EP3276860B1 - Procédé de commande de radiocommunication et système de radiocommunication - Google Patents

Procédé de commande de radiocommunication et système de radiocommunication Download PDF

Info

Publication number
EP3276860B1
EP3276860B1 EP16768819.1A EP16768819A EP3276860B1 EP 3276860 B1 EP3276860 B1 EP 3276860B1 EP 16768819 A EP16768819 A EP 16768819A EP 3276860 B1 EP3276860 B1 EP 3276860B1
Authority
EP
European Patent Office
Prior art keywords
receive
weight
beamforming
transmit
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16768819.1A
Other languages
German (de)
English (en)
Other versions
EP3276860A1 (fr
EP3276860A4 (fr
Inventor
Tatsunori OBARA
Satoshi Suyama
Jiyun Shen
Yukihiko Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of EP3276860A1 publication Critical patent/EP3276860A1/fr
Publication of EP3276860A4 publication Critical patent/EP3276860A4/fr
Application granted granted Critical
Publication of EP3276860B1 publication Critical patent/EP3276860B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention pertains to a radio communication control method and a radio communication system.
  • MIMO Multiple-Input and Multiple-Output
  • Patent Document 1 a massive-MIMO transmission scheme in which there is used a large number of antenna elements so as to achieve a further increase in speed and a reduction in interference in signal transmission, (for example, 100 elements or more) in a high-frequency band (for example 10 GHz or more), and use of which also enables miniaturization of antennas and a wide bandwidth to be attained.
  • Beamforming is a technique of controlling the directivity and shape of beams (where transmission beams correspond to transmission antennas, and reception beams correspond to reception antennas) by use of a plurality of antenna elements.
  • phase and amplitude can be controlled for each antenna element, thus the larger the number of antenna elements used, the greater the freedom of beam control.
  • beamforming applied to transmission signals is represented as a multiplication of a vector indicating a transmission signal by a beamforming weight matrix (hereafter, sometimes referred to as BF weight matrix).
  • a BF weight matrix is represented as a matrix that includes a plurality of beamforming weight vectors (hereafter, sometimes referred to as BF weight vectors) as a component.
  • BF weight matrices and BF weight vectors are sometimes collectively referred to as "BF weight”.
  • fixed beamforming As one mode of beamforming, fixed beamforming is exemplified.
  • a beamforming weight (fixed beam) for use is selected from among a plurality of beamforming weights prepared in advance.
  • fixed beamforming beamforming that controls fixed beams and coding that achieves compensation for multiplexing between a plurality of streams (transmission-side precoding and reception-side postcoding) are carried out separately.
  • WO2014/178687 A1 relates to a precoder selection method for performing hybrid beamforming in a wireless communication system.
  • the method includes selecting a predetermined number of candidate transmit beams using a signal strength received through each of first combinations with receive beams that can be mapped to each transmit beam of each of transmit antennas mounted on a transmitter.
  • US 2013/343303 A1 relates to a communication method and an apparatus using beamforming in a wireless communication system.
  • the communication method includes determining a candidate user set including one or more Mobile Stations for Multiple User-Multiple Input Multiple Output transmission, transmitting beam information indicating best Base Station transmission beams of the MSs of the candidate user set to the MSs of the candidate user set, receiving Precoding Matrix Index information indicating a PMI to be used for baseband precoding from each of the MSs of the candidate user set, the PMI information being determined based on the beam information, and transmitting a signal precoded based on the PMI information to at least one MS.
  • WO 2015/016589 A1 relates to transmission normalization in a wireless communication system adopting hybrid beamforming.
  • An operating method of a transmitter includes transmitting control information on transmission power normalization, receiving information indicating a precoding matrix and an analog beam selected based on the control information, and transmitting a signal normalized using a normalization coefficient corresponding a combination of the precoding matrix and the analog beam.
  • Patent Document 1 Japanese Patent Application Laid-Open Publication No. 2013-232741
  • suitable execution of beamforming that is, determination of a suitable BF weight is of importance.
  • a large amount of computing such as use of each of candidate BF weights to carry out channel estimation using round-robin scheduling, and comparing the channel estimation results to select an optimum BF weight is assumed.
  • the purpose of the present invention is to determine a suitable BF weight while reducing computational complexity, thereby achieving suitable MIMO transmission.
  • a weight matrix is determined in stages. Accordingly, the number of combinations to be calculated are reduced compared to a configuration wherein all combinations of weight matrices are tested to determine a weight matrix. As a result, an amount of calculation required to determine a weight matrix is reduced, while a suitable BF weight matrix is determined.
  • a base station executes radio communication by using a plurality of transmission antennas A T , and multiplexing is performed to achieve a high radio communication speed (data rate). Further, since freedom of antenna control is increased when executing beamforming, advanced beamforming is achieved as compared to the conventional art. Accordingly, interference reduction and effective use of radio resources are achieved.
  • the number of transmission antennas A T provided at a base station adapted for massive-MIMO is preferably 32 or more, 64 or more, 96 or more, 100 or more, 128 or more, 192 or more, 200 or more, 256 or more, 500 or more, 512 or more, 1000 or more or 1024 or more, but is not limited thereto.
  • a high-frequency band (for example, a frequency band of 10 GHz or higher) is preferably used in a massive-MIMO transmission scheme.
  • Use of a high-frequency band enables a wide bandwidth to be secured (for example, 200 MHz or more) for radio resources, in contrast to use of a low-frequency band.
  • the size of an antenna element is proportional to a wavelength of a signal, it is possible to further miniaturize antennas when using a high-frequency band in which the wavelengths of radio signals are relatively short.
  • the higher a frequency is, the greater an increase in propagation loss is.
  • use of a high-frequency band results in a drop in reception signal strength at a mobile station as compared to when a low-frequency band is used.
  • FIG. 1 is a schematic drawing indicating a reachable range of a beam (radio signal) according to a frequency.
  • Conventional base stations (macro base stations MeNB) perform radio communication by using low-frequency bands, thus the beams reach further even when beams with wide radiation patterns are used.
  • the base station small base station MMNB compatible with the massive-MIMO transmission scheme of the present embodiment performs radio communication by using a high-frequency band, resulting in a short beam reaching distance compared to a macro base station MeNB when a beam having a wide radiation pattern is used.
  • the width of a beam radiation pattern is reduced by means of beamforming, it is possible to increase a distance reached by a beam even in the case of a small base station MMNB in which a high-frequency band is used.
  • Radio communication system 1 comprises a macro base station MeNB, a small base station MMNB, a central control station MME, and a user equipment UE.
  • the small base station MMNB is compatible with the massive-MIMO transmission scheme.
  • the macro base station MeNB has macro cells Cm formed on the surroundings thereof, and the small base station MMNB has massive-MIMO cells (MM cell) Cmm formed on the surroundings thereof.
  • the frequency band (for example, a 10 GHz band) used in the small base station MMNB has a higher frequency and greater propagation loss compared to a frequency band (for example, a 2 GHz band) used in the macro base station MeNB, thus the cell size of MM cell Cmm is smaller than the cell size of Macro cell Cm. Accordingly, the small base station MMNB and user equipment UE are likely to be connected via line-of-sight.
  • MM cell Cmm it is possible for MM cell Cmm to overlap with an area in which radio communication can be achieved by using another radio access technology (RAT) such as macro cell Cm.
  • RAT radio access technology
  • a control signal can be transmitted, from a macro base station MeNB that is compatible with the different radio access technology, to a user equipment UE that is currently in communication with small base station MMNB compatible with the massive-MIMO transmission scheme.
  • Another example of radio access technology that can be cited is a public or local wireless LAN.
  • a massive-MIMO transmission in which a high-frequency bandwidth is used, it is preferable to compensate for propagation loss by way of a gain achieved by beamforming.
  • a plurality of data streams are spatially multiplexed and transmitted.
  • a transmitter device for example, small base station MMNB
  • a reception beam former and postcoder of a receiver device for example, user equipment UE
  • a receive beamforming process is a process in which a signal received by a reception antenna A R is multiplied by an L R -by-N R (L R is the number of reception beams) receive BF weight matrix W R .
  • a postcoding process is a process in which a signal that has been subjected to receive beamforming is multiplied by an M-by-L R postcoding matrix B.
  • Figs. 4 and 5 illustrates, in a non-limiting manner, an example of a specific circuit configuration.
  • Fig. 4 illustrates a transmitter-side equalizing circuit
  • Fig. 5 illustrates a receiver-side equalizing circuit.
  • M streams are subjected to digital precoding (matrix calculation) by use of a digital signal processor DC T having a plurality of multipliers MP and adders AD, and subsequently, a processing circuit PC T carries out an inverse Fourier transformation, insertion of a guard interval, digital-to-analog conversion, and up-conversion, thereby generating a high-frequency transmission signal.
  • the high-frequency transmission signal is subjected to phase and amplitude modification by an analog signal processor AC T having a plurality of variable phase shifters PS and/or amplitude adjusters AA, and adders AD (in other words, is subjected to analog transmit beamforming), and is subsequently transmitted from N T transmission antennas A T .
  • a high-frequency reception signal received by N R reception antennas A R is subjected to phase and amplitude modification by an analog signal processor AC R having a plurality of variable phase shifters PS, amplitude adjusters AA, and adders AD (in other words, is subjected to analog receive beamforming).
  • a processing circuit PC R executes down-conversion, analog-to-digital conversion, and Fourier transformation on a signal that has been subjected to receive beamforming, and a digital signal processor DC R subjects the signal to digital postcoding (matrix calculation), thereby generating (regenerating) M streams.
  • analog signal processors AC may be configured so as to comprise a plurality of processing circuits corresponding to the plurality of beam candidates, and select any one of the processing circuits by using a control switch.
  • the above-stated configuration is especially suited to a massive-MIMO transmission scheme in which the number N T of transmission antennas is sufficiently large with respect to the number M of streams to be transmitted (in other words, M ⁇ N T ).
  • M ⁇ N T the number of transmission streams to be transmitted
  • M ⁇ N T the number of transmission streams
  • M stream components are converted into N T transmission antenna components by means of matrix calculation of an L T -by-M precoding matrix P and an N T -by-L T transmit BF weight matrix W T , as described above.
  • Channel capacity C can be increased (preferably maximized) by selecting a suitable weight matrix from a plurality of candidates.
  • an optimum combination of weight matrices is determined by testing, with respect to a plurality of weight matrices, every possible combination of candidate weight matrices selected one by one.
  • the number of streams is M
  • the number of precoding matrix P candidates is N p
  • the number of transmit BF weight matrix (transmission beam pattern) W T candidates is N WT
  • the number of receive BF weight matrix (reception beam pattern) W R candidates is N WR
  • the number of postcoding matrix B candidates is N B
  • calculation is required N P ⁇ (N WT ) M ⁇ (N WR ) M ⁇ N B times.
  • a massive-MIMO transmission scheme has a larger number of antennas compared to MIMO transmission schemes in the conventional art, and thus also has a large number of candidate beam patterns. Therefore, if the above combination determination system is adopted, the computational complexity increases in geometric progression, posing a problem of an increased processing load.
  • channel matrices H c cannot be observed, making it necessary to measure transmission characteristics by actual transmission/reception of radio signals.
  • a suitable transmit BF weight matrix W T,opt and a suitable receive BF weight matrix W R,opt are first determined, and those determined BF weight matrices are used to determine a suitable precoding matrix P opt and a suitable postcoding matrix B opt (hereafter, transmit BF weight matrix, receive BF weight matrix, precoding matrix and postcoding matrix may be collectively referred to as "weight matrices").
  • weight matrices transmit BF weight matrix, receive BF weight matrix, precoding matrix and postcoding matrix
  • a transmit BF weight is first determined, and a receive BF weight is subsequently determined.
  • Fig. 6 is a drawing outlining the BF weight determination, as employed in the first embodiment.
  • the transmit BF weight having the highest reception power in user equipment UE is selected from among tested transmit BF weights by switching the transmission weight (transmission beam) candidates in small base station MMNB.
  • User equipment UE generates a plurality of orthogonal beams (reception orthogonal BF weights) and executes a reception operation.
  • reception power is measured for each of the plurality of orthogonal beams (reception orthogonal BF weight) in user equipment UE, and a predetermined number of receive BF weights that achieve the highest reception power are selected.
  • small base station MMNB executes transmit beamforming based on the suitable transmit BF weight selected in the first stage.
  • Fig. 7 is a functional block diagram illustrating the main constituent elements of small base station MMNB (transmitter device) of the first embodiment.
  • Small base station MMNB comprises a data signal generator 10, a reference signal generator 20, a baseband processor 30, a digital-to-analog converter 40, an RF processor 50, a feedback unit 60, a precoding controller 70, a transmit BF weight controller 80, and a storage unit 90.
  • Baseband processor 30 comprises a precoder 32
  • RF processor 50 comprises an up-converter 52 and a transmit beamformer 54.
  • a number N T of transmission antennas A T are connected to transmit beamformer 54.
  • Data signal generator 10 generates data signals to be included in signals transmitted to user equipment UE.
  • Data signal processor 10 can generate data signals as a stream of a plurality of sequences.
  • data signal generator 10 is assumed to generate data signals of M (M is an integer of 2 or more) streams.
  • Reference signal generator 20 generates reference signals to be included in signals transmitted to user equipment UE.
  • a reference signal is, for example, a signal used for channel estimation in user equipment UE, initial synchronization of user equipment UE and small base station MMNB, and identification of small base station MMNB in user equipment UE.
  • Reference signal generator 20 can also generate reference signals of a plurality of sequences (M streams). Generated data signals and reference signals are input to baseband processor 30 as baseband signals.
  • Baseband processor 30 is an element that processes input baseband signals (data signals and reference signals).
  • Baseband processor 30 comprises a precoder 32 that subjects a number M of streams to digital precoding (matrix calculation) by using a precoding matrix P.
  • a signal in which a data signal and a reference signal are combined is precoded by precoder 32, and output from baseband processor 30. Meanwhile, concerning BF weight determination in the present embodiment, a reference signal that has not been precoded is output from baseband processor 30.
  • Digital-to-analog converter 40 converts digital signals output from processor 30 into analog signals, and outputs the signals to RF processor 50.
  • RF processor 50 is an element that processes input analog signals and transmits the signals from transmission antennas A T .
  • RF processor 50 comprises up-converter 52 that frequency-converts input analog signals into radio frequency (RF) signals, and transmit beamformer 54 that subjects signals that have been frequency-converted to analog transmit beamforming based on a transmit BF weight matrix W T .
  • High frequency signals output from transmit beamformer 54 are transmitted from a number N T of transmission antennas A T .
  • the above-stated analog transmit beamforming is a process in which phase and amplitude change corresponding to the multiplication of transmit BF weight matrices is applied to a number M of analog signals by using variable phase shifter PS and amplitude adjuster AA.
  • the phase and amplitude between a plurality of transmission antennas A T are changed in an analog manner so as to correspond to the multiplication of the transmit BF weight matrix.
  • Feedback unit 60 is an element that performs communication pertaining to control with user equipment UE, and in particular, supplies feedback information from user equipment UE to precoding controller 70 and transmit BF weight controller 80.
  • Precoding controller 70 controls precoding matrices used in precoder 32.
  • Transmit BF weight controller 80 controls a BF weight used in transmit beamformer 54.
  • Storage unit 90 stores information pertaining to control of radio communication (for example, precoding matrices, and transmit BF weight matrices).
  • Fig. 8 is a functional block diagram illustrating the main constituent elements of user equipment UE (receiver device) of the first embodiment.
  • User equipment UE comprises an RF processor 110, an analog-to-digital converter 120, a baseband processor 130, a signal analyzer 140, a calculation processor 150, a receive BF weight controller 160, a postcoding controller 170, a feedback unit 180, and a storage unit 190.
  • RF processor 110 comprises a receive beamformer 112 and a down-converter 114
  • baseband processor 130 comprises a postcoder 132.
  • a number N R of reception antennas A R are connected to receive beamformer 112.
  • RF processor 110 is an element that processes signals received by a plurality of reception antennas A R .
  • RF processor 110 comprises a receive beamformer 112 that subjects received signals to analog receive beamforming based on a receive BF weight matrix W R , and a down-converter 114 that frequency-converts the input signals into baseband signals and outputs the signals.
  • receive beamformer 112 comprises a number L R of receive beamforming circuits RBC.
  • a number N R of reception antennas A R are branched and connected to each of the receive beamforming circuits RBC. Accordingly, radio signals received by the N R reception antennas A R are input to each of receive beamforming circuits RBC and are subjected to receive beamforming.
  • One receive beamforming circuit RBC corresponds to one component (one receive BF weight vector) of a receive BF weight matrix W R .
  • the above-stated analog receive beamforming is a process in which phase and amplitude change corresponding to multiplication of receive BF weight matrices is applied to a number N R of analog signals by using variable phase shifter PS and amplitude adjuster AA.
  • the phase and amplitude between a plurality of reception antennas A R (between signals transmitted from a plurality of reception antennas A R ) change in an analog manner so as to correspond to the multiplication of receive BF weight matrices.
  • Analog-to-digital converter 120 converts analog signals output from RF processor 110 into digital signals, and outputs the signals to baseband processor 130.
  • Baseband processor 130 is an element that processes input baseband signals and restores a number M of streams.
  • Baseband processor 130 comprises a postcoder 132 that subjects signals output from analog-to-digital converter 120 to digital postcoding (matrix calculation) by using a postcoding matrix B.
  • M streams are regenerated by the above-stated postcoding. The regenerated M streams are input to signal analyzer 140 and analyzed.
  • Calculation processor 150 executes, on digital signals output from analog-to-digital converter 120, calculation processing such as calculation of reception power and estimation of transmission/reception characteristics.
  • Receive BF weight controller 160 controls a BF weight used in receive beamformer 112.
  • Postcoding controller 170 controls postcoding matrices used in postcoder 132.
  • Feedback unit 180 is an element that performs communication pertaining to control with small base station MMNB, and in particular, transmits feedback information from calculation processor 150 and receive BF weight controller 160 to small base station MMNB.
  • Storage unit 190 stores information pertaining to control of radio communication control (for example, postcoding matrices, and receive BF weight matrices).
  • elements that carry out digital processing are functional blocks enabled by use of a central processing unit (CPU), which is not illustrated, that causes a computer program stored in storage unit 190 to be executed, the blocks functioning in accordance with the computer program.
  • CPU central processing unit
  • Figs. 10 and 11 show operational flows indicating the weight matrix determination of the present embodiment.
  • a suitable in other words, optimum in the tested range
  • transmit BF weight matrix W T,opt [ w T,opt,1 w T,opt,2 ⁇ w T,opt, L T ]
  • receive BF weight matrix W R , opt w R , opt , 1 T w R , opt , 2 T ⁇ w R , opt , L R T are determined.
  • transmit BF weight controller 80 of small base station MMNB selects candidate transmit BF weight vectors w T,can,1 from among a plurality (X) of transmit BF weight vector candidates stored in storage unit 90 (S100).
  • 0 N T is an N T -by-1 zero vector.
  • reference signals s RS1 which are subjected to transmit beamforming and transmitted in step S110, are sometimes collectively referred to as a first reference signal RS1.
  • Receive BF weight controller 160 of user equipment UE controls receive beamformer 112 (L R receive beamforming circuits RBC) so as to subject received signal vectors to receive beamforming in time division.
  • a n indicates amplitude adjustment amount
  • e j ⁇ l , n indicates phase rotation amount.
  • n -th component A n e j ⁇ l , n indicates amplitude adjustment amount and phase rotation amount with respect to reception signal component r RS1, n corresponding to the n -th reception antenna A R from among the N R reception antennas A R .
  • the N R row components included in receive BF output vectors are collectively referred to as receive BF output components.
  • one receive BF output component y RS1, n corresponds to one reception orthogonal BF weight vector ⁇ n T .
  • the N R reception orthogonal BF weight vectors multiplied by the received signal vectors are orthogonal to one another.
  • receive BF output vectors y RS1 output from receive beamformer 112 are input to calculation processor 150 via down-converter 114 and analog-to-digital converter 120.
  • the calculated sum of reception power P RS1 is fed back from user equipment UE to small base station MMNB via feedback unit 180 (S140).
  • sum of reception power P RS1 in user equipment UE is calculated with respect to selected candidate transmit BF weight vectors w T,can,1 .
  • the above-stated steps are repeated until all transmit BF weight vectors are selected. That is, if transmit BF weight controller 80 determines in step S150 that not all transmit BF weight vector candidates have been selected (S150; NO), the process returns to step S100, new candidate transmit BF weight vectors are selected, and the sum of reception power P RS1 is calculated with respect to the candidate transmit BF weight vectors.
  • the above-stated steps are repeated X times.
  • Transmit BF weight controller 80 of small base station MMNB subjects reference signals to analog transmit beamforming by using the suitable transmit BF weight matrix W T,opt determined in step S160, and controls transmit beamformer 54 so as to transmit the signals from N T transmission antennas A T (S200).
  • reference signals that have not been precoded are subjected to transmit beamforming and then transmitted.
  • reference signals s RS2 transmitted in step S200 are sometimes referred to as a second reference signal RS2.
  • Receive BF controller 160 of user equipment UE controls receive beamformer 112 (L R receive beamforming circuits RBC) so as to subject received signal vectors to receive beamforming in time division.
  • the above N R reception orthogonal BF weight vectors are orthogonal to one another.
  • receive BF output vectors y RS2 output from receive beamformer 112 are input to calculation processor 150 via down-converter 114 and analog-to-digital converter 120.
  • Calculation processor 150 calculates, for each of N R receive BF output components included in receive BF output vectors y RS2 , reception power ⁇ ⁇ 1 T r RS 2 ⁇ 2 , ⁇ ⁇ 2 T r RS 2 ⁇ 2 , ⁇ , ⁇ ⁇ N R T r RS 2 ⁇ 2 (S220).
  • Each component in the suitable receive BF weight matrix is determined so as not to overlap with another component, that is, so as to satisfy the following formula (3).
  • the suitable receive BF weight matrix includes a number L R of independent reception orthogonal BF weight vectors.
  • a suitable precoding matrix P opt and a suitable postcoding matrix B opt are determined based on the suitable transmit BF weight matrix W T,opt and suitable receive BF weight matrix W R,opt that have been determined as described above.
  • Transmit BF weight controller 80 of small base station MMNB controls transmit beamformer 54 so as to subject reference signals to analog transmit beamforming based on the suitable transmit BF weight matrix, and transmit the signals from N T transmission antennas A T (S300).
  • reference signals s RS3 transmitted in step S300 are sometimes referred to as third reference signal RS3.
  • Receive BF weight controller 160 of user equipment UE controls receive beamformer 112 so as to subject third reference signal RS3 received by reception antennas A R to analog receive beamforming based on a suitable receive BF weight matrix (S310).
  • Third reference signal RS3 received by receive beamformer 112 is input to calculation processor 150 via down-converter 114 and analog-to-digital converter 120.
  • Calculation processor 150 estimates an equivalent channel matrix W R,opt H c W T,opt by using the input third reference signal RS3 (S320).
  • the above-stated equivalent channel matrix is a characteristic matrix indicating signal change caused by transmit beamforming, spatial propagation (channel matrix) and receive beamforming.
  • the estimation of the equivalent channel matrix described above is executed in the same way as a general channel estimation. For example, estimation of an equivalent channel matrix by using the least squares method can be adopted.
  • the estimated equivalent channel matrix is fed back to small base station MMNB from user equipment UE via feedback unit 180 (S330).
  • a suitable precoding matrix and a suitable postcoding matrix are determined by using the estimated equivalent channel matrix.
  • the suitable precoding matrix is determined in small base station MMNB (S340), and the suitable postcoding matrix is determined in user equipment UE (S350).
  • S340 small base station MMNB
  • S350 user equipment UE
  • the equivalent channel matrix is subjected to single value decomposition as shown in the following formula (4).
  • W R , opt H c W T , opt VDU H
  • the left singular matrix V and right singular matrix U are both M-by-M unitary matrices
  • singular value matrix D is an M-by-M diagonal matrix having the singular value of an equivalent channel matrix W R,opt H c W T,opt as a diagonal component.
  • P opt U
  • B opt V H
  • suitable postcoding matrices can be determined based on the MMSE (minimal mean square error) rule, as explained below.
  • a suitable precoding matrix is determined by single value decomposition as described above. According to the MMSE rule, a suitable postcoding matrix is represented as shown in the following formula (5).
  • B opt H ⁇ P opt H ⁇ P opt H + ⁇ ⁇ 1 I ⁇ 1 H ⁇ P opt H
  • is a reception SNR
  • H ⁇ is an equivalent channel matrix W R,opt H c W T,opt
  • I is an M-by-M unit matrix.
  • a suitable postcoding matrix is determined based on the MMSE rule as described above, the estimation error of an equivalent channel matrix can be reduced by use of a reception SNR. Accordingly, a suitable postcoding matrix can be determined with higher accuracy.
  • precoding and postcoding based on a code book which is a conventional technique, may be adopted.
  • weight matrices are determined in stages. That is, a suitable transmit BF weight and a suitable receive BF weight are first determined, and a suitable precoding weight and a suitable postcoding weight are determined based thereupon. Accordingly, the number of combinations to be calculated is suppressed compared to a configuration in which every possible combination of weight matrices (a transmit BF weight, receive BF weight, precoding weight and postcoding weight) are tested to determine suitable matrices. As a result, the computational complexity required for weight matrix determination is reduced, while suitable weight matrices are determined.
  • orthogonal beams are generated by beamforming in user equipment UE and reference signals are received also in the first stage in which a suitable transmit BF weight is determined.
  • receive beamforming gain can be obtained compared to a configuration in which orthogonal beams are not generated, making accurate selection of a suitable transmit BF weight possible.
  • Figs. 10 and 12 are operational flows indicating the weight matrix determination of the present embodiment.
  • receive BF output vectors y RS1 output from receive beamformer 112 are input to calculation processor 150.
  • ⁇ n R is an N R -by-1 orthogonal vector that includes a component A n R e j ⁇ 1 , n R , A n R e j ⁇ 2 , n R ,... A n R e j ⁇ N R , n R corresponding to the n R th (1 ⁇ n R ⁇ N R ) reception antenna A R included in each of N R reception orthogonal BF weight vectors ⁇ 1 T , ⁇ 2 T , ⁇ , ⁇ N R T .
  • ⁇ n R 1 N R e ⁇ j 2 ⁇ ⁇ N R ⁇ 1 ⁇ n R e ⁇ j 2 ⁇ ⁇ N R ⁇ 2 ⁇ n R ⁇ e ⁇ j 2 ⁇ ⁇ N R ⁇ N R ⁇ n R T .
  • Calculation processor 150 estimates a channel matrix H c W T,opt using the acquired received signal vector r RS2 (S232).
  • the above-stated channel matrix is a characteristic matrix indicating signal change caused by transmit beamforming and spatial propagation.
  • the above-stated channel matrix estimation is carried out in the same way as general channel estimation. For example, channel matrix estimation using the least squares method can be adopted.
  • Calculation processor 150 selects candidate receive BF weight vectors w R,can,1 from among a plurality (Y (Y ⁇ M (the number of streams))) of receive BF weight vector candidates stored in storage unit 190 (S242).
  • Vectors of choice may be adopted as the receive BF weight vector candidates.
  • a plurality of steering vectors may be adopted as the receive BF weight vector candidates.
  • calculation processor 150 calculates the reception power F (Frobenius norm) ⁇ w R , can , l T H c W T , opt ⁇ F 2 of the selected candidate receive BF weight vectors using estimated channel matrix H c W T,opt (S252).
  • F Frerobenius norm
  • step S262 determines in step S262 that not all of the receive BF weight vector candidates have been selected (S262: NO)
  • step S242 new candidate receive BF weight vectors are selected, and reception power F is calculated.
  • the above steps are repeated Y times.
  • Each component in the suitable receive BF weight matrix is determined so as not to overlap with another component, that is, so as to satisfy the following formula (6).
  • a suitable precoding matrix P opt and a suitable postcoding matrix B opt are determined using the same method as that in the first embodiment based on the suitable transmit BF weight matrix W T,opt and suitable receive BF weight matrix W R,opt that have been determined as described above (S300-S350).
  • receive BF weight vector candidates can be adopted at choice, suitable receive BF weight matrices can be set in a more flexible manner.
  • N R -by-1 receive BF output vectors are generated by L R receive beamforming circuits RBC carrying out receive beamforming (N R /L R ) times in time division (steps S120 and S210).
  • L R receive BF output components that serve as receive BF output vector elements are acquired for each of a number K of phase offsets ⁇ 1, 2, ... by each of the K phase offsets ⁇ 1, 2, ... being added to the L R reception orthogonal BF vectors per time division process in each of the above-stated steps.
  • N R /L R time division process
  • Reception orthogonal BF weight vectors corresponding to phase offset ⁇ K are represented by the following formula.
  • ⁇ l ⁇ k A 1 e j ⁇ l , 1 A 2 e j ⁇ l , 2 + j 2 ⁇ ⁇ ⁇ 1 ⁇ d ⁇ sin ⁇ ⁇ ⁇ A N R e j ⁇ l , N R + j 2 ⁇ ⁇ ⁇ N R ⁇ 1 ⁇ d ⁇ sin ⁇ ⁇ T
  • the number K and difference ( ⁇ (K+1) - ⁇ K ) of phase offset ⁇ are arbitrarily determined.
  • step S130 a sum of reception power P RS1 is calculated for each of the K receive BF output vectors.
  • step S140 the highest sum of reception power P RS1 is fed back to small base station MMNB.
  • step S220 reception power is calculated for each of the N R (that is, a total of (K ⁇ N R )) receive BF output components included in each of the K receive BF output vectors.
  • step S230 L R receive BF output components are selected in decreasing order of reception power, and as described above, a suitable receive BF weight matrix is determined.
  • scanning is performed by adding phase offsets ⁇ to L R reception orthogonal BF weights (orthogonal reception beams), enabling detection of directions (beam angles) with higher reception power.
  • received signal vectors may be acquired by receive beamforming circuit RBC bypassing input from reception antennas A R . The following is a specific explanation thereof.
  • Fig. 13 is a drawing illustrating a detailed configuration of receive beamforming circuits RBC of the present modification.
  • each of receive beamforming circuits RBC included in receive beamformer 112 comprises a bypass circuit that selects one of N R inputs from reception antennas A R (that is, one of the elements of an N R- by-1 received signal vector) based on the control by receive BF weight controller 160.
  • L R receive beamforming circuits RBC included in receive beamformer 112 carry out a bypass receiving operation for acquiring received signal vector elements corresponding to L R reception antennas A R .
  • the reception operation of the present modification described above is carried out in place of steps S210-S222 in the second embodiment.
  • the other operations are carried out as described in the second embodiment.
  • Transmit beamformer 54 of small base station MMNB may have a full-array configuration in which one transmission beam is generated using all N T transmission antennas A T , or a sub-array configuration in which one transmission beam is generated using blocks of (N T /L T ) transmission antennas A T .
  • receive beamformer 112 of user equipment UE may have a full-array configuration in which one reception beam is generated using all N R reception antennas A R , or a sub-array configuration in which one reception beam is generated using blocks of (N R /L R ) reception antennas A R .
  • the scale of an analog circuit (variable phase shifter PS, added AD, etc.) can be reduced. As a result, loss due to the analog circuit is reduced, and device manufacturing costs are reduced.
  • control information (feedback information, etc.) between small base station MMNB and user equipment UE can be carried out using a route of choice. For example, if a radio link is established between small base station MMNB and user equipment UE, control information may be exchanged by direct transmission/reception of radio signals. Further, if the above-stated radio link is not established, small base station MMNB and user equipment UE may transmit/receive control information via macro base station MeNB.
  • inter-user interference is preferably suppressed by performing precoding based on block diagonalization.
  • rank adaptation which adaptively controls the number of transmission streams, may be applied. For example, when a maximum of M streams can be transmitted between small base station MMNB and user equipment UE, the number of transmission streams that maximizes a channel capacity C can be determined by first determining a suitable transmit BF weight matrix and a suitable receive BF weight matrix for all M streams.
  • small base station MMNB is exemplified as a transmitter device, and user equipment UE is exemplified as a receiver device.
  • user equipment UE may function as a transmission-side device, and small base station MMNB may function as a reception-side device. That is, the aforementioned weight matrix determination may also be applied to uplink transmission.
  • suitable BF weight matrices are determined for downlink transmission.
  • TDD time division duplex
  • FDD frequency division duplex
  • suitable BF weight matrices are determined for the downlink transmission, and subsequently a suitable BF weight matrix is determined for the uplink transmission as described in the embodiments.
  • Beamforming gain would preferably be used to determine the suitable BF weight matrix from the transmission side with the largest number of antennas (that is, downlink transmission).
  • a suitable transmit BF weight (vector and matrix) is determined on the transmission side (small base station MMNB), and a suitable receive BF weight (vector and matrix) is determined on the reception side (user equipment UE).
  • weight determination can be carried out in locations of choice in radio communication system 1.
  • a suitable receive BF weight may be determined on the transmission side
  • a suitable transmit BF weight may be determined on the reception side.
  • suitable precoding matrices are determined on the transmission side (small base station MMNB), and suitable postcoding matrices are determined on the reception side (user equipment UE).
  • suitable precoding matrix and suitable postcoding matrix may be determined on either the transmission side or the reception side.
  • the number L R of receive beamforming circuits RBC are preferably a divisor of the number N R of reception antennas A R . If the number of times (N R /L R ) time division processing is performed is indivisible, time division processing should be carried out the number of times obtained by rounding up the first decimal point of N R /L R .
  • User equipment UE is a device of choice capable of performing radio communication with base stations (macro base station MeNB, and small base station MMNB) in a network.
  • User equipment UE maybe a mobile telephone terminal such as a feature phone or a smartphone, a tablet terminal, a desktop PC, a notebook PC, an ultra-mobile personal computer (UMPC), a portable gaming device, or another type of radio terminal, for example.
  • UMPC ultra-mobile personal computer
  • Each of the functions carried out by the CPU in each of the elements (user equipment UE and small base station MMNB) within communication system 1 may be carried out by hardware in place of a CPU, or may be carried out by a programmable logic device such as a field programmable gate array (FPGA) or a digital signal processor (DSP), for example.
  • a programmable logic device such as a field programmable gate array (FPGA) or a digital signal processor (DSP), for example.
  • FPGA field programmable gate array
  • DSP digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Claims (6)

  1. Procédé de commande de communication radio dans un système de communication radio, comprenant
    un dispositif émetteur fourni avec
    un précodeur (32) configuré pour réaliser un précodage en utilisant une matrice de précodage,
    un formateur de faisceau d'émission (54) configuré pour réaliser une formation de faisceau d'émission, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de formation de faisceau (BF) d'émission est communiquée à des signaux après que le précodage a été exécuté, et
    un nombre NT d'antennes d'émission (AT) pour émettre des signaux soumis à la formation de faisceau d'émission, et
    un dispositif récepteur fourni avec
    un nombre NR d'antennes de réception (AR) pour recevoir des signaux qui ont été émis depuis le dispositif émetteur et se sont propagés à travers un espace,
    un formateur de faisceau de réception (112) configuré pour réaliser une formation de faisceau de réception, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de BF de réception est communiquée aux signaux reçus par la pluralité d'antennes de réception, et
    un postcodeur (132) configuré pour réaliser, en utilisant une matrice de postcodage, un postcodage sur les signaux qui ont été soumis à la formation de faisceau de réception analogique,
    le procédé comprenant :
    une génération d'un vecteur de sortie de BF de réception ayant un nombre NR de composants de sortie de BF de réception, par un nombre LR de circuits de formation de faisceau de réception fournis dans le formateur de faisceau de réception (112) en réalisant des temps de formation de faisceau (NR/LR) de réception selon une répartition dans le temps en ce qui concerne un vecteur de signal reçu reçu par le nombre NR des antennes de réception,
    dans lequel chaque composant de sortie de BF de réception correspond à un premier signal de référence reçu par un faisceau de réception différent d'une pluralité de NR faisceaux de réception orthogonaux ;
    un calcul de la puissance de réception pour chacun des NR composants de sortie de BF de réception ; et
    une sélection des LR composants de sortie de BF de réception par ordre décroissant de la puissance de réception, et la détermination d'une matrice de poids de BF de réception adaptée incluant LR vecteurs de poids de BF orthogonaux de réception correspondant aux composants de sortie de BF de réception sélectionnés.
  2. Procédé de commande de communication radio dans un système de communication radio, comprenant
    un dispositif émetteur fourni avec
    un précodeur (32) configuré pour réaliser un précodage en utilisant une matrice de précodage,
    un formateur de faisceau d'émission (54) configuré pour réaliser une formation de faisceau d'émission, dans laquelle une variation en phase et en amplitude correspond à une matrice de poids de formation de faisceau (BF) d'émission est communiquée à des signaux après que le précodage a été exécuté, et
    un nombre NT d'antennes d'émission pour émettre les signaux qui ont été soumis à la formation de faisceau d'émission, et
    un dispositif récepteur fourni avec
    un nombre NR d'antennes de réception pour recevoir des signaux qui ont été émis depuis le dispositif émetteur et se sont propagés à travers un espace,
    un formateur de faisceau de réception (112) configuré pour réaliser une formation de faisceau de réception, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de BF de réception est communiquée aux signaux reçus par la pluralité d'antennes de réception, et
    un postcodeur (132) configuré pour réaliser, en utilisant une matrice de postcodage, un postcodage sur les signaux qui ont été soumis à la formation de faisceau de réception analogique,
    le procédé comprenant :
    une génération d'un vecteur de sortie de BF de réception ayant un nombre NR de composants de sortie de BF de réception, par un nombre LR de circuits de formation de faisceau de réception fournis dans le formateur de faisceau de réception (112) en réalisant des temps de formation de faisceau (NR/LR) de réception selon une répartition dans le temps en ce qui concerne un vecteur de signal reçu reçu par le nombre NR des antennes de réception,
    dans lequel chaque composant de sortie de BF de réception correspond à un premier signal de référence reçu par un faisceau de réception différent d'une pluralité de NR faisceaux de réception orthogonaux ;
    une acquisition du vecteur de signal reçu en multipliant chacun du nombre NR d'opérateurs de séparation correspond au NR d'antennes de réception en ce qui concerne le vecteur de sortie de BF de réception ;
    une estimation d'une matrice de canal en utilisant le vecteur de signal reçu ;
    un calcul de la puissance de réception pour chacun d'une pluralité de vecteurs candidats de poids de BF de réception en utilisant la matrice de canal estimée ; et
    une sélection des LR vecteurs candidats de poids de BF de réception par ordre décroissant de la puissance de réception, et la détermination d'une matrice de poids de BF de réception adaptée incluant les LR vecteurs candidats de poids de BF de réception sélectionnés.
  3. Procédé de commande de communication radio selon l'une quelconque des revendications 1 à 2, comprenant en outre :
    avant la détermination de la matrice de poids de BF de réception adaptée :
    une sélection d'un vecteur candidat de poids de BF d'émission parmi une pluralité de vecteur candidats de poids de BF d'émission ;
    une émission, depuis les NT antennes d'émission, d'un signal de référence soumis à une formation de faisceau d'émission analogique sur la base d'une matrice candidate de poids de BF d'émission incluant le vecteur candidat de poids de BF d'émission sélectionné ;
    une génération d'un vecteur de sortie de BF de réception ayant un nombre NR de composants de sortie de BF de réception, par un nombre LR de circuits de formation de faisceau de réception en réalisant des temps de formation de faisceau (NR/LR) de réception en ce qui concerne un vecteur de signal reçu correspondant au signal de référence reçu par le nombre NR des antennes de réception ;
    le calcul de la somme de la puissance de réception des vecteurs de sortie de BF de réception ;
    l'acquisition d'une pluralité des sommes de la puissance de réception en exécutant la sélection, l'émission, la génération et le calcul sur une pluralité de vecteurs candidats de poids de BF d'émission ; et
    la sélection des LT vecteurs candidats de poids de BF d'émission par ordre décroissant de la somme de puissance de réception, et la détermination d'une matrice de poids de BF adaptée incluant les LT vecteurs candidats de poids de BF d'émission sélectionnés.
  4. Procédé de commande de communication radio selon la revendication 3, comprenant en outre :
    une émission, depuis le dispositif émetteur, d'un signal de référence soumis à une formation de faisceau d'émission analogique sur la base d'une matrice de poids de BF d'émission adaptée ;
    une estimation d'une matrice de canal équivalent indiquant un résultat du signal de référence reçu par le dispositif récepteur soumis à une formation de faisceau de réception analogique sur la base de la matrice de poids de BF de réception adaptée ; et
    une détermination d'une matrice de précodage adaptée et d'une matrice de postcodage adaptée sur la base de la matrice de canal équivalente estimée.
  5. Système de communication radio comprenant
    un dispositif émetteur fourni avec
    un précodeur (32) configuré pour réaliser un précodage en utilisant une matrice de précodage,
    un formateur de faisceau d'émission (54) configuré pour réaliser une formation de faisceau d'émission, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de formation de faisceau (BF) d'émission est communiquée à des signaux après que le précodage a été exécuté, et
    un nombre NT d'antennes d'émission pour émettre les signaux qui ont été soumis à la formation de faisceau d'émission, et
    un dispositif récepteur fourni avec
    un nombre NR d'antennes de réception pour recevoir des signaux qui ont été émis depuis le dispositif émetteur et se sont propagés à travers un espace,
    un formateur de faisceau de réception (112) configuré pour réaliser une formation de faisceau de réception, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de BF de réception est communiquée aux signaux reçus par la pluralité d'antennes de réception, et
    un postcodeur (132) configuré pour réaliser, en utilisant une matrice de postcodage, un postcodage sur les signaux qui ont été soumis à une formation de faisceau de réception analogique,
    dans lequel
    le formateur de faisceau de réception (112) génère un vecteur de sortie de BF de réception ayant un nombre NR de composants de sortie de BF de réception, par un nombre LR de circuits de formation de faisceau de réception fournis dans le formateur de faisceau de réception (112) en réalisant des temps de formation de faisceau (NR/LR) de réception selon une répartition dans le temps en ce qui concerne un vecteur de signal reçu reçu par le nombre NR d'antennes de réception,
    dans lequel chaque composant de sortie de BF de réception correspond à un premier signal de référence reçu par un faisceau de réception différent d'une pluralité de NR faisceaux de réception orthogonaux, et
    le dispositif récepteur est fourni en outre avec un processeur de calcul configuré pour calculer la puissance de réception pour chacun des NR composants de sortie de BF de réception, et
    sélectionner les LR composants de sortie de BF de réception par ordre décroissant de la puissance de réception, et déterminer une matrice de poids de BF de réception adaptée incluant LR vecteurs de poids de BF orthogonaux de réception correspondant aux composants de sortie de BF de réception sélectionnés.
  6. Système de communication radio, comprenant
    un dispositif émetteur fourni avec
    un précodeur (32) configuré pour réaliser un précodage en utilisant une matrice de précodage,
    un formateur de faisceau d'émission (54) configuré pour réaliser une formation de faisceau d'émission, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de BF d'émission est communiquée à des signaux après que le précodage a été exécuté, et
    un nombre NT d'antennes d'émission pour émettre les signaux qui ont été soumis à la formation de faisceau d'émission, et
    un dispositif récepteur fourni avec
    un nombre NR d'antennes de réception pour recevoir des signaux qui ont été émis depuis le dispositif émetteur et se sont propagés à travers un espace,
    un formateur de faisceau de réception (112) configuré pour réaliser une formation de faisceau de réception, dans laquelle une variation en phase et en amplitude correspondant à une matrice de poids de BF de réception est communiquée aux signaux reçus par la pluralité d'antennes de réception, et
    un postcodeur (132) configuré pour réaliser, en utilisant une matrice de postcodage, un postcodage sur les signaux qui ont été soumis à la formation de faisceau de réception analogique,
    dans lequel
    le formateur de faisceau de réception (112) génère un vecteur de sortie de BF de réception ayant un nombre NR de composants de sortie de BF de réception, par un nombre LR de circuits de formation de faisceau de réception fournis dans le formateur de faisceau de réception (112) en réalisant des temps de formation de faisceau (NR/LR) de réception selon une répartition dans le temps en ce qui concerne un vecteur de signal reçu reçu par le nombre NR d'antennes de réception,
    dans lequel chaque composant de sortie de BF de réception correspond à un premier signal de référence reçu par un faisceau de réception différent d'une pluralité de NR faisceaux de réception orthogonaux,
    le dispositif récepteur est fourni en outre avec un processeur de calcul configuré pour
    acquérir le vecteur de signal reçu en multipliant chacun d'un nombre NR d'opérateurs de séparation correspond au NR d'antennes de réception en ce qui concerne le vecteur de sortie BF de réception ;
    estimer une matrice de canal en utilisant le vecteur de signal reçu ;
    calculer la puissance de réception pour chacun d'une pluralité de vecteurs candidats de poids de BF de réception en utilisant la matrice de canal estimée ; et
    sélectionner les LR vecteurs candidats de poids de BF de réception par ordre décroissant de la puissance de réception, et déterminer une matrice de poids de BF de réception adaptée incluant les LR vecteurs candidats de poids de BF sélectionnés.
EP16768819.1A 2015-03-26 2016-03-23 Procédé de commande de radiocommunication et système de radiocommunication Active EP3276860B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015063557 2015-03-26
PCT/JP2016/059179 WO2016152916A1 (fr) 2015-03-26 2016-03-23 Procédé de commande de radiocommunication et système de radiocommunication

Publications (3)

Publication Number Publication Date
EP3276860A1 EP3276860A1 (fr) 2018-01-31
EP3276860A4 EP3276860A4 (fr) 2018-04-25
EP3276860B1 true EP3276860B1 (fr) 2019-09-04

Family

ID=56977545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16768819.1A Active EP3276860B1 (fr) 2015-03-26 2016-03-23 Procédé de commande de radiocommunication et système de radiocommunication

Country Status (5)

Country Link
US (1) US10116370B2 (fr)
EP (1) EP3276860B1 (fr)
JP (1) JP6666331B2 (fr)
CN (1) CN107409001B (fr)
WO (1) WO2016152916A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276860B1 (fr) * 2015-03-26 2019-09-04 NTT DoCoMo, Inc. Procédé de commande de radiocommunication et système de radiocommunication
EP3411958B1 (fr) * 2016-02-04 2019-10-23 Telefonaktiebolaget LM Ericsson (PUBL) Procédé pour adapter une forme d'un faisceau
US11160102B2 (en) * 2016-03-25 2021-10-26 Apple Inc. Full duplex support in fifth generation (5G) systems
US10720982B2 (en) * 2017-01-05 2020-07-21 Intel IP Corporation Measurement of beam refinement signal
JP6441970B2 (ja) * 2017-01-11 2018-12-19 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7109883B2 (ja) * 2017-02-24 2022-08-01 株式会社Nttドコモ 無線基地局及び無線通信方法
JPWO2018173891A1 (ja) 2017-03-22 2019-12-19 日本電気株式会社 第1の通信装置、第2の通信装置、方法、プログラム、記録媒体及びシステム
CN109510791B (zh) * 2017-09-15 2024-10-11 华为技术有限公司 传输方法和传输装置
US10469109B2 (en) * 2017-09-19 2019-11-05 Qualcomm Incorporated Predistortion for transmitter with array
WO2018141163A1 (fr) * 2017-09-30 2018-08-09 北京小米移动软件有限公司 Procédé et appareil de transmission de données
US10812157B2 (en) * 2017-12-07 2020-10-20 Mitsubishi Electric Corporation Wireless device and wireless communication control method
US10516452B1 (en) * 2018-06-08 2019-12-24 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication
US10644771B2 (en) * 2018-06-08 2020-05-05 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication
DE102019129730A1 (de) * 2018-11-28 2020-05-28 Samsung Electronics Co., Ltd. Drahtlos-Kommunikationsvorrichtung, welche konfiguriert ist, um eine Strahl-Sweep-Operation durchzuführen und Verfahren zum Betreiben derselben
US10892814B2 (en) * 2018-12-07 2021-01-12 Charter Communications Operating, Llc Performing receive beamforming in a fifth generation millimeter wave system
US10979117B2 (en) * 2018-12-15 2021-04-13 MMRFIC Technology Pvt. Ltd. Method, system and apparatus for beam forming in a radio frequency transceiver with reduced complexity
WO2022126619A1 (fr) * 2020-12-18 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Procédés et dispositifs de formation de faisceau
US11456760B1 (en) * 2021-03-05 2022-09-27 Motorola Solutions, Inc. Linearizing narrowband carriers with low resolution predistorters
JP2023037446A (ja) * 2021-09-03 2023-03-15 日本電気株式会社 無線受信装置及びその方法
US11342973B1 (en) * 2021-10-19 2022-05-24 King Faisal University System and method for maintaining link communications in millimeter wave cellular networks

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555534A (en) * 1994-08-05 1996-09-10 Acuson Corporation Method and apparatus for doppler receive beamformer system
US5909460A (en) * 1995-12-07 1999-06-01 Ericsson, Inc. Efficient apparatus for simultaneous modulation and digital beamforming for an antenna array
US6980614B2 (en) * 2002-01-14 2005-12-27 Raytheon Company System and method for subband beamforming using adaptive weight normalization
US7327800B2 (en) * 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
DE10223564A1 (de) * 2002-05-27 2003-12-11 Siemens Ag Verfahren zur Übertragung von Informationen in einem Funkkommunikationssystem mit Sendestation und Empfangsstationen mit jeweils einer Antenne mit mehreren Antennenelementen und Funkkommunikationssystem
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7184492B2 (en) * 2003-02-10 2007-02-27 Ericsson Inc. Using antenna arrays in multipath environment
US20040192218A1 (en) * 2003-03-31 2004-09-30 Oprea Alexandru M. System and method for channel data transmission in wireless communication systems
US7327795B2 (en) * 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems
US8032107B1 (en) * 2003-06-26 2011-10-04 Cypress Semiconductor Corporation Power management by constant awake correlator
ATE533245T1 (de) * 2003-08-28 2011-11-15 Motorola Solutions Inc Ofdm kanalschätzung und -nachführung unter verwendung mehrere sendeantennen
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
KR100713336B1 (ko) * 2004-03-08 2007-05-04 삼성전자주식회사 이동통신시스템에서의 신호 검출 순서 결정방법
KR100621432B1 (ko) * 2004-04-21 2006-09-08 삼성전자주식회사 복수의 송신 안테나들을 사용하는 다중셀 직교 주파수분할 다중 방식 통신시스템에서 채널 추정 장치 및 방법
JP4604798B2 (ja) * 2004-05-10 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US8111789B2 (en) * 2004-10-06 2012-02-07 Broadcom Corporation Method and system for channel estimation in a single channel MIMO system with multiple RF chains for WCDMA/HSDPA
US8023554B2 (en) * 2004-10-06 2011-09-20 Broadcom Corporation Method and system for single antenna receiver system for WCDMA
US8098776B2 (en) * 2004-10-06 2012-01-17 Broadcom Corporation Method and system for pre-equalization in a single weight spatial multiplexing MIMO system
JP4765322B2 (ja) * 2005-01-21 2011-09-07 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US8077669B2 (en) * 2005-02-07 2011-12-13 Broadcom Corporation Method and system for adaptive modulations and signal field for closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7924943B2 (en) * 2005-02-07 2011-04-12 Broadcom Corporation Method and system for optional closed loop mechanism with adaptive modulations for multiple input multiple output (MIMO) wireless local area network (WLAN) system
JP4604800B2 (ja) * 2005-04-01 2011-01-05 ソニー株式会社 無線通信装置及び無線通信方法
US8737494B2 (en) * 2006-01-09 2014-05-27 Broadcom Corporation Method and system for quantization for a general beamforming matrix in feedback information
KR100790968B1 (ko) * 2005-08-10 2008-01-02 삼성전자주식회사 차동신호 전송을 위한 입, 출력 드라이버회로 및 이를구비한 차동신호 전송 장치 및 전송방법
US8233552B2 (en) * 2005-11-07 2012-07-31 Broadcom Corporation Method and system for utilizing givens rotation expressions for asymmetric beamforming matrices in explicit feedback information
FR2899042B1 (fr) * 2006-03-21 2008-05-02 Commissariat Energie Atomique Procede de codage spatio-temporel pour systeme de communication bi-antenne de type uwb impulsionnel
US8233556B2 (en) * 2006-07-19 2012-07-31 Texas Instruments Incorporated Reduced feedback transmit beamforming
US8000418B2 (en) * 2006-08-10 2011-08-16 Cisco Technology, Inc. Method and system for improving robustness of interference nulling for antenna arrays
FR2906658A1 (fr) * 2006-10-03 2008-04-04 Commissariat Energie Atomique Procede de codage spatio-temporel pour systeme de communication multi-antenne de type uwb impulsionnel.
FR2906659B1 (fr) * 2006-10-03 2008-12-19 Commissariat Energie Atomique Procede de codage spatio-temporel pour systeme de communication multi-antenne de type uwb impulsionnel.
KR101370916B1 (ko) * 2007-08-22 2014-03-10 엘지전자 주식회사 다수의 부 반송파를 이용하는 다중 안테나 시스템에서의,데이터 송수신 방법
US8457265B2 (en) * 2007-08-23 2013-06-04 Qualcomm Incorporated Method and apparatus for generating coefficients in a multi-input-multi-output (MIMO) system
KR101399029B1 (ko) * 2007-09-12 2014-06-27 삼성전자주식회사 무선통신시스템에서 파일럿을 전송하기 위한 장치 및 방법
US8229017B1 (en) * 2007-12-13 2012-07-24 Marvell International Ltd. Transmit beamforming utilizing channel estimation matrix decomposition feedback in a wireless MIMO communication system
GB0804616D0 (en) * 2008-03-12 2008-04-16 Cambridge Silicon Radio Ltd Diversity reception
US8417191B2 (en) * 2008-03-17 2013-04-09 Samsung Electronics Co., Ltd. Method and system for beamforming communication in high throughput wireless communication systems
WO2009128030A1 (fr) * 2008-04-18 2009-10-22 Koninklijke Philips Electronics N.V. Précodage amélioré de modulation à deux porteuses
JP5154295B2 (ja) * 2008-05-02 2013-02-27 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ装置並びに通信制御方法
KR101561704B1 (ko) * 2008-06-10 2015-10-20 한국전자통신연구원 다중 셀 협력 통신 시스템 및 단말 장치
KR101508704B1 (ko) * 2008-08-19 2015-04-03 한국과학기술원 다중안테나 시스템에서 송ㆍ수신 장치 및 방법
US8457240B2 (en) * 2008-08-25 2013-06-04 Daniel Lee Methods of selecting signal transmitting, receiving, and/or sensing devices with probabilistic evolutionary algorithms in information conveyance systems
US8798117B1 (en) * 2008-08-29 2014-08-05 Spidercloud Wireless Inc Rake receiver methods and apparatus
US8238488B1 (en) * 2008-09-02 2012-08-07 Marvell International Ltd. Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
KR101501714B1 (ko) * 2008-10-14 2015-03-11 삼성전자주식회사 미모 무선 통신 시스템에서 오버헤드를 줄이기 위한 장치 및 방법
KR101139222B1 (ko) * 2008-12-22 2012-04-23 한국전자통신연구원 디지털 전치왜곡 신호를 생성하는 방법 및 장치
EP2392048B1 (fr) * 2009-02-02 2018-10-31 Commonwealth Scientific and Industrial Research Organisation Réseau d'antennes adaptatif hybride
US8451932B2 (en) * 2009-02-23 2013-05-28 Texas Instruments Incorporated Precoding codebook design for single user MIMO
US8792573B2 (en) * 2009-06-29 2014-07-29 Lg Electronics Inc. Method and apparatus for data transmission based on distributed discrete power control in cooperative multi-user multi-input multi-output system
US8391429B2 (en) * 2009-08-26 2013-03-05 Qualcomm Incorporated Methods for determining reconstruction weights in a MIMO system with successive interference cancellation
US8451944B2 (en) * 2009-09-04 2013-05-28 Hitachi, Ltd. Tomlinson harashima precoding with additional receiver processing in a multi-user multiple-input multiple-output wireless transmission system
KR101677313B1 (ko) * 2009-09-30 2016-11-17 인터디지탈 패튼 홀딩스, 인크 상향링크에서 다중 안테나 전송을 위한 방법 및 장치
US8675794B1 (en) * 2009-10-13 2014-03-18 Marvell International Ltd. Efficient estimation of feedback for modulation and coding scheme (MCS) selection
US8917796B1 (en) * 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
EP2388931B1 (fr) * 2010-05-21 2017-09-13 Imec Procédé et système de formation de faisceaux analogiques/numériques mixtes dans des systèmes de communication sans fil
WO2012015391A1 (fr) * 2010-07-27 2012-02-02 Thomson Licensing Procédé et appareil destinés à coopérer dans des réseaux radio cognitifs
US8537928B2 (en) * 2010-10-08 2013-09-17 Nec Laboratories America, Inc. Channel estimation methods and systems based on power measurement at receivers
US8351555B2 (en) * 2011-02-03 2013-01-08 Nokia Corporation Apparatus and method for SINR estimation HSDPA MIMO receiver
JP5720284B2 (ja) * 2011-02-10 2015-05-20 ソニー株式会社 端末装置、フィードバック制御方法、基地局、ペアリング制御方法、プログラム及び無線通信システム
JP2012178727A (ja) * 2011-02-25 2012-09-13 Sharp Corp 受信装置、送信装置、受信方法、送信方法、プログラムおよび無線通信システム
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
EP2702750A4 (fr) * 2011-04-28 2014-10-01 Univ Columbia Systèmes, procédés et supports pour sélectionner des antennes et des formeurs de faisceaux
US20120307926A1 (en) * 2011-06-01 2012-12-06 Industrial Technology Research Institute Beam-former searching method and central unit using the method
KR101764261B1 (ko) * 2011-07-15 2017-08-04 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
KR20130018079A (ko) * 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법
KR20130017572A (ko) * 2011-08-11 2013-02-20 삼성전자주식회사 하이브리드 빔포밍 시스템에서 아날로그 빔 결정 방법 및 장치
KR101820731B1 (ko) * 2011-08-25 2018-01-22 삼성전자주식회사 다수의 직교 주파수 분할 다중 파라미터 셋을 지원하는 무선통신 시스템에서 통신 방법 및 장치
CN102983935B (zh) * 2011-09-07 2017-10-27 株式会社Ntt都科摩 基于干扰对齐的预编码、预解码方法及发射机和移动终端
KR101884332B1 (ko) * 2011-09-14 2018-08-01 삼성전자주식회사 무선통신 시스템에서 가상 셀 형성 방법 및 장치
FR2985134A1 (fr) * 2011-12-23 2013-06-28 France Telecom Procede d'emission d'au moins un signal multi-porteuse forme de symboles ofdm-oqam
GB2498937A (en) * 2012-01-31 2013-08-07 Texas Instruments Ltd A high data rate SerDes receiver arranged to receive input from a low data rate SerDes transmitter
US9401826B2 (en) * 2012-02-17 2016-07-26 Sony Corporation Signal processing unit employing a blind channel estimation algorithm and method of operating a receiver apparatus
JP6045812B2 (ja) * 2012-04-27 2016-12-14 株式会社Nttドコモ 無線通信方法、無線基地局及び無線通信システム
US9048894B2 (en) * 2012-05-22 2015-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus of beam training for MIMO operation
US8767862B2 (en) * 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US9935699B2 (en) * 2012-06-22 2018-04-03 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming in a wireless communication system
US20140073337A1 (en) * 2012-09-11 2014-03-13 Electronics And Telecommunications Research Institute Communication device and communication method using millimeter-wave frequency band
WO2014045483A1 (fr) * 2012-09-18 2014-03-27 日本電気株式会社 Dispositif de mesure de qualité de réception et procédé de mesure de qualité de réception
US9473229B2 (en) * 2012-10-05 2016-10-18 Samsung Electronics Co., Ltd. High-throughput beamforming MIMO receiver for millimeter wave communication and method
KR102050928B1 (ko) * 2012-10-16 2019-12-03 삼성전자주식회사 이동통신 시스템에서 사용자 단말 선택 방법 및 장치
CN103780331B (zh) * 2012-10-19 2017-08-18 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
CN103795489B (zh) * 2012-10-29 2017-05-24 电信科学技术研究院 传输编码指示信息和确定预编码矩阵的方法、系统及设备
KR102011995B1 (ko) * 2012-11-23 2019-08-19 삼성전자주식회사 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치
CA2891540C (fr) * 2012-11-28 2020-09-15 Sony Corporation Dispositif de commande de communication, procede de commande de communication, et dispositif terminal
US9374141B2 (en) * 2012-12-07 2016-06-21 Sun Patent Trust Signal generation method, transmission device, reception method, and reception device
KR102048880B1 (ko) * 2013-04-29 2019-11-26 삼성전자주식회사 다단 빔포밍 시스템을 위한 통신 방법 및 장치
KR102079629B1 (ko) * 2013-05-02 2020-02-21 삼성전자주식회사 무선 통신 시스템에서 하이브리드 빔포밍의 복잡도 개선을 위한 방법 및 장치
KR102183213B1 (ko) * 2013-05-10 2020-11-25 삼성전자주식회사 무선 통신 시스템에서 송수신 빔을 선택하기 위한 장치 및 방법
US9647735B2 (en) * 2013-05-31 2017-05-09 Intel IP Corporation Hybrid digital and analog beamforming for large antenna arrays
KR102065696B1 (ko) * 2013-08-01 2020-01-14 삼성전자주식회사 무선 통신 시스템에서 적응적 송신 전력 정규화를 위한 장치 및 방법
EP3039834B1 (fr) * 2013-08-30 2018-10-24 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Procede et appareil de transmission d'un signal avec enveloppe constante
WO2015045709A1 (fr) * 2013-09-26 2015-04-02 日本電気株式会社 Appareil de transmission de signaux, appareil de compensation de distorsion et procédé de transmission de signaux
WO2015064868A1 (fr) * 2013-11-04 2015-05-07 Lg Electronics Inc. Pré-compensation de l'erreur de déplacement de phase
US9288007B2 (en) * 2013-11-15 2016-03-15 At&T Intellectual Property I, L.P. Endpoint device antenna beam forming based jamming detection and mitigation
KR102189315B1 (ko) * 2013-12-04 2020-12-11 삼성전자주식회사 다중 입출력 시스템에서 상향링크 스케쥴링 방법 및 장치
KR102143466B1 (ko) * 2014-01-03 2020-08-12 삼성전자주식회사 송신 장치, 수신 장치 및 그 제어 방법
KR102195688B1 (ko) * 2014-02-20 2020-12-28 삼성전자 주식회사 빔포밍을 지원하는 무선 통신 시스템에서 피드백 정보 처리 방법 및 장치
JP6416869B2 (ja) * 2014-02-21 2018-10-31 株式会社Nttドコモ 無線通信制御方法および無線通信システム
KR102130294B1 (ko) * 2014-04-02 2020-07-08 삼성전자주식회사 무선 통신 시스템에서 단일 스트림 다중 빔 송수신 방법 및 장치
WO2015149312A1 (fr) * 2014-04-02 2015-10-08 华为技术有限公司 Procédé et appareil de communication basé sur la formation de faisceaux
JP2015207816A (ja) * 2014-04-17 2015-11-19 富士通株式会社 受信装置、受信方法、及び、無線通信システム
WO2015190648A1 (fr) * 2014-06-12 2015-12-17 Lg Electronics Inc. Procédé de balayage de faisceau pour une formation de faisceau hybride dans un système de communication sans fil et appareil associé
CN107078781B (zh) * 2014-07-17 2021-02-09 Lg电子株式会社 在无线接入系统中支持多秩的混合波束成形方法及装置
CN106716860B (zh) * 2014-09-03 2021-03-16 株式会社Ntt都科摩 无线发送台
US9647736B1 (en) * 2015-03-05 2017-05-09 Quantenna Communications, Inc. Compressed training for massive MU-MIMO in a wireless local area network
US9979448B2 (en) * 2015-03-05 2018-05-22 Ntt Docomo, Inc. Radio communication control method and radio communication system
EP3276860B1 (fr) * 2015-03-26 2019-09-04 NTT DoCoMo, Inc. Procédé de commande de radiocommunication et système de radiocommunication
US9906285B2 (en) * 2015-05-26 2018-02-27 Maxlinear, Inc. Method and system for hybrid radio frequency digital beamforming
US10306597B2 (en) * 2015-07-21 2019-05-28 Samsung Electronics Co., Ltd. Method and apparatus for beam-level radio resource management and mobility in cellular network
US9876657B1 (en) * 2017-03-06 2018-01-23 Xilinx, Inc. System and method for downlink processing in communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107409001A (zh) 2017-11-28
WO2016152916A1 (fr) 2016-09-29
CN107409001B (zh) 2019-02-15
EP3276860A1 (fr) 2018-01-31
JPWO2016152916A1 (ja) 2018-01-18
JP6666331B2 (ja) 2020-03-13
US10116370B2 (en) 2018-10-30
US20180109305A1 (en) 2018-04-19
EP3276860A4 (fr) 2018-04-25

Similar Documents

Publication Publication Date Title
EP3276860B1 (fr) Procédé de commande de radiocommunication et système de radiocommunication
US9647737B2 (en) Radio communication control method and radio communication system
EP3413486B1 (fr) Équipement utilisateur et station de base
US9979448B2 (en) Radio communication control method and radio communication system
US11290169B2 (en) Methods, systems and units of a distributed base station system for handling of downlink communication
EP3404843B1 (fr) Procédé permettant la formation de faisceaux à la fois analogiques et numériques
EP3963845B1 (fr) Procédés, système de station de base répartie, système d'unité radio distante et d'unité en bande de base pour traiter des signaux de liaison montante
US20200382346A1 (en) Efficient sparse channel estimation based on compressed sensing
US8625713B2 (en) Method for beamforming transmissions from a network element having a plurality of antennas, and the network element
EP2670063B1 (fr) Dispositif de traitement d'informations et procédé de traitement d'informations ainsi que support non temporaire lisible par ordinateur dans lequel a été stocké le traitement d'informations
JP6029848B2 (ja) 無線基地局
Suk et al. Dynamic RF beam codebook reduction for cost-efficient mmWave full-duplex systems
US8767880B2 (en) Processing data in a receiver circuit and receiver circuit
US20240187061A1 (en) Methods, baseband unit system and radio unit of a distributed base station having cascade-coupled radio units

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20180328

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 16/28 20090101ALI20180322BHEP

Ipc: H04B 7/08 20060101ALI20180322BHEP

Ipc: H04B 7/06 20060101ALI20180322BHEP

Ipc: H04J 99/00 20090101AFI20180322BHEP

Ipc: H04B 7/04 20170101ALI20180322BHEP

Ipc: H04B 7/10 20170101ALI20180322BHEP

Ipc: H04W 88/02 20090101ALI20180322BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHEN, JIYUN

Inventor name: OBARA, TATSUNORI

Inventor name: OKUMURA, YUKIHIKO

Inventor name: SUYAMA, SATOSHI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1176857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016020039

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1176857

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016020039

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

26N No opposition filed

Effective date: 20200605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016020039

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200323

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9