A1 (en) 2016-07-26 2016-07-26 Microelectronic module for modifying the electromagnetic signature of a surface, modular array and method for changing the electromagnetic signature of a surface

Publications (2)

Publication Number Publication Date
EP3277060A1 EP3277060A1 (en) 2018-01-31
EP3277060B1 true EP3277060B1 (en) 2022-08-03

Family

ID=59284965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17001095.3A Active EP3277060B1 (en) 2016-07-26 2017-06-28 Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface

Country Status (5)

Country Link
US (1) US10426021B2 (en)
EP (1) EP3277060B1 (en)
CN (1) CN107655364A (en)
DE (1) DE102016008945A1 (en)
RU (1) RU2668956C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015014256B4 (en) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Microelectronic module for cleaning a surface, modular array and method for cleaning a surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596060A (en) * 2004-06-18 2005-03-16 大连海事大学 A dense ionization discharging nonequilibrium plasma source and method of preparing plasma
US7255062B1 (en) * 2004-05-07 2007-08-14 Higman Kumiko I Pseudo surface microwave produced plasma shielding system
DE102007051243B3 (en) * 2007-10-26 2009-04-09 Eads Deutschland Gmbh Radome with integrated plasma shutter

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228939C1 (en) 1982-08-03 1983-11-24 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Method and device for influencing the boundary layer of flowed bodies
US4732351A (en) 1985-03-21 1988-03-22 Larry Bird Anti-icing and deicing device
GB2212974B (en) * 1987-11-25 1992-02-12 Fuji Electric Co Ltd Plasma processing apparatus
EP0363521B1 (en) 1988-10-14 1991-09-25 PANARES TECHNISCHE ENTWICKLUNGEN GMBH & CO. BETRIEBS KG Function testing apparatus for otoliths
FR2667256A1 (en) 1990-10-02 1992-04-03 Thomson Csf Device for removing the icing formed on the surface of a wall, especially of an optical or radio frequency window
JP2607088Y2 (en) 1993-08-23 2001-03-19 ワールドオートプレート株式会社 Illuminated license plate
US5535906A (en) * 1995-01-30 1996-07-16 Advanced Energy Industries, Inc. Multi-phase DC plasma processing system
TW369674B (en) * 1996-05-15 1999-09-11 Daihen Corp Plasma processing apparatus
US6774885B1 (en) 1999-01-20 2004-08-10 Motek B.V. System for dynamic registration, evaluation, and correction of functional human behavior
DE19931366A1 (en) 1999-07-07 2001-02-01 T E M Gmbh Flat assembly for the electrical generation of a plasma in air
DE19933842A1 (en) * 1999-07-20 2001-02-01 Bosch Gmbh Robert Device and method for etching a substrate by means of an inductively coupled plasma
DE10129041A1 (en) 2001-06-15 2002-12-19 T E M Techn Entwicklungen Und Assembly used in ventilation systems for producing ozone and/or oxygen ions in the air by dielectrically-obstructed discharge or corona discharge
DE10261875A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Cleaning system for removing contamination from surface of component in lithographic projection apparatus that is used in manufacture of integrated circuits, comprises cleaning particle provider with electric field generator
DE10320467B4 (en) 2003-05-08 2006-02-16 Bayerische Motoren Werke Ag Illuminated component with luminous foil and integrated voltage transformer
US8087297B2 (en) 2004-03-04 2012-01-03 Ludwiczak Damian R Vibrating debris remover
US7142075B1 (en) * 2004-04-01 2006-11-28 Sandia Corporation Microelectromechanical power generator and vibration sensor
DE102004060675B4 (en) 2004-12-15 2024-06-20 Eurocopter Deutschland Gmbh De-icing of aircraft
KR101101791B1 (en) 2004-12-30 2012-01-05 엘지디스플레이 주식회사 Driving Circuit for Inverter
US7703479B2 (en) 2005-10-17 2010-04-27 The University Of Kentucky Research Foundation Plasma actuator
FR2896398B1 (en) 2006-01-20 2008-10-31 Eric Labat DEVICE FOR OCULAR STIMULATION AND DETECTION OF BODILY REACTIONS
US7794063B2 (en) 2006-03-15 2010-09-14 Brother Kogyo Kabushiki Kaisha Liquid-droplet jetting head and liquid-droplet jetting apparatus
US7624941B1 (en) 2006-05-02 2009-12-01 Orbital Research Inc. Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators
RU2311707C1 (en) * 2006-06-07 2007-11-27 Сергей Николаевич Чувашев Method for reducing flying vehicle radio visibility
US8091836B2 (en) 2007-12-19 2012-01-10 Pratt & Whitney Rocketdyne, Inc. Rotary wing system with ion field flow control
DE102008017963B4 (en) 2008-04-08 2016-10-06 Airbus Defence and Space GmbH Flow control device
US8181910B2 (en) 2008-10-31 2012-05-22 Lewis Blair J Method, apparatus, and system for deflecting air approaching a wing
US9975625B2 (en) 2010-04-19 2018-05-22 The Boeing Company Laminated plasma actuator
US8174354B2 (en) * 2010-07-23 2012-05-08 Sensata Technologies Massachusetts, Inc. Method and apparatus for control of failed thermistor devices
US9072481B2 (en) 2010-09-09 2015-07-07 The Johns Hopkins University Apparatus and method for assessing vestibulo-ocular function
EP2616331A4 (en) 2010-09-15 2014-06-11 Saab Ab Plasma-enhanced active laminar flow actuator system
RU2469447C2 (en) * 2010-12-09 2012-12-10 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский центр имени М.В. Келдыша" (ГНЦ ФГУП "Центр Келдыша") Method of reducing radar signature of object equipped with at least one antenna
US8523115B2 (en) * 2011-01-28 2013-09-03 Lockheed Martin Corporation System, apparatus, program product, and related methods for providing boundary layer flow control
US9327839B2 (en) 2011-08-05 2016-05-03 General Atomics Method and apparatus for inhibiting formation of and/or removing ice from aircraft components
DE102012001981B4 (en) 2012-02-03 2021-07-29 Chronos Vision Gmbh Device and method for determining the subjective visual vertical, in particular for testing the otolith function
DE102012204925A1 (en) 2012-03-27 2013-10-02 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Fluidic system, use and method of operating the same
US20130299637A1 (en) 2012-05-08 2013-11-14 The Boeing Company Ice protection for aircraft using electroactive polymer surfaces
EP2816200B1 (en) 2013-06-18 2017-02-01 General Electric Technology GmbH Method and device for suppressing the formation of ice on structures at the air intake of a turbomachine
WO2015024601A1 (en) * 2013-08-23 2015-02-26 Correale Giuseppe Boundary layer control via nanosecond dielectric/resistive barrier discharge
TWI690968B (en) * 2014-03-07 2020-04-11 美商應用材料股份有限公司 Grazing angle plasma processing for modifying a substrate surface
DE102014110405A1 (en) 2014-07-23 2016-01-28 Epcos Ag Piezoelectric transformer
DE102015010233A1 (en) 2015-08-12 2017-02-16 Airbus Defence and Space GmbH Microelectronic module, modular array and flow control method
DE102015014256B4 (en) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Microelectronic module for cleaning a surface, modular array and method for cleaning a surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255062B1 (en) * 2004-05-07 2007-08-14 Higman Kumiko I Pseudo surface microwave produced plasma shielding system
CN1596060A (en) * 2004-06-18 2005-03-16 大连海事大学 A dense ionization discharging nonequilibrium plasma source and method of preparing plasma
DE102007051243B3 (en) * 2007-10-26 2009-04-09 Eads Deutschland Gmbh Radome with integrated plasma shutter

Also Published As

Publication number Publication date
US20180035527A1 (en) 2018-02-01
RU2668956C1 (en) 2018-10-05
DE102016008945A1 (en) 2018-02-01
CN107655364A (en) 2018-02-02
US10426021B2 (en) 2019-09-24
EP3277060A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
EP2053690B1 (en) Radome with integrated plasma shutter
DE102013105809B4 (en) Multifunctional radar arrangement
DE102006041225B4 (en) Method and system for averting ground-to-air missiles
DE102014014860B3 (en) Radar sensor assembly and motor vehicle
EP3165468B1 (en) Microelectronic module for cleaning a surface, module array and method of cleaning a surface
EP3465817B1 (en) Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector
DE60202778T2 (en) ELECTROMAGNETIC WINDOW
DE10335216A1 (en) In the area of an outer surface of an aircraft arranged phased array antenna
EP3277060B1 (en) Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface
DE102013010309A1 (en) Cover i.e. randome, for protecting antenna i.e. radar antenna, for vehicle, has two layers, and particles acting on electromagnetic waves in damping manner and embedded into one of layers, where particles are formed from carbon
DE102012224062B4 (en) Stripline antenna, array antenna and radar device
EP3133014B1 (en) Micro-electronic module, module array, and method for influencing fluid current
DE10016781A1 (en) Protection device
EP1580835A1 (en) Aircraft antenna arrangement for the reception of radio signals
DE102011084592A1 (en) Antenna unit mounted on extensible mast in submarines, whose one end is provided with flange portion and mechanically stable system for connecting with the mast
EP3345841B1 (en) Detection device
EP2761245A1 (en) Active protection system
EP3621423A1 (en) Device for filtering electromagnetic radiation, air and spacecraft and method for producing said device
DE19652595C2 (en) Method and device for directionally selective radiation of electromagnetic waves
DE102010056268A1 (en) Method for the simultaneous operation of a jammer and an electronic reconnaissance system
DE102006056890A1 (en) Wall element for e.g. cockpit, of aircraft, has integrated antenna device designed such that high frequency radiation is emitted towards radiation area, where radiation is absorbed towards absorbing area
DE2519986C3 (en) Auxiliary measuring device for radar devices with receiving and return antenna for simulating distant target objects
DE3744511C2 (en)
EP3120105B1 (en) Method for defence against and/or disturbance of objects
WO2020083542A1 (en) Radar sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180731

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1509800

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013545

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013545

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 7

Ref country code: DE

Payment date: 20230620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230628

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630