EP3271076B1 - Comminuting apparatus - Google Patents

Comminuting apparatus Download PDF

Info

Publication number
EP3271076B1
EP3271076B1 EP16704429.6A EP16704429A EP3271076B1 EP 3271076 B1 EP3271076 B1 EP 3271076B1 EP 16704429 A EP16704429 A EP 16704429A EP 3271076 B1 EP3271076 B1 EP 3271076B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
shaft
gas
bearing
comminution device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16704429.6A
Other languages
German (de)
French (fr)
Other versions
EP3271076A1 (en
Inventor
Felix Scharfe
Oscar SCHARFE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMS Handelskontor GmbH
Original Assignee
PMS Handelskontor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PMS Handelskontor GmbH filed Critical PMS Handelskontor GmbH
Priority to PL16704429T priority Critical patent/PL3271076T3/en
Publication of EP3271076A1 publication Critical patent/EP3271076A1/en
Application granted granted Critical
Publication of EP3271076B1 publication Critical patent/EP3271076B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/20Disintegrating by mills having rotary beater elements ; Hammer mills with two or more co-operating rotors
    • B02C13/205Disintegrating by mills having rotary beater elements ; Hammer mills with two or more co-operating rotors arranged concentrically

Definitions

  • the present invention relates to a crushing apparatus comprising a cylinder shell surrounding a cylindrical crushing chamber.
  • a plurality of rotors are driven via mutually concentric waves and operated independently of each other.
  • the rotors are arranged concentrically to the central axis of the crushing chamber.
  • the concentric shafts comprise a central shaft and at least one outer hollow shaft surrounding it.
  • Such a crushing device is for example from the DE 10 2013 110 352 A known.
  • impact tools are connected to at least two of the rotors.
  • One of the rotors can also be a fan rotor.
  • the crushing of the materials creates splinters and dust, which can affect the bearings of the coaxial shafts or reduce their lifetime.
  • WO-2008/122691-A1 discloses a crushing device according to the preamble of claim 1.
  • the crushing device has the features of claim 1.
  • the invention thus makes it possible to transport lubricant via longitudinal bores arranged in the shafts to the shaft bearings.
  • These longitudinal bores extend in the axial direction of the shafts and act as a lubricant line to supply a lubricant, ie an oil and / or grease, to the axial regions in which the shaft bearings are arranged.
  • a plurality of separate longitudinal bores, ie lubricant lines for different shaft bearings may be provided in order to be able to supply an individual lubricant quantity and / or an individual lubricant pressure to the individual shaft bearings.
  • the lubricant line may also be e.g. transition smoothly into the lubricant feedthrough, if e.g. at the end, where the shaft bearing is located, is bent outwards.
  • the lubricant line could also be inclined slightly outwards so that it exits the shaft jacket exactly in the axial bearing area.
  • the lubricant line and the lubricant feedthrough would be integrated, e.g. by an inclined arrangement of a bore in the shaft jacket.
  • the lubricant line are formed by an axial bore in the shaft jacket and the lubricant feedthrough through a radial bore in the shaft jacket. If a primarily axially extending but slightly inclined bore is provided in the shaft jacket, the lubricant line and the lubricant feedthrough is integrated in a bore in the shaft jacket.
  • the lubricant feedthrough may be e.g. directly into the warehouse, however, would require machining of the warehouse, e.g. the provision of lubricant supply holes in the bearing outer shell. Therefore, the lubricant feedthrough preferably opens into an annular region, on / in which a shaft bearing is arranged. The lubricant is thus supplied to the shaft bearing of he open side.
  • shaft bearings can be supplied with lubricant, which lie radially outward as well as radially within the lubricant feedthrough.
  • the lubricant feedthrough may be e.g. extend through the entire thickness of the shaft jacket and then opens into an axial region within and outside of the shaft jacket. In this way, e.g. two bearings are supplied directly with lubricant.
  • the annular region is formed in a first axial direction by a bearing and in the opposite second axial direction by a lubricant seal.
  • the lubricant seal then forces the lubricant in the ring area towards the bearing, where it can effectively contribute to the lubrication of the shaft bearing.
  • the lubricant seal is permeable to gas. This has the advantage that a pressurized gas loading of the shaft assembly can pass the lubricant seal, whereby the pressurized gas, e.g. Compressed air can pass through the bearings to the outside into the crushing chamber. In this way, the storage area can be effectively kept free of dust from the crushing chamber.
  • the lubricant line is connected to the end face of the rotors with a ring feed space, so that the lubricant line, the lubricant can be fed regardless of the rotational position of the waves.
  • a lubricant line is arranged in the central shaft or in the intermediate space, which is connected to at least one bearing.
  • the bearing or the bearings are not only flowed around with air, so that no material dust can penetrate into them, but the bearings also lubricant is supplied, whereby their lubrication is ensured during operation.
  • the lubricant is preferably supplied to the bearings via radial lubricant feedthroughs formed in the shrouds.
  • the central shaft is formed as a hollow shaft and the lubricant line extends in the cavity of the central shaft, which is designed for connection to a lubricant supply.
  • the bearings are supplied with the lubricant through the cavity in the central shaft.
  • At least one shaft has in its shaft jacket a radial lubricant feedthrough from the inside of the shaft to the outside of the shaft, which lubricant feedthrough is connected to a bearing arranged there.
  • the lubricant can be easily distributed from the central shaft to the surrounding bearings between the central shaft and the outer shaft or between the plurality of outer hollow shafts.
  • At least one shaft in the region of its lubricant feedthrough contains a radially extending lubricant channel which bears against the wall of the adjacent shaft in the region of a lubricant feedthrough arranged in the latter.
  • the lubricant channel is rotatably connected to the shaft. In this way it is achieved that per revolution of the lubricant channel is aligned at a once with the lubricant passage of the adjacent shaft, wherein the lubricant can be transmitted in accordance with radial.
  • the lubricant can be guided radially outward or inward so that the lubricant once per Rotation passes through a lubricant feedthrough of a radially further outward or inward shaft.
  • the lubricant channel then preferably has, at least in the region bearing against the wall, a contact material that is slidable with respect to the material of the shaft.
  • the crushing device has means for determining the position of each individual shaft. It is then preferably provided an electronic control in which a lubricating position of the mutually concentric shafts is stored, in which the lubricant channel is aligned with the lubricant passage of the adjacent shaft. In this lubrication position then the lubrication of the bearings can be done when the short-term alignment of the lubricant channel with the lubricant passage during normal operation is not sufficient to ensure a lubricant supply to the radially remote bearings.
  • the lubricant channel has a contact material which is slidable with respect to the material of the shaft, whereby the lubricant channel is easily and without appreciable friction, i. Heat generation during operation can slide along the wall of the adjacent wave.
  • a small distance, i. Gap be provided that leakage of lubricant from this gap to a significant extent is not possible.
  • the radial lubricant passage extends into an annular region which is sealed in a first axial direction by a bearing and in the opposite second axial direction by a lubricant seal, which is in particular annular.
  • a lubricant seal which is in particular annular.
  • the lubricant seal is gas-permeable so as to prevent lubricant from entering the rest of the space from the area of the bearing, but on the other hand allowing passage of gas from the clearance to the bearing and lubricated area.
  • an interior space and / or between the waves at least one intermediate space is formed in the central shaft, which inner / intermediate space at least partially as a gas supply space for connection to a Gas supply is formed, which gas supply space is connected to at least one arranged between the shafts shaft bearing.
  • the bearings not only the lubricant but also gas, eg air supplied to keep the bearings dust-free. This has the synergistic effect that also the lubricant supplied to the bearings is not mixed with dust, which could cause an unfavorable emery effect.
  • the shaft bearings thus remain both clean (dust-free) and lubricated.
  • the gap is connected to an end piece rotatably mounted thereon having a gas supply port for connection to a gas supply. In this way we control the gas supply regardless of the rotational position of the waves.
  • At least one of the shafts has a gas passage extending radially in the shaft jacket, which is connected to a shaft bearing. These allow the gas to be distributed easily in the radial direction.
  • the gas feedthrough opens into a first gas ring region which is formed in a first axial direction by a bearing and in the opposite second axial direction by an annular gas seal.
  • the gas can be supplied to the shaft bearing very effective large area from the side.
  • modifications of the bearing e.g. the provision of Gaszu Technologyö réelleen in the bearing outer shell are not necessary.
  • the central shaft has an axially extending cavity or interior, which is connected on the one hand via a radially extending in the shaft jacket gas passage with the gap and on the other hand designed for connection to a gas supply.
  • the gas from the central gas supply from the interior in the central shaft can be effectively supplied to the spaces between the waves. All shaft bearings are flushed with gas between several coaxial shafts.
  • the gas supply is formed by a fan, which is easy to implement.
  • all gaps between the shafts are connected to the gas supply, so that all shaft bearings of the comminution device are flushed with gas and thus have a long service life.
  • the space between the concentric shafts is preferably used to supply air or any other gas to the bearings interposed between the shafts and possibly also a bearing between the central shaft and a fixed structure of the crusher to remove the dust from crushing Keep away dust from these warehouses.
  • the gas supply may in this case be, for example, a fan which supplies the ambient air, possibly filtered, to the bearings.
  • the gas supply may also be connected to a cavity in the central shaft, by means of which the supplied air or the supplied gas is passed to the gaps between the waves via radial gas passages.
  • This solution according to the invention has the advantage that the bearings for the rotors are exposed to significantly lower wear, the shafts themselves need only be minimally changed.
  • only small radial through holes in the shrouds are necessary to be routed as a gas passage to more outward gaps, for example between the central shaft and the first outer shaft or between the first outer shaft and a second outer shaft surrounding it. It must be drilled in the shrouds no axial gas lines, which would be associated with a relatively high cost.
  • the invention allows a very easy to implement protection of the bearings of the rotors of a crushing device.
  • the concentric shafts on at least one side are driven by drive motors, e.g. a combined motor / bearing block, are connected, over which they are driven independently. These motors are preferably arranged on an end face of the shafts.
  • the shafts in the engine / bearing block are also mounted on the engines.
  • the central shaft is attached to a fixed structure, e.g. Frame or front wall of the crushing chamber stored.
  • the gas feedthrough opens into an annular region of a gap, which is formed on the one hand by a bearing and on the other side by an annular gas seal.
  • the gas is not supplied to the entire gap, but only a limited axial area of the gap between the gas seal and the bearing.
  • the central shaft has an axial hollow / inner space which is used in conjunction with a gas supply as a gas supply to the gap.
  • the axial cavity of the central shaft is connected on the one hand via a radially extending in the shaft jacket gas passage with the gap and on the other hand, it is designed for connection to a gas supply, for example a fan. This is done in this way the supply of the gas, in particular the air, over the axial cavity in the central shaft and is from there into the space between the central shaft and a first outer hollow shaft and possibly from there into further spaces between other outer hollow shafts.
  • the number of waves preferably corresponds to the number of rotors, wherein the number of rotors, that is, the concentric waves is preferably between two and five.
  • the gap and / or the cavity of the central shaft is connected to an end piece rotatably mounted thereon which has a gas supply port for connection to a gas supply.
  • the gas can be supplied to the annular gap / cavity of the central shaft in a simple manner.
  • the gas supply can be formed in a simple embodiment by a fan, but it can also be used other compressed gas devices, such as pressure pumps or compressed gas storage.
  • the simplest gas is the atmospheric air.
  • inert gases such as CO 2 or nitrogen, to prevent oxidation or ignition of materials during comminution. In this way, not only the bearings are kept dust-free, but the crushing chamber can also be flushed with a desired gas, which is important for the crushing process itself.
  • all the spaces between the shafts are connected to the gas supply, which has the advantage that all bearings between all concentric waves are flushed with the gas supplied and thus remain free of crushed material.
  • Fig. 1 shows a crushing device 10 in a very schematic partially sectioned view along its longitudinal axis z.
  • the cylinder jacket and the entire bottom portion of the crushing device are not shown.
  • the comminuting device 10 comprises a motor / bearing block 12 which rotatably supports and drives three shafts concentric with each other, namely a central hollow shaft 14, a first outer hollow shaft 16 surrounding it, and a second outer hollow shaft 18 surrounding the first outer hollow shaft 16.
  • the three hollow shafts 14, 16, 18 are arranged concentrically about the central axis Z of the crushing chamber.
  • At least one, preferably two, in particular each concentric shaft 14, 16, 18 carries impact tools 20 in order to crush material supplied from above (eg mineral conglomerates).
  • the three shafts 14, 16, 18 are individually controllable via three separate motors in the motor / bearing block 12, so that they are each driven in opposite directions and with increasing speed. In this way, a very effective crushing of the supplied material can be achieved.
  • a cylinder jacket which surrounds the rotors 14, 16, 18 and defines a crushing chamber in its interior.
  • the central hollow shaft 14 is mounted at its lower end to the motor / bearing block 12 and at the opposite upper end by means of a first bearing 22 to a fixed structure 24 of the crushing device 10, for example a wall.
  • the first outer hollow shaft 16 is supported radially relative to the central hollow shaft 14 with a second bearing 26 and centered.
  • the second outer hollow shaft 18 is radially supported and centered with respect to the first outer hollow shaft 16 with a third bearing 28.
  • the three bearings 22, 26, 28 ensure that the concentric waves remain concentrically aligned when crushing material.
  • the outside uncovered portions of the concentric shafts 14, 16, 18 form rotors 30, 32, 34, to which the impact tools 20 are anchored in unspecified manner.
  • the impact tools 20 are held interchangeably on the rotors 30, 32, 34.
  • the striking tools 20 may be rods or chains or the like per se known functional elements, as they are known from DE 10 2013 110 352 A are known.
  • the central cavity 62 of the central hollow shaft 14 is formed as a lubricant line, which via a lubricant supply line 64 with a lubricant supply 66, for example one Pressure lubrication device is connected.
  • the central cavity 62 has a first radial lubricant feedthrough 68 which leads directly to the first bearing 22 and thus leads to a lubrication of the first bearing 22.
  • a second lubricant passage 68 leads into an inner annular space 70, which is formed between the second bearing 26 and an annular lubricant seal 72.
  • the lubricant seal 72 causes the lubricant is supplied only to the inner annular space 70 and thus the bearing 26 and not into the underlying first gap 44.
  • a further lubricant passage 68 is also provided, which opens into a lubricant channel 74, which is fixed radially on the outside of the central hollow shaft 14.
  • the lubricant channel 74 bears against the inner wall 76 of the first outer hollow shaft 16 and is arranged at a height in which the lubricant channel 74 can be aligned with an outer lubricant passage 78 in the first outer hollow shaft 16.
  • an electronic control transfers the position of the shafts 14, 16, 18 to each other determined corresponding sensors and the central hollow shaft 14 and the first outer hollow shaft 16 in a lubricant position can position relative to each other so that the lubricant passage 74 is aligned with the outer lubricant passage 78. In this position, the third bearing 28 can then be lubricated. If it is not aligned with the outer lubricant passage 78, the lubricant passage 74 is closed by the inner wall 76 of the first outer hollow shaft 16.
  • the lubricant channel 74 can either easily slide along the inner wall 76 of the first outer hollow shaft 16 or has a minimal distance to this, which prevents the escape of lubricant.
  • the central cavity 62 is connected to a third lubricant passage 68 which supplies lubricant to the uppermost bearing 22.
  • all bearings 22, 26, 28 are supplied via the central cavity 62 and the lubricant passages 68 lubricant.
  • a lubricant line 63 (shown by dashed lines) can be arranged in a shaft wall 14, for example in the form of a shaft axial bore, which is connected to the, preferably with all lubricant passages 68.
  • the central cavity 62 can be used for a gas supply.
  • This alternative can also be used if the central shaft 14 has no central cavity 62.
  • the first intermediate space 44 is connected via a gas line 38 to a gas supply 40, for example a blower.
  • a gas supply 40 for example a blower.
  • the lubricant seal 72 between the central hollow shaft 14 and the first outer hollow shaft 16 and between the first outer hollow shaft 16 and the second outer hollow shaft 18 are gas-permeable.
  • a gas passage 42 through which a gas supplied from a gas supply 40, e.g. Air, also the second gap 52 between the first outer hollow shaft 16 and the second outer hollow shaft 18 is supplied.
  • a gas supplied from a gas supply 40 e.g. Air
  • the second bearing 26 and the third bearing 28 are supplied with gas.
  • the two bearings 26, 28 are supplied not only with lubricant, but also with a gas, for example, atmospheric air, so that they are not contaminated with dust of the crushed material and thus have a very long life.
  • a central cover 46 is arranged, which closes the central cavity 36 towards the free end.
  • a first annular cover 48 is arranged, which is spaced around a first gap 50 with respect to the central hollow shaft 14.
  • This first ring cover 46 on the one hand causes a mechanical barrier against the ingress of dust from the crushing chamber.
  • the available flow space is extremely reduced, which results in the gas exiting there at a correspondingly increased speed. The protection of the second bearing 26 against the ingress of dust is thereby significantly improved.
  • a radial gas passage 42 is arranged, so that the gas is guided into a second intermediate space 52, which is arranged between the first outer hollow shaft 16 and the second outer hollow shaft 18. From there, the gas is supplied to the third bearing 28 and passes through a second gap 54 between the first outer hollow shaft 16 and a second ring cover 49 in the crushing chamber. In the second gap 54, in turn, the gas velocity is increased, so that this provides a very good protection against the ingress of dust and larger material grains in the third bearing 28.
  • the first bearing may be located outside the crushing chamber, in which case gas purging is not necessarily required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Sliding-Contact Bearings (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Accessories For Mixers (AREA)
  • Crushing And Grinding (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Rolling Contact Bearings (AREA)
  • Reciprocating Pumps (AREA)

Description

Die vorliegende Erfindung betrifft eine Zerkleinerungsvorrichtung umfassend einen Zylindermantel, der eine zylindrische Zerkleinerungskammer umgibt. In der Zerkleinerungskammer sind mehrere Rotoren über zueinander konzentrische Wellen angetrieben und unabhängig voneinander betreibbar. Die Rotoren sind konzentrisch zur zentralen Achse der Zerkleinerungskammer angeordnet. Die konzentrischen Wellen umfassen eine zentrale Welle und wenigstens eine diese umgebende äußere Hohlwelle. Eine derartige Zerkleinerungsvorrichtung ist zum Beispiel aus der DE 10 2013 110 352 A bekannt. Wie in der vorliegenden Erfindung sind auch bei diesem Stand der Technik Schlagwerkzeuge mit zumindest zwei der Rotoren verbunden. Einer der Rotoren kann auch ein Lüfterrotor sein. Beim Zerkleinern der Materialien entstehen Splitter und Staub, die die Lager der koaxialen Wellen beeinträchtigen können oder in ihrer Lebensdauer reduzieren können. WO-2008/122691-A1 offenbart eine Zerkleinerungsvorrichtung gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a crushing apparatus comprising a cylinder shell surrounding a cylindrical crushing chamber. In the crushing chamber a plurality of rotors are driven via mutually concentric waves and operated independently of each other. The rotors are arranged concentrically to the central axis of the crushing chamber. The concentric shafts comprise a central shaft and at least one outer hollow shaft surrounding it. Such a crushing device is for example from the DE 10 2013 110 352 A known. As in the present invention also in this prior art impact tools are connected to at least two of the rotors. One of the rotors can also be a fan rotor. The crushing of the materials creates splinters and dust, which can affect the bearings of the coaxial shafts or reduce their lifetime. WO-2008/122691-A1 discloses a crushing device according to the preamble of claim 1.

Es ist Aufgabe der Erfindung, eine Zerkleinerungsvorrichtung zu schaffen, die eine längere Standzeit der Rotoren und ihrer Lager erlaubt. Diese Aufgabe wird erfindungsgemäß durch eine Zerkleinerungsvorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Weiterbildungen der Erfindung sind ebenfalls in der Beschreibung beschrieben und in den Zeichnungen dargestellt.It is an object of the invention to provide a crushing device that allows a longer life of the rotors and their bearings. This object is achieved by a crushing device with the features of claim 1. Advantageous developments of the invention are the subject of the dependent claims. Further developments of the invention are also described in the description and illustrated in the drawings.

Darstellung der ErfindungPresentation of the invention

Erfindungsgemäß weist die Zerkleinerungsvorrichtung die Merkmale des Anspruchs 1 auf.According to the invention, the crushing device has the features of claim 1.

Die Erfindung ermöglicht es damit, Schmiermittel über in den Wellen angeordnete Längsbohrungen zu den Wellenlagern zu transportieren. Diese Längsbohrungen erstrecken sich in axialer Richtung der Wellen und agieren als Schmiermittelleitung, um ein Schmiermittel, d.h. ein Öl und/oder Fett den axialen Bereichen zuzuleiten, in welchen die Wellenlager angeordnet sind. Es können natürlich mehrere separate Längsbohrungen d.h. Schmiermittelleitungen für unterschiedliche Wellenlager vorgesehen sein, um somit eine individuelle Schmiermittelmenge und/oder einen individuellen Schmiermitteldruck den einzelnen Wellenlagern zuführen zu können.The invention thus makes it possible to transport lubricant via longitudinal bores arranged in the shafts to the shaft bearings. These longitudinal bores extend in the axial direction of the shafts and act as a lubricant line to supply a lubricant, ie an oil and / or grease, to the axial regions in which the shaft bearings are arranged. Of course, a plurality of separate longitudinal bores, ie lubricant lines for different shaft bearings may be provided in order to be able to supply an individual lubricant quantity and / or an individual lubricant pressure to the individual shaft bearings.

Die Schmiermittelleitung kann natürlich auch z.B. übergangslos in die Schmiermitteldurchführung übergehen, wenn diese z.B. am Ende, wo sich das Wellenlager befindet, nach außen gebogen ist. Die Schmiermittelleitung könnte natürlich auch leicht nachaußen geneigt sein, so dass sie genau im axialen Lagerbereich aus dem Wellenmantel austritt. Hier wäre die Schmiermittelleitung und die Schmiermitteldurchführung integriert ausgebildet, z.B. durch eine geneigte Anordnung einer Bohrung im Wellenmantel. Üblicherweise sind jedoch die Schmiermittelleitung durch eine axiale Bohrung im Wellenmantel und die Schmiermitteldurchführung durch eine radiale Bohrung im Wellenmantel gebildet. Wenn eine in erster Linie axial verlaufende aber leicht geneigt Bohrung im Wellenmantel vorgesehen wird, wird die Schmiermittelleitung und die Schmiermitteldurchführung in einer Bohrung im Wellenmantel integriert.Of course, the lubricant line may also be e.g. transition smoothly into the lubricant feedthrough, if e.g. at the end, where the shaft bearing is located, is bent outwards. Of course, the lubricant line could also be inclined slightly outwards so that it exits the shaft jacket exactly in the axial bearing area. Here, the lubricant line and the lubricant feedthrough would be integrated, e.g. by an inclined arrangement of a bore in the shaft jacket. Usually, however, the lubricant line are formed by an axial bore in the shaft jacket and the lubricant feedthrough through a radial bore in the shaft jacket. If a primarily axially extending but slightly inclined bore is provided in the shaft jacket, the lubricant line and the lubricant feedthrough is integrated in a bore in the shaft jacket.

Die Schmiermitteldurchführung kann z.B. direkt in das Lager münden, würde hier jedoch eine Bearbeitung des Lagers erforderlich machen, z.B. das Vorsehen von Schmiermittelzufuhrbohrungen in der Lageraußenschale. Deshalb mündet die Schmiermitteldurchführung vorzugsweise in einen Ringbereich, an/in welchem ein Wellenlager angeordnet ist. Das Schmiermittel wird somit dem Wellenlager von er offenen Seite her zugeführt. Selbstverständlich können Wellenlager mit Schmiermittel versorgt werden, die radial außerhalb als auch radial innerhalb der Schmiermitteldurchführung liegen. So kann sich die Schmiermitteldurchführung z.B. durch die gesamte Stärke des Wellenmantels erstrecken und mündet dann in einen axialen Bereich innerhalb als auch außerhalb des Wellenmantels. Auf diese Weise können z.B. zwei Lager direkt mit Schmiermittel versorgt werden.The lubricant feedthrough may be e.g. directly into the warehouse, however, would require machining of the warehouse, e.g. the provision of lubricant supply holes in the bearing outer shell. Therefore, the lubricant feedthrough preferably opens into an annular region, on / in which a shaft bearing is arranged. The lubricant is thus supplied to the shaft bearing of he open side. Of course, shaft bearings can be supplied with lubricant, which lie radially outward as well as radially within the lubricant feedthrough. Thus, the lubricant feedthrough may be e.g. extend through the entire thickness of the shaft jacket and then opens into an axial region within and outside of the shaft jacket. In this way, e.g. two bearings are supplied directly with lubricant.

In einer vorteilhaften Ausführungsform der Erfindung ist der Ringbereich in einer ersten axialen Richtung durch ein Lager und in der entgegengesetzten zweiten axialen Richtung durch eine Schmiermittelabdichtung gebildet. Durch die Schmiermittelabdichtung wird das Schmiermittel dann in dem Ringbereich in Richtung Lager gedrückt, wo es effektiv zur Schmierung des Wellenlagers beitragen kann. Vorzugsweise ist die Schmiermittelabdichtung gasdurchlässig. Dies hat den Vorteil, dass eine Druckgasbeaufschlagung der Wellenanordnung die Schmiermittelabdichtung passieren kann, womit das Druckgas, z.B. Druckluft über die Lager nach außen in die Zerkleinerungskammer passieren kann. Auf diese Weise kann der Lagerbereich effektiv frei von Staub aus der Zerkleinerungskammer gehalten werden.In an advantageous embodiment of the invention, the annular region is formed in a first axial direction by a bearing and in the opposite second axial direction by a lubricant seal. The lubricant seal then forces the lubricant in the ring area towards the bearing, where it can effectively contribute to the lubrication of the shaft bearing. Preferably, the lubricant seal is permeable to gas. This has the advantage that a pressurized gas loading of the shaft assembly can pass the lubricant seal, whereby the pressurized gas, e.g. Compressed air can pass through the bearings to the outside into the crushing chamber. In this way, the storage area can be effectively kept free of dust from the crushing chamber.

Vorzugsweise ist die Schmiermittelleitung an der Stirnseite der Rotoren mit einer Ringzufuhrraum verbunden, so dass der Schmiermittelleitung das Schmiermittel unabhängig von der Rotationsstellung der Wellen zugeführt werden kann.Preferably, the lubricant line is connected to the end face of the rotors with a ring feed space, so that the lubricant line, the lubricant can be fed regardless of the rotational position of the waves.

Vorzugsweise ist in der zentralen Welle oder in dem Zwischenraum eine Schmiermittelleitung angeordnet, die mit wenigstens einem Lager verbunden ist. Auf diese Weise wird das Lager bzw. werden die Lager nicht nur mit Luft umströmt, so dass kein Materialstaub in sie eindringen kann, sondern den Lagern wird auch Schmiermittel zugeführt, womit deren Schmierung im Betrieb gewährleistet bleibt. Das Schmiermittel wird den Lagern vorzugsweise über in den Wellenmänteln ausgebildete radiale Schmiermitteldurchführungen zugeführt. Auch diese Maßnahme erhöht die Lebensdauer der Lager beträchtlich und wirkt so mit der Gaszufuhr in symbiotischer Weise zusammen, weil das Gas sicherstellt, dass das Schmiermittel nicht durch Materialpartikel, die beim Zerkleinern entstehen, verdreckt wird, in welchem Fall das verdreckte Schmiermittel eher als Schleifmittel wirken würde.Preferably, a lubricant line is arranged in the central shaft or in the intermediate space, which is connected to at least one bearing. In this way, the bearing or the bearings are not only flowed around with air, so that no material dust can penetrate into them, but the bearings also lubricant is supplied, whereby their lubrication is ensured during operation. The lubricant is preferably supplied to the bearings via radial lubricant feedthroughs formed in the shrouds. This measure, too, considerably increases the life of the bearings and thus cooperates with the gas supply in a symbiotic manner, because the gas ensures that the lubricant is not contaminated by material particles formed during comminution, in which case the dirty lubricant acts as an abrasive would.

Vorzugsweise ist die zentrale Welle als Hohlwelle ausgebildet und die Schmiermittelleitung verläuft in dem Hohlraum der zentralen Welle, welcher zur Verbindung mit einer Schmiermittelzufuhr konzipiert ist. Auf diese Weise wird den Lagern das Schmiermittel über den Hohlraum in der zentralen Welle zugeführt. So können nicht nur die Lager zwischen den Wellen geschmiert werden, sondern auch ein Lager zwischen der zentralen Welle und einer festen Struktur der Zerkleinerungsvorrichtung gegenüber dem Motor/Lagerungsblock.Preferably, the central shaft is formed as a hollow shaft and the lubricant line extends in the cavity of the central shaft, which is designed for connection to a lubricant supply. In this way, the bearings are supplied with the lubricant through the cavity in the central shaft. Thus, not only the bearings between the shafts can be lubricated, but also a bearing between the central shaft and a fixed structure of the comminution device with respect to the motor / bearing block.

Vorzugsweise weist wenigstens eine Welle in ihrem Wellenmantel eine radiale Schmiermitteldurchführung von der Innenseite der Welle zur Außenseite der Welle auf, welche Schmiermitteldurchführung mit einem dort angeordneten Lager verbunden ist. Auf diese Weise kann das Schmiermittel leicht von der zentralen Welle auf die umgebenden Lager zwischen der zentralen Welle und der äußeren Welle oder zwischen den mehreren äußeren Hohlwellen verteilt werden.Preferably, at least one shaft has in its shaft jacket a radial lubricant feedthrough from the inside of the shaft to the outside of the shaft, which lubricant feedthrough is connected to a bearing arranged there. In this way, the lubricant can be easily distributed from the central shaft to the surrounding bearings between the central shaft and the outer shaft or between the plurality of outer hollow shafts.

Wenn in dieser Anmeldung von "radial" gesprochen wird, bedeutet dies, dass die Ausrichtung eine radiale Komponente aufweist. Die direkt radiale Ausrichtung der entsprechenden Komponente ist nur eine bevorzugte Ausführungsform.When referred to in this application of "radial", this means that the orientation has a radial component. The direct radial alignment of the corresponding component is just one preferred embodiment.

Erfindungsgemäß enthält wenigstens eine Welle im Bereich ihrer Schmiermitteldurchführung einen sich radial erstreckenden Schmiermittelkanal, der an der Wand der benachbarten Welle im Bereich einer in dieser angeordneten Schmiermitteldurchführung anliegt. Der Schmiermittelkanal ist drehfest mit der Welle verbunden. Auf diese Weise wird erreicht, dass pro Umdrehung der Schmiermittelkanal an einer einmal mit der Schmiermitteldurchführung der benachbarten Welle fluchtet, wobei das Schmiermittel entsprechend radial übertragen werden kann. So kann das Schmiermittel radial nach außen oder innen so geführt werden, dass das Schmiermittel einmal pro Umdrehung eine Schmiermitteldurchführung einer radial weiter außen oder innen liegenden Welle durchsetzt.According to the invention, at least one shaft in the region of its lubricant feedthrough contains a radially extending lubricant channel which bears against the wall of the adjacent shaft in the region of a lubricant feedthrough arranged in the latter. The lubricant channel is rotatably connected to the shaft. In this way it is achieved that per revolution of the lubricant channel is aligned at a once with the lubricant passage of the adjacent shaft, wherein the lubricant can be transmitted in accordance with radial. Thus, the lubricant can be guided radially outward or inward so that the lubricant once per Rotation passes through a lubricant feedthrough of a radially further outward or inward shaft.

Vorzugsweise weist dann der Schmiermittelkanal zumindest in dem an der Wand anliegenden Bereich ein mit Bezug auf das Material der Welle gleitfähiges Kontaktmaterial aufweist.The lubricant channel then preferably has, at least in the region bearing against the wall, a contact material that is slidable with respect to the material of the shaft.

Vorzugsweise hat die Zerkleinerungsvorrichtung Mittel, um die Position jeder einzelnen Welle zu bestimmen. Es ist dann vorzugsweise eine elektronische Steuerung vorgesehen, in welcher eine Schmierposition der zueinander konzentrischen Wellen gespeichert ist, in der der Schmiermittelkanal mit der Schmiermitteldurchführung der benachbarten Welle fluchtet. In dieser Schmierposition kann dann die Schmierung der Lager erfolgen, wenn das kurzzeitige Fluchten des Schmiermittelkanals mit der Schmiermitteldurchführung während des normalen Betriebs nicht ausreicht, um eine Schmiermittelversorgung der radial entfernt liegenden Lager sicherzustellen.Preferably, the crushing device has means for determining the position of each individual shaft. It is then preferably provided an electronic control in which a lubricating position of the mutually concentric shafts is stored, in which the lubricant channel is aligned with the lubricant passage of the adjacent shaft. In this lubrication position then the lubrication of the bearings can be done when the short-term alignment of the lubricant channel with the lubricant passage during normal operation is not sufficient to ensure a lubricant supply to the radially remote bearings.

Vorzugsweise hat der Schmiermittelkanal zumindest in dem an der Wand der benachbarten Welle anliegenden Bereich ein mit Bezug auf das Material der Welle gleitfähiges Kontaktmaterial, wodurch der Schmiermittelkanal leicht und ohne nennenswerte Reibung d.h. Wärmeerzeugung während des Betriebes an der Wand der benachbarten Welle entlanggleiten kann. Zwischen dem Schmiermittelkanal und der Wand der benachbarten Welle kann auch ein derart geringer Abstand, d.h. Spalt, vorgesehen sein, dass ein Austritt von Schmiermittel aus diesem Spalt im nennenswerten Umfang nicht möglich ist.Preferably, at least in the region adjacent the wall of the adjacent shaft, the lubricant channel has a contact material which is slidable with respect to the material of the shaft, whereby the lubricant channel is easily and without appreciable friction, i. Heat generation during operation can slide along the wall of the adjacent wave. Between the lubricant channel and the wall of the adjacent shaft, such a small distance, i. Gap, be provided that leakage of lubricant from this gap to a significant extent is not possible.

Vorzugsweise erstreckt sich die radiale Schmiermitteldurchführung in einen Ringbereich, der in einer ersten axialen Richtung durch ein Lager und in der entgegengesetzten zweiten axialen Richtung durch eine Schmiermittelabdichtung, die insbesondere ringförmig ausgebildet ist, abgedichtet ist. Auf diese Weise wird vermieden, dass das Schmiermittel dem gesamten Zwischenraum zugeführt wird, sondern im Wesentlichen nur dem Lager. In dem verbleibenden Zwischenraum kann somit beispielsweise Gas zugeführt werden, um die Lager frei von Materialstaub zu halten.Preferably, the radial lubricant passage extends into an annular region which is sealed in a first axial direction by a bearing and in the opposite second axial direction by a lubricant seal, which is in particular annular. In this way, it is avoided that the lubricant is supplied to the entire space, but essentially only the bearing. In the remaining space can thus be supplied, for example, gas to keep the bearings free of material dust.

Vorzugsweise ist die Schmiermittelabdichtung gasdurchlässig, so dass sie verhindert, dass Schmiermittel von dem Bereich des Lagers in den übrigen Zwischenraum gerät, aber auf der anderen Seite den Durchgang von Gas aus dem Zwischenraum zum Lager und zum geschmierten Bereich ermöglicht.Preferably, the lubricant seal is gas-permeable so as to prevent lubricant from entering the rest of the space from the area of the bearing, but on the other hand allowing passage of gas from the clearance to the bearing and lubricated area.

In einer vorteilhaften Weiterbildung der Erfindung ist in der zentralen Welle ein Innenraum und/oder zwischen den Wellen wenigstens ein Zwischenraum ausgebildet, welcher Innen/Zwischenraum zumindest teilweise als Gaszufuhrraum zur Verbindung mit einer Gaszufuhr ausgebildet ist, welcher Gaszufuhrraum mit wenigstens einem zwischen den Wellen angeordneten Wellenlager verbunden ist. Auf diese Weise wird den Lagern nicht nur das Schmiermittel sondern auch Gas, z.B. Luft zugeführt, um die Lager staubfrei zu halten. Dies hat den synergistischen Effekt, dass auch das den Lagern zugeführte Schmiermittel nicht mit Staub versetzt wird, was einen ungünstigen Schmirgeleffekt hervorrufen könnte. Die Wellenlager bleiben somit sowohl sauber (staubfrei) als auch geschmiert.In an advantageous embodiment of the invention, an interior space and / or between the waves at least one intermediate space is formed in the central shaft, which inner / intermediate space at least partially as a gas supply space for connection to a Gas supply is formed, which gas supply space is connected to at least one arranged between the shafts shaft bearing. In this way, the bearings not only the lubricant but also gas, eg air supplied to keep the bearings dust-free. This has the synergistic effect that also the lubricant supplied to the bearings is not mixed with dust, which could cause an unfavorable emery effect. The shaft bearings thus remain both clean (dust-free) and lubricated.

Vorzugsweise ist der Zwischenraum mit einem drehbar daran montierten Endstück verbunden ist, das eine Gaszufuhröffnung zur Verbindung mit einer Gaszufuhr aufweist. Auf diese Weise wir die Gasversorgung unabhängig von der Rotationsstellung der Wellen.Preferably, the gap is connected to an end piece rotatably mounted thereon having a gas supply port for connection to a gas supply. In this way we control the gas supply regardless of the rotational position of the waves.

Vorzugsweise hat wenigstens eine der Wellen eine sich radial im Wellenmantel erstreckende Gasdurchführung, welche mit einem Wellenlager verbunden ist. Über diese lässt sich das Gas in radialer Richtung leicht verteilen.Preferably, at least one of the shafts has a gas passage extending radially in the shaft jacket, which is connected to a shaft bearing. These allow the gas to be distributed easily in the radial direction.

In einer vorteilhaften Weiterbildung der Erfindung mündet die Gasdurchführung in einen ersten Gasringbereich, der in einer ersten axialen Richtung durch ein Lager und in der entgegengesetzten zweiten axialen Richtung durch eine ringförmige Gasabdichtung gebildet ist. Über diesen Gasringbereich kann das Gas dem Wellenlager sehr wirkungsvoll großflächig von der Seite aus zugeführt werden. Zudem sind Modifikationen des Lagers, z.B. das Vorsehen von Gaszuführöffnungen in der Lageraußenschale sind nicht notwendig.In an advantageous development of the invention, the gas feedthrough opens into a first gas ring region which is formed in a first axial direction by a bearing and in the opposite second axial direction by an annular gas seal. About this gas ring area, the gas can be supplied to the shaft bearing very effective large area from the side. In addition, modifications of the bearing, e.g. the provision of Gaszuführöffnungen in the bearing outer shell are not necessary.

Vorzugsweise weist die zentrale Welle einen sich axial erstreckenden Hohlraum bzw. Innenraum auf, der einerseits über eine sich radial im Wellenmantel erstreckende Gasdurchführung mit dem Zwischenraum verbunden ist und andererseits zur Verbindung mit einer Gaszufuhr konzipiert ist. Auf diese Weise kann das Gas von der zentralen Gaszufuhr von dem Innenraum in der zentralen Welle effektiv den Zwischenräumen zwischen den Wellen zugeleitet werden. Es werden damit alle Wellenlager zwischen mehreren koaxialen Wellen mit Gas gespült.Preferably, the central shaft has an axially extending cavity or interior, which is connected on the one hand via a radially extending in the shaft jacket gas passage with the gap and on the other hand designed for connection to a gas supply. In this way, the gas from the central gas supply from the interior in the central shaft can be effectively supplied to the spaces between the waves. All shaft bearings are flushed with gas between several coaxial shafts.

In einer vorteilhaften Weiterbildung der Erfindung ist die Gaszufuhr durch ein Gebläse gebildet, welches leicht zu realisieren ist.In an advantageous development of the invention, the gas supply is formed by a fan, which is easy to implement.

Vorzugsweise sind alle Zwischenräume zwischen den Wellen mit der Gaszufuhr verbunden, so dass alle Wellenlager der Zerkleinerungsvorrichtung mit Gas gespült werden und damit eine lange Standzeit haben.Preferably, all gaps between the shafts are connected to the gas supply, so that all shaft bearings of the comminution device are flushed with gas and thus have a long service life.

Bei der Gaszufuhr wird der Zwischenraum zwischen den konzentrischen Wellen vorzugsweise genutzt, um den zwischen den Wellen angeordneten Lagern und eventuell auch einem Lager zwischen der zentralen Welle und einer festen Struktur der Zerkleinerungsvorrichtung Luft oder irgendein anderes Gas zuzuführen, um den Staub von den beim Zerkleinern von Materialien entstehenden Staub von diesen Lagern fernzuhalten. Die Gaszufuhr kann hierbei zum Beispiel ein Gebläse sein, das die Umgebungsluft, eventuell gefiltert, den Lagern zuführt. Die Gaszufuhr kann auch mit einem Hohlraum in der zentralen Welle verbunden sein, mittels welchem über radiale Gasdurchführungen die zugeführte Luft oder das zugeführte Gas zu den Zwischenräumen zwischen den Wellen geleitet wird.In the gas supply, the space between the concentric shafts is preferably used to supply air or any other gas to the bearings interposed between the shafts and possibly also a bearing between the central shaft and a fixed structure of the crusher to remove the dust from crushing Keep away dust from these warehouses. The gas supply may in this case be, for example, a fan which supplies the ambient air, possibly filtered, to the bearings. The gas supply may also be connected to a cavity in the central shaft, by means of which the supplied air or the supplied gas is passed to the gaps between the waves via radial gas passages.

Diese erfindungsgemäße Lösung hat den Vorteil, dass die Lager für die Rotoren einem deutlich geringeren Verschleiß ausgesetzt sind, wobei die Wellen selbst nur minimal verändert werden müssen. So sind lediglich kleine radiale Durchbohrungen in den Wellenmänteln notwendig, um als Gasdurchführung zu weiter außen gelegenen Zwischenräumen, zum Beispiel zwischen der zentralen Welle und der ersten äußeren Welle oder zwischen der ersten äußeren Welle und einer diese umgebenden zweiten äußeren Welle, geleitet zu werden. Es müssen in den Wellenmänteln keine axialen Gasleitungen gebohrt werden, was mit einem vergleichsweise hohen Aufwand verbunden wäre. Somit erlaubt die Erfindung einen sehr einfach zu realisierenden Schutz der Lager der Rotoren einer Zerkleinerungsvorrichtung.This solution according to the invention has the advantage that the bearings for the rotors are exposed to significantly lower wear, the shafts themselves need only be minimally changed. Thus, only small radial through holes in the shrouds are necessary to be routed as a gas passage to more outward gaps, for example between the central shaft and the first outer shaft or between the first outer shaft and a second outer shaft surrounding it. It must be drilled in the shrouds no axial gas lines, which would be associated with a relatively high cost. Thus, the invention allows a very easy to implement protection of the bearings of the rotors of a crushing device.

Es erübrigt sich zu sagen, dass die zueinander konzentrischen Wellen an wenigstens einer Seite mit Antriebsmotoren, z.B. einem kombinierten Motor/Lagerungsblock, verbunden sind, über welche sie unabhängig voneinander angetrieben sind. Diese Motoren sind vorzugsweise an einer Stirnseite der Wellen angeordnet. Auf dieser Seite sind die Wellen im Motor/Lagerungsblock auch an den Motoren gelagert. Auf der gegenüberliegenden Seite ist vorzugsweise zumindest die zentrale Welle an einer festen Struktur, z.B. Rahmen oder Stirnwand der Zerkleinerungskammer gelagert.Needless to say, the concentric shafts on at least one side are driven by drive motors, e.g. a combined motor / bearing block, are connected, over which they are driven independently. These motors are preferably arranged on an end face of the shafts. On this page, the shafts in the engine / bearing block are also mounted on the engines. On the opposite side, preferably at least the central shaft is attached to a fixed structure, e.g. Frame or front wall of the crushing chamber stored.

Vorzugsweise mündet die Gasdurchführung in einen Ringbereich eines Zwischenraums, der einerseits durch ein Lager und auf der anderen Seite durch eine ringförmige Gasabdichtung gebildet ist. Auf diese Weise wird das Gas nicht dem gesamten Zwischenraum zugeführt, sondern nur einem begrenzten axialen Bereich des Zwischenraums zwischen der Gasabdichtung und dem Lager.Preferably, the gas feedthrough opens into an annular region of a gap, which is formed on the one hand by a bearing and on the other side by an annular gas seal. In this way, the gas is not supplied to the entire gap, but only a limited axial area of the gap between the gas seal and the bearing.

Vorzugsweise hat die zentrale Welle einen axialen Hohl/Innenraum der in Verbindung mit einer Gaszufuhr als Gaszuführung zu dem Zwischenraum genutzt wird. Der axiale Hohlraum der zentralen Welle ist einerseits über eine sich radial im Wellenmantel erstreckende Gasdurchführung mit dem Zwischenraum verbunden und andererseits ist er zur Verbindung mit einer Gaszufuhr, zum Beispiel einem Lüfter, konzipiert. Auf diese Weise erfolgt die Zufuhr des Gases, insbesondere der Luft, über den axialen Hohlraum in der zentralen Welle und wird von da aus in den Zwischenraum zwischen der zentralen Welle und einer ersten äußeren Hohlwelle und eventuell von da aus in weitere Zwischenräumen zwischen weiteren äußeren Hohlwellen. Die Anzahl der Wellen entspricht dabei vorzugsweise der Anzahl der Rotoren, wobei die Anzahl der Rotoren, d.h. der konzentrischen Wellen vorzugsweise zwischen zwei und fünf liegt.Preferably, the central shaft has an axial hollow / inner space which is used in conjunction with a gas supply as a gas supply to the gap. The axial cavity of the central shaft is connected on the one hand via a radially extending in the shaft jacket gas passage with the gap and on the other hand, it is designed for connection to a gas supply, for example a fan. This is done in this way the supply of the gas, in particular the air, over the axial cavity in the central shaft and is from there into the space between the central shaft and a first outer hollow shaft and possibly from there into further spaces between other outer hollow shafts. The number of waves preferably corresponds to the number of rotors, wherein the number of rotors, that is, the concentric waves is preferably between two and five.

Vorzugsweise ist der Zwischenraum und/oder der Hohlraum der zentralen Welle mit einem drehbar daran montierten Endstück verbunden, das eine Gaszufuhröffnung zur Verbindung mit einer Gaszufuhr aufweist. Auf diese Weise kann dem ringförmigen Zwischenraum/Hohlraum der zentralen Welle das Gas auf einfache Weise zugeführt werden.Preferably, the gap and / or the cavity of the central shaft is connected to an end piece rotatably mounted thereon which has a gas supply port for connection to a gas supply. In this way, the gas can be supplied to the annular gap / cavity of the central shaft in a simple manner.

Die Gaszufuhr kann in einer einfachen Ausführungsform durch ein Gebläse gebildet sein, es können jedoch auch andere Druckgasvorrichtungen, z.B. Druckpumpen oder Druckgasspeicher verwendet werden. Als einfachstes Gas eignet sich die Atmosphärenluft. Im Fall bestimmter Materialien kann es jedoch sinnvoll sein, inerte Gase, wie zum Beispiel CO2 oder Stickstoff, zuzuführen, um die Oxidation oder ein Entflammen von Materialien beim Zerkleinern zu verhindern. Auf diese Weise werden dann nicht nur die Lager staubfrei gehalten, sondern die Zerkleinerungskammer kann auch mit einem gewünschten Gas gespült werden, welches für den Zerkleinerungsvorgang an sich wichtig ist.The gas supply can be formed in a simple embodiment by a fan, but it can also be used other compressed gas devices, such as pressure pumps or compressed gas storage. The simplest gas is the atmospheric air. In the case of certain materials, however, it may be useful to supply inert gases, such as CO 2 or nitrogen, to prevent oxidation or ignition of materials during comminution. In this way, not only the bearings are kept dust-free, but the crushing chamber can also be flushed with a desired gas, which is important for the crushing process itself.

In einer Ausführungsform der Erfindung sind alle Zwischenräume zwischen den Wellen mit der Gaszufuhr verbunden, was den Vorteil hat, dass alle Lager zwischen allen zueinander konzentrischen Wellen mit dem zugeführten Gas gespült werden und damit frei von zerkleinertem Material bleiben.In one embodiment of the invention, all the spaces between the shafts are connected to the gas supply, which has the advantage that all bearings between all concentric waves are flushed with the gas supplied and thus remain free of crushed material.

Folgende Ausdrücke werden synonym verwendet: Wellenlager - Lager; Längsbohrung - Schmiermittelleitung; Hohlraum - Innenraum - Schmiermittelleitung;The following expressions are used synonymously: shaft bearings - bearings; Longitudinal bore - Lubricant line; Cavity - interior - lubrication line;

Die oben beschriebenen Ausführungsformen der Erfindung sind in beliebiger Weise miteinander kombinierbar, solange sich mehrere Merkmale technisch nicht widersprechen.The embodiments of the invention described above can be combined with one another in any desired manner, as long as several features are not technically contradictory.

Die Erfindung wird nachfolgend beispielsweise anhand der schematischen Zeichnung beschrieben. In dieser zeigen:

Fig. 1
eine erste teilgeschnittene Ansicht einer Zerkleinerungsvorrichtung mit drei Rotoren und drei zueinander konzentrischen Wellen mit einer kombinierten Gas- und Schmiermittelzufuhr.
The invention will be described below by way of example with reference to the schematic drawing. In this show:
Fig. 1
a first partially sectioned view of a crushing device with three rotors and three mutually concentric waves with a combined gas and lubricant supply.

Wege zur Ausführung der ErfindungWays to carry out the invention

In den Figuren sind identische oder funktionsgleiche Teile mit den identischen Bezugszeichen beschrieben.In the figures, identical or functionally identical parts are described with the identical reference numerals.

Fig. 1 zeigt eine Zerkleinerungsvorrichtung 10 in sehr schematischer teilgeschnittener Ansicht entlang ihrer Längsachse z. Der Zylindermantel und der gesamte Bodenbereich der Zerkleinerungsvorrichtung sind nicht dargestellt. Die Zerkleinerungsvorrichtung 10 umfasst einen Motor/Lagerungsblock 12, welcher drei zueinander konzentrische Wellen drehbar lagert und antreibt, nämlich eine zentrale Hohlwelle 14, eine diese umgebende erste äußere Hohlwelle 16, und eine die erste äußere Hohlwelle 16 umgebende zweite äußere Hohlwelle 18. Die drei Hohlwellen 14, 16, 18 sind konzentrisch um die zentrale Achse Z der Zerkleinerungskammer angeordnet. Mindesten eine, vorzugsweise zwei, insbesondere jede konzentrische Welle 14, 16, 18 trägt Schlagwerkzeuge 20, um von oben zugeführtes Material (z.B. Mineralkonglomerate) zu zerschlagen. Die drei Wellen 14, 16, 18 sind über drei separate Motoren im Motor/Lagerungsblock 12 einzeln steuerbar, so dass sie jeweils gegenläufig und mit zunehmender Geschwindigkeit antreibbar sind. Auf diese Weise kann eine sehr effektive Zerkleinerung des zugeführten Materials erreicht werden. In der Zeichnung nicht dargestellt ist ein Zylindermantel, welcher die Rotoren 14, 16, 18 umgibt und eine Zerkleinerungskammer in ihrem Innenraum definiert. Die zentrale Hohlwelle 14 ist an ihrem unteren Ende an dem Motor/Lagerungsblock 12 gelagert und am gegenüberliegenden oberen Ende mittels eines ersten Lagers 22 an einer festen Struktur 24 der Zerkleinerungsvorrichtung 10, zum Beispiel einer Wand. Die erste äußere Hohlwelle 16 ist gegenüber der zentralen Hohlwelle 14 mit einem zweiten Lager 26 radial abgestützt und zentriert. Die zweite äußere Hohlwelle 18 ist gegenüber der ersten äußeren Hohlwelle 16 mit einem dritten Lager 28 radial abgestützt und zentriert. Die drei Lager 22, 26, 28 tragen dafür Sorge, dass die konzentrischen Wellen beim Zerkleinern von Material konzentrisch ausgerichtet bleiben. Die außen nicht überdeckten Abschnitte der konzentrischen Wellen 14, 16, 18 bilden Rotoren 30, 32, 34, an welchen die Schlagwerkzeuge 20 in nicht näher beschriebener Weise verankert sind. Vorzugsweise sind die Schlagwerkzeuge 20 an den Rotoren 30, 32, 34 auswechselbar gehalten. Die Schlagwerkzeuge 20 können Stäbe oder Ketten oder dergleichen an sich bekannte Funktionselemente sein, wie sie aus der DE 10 2013 110 352 A bekannt sind. Beim Zerkleinern von Materialien, insbesondere von mineralhaltigen Materialien, entsteht sehr viel Staub, der schnell die Lager der Wellen beeinträchtigen bzw. zerstören könnte. Fig. 1 shows a crushing device 10 in a very schematic partially sectioned view along its longitudinal axis z. The cylinder jacket and the entire bottom portion of the crushing device are not shown. The comminuting device 10 comprises a motor / bearing block 12 which rotatably supports and drives three shafts concentric with each other, namely a central hollow shaft 14, a first outer hollow shaft 16 surrounding it, and a second outer hollow shaft 18 surrounding the first outer hollow shaft 16. The three hollow shafts 14, 16, 18 are arranged concentrically about the central axis Z of the crushing chamber. At least one, preferably two, in particular each concentric shaft 14, 16, 18 carries impact tools 20 in order to crush material supplied from above (eg mineral conglomerates). The three shafts 14, 16, 18 are individually controllable via three separate motors in the motor / bearing block 12, so that they are each driven in opposite directions and with increasing speed. In this way, a very effective crushing of the supplied material can be achieved. Not shown in the drawing is a cylinder jacket, which surrounds the rotors 14, 16, 18 and defines a crushing chamber in its interior. The central hollow shaft 14 is mounted at its lower end to the motor / bearing block 12 and at the opposite upper end by means of a first bearing 22 to a fixed structure 24 of the crushing device 10, for example a wall. The first outer hollow shaft 16 is supported radially relative to the central hollow shaft 14 with a second bearing 26 and centered. The second outer hollow shaft 18 is radially supported and centered with respect to the first outer hollow shaft 16 with a third bearing 28. The three bearings 22, 26, 28 ensure that the concentric waves remain concentrically aligned when crushing material. The outside uncovered portions of the concentric shafts 14, 16, 18 form rotors 30, 32, 34, to which the impact tools 20 are anchored in unspecified manner. Preferably, the impact tools 20 are held interchangeably on the rotors 30, 32, 34. The striking tools 20 may be rods or chains or the like per se known functional elements, as they are known from DE 10 2013 110 352 A are known. When crushing materials, especially mineral-containing materials, a lot of dust is generated, which could quickly affect or destroy the bearings of the waves.

Damit die Lager gut geschmiert werden, erfolgt eine Schmiermittelzuführung zu den Lagern 22, 26, 28. In der hier dargestellten Zerkleinerungsvorrichtung 10 ist der zentrale Hohlraum 62 der zentralen Hohlwelle 14 als Schmiermittelleitung ausgebildet, die über eine Schmiermittelzufuhrleitung 64 mit einer Schmiermittelzufuhr 66, zum Beispiel einer Druckschmierungseinrichtung, verbunden ist. Im Bereich des ersten Lagers 22 hat der zentrale Hohlraum 62 eine erste radiale Schmiermitteldurchführung 68, die direkt zum ersten Lager 22 führt und somit für eine Schmierung des ersten Lagers 22 führt. Eine zweite Schmiermitteldurchführung 68 führt in einen inneren Ringraum 70, der zwischen dem zweiten Lager 26 und einer ringförmigen Schmiermittelabdichtung 72 ausgebildet ist. Die Schmiermittelabdichtung 72 bewirkt, dass das Schmiermittel nur dem inneren Ringraum 70 und damit dem Lager 26 zugeführt wird und nicht in den darunterliegenden ersten Zwischenraum 44. In der zentralen Hohlwelle 14 ist darüber hinaus eine weitere Schmiermitteldurchführung 68 vorgesehen, die in einen Schmiermittelkanal 74 mündet, der radial außenseitig an der zentralen Hohlwelle 14 befestigt ist. Außenseitig liegt der Schmiermittelkanal 74 an der Innenwand 76 der ersten äußeren Hohlwelle 16 an und ist in einer Höhe angeordnet, in welcher der Schmiermittelkanal 74 mit einer äußeren Schmiermitteldurchführung 78 in der ersten äußeren Hohlwelle 16 fluchten kann. Hierdurch wird der Schmiermittelkanal 74 in einer bestimmten Rotationsstellung der zentralen Hohlwelle 14 relativ zur ersten äußeren Hohlwelle 16 mit der äußeren Schmiermitteldurchführung 78 der ersten äußeren Hohlwelle 16 fluchten. Damit wird einem äußeren Ringraum 80 zwischen der ersten äußeren Hohlwelle 16 und der zweiten äußeren Hohlwelle 18 Schmiermittel zugeführt, welcher äußere Ringraum 80 nach unten hin durch eine ringförmige Schmiermittelabdichtung 72 begrenzt ist und nach oben hin durch das dritte Lager 28. Auf diese Weise wird auch dem dritten am weitesten außen liegenden Lager 28 genug Schmiermittel zugeführt. Falls das kurze Fluchten des Schmiermittelkanals 74 mit der äußeren Schmiermitteldurchführung 78 zu kurz ist, um dem äußeren Ringraum 80 und damit dem dritten Lager 28 genug Schmiermittel zuzuführen, kann vorgesehen sein, dass eine elektronische Steuerung die Position der Wellen 14, 16, 18 zueinander über entsprechende Sensoren ermittelt und die zentrale Hohlwelle 14 und die erste äußere Hohlwelle 16 in einer Schmiermittelposition so relativ zueinander positionieren kann, dass der Schmiermittelkanal 74 mit der äußeren Schmiermitteldurchführung 78 fluchtet. In dieser Position kann dann das dritte Lager 28 geschmiert werden. Wenn er nicht mit der äußeren Schmiermitteldurchführung 78 fluchtet, wird der Schmiermittelkanal 74 durch die Innenwand 76 der ersten äußeren Hohlwelle 16 verschlossen. Der Schmiermittelkanal 74 kann in diesem Sinne entweder leicht an der Innenwand 76 der ersten äußeren Hohlwelle 16 entlanggleiten oder hat einen minimalen Abstand zu dieser, der das Austreten von Schmiermittel verhindert.
Zudem ist der zentrale Hohlraum 62 mit einer dritten Schmiermitteldurchführung 68 verbunden, welche dem obersten Lager 22 Schmiermittel zuführt. Somit wird allen Lagern 22, 26, 28 über den zentralen Hohlraum 62 und die Schmiermitteldurchführungen 68 Schmiermittel zugeführt.
In order to lubricate the bearings well, there is a lubricant supply to the bearings 22, 26, 28. In the crushing device 10 shown here, the central cavity 62 of the central hollow shaft 14 is formed as a lubricant line, which via a lubricant supply line 64 with a lubricant supply 66, for example one Pressure lubrication device is connected. In the region of the first bearing 22, the central cavity 62 has a first radial lubricant feedthrough 68 which leads directly to the first bearing 22 and thus leads to a lubrication of the first bearing 22. A second lubricant passage 68 leads into an inner annular space 70, which is formed between the second bearing 26 and an annular lubricant seal 72. The lubricant seal 72 causes the lubricant is supplied only to the inner annular space 70 and thus the bearing 26 and not into the underlying first gap 44. In the central hollow shaft 14, a further lubricant passage 68 is also provided, which opens into a lubricant channel 74, which is fixed radially on the outside of the central hollow shaft 14. On the outside, the lubricant channel 74 bears against the inner wall 76 of the first outer hollow shaft 16 and is arranged at a height in which the lubricant channel 74 can be aligned with an outer lubricant passage 78 in the first outer hollow shaft 16. As a result, the lubricant channel 74 in a certain rotational position of the central hollow shaft 14 relative to the first outer hollow shaft 16 with the outer lubricant passage 78 of the first outer hollow shaft 16 are aligned. Thus, an outer annulus 80 is supplied between the first outer hollow shaft 16 and the second outer hollow shaft 18 lubricant, which outer annulus 80 is limited downwardly by an annular lubricant seal 72 and upward through the third bearing 28. In this way is also the third outermost bearing 28 supplied enough lubricant. If the short alignment of the lubricant channel 74 with the outer lubricant passage 78 is too short to supply enough lubricant to the outer annular space 80 and thus to the third bearing 28, it may be provided that an electronic control transfers the position of the shafts 14, 16, 18 to each other determined corresponding sensors and the central hollow shaft 14 and the first outer hollow shaft 16 in a lubricant position can position relative to each other so that the lubricant passage 74 is aligned with the outer lubricant passage 78. In this position, the third bearing 28 can then be lubricated. If it is not aligned with the outer lubricant passage 78, the lubricant passage 74 is closed by the inner wall 76 of the first outer hollow shaft 16. The lubricant channel 74 can either easily slide along the inner wall 76 of the first outer hollow shaft 16 or has a minimal distance to this, which prevents the escape of lubricant.
In addition, the central cavity 62 is connected to a third lubricant passage 68 which supplies lubricant to the uppermost bearing 22. Thus, all bearings 22, 26, 28 are supplied via the central cavity 62 and the lubricant passages 68 lubricant.

Zusätzlich oder alternativ zum zentralen Hohlraum 62 kann eine Schmiermittelleitung 63 (gestrichelt gezeichnet) in einer Wellenwandung 14 angeordnet sein, z.B. in Form einer axialen Bohrung, die mit den, vorzugsweise mit allen Schmiermitteldurchführungen 68 verbunden ist. Auf diese Weise kann dann z.B. der zentrale Hohlraum 62 für eine Gaszufuhr genutzt werden. Diese Alternative kann auch angewendet werden, wenn die zentrale Welle 14 keinen zentralen Hohlraum 62 aufweist.In addition or as an alternative to the central cavity 62, a lubricant line 63 (shown by dashed lines) can be arranged in a shaft wall 14, for example in the form of a shaft axial bore, which is connected to the, preferably with all lubricant passages 68. In this way, then, for example, the central cavity 62 can be used for a gas supply. This alternative can also be used if the central shaft 14 has no central cavity 62.

Der erste Zwischenraum 44 ist über eine Gasleitung 38 mit einer Gaszufuhr 40, zum Beispiel einem Gebläse, verbunden. Die Schmiermittelabdichtung 72 zwischen der zentralen Hohlwelle 14 und der ersten äußeren Hohlwelle 16 als auch zwischen der ersten äußeren Hohlwelle 16 und der zweiten äußeren Hohlwelle 18 sind gasdurchlässig. Zudem ist in der ersten äußeren Hohlwelle 16 eine Gasdurchführung 42 angeordnet, durch die ein von einer Gaszufuhr 40 zugeführtes Gas, z.B. Luft, auch dem zweiten Zwischenraum 52 zwischen der ersten äußeren Hohlwelle 16 und der zweiten äußeren Hohlwelle 18 zugeführt wird. Hierdurch werden das zweite Lager 26 als auch das dritte Lager 28 mit Gas versorgt. In dieser Ausführungsform werden somit die beiden Lager 26, 28 nicht nur mit Schmiermittel versorgt, sondern auch mit einem Gas, zum Beispiel Atmosphärenluft, so dass diese nicht mit Staub der zerkleinerten Material verschmutzt werden und damit eine sehr lange Lebensdauer aufweisen.The first intermediate space 44 is connected via a gas line 38 to a gas supply 40, for example a blower. The lubricant seal 72 between the central hollow shaft 14 and the first outer hollow shaft 16 and between the first outer hollow shaft 16 and the second outer hollow shaft 18 are gas-permeable. In addition, in the first outer hollow shaft 16, a gas passage 42 through which a gas supplied from a gas supply 40, e.g. Air, also the second gap 52 between the first outer hollow shaft 16 and the second outer hollow shaft 18 is supplied. As a result, the second bearing 26 and the third bearing 28 are supplied with gas. In this embodiment, therefore, the two bearings 26, 28 are supplied not only with lubricant, but also with a gas, for example, atmospheric air, so that they are not contaminated with dust of the crushed material and thus have a very long life.

Am freien Ende der zentralen Hohlwelle 14 ist eine zentrale Abdeckung 46 angeordnet, welche den zentralen Hohlraum 36 zum freien Ende hin verschließt. Am Ende der ersten äußeren Hohlwelle 16 ist eine erste Ringabdeckung 48 angeordnet, welche um einen ersten Spalt 50 gegenüber der zentralen Hohlwelle 14 beabstandet ist. Diese erste Ringabdeckung 46 bewirkt zum einen eine mechanische Sperre gegen das Eindringen von Staub aus der Zerkleinerungskammer. Zum anderen ist aufgrund der Verengung des Austritts im ersten Spalt 50 zwischen der zentralen Hohlwelle 14 und der ersten Ringabdeckung 48 der zur Verfügung stehende Strömungsraum extrem verringert, was dazu führt, dass das Gas dort mit einer entsprechend erhöhten Geschwindigkeit austritt. Die Absicherung des zweiten Lagers 26 gegen das Eindringen von Staub wird dadurch deutlich verbessert. In der ersten äußeren Hohlwelle 16 ist eine radiale Gasdurchführung 42 angeordnet, so dass das Gas in einen zweiten Zwischenraum 52 geführt wird, welcher zwischen der ersten äußeren Hohlwelle 16 und der zweiten äußeren Hohlwelle 18 angeordnet ist. Von dort wird das Gas dem dritten Lager 28 zugeführt und gelangt durch einen zweiten Spalt 54 zwischen der ersten äußeren Hohlwelle 16 und einer zweiten Ringabdeckung 49 in die Zerkleinerungskammer. In dem zweiten Spalt 54 ist wiederum die Gasgeschwindigkeit erhöht, so dass dies einen sehr guten Schutz gegen das Eindringen von Staub und größeren Materialkörnern in das dritte Lager 28 bietet.At the free end of the central hollow shaft 14, a central cover 46 is arranged, which closes the central cavity 36 towards the free end. At the end of the first outer hollow shaft 16, a first annular cover 48 is arranged, which is spaced around a first gap 50 with respect to the central hollow shaft 14. This first ring cover 46 on the one hand causes a mechanical barrier against the ingress of dust from the crushing chamber. On the other hand, due to the narrowing of the exit in the first gap 50 between the central hollow shaft 14 and the first ring cover 48, the available flow space is extremely reduced, which results in the gas exiting there at a correspondingly increased speed. The protection of the second bearing 26 against the ingress of dust is thereby significantly improved. In the first outer hollow shaft 16, a radial gas passage 42 is arranged, so that the gas is guided into a second intermediate space 52, which is arranged between the first outer hollow shaft 16 and the second outer hollow shaft 18. From there, the gas is supplied to the third bearing 28 and passes through a second gap 54 between the first outer hollow shaft 16 and a second ring cover 49 in the crushing chamber. In the second gap 54, in turn, the gas velocity is increased, so that this provides a very good protection against the ingress of dust and larger material grains in the third bearing 28.

Das erste Lager kann außerhalb der Zerkleinerungskammer angeordnet sein, in welchem Fall eine Gasspülung nicht unbedingt erforderlich ist.The first bearing may be located outside the crushing chamber, in which case gas purging is not necessarily required.

Die vorliegende Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern kann innerhalb des Schutzbereichs der beiliegenden Ansprüche in beliebiger Weise variiert werden.The present invention is not limited to the described embodiments, but may be varied as desired within the scope of the appended claims.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Zerkleinerungsvorrichtung (erste Ausführungsform)Crushing device (first embodiment)
1212
Motor/LagerungsblockMotor / bearing block
1414
zentrale Hohlwellecentral hollow shaft
1616
erste äußere Hohlwellefirst outer hollow shaft
1818
zweite äußere Hohlwellesecond outer hollow shaft
2020
SchlagwerkzeugeStriking Tools
2222
erstes Lagerfirst camp
2424
feste Struktursolid structure
2626
zweites Lagersecond camp
2828
drittes Lagerthird camp
3030
erster Rotorfirst rotor
3232
zweiter Rotorsecond rotor
3434
dritter Rotorthird rotor
3838
Gasleitunggas pipe
4040
Gaszufuhrgas supply
4242
GasdurchführungGas passage
4444
erster Zwischenraumfirst gap
4646
zentrale Abdeckungcentral cover
4848
erste Ringabdeckungfirst ring cover
4949
zweite Ringabdeckungsecond ring cover
5050
erster Spaltfirst gap
5252
zweiter Zwischenraumsecond space
5454
zweiter Spaltsecond gap
6060
Zerkleinerungsvorrichtung (zweite Ausführungsform)Crushing device (second embodiment)
6262
zentraler Hohlraumcentral cavity
6464
SchmiermittelzufuhrleitungLubricant supply line
6666
Schmiermittelzufuhrlubricant supply
6868
SchmiermitteldurchführungLubricating bushing
7070
innerer Ringrauminner annulus
7272
Schmiermittelabdichtunglubricant seal
7474
Schmiermittelkanallubricant channel
7676
Innenwand der ersten äußeren HohlwelleInner wall of the first outer hollow shaft
7878
äußere Schmiermitteldurchführungouter lubricant feedthrough
8080
äußerer Ringraumouter annulus

Claims (13)

  1. Comminution device, comprising a cylinder surrounding a comminution chamber, in which several rotors (30, 32, 34) are driven independently from each other by their own drives, which rotors are driven via concentric shafts (14, 16, 18) which are arranged concentrically to the central axis (z) of the comminution chamber, which concentric shafts comprise a central shaft (14) as well as at least one outer hollow shaft (16, 18) surrounding the central shaft (14), whereby in the central shaft (14) and/or in a shaft sheath at least one lubricant pipe to be connected with a lubricant supply (66) is arranged, which lubricant pipe is connected with at least one bearing (22, 26, 28) of the rotors via a radial lubricant conduct (68), characterized in that at least one shaft (14, 16, 18) comprises in the area of its lubricant conduct (68) a radial extending lubricant channel (74) which abuts to the wall (76) of an adjacent shaft in the area of a lubricant conduct (78) located therein.
  2. Comminution device according to claim 1, characterized in that the lubricant conduct (68) leads to an annular section (70, 80) at/in which a shaft bearing is located.
  3. Comminution device according to claim 2, characterized in that the annular section is defined in a first axial direction by a bearing (26, 28) and in the opposite second axial direction by a lubricant seal (72).
  4. Comminution device according to claim 3, characterized in that the lubricant seal (72) is permeable to gas.
  5. Comminution device according to one of the preceding claims, in which the lubricant channel (74) comprises at least in the area abutting to the wall (76) a contact material which has a low friction with respect to the material of the shaft.
  6. Comminution device according to one of the preceding claims, characterized in that at the end face of the rotors the lubricant pipe is connected with an annular feed chamber.
  7. Comminution device according to one of the preceding claims, characterized in that in the central shaft there is an inner space and/or between the shafts there is at least one intermediate space (44,52), which inner/intermediate space is provided at least partially as a gas feed space in connection with a gas supply (40), which gas feed space is connected with at least one shaft bearing (26, 28) arranged between the shafts.
  8. Comminution device according to claim 7, characterized in that the gas feed space is connected to a rotary mounted end piece comprising a gas feed opening to be connected with a gas supply (40).
  9. Comminution device according to claim 7 or 8, characterized in that at least one of the shafts (14, 16, 18) comprises in its shaft sheath a radially extending gas conduct (42) being connected to the shaft bearing (26).
  10. Comminution device according to claim 9, characterized in that the gas conduct (42) leads to a first annular gas section which is defined in the first axial direction by a bearing and in the opposite second axial direction by an annular gas seal.
  11. Comminution device according to one of the preceding claims, characterized in that the central shaft (14) comprises an axial hollow space which is on one hand connected with an intermediate space (44, 52) via a gas conduct (42) extending radially in the shaft sheath and which is on the other hand configured to be connected with a gas supply (40).
  12. Comminution device according to one of the preceding claims, characterized in that the gas supply (40) is realized by a fan.
  13. Comminution device according to one of the preceding claims, characterized in that all intermediate spaces (44, 52) between the shafts (14, 16, 18) are connected to the gas supply (40).
EP16704429.6A 2015-03-18 2016-02-11 Comminuting apparatus Active EP3271076B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16704429T PL3271076T3 (en) 2015-03-18 2016-02-11 Comminuting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015104078.6A DE102015104078A1 (en) 2015-03-18 2015-03-18 comminution device
PCT/EP2016/052939 WO2016146307A1 (en) 2015-03-18 2016-02-11 Comminuting device

Publications (2)

Publication Number Publication Date
EP3271076A1 EP3271076A1 (en) 2018-01-24
EP3271076B1 true EP3271076B1 (en) 2019-06-12

Family

ID=55349834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16704429.6A Active EP3271076B1 (en) 2015-03-18 2016-02-11 Comminuting apparatus

Country Status (15)

Country Link
US (1) US10639639B2 (en)
EP (1) EP3271076B1 (en)
JP (1) JP6563026B2 (en)
CN (1) CN107708867B (en)
AU (1) AU2016232614B2 (en)
BR (1) BR112017019974B1 (en)
CA (1) CA2982538C (en)
CL (1) CL2017002365A1 (en)
DE (1) DE102015104078A1 (en)
ES (1) ES2735436T3 (en)
MX (1) MX2017011961A (en)
PL (1) PL3271076T3 (en)
PT (1) PT3271076T (en)
RU (1) RU2667753C1 (en)
WO (2) WO2016146307A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110352A1 (en) * 2013-09-19 2015-03-19 Pms Handelskontor Gmbh comminution device
CN112128121B (en) * 2020-09-11 2023-01-13 佛山市创联科技有限公司 Air compressor

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA755513B (en) * 1974-08-29 1976-07-28 Pennsylvania Crusher Corp Improvements in high speed rotating crushing machinery and crushing methods
USRE30919E (en) * 1974-08-29 1982-05-04 Pennsylvania Crusher Corporation High-speed rotating crushing machinery
US4084756A (en) * 1976-06-08 1978-04-18 Allis-Chalmers Corporation Gear and pinion backlash adjustment for the drive of a gyratory crusher
US4113191A (en) * 1977-03-17 1978-09-12 Entoleter, Inc. Laminated rotor processing apparatus
US4232833A (en) * 1979-03-19 1980-11-11 Litton Systems, Inc. Cone crusher setting indicator
DE7935481U1 (en) * 1979-12-17 1980-03-20 Krupp Polysius Ag, 4720 Beckum DEVICE FOR LUBRICATING RADIAL SHAFT SEALS IN GRINDING REELS
US4478373A (en) * 1980-10-14 1984-10-23 Rexnord Inc. Conical crusher
US4522343A (en) * 1982-12-13 1985-06-11 Williams Patent Crusher And Pulverizer Company Micronized grinding apparatus
US4524917A (en) * 1983-03-03 1985-06-25 Williams Patent Crusher And Pulverizer Company Air seal and lubrication system for roller grinding mills
US4634134A (en) * 1985-05-08 1987-01-06 Epworth Manufacturing Co., Inc. Mechanical seal
US4666092A (en) * 1985-12-26 1987-05-19 Barber-Greene Company-Telsmith Division Torque limiter for gyratory crusher anti-spin clutch
SU1404108A1 (en) * 1986-12-02 1988-06-23 Всесоюзный Научно-Исследовательский Институт Цементного Машиностроения Roller for plate and roller mill
US4910987A (en) * 1989-02-27 1990-03-27 Morgan Construction Company Roll neck face seal for cantilevered rolling mill
US5044809A (en) * 1990-03-29 1991-09-03 Franklin Miller, Inc. Two part axial drive device each having self contained bearing sealing means
US5098026A (en) * 1991-01-07 1992-03-24 The Babcock & Wilcox Company Easy access pop off relief valve
DE9109608U1 (en) * 1991-08-02 1991-10-10 Gebrüder Bauermeister & Co Verfahrenstechnik GmbH & Co, 2000 Norderstedt Classifier mill
KR960010431B1 (en) 1992-04-08 1996-07-31 가부시키가이샤 도시바 X-ray tube of the rotary anode type
FI96924C (en) * 1994-01-17 1996-09-25 Nordberg Lokomo Oy The control system
FI955088A0 (en) * 1995-10-25 1995-10-25 Nordberg Lokomo Oy Taetad Kross
US5732896A (en) * 1996-04-18 1998-03-31 Astec Industries, Inc. Anti-spin mechanism for gyratory crusher
US5718391A (en) * 1996-10-15 1998-02-17 Cedarapids, Inc. Gyratory crusher having dynamically adjustable stroke
US5996916A (en) * 1996-10-15 1999-12-07 Cedarapids, Inc. Cone crusher having positive head hold-down mechanism
SE511181C2 (en) * 1997-10-30 1999-08-16 Svedala Arbra Ab Gyratory crusher
FR2777476B1 (en) 1998-04-16 2000-06-23 Alsthom Gec COMBUSTIBLE PARTICLE SEPARATOR PROVIDED UPSTREAM OF A BOILER AND INCLUDING A SINGLE ISOLATION VALVE
CN2351419Y (en) 1998-11-09 1999-12-01 姜德杰 Automatic jack
JP2000240575A (en) 1999-02-22 2000-09-05 Kobe Steel Ltd Oil-cooled air compressor
FI109722B (en) * 2001-03-23 2002-09-30 Metso Minerals Tampere Oy A method for monitoring the condition of crusher bearings and a crusher
US20030136865A1 (en) * 2002-01-22 2003-07-24 Metso Minerals Industries, Inc. Wireless monitoring of conical crusher components
FI117044B (en) 2004-04-26 2006-05-31 Metso Minerals Tampere Oy Hydraulically adjustable cone crusher
JP2006300255A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Multi-shaft lubricating device
FI20050538A0 (en) * 2005-05-20 2005-05-20 Fractivator Oy transmission arrangement
CN201020384Y (en) * 2007-03-19 2008-02-13 孔金龙 Viscous material pulverizer
FI119467B (en) * 2007-04-10 2008-11-28 Fractivator Oy Improved recoil mill
ATE547177T1 (en) * 2007-06-27 2012-03-15 Smidth As F L ROLLING MILL
SE532277C2 (en) * 2008-04-11 2009-12-01 Sandvik Intellectual Property Crushing device, and way to start it
SE533274C2 (en) * 2008-12-19 2010-08-10 Sandvik Intellectual Property Axial storage for a gyratory crusher, and ways to support a vertical shaft in such a crusher
EP2505265B1 (en) * 2011-03-29 2013-09-18 Sandvik Intellectual Property AB Cone crusher, bearing plate, and kit of bearing plates
DE102012104031B4 (en) * 2012-05-08 2017-05-04 Pms Handelskontor Gmbh Separating device for material conglomerates
DE102013110352A1 (en) 2013-09-19 2015-03-19 Pms Handelskontor Gmbh comminution device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2982538A1 (en) 2016-09-22
WO2016146307A1 (en) 2016-09-22
JP6563026B2 (en) 2019-08-21
DE102015104078A1 (en) 2016-09-22
EP3271076A1 (en) 2018-01-24
PT3271076T (en) 2019-07-23
RU2667753C1 (en) 2018-09-24
BR112017019974B1 (en) 2021-06-29
CL2017002365A1 (en) 2018-03-09
MX2017011961A (en) 2018-06-07
AU2016232614B2 (en) 2019-02-07
CN107708867A (en) 2018-02-16
CN107708867B (en) 2020-10-16
WO2016146306A1 (en) 2016-09-22
JP2018508357A (en) 2018-03-29
ES2735436T3 (en) 2019-12-18
US20180243747A1 (en) 2018-08-30
US10639639B2 (en) 2020-05-05
PL3271076T3 (en) 2019-10-31
AU2016232614A1 (en) 2017-11-02
BR112017019974A2 (en) 2018-06-19
CA2982538C (en) 2019-02-26

Similar Documents

Publication Publication Date Title
EP1841949B1 (en) Device for milling rock and other materials and method or milling rock or the like using said device
EP3024723B1 (en) Propeller blade bearing
WO2012139830A1 (en) Bearing unit for a turbocharger
EP2189221A2 (en) Stirring ball mill
EP3323717B1 (en) Rotor mast
EP0014695B1 (en) Cutter head with water nozzles and process for operating this head
WO2018210657A1 (en) Screen ball mill for processing coarse metal-containing material
DE102008062570B3 (en) Dispersing device, has roller bearing arranged in axial conveying direction at back side to dispersing region that is formed from rotor and stator, and outlet port for treating medium and arranged at back side of roller bearing
EP3271076B1 (en) Comminuting apparatus
DE102009032294A1 (en) bearing arrangement
EP1666671B1 (en) Milling device for trench walls
EP2834539B1 (en) Gearbox arrangement for a rail vehicle
EP2623908A1 (en) Assembly for the aerobic warming of free-flowing solid material
DE102013220137B3 (en) Meat mincer with housing and fixed in rotation in the housing set of cutting elements
DE3321593C2 (en)
DE102017206240B3 (en) Screw compressor assembly
DE102015118599B4 (en) bearing arrangement
DE102018213593A1 (en) Gearbox, in particular for a single wheel drive unit
EP1021247B1 (en) Chopper
DE700016C (en) Plate crusher
EP3820271B1 (en) Distribution apparatus for a slurry
DE102004023438B4 (en) tube mill
AT518671B1 (en) heater
DE102009032629B4 (en) Bearing arrangement with a rotary separator
EP2664794B1 (en) Piston compressor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1141902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005013

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3271076

Country of ref document: PT

Date of ref document: 20190723

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190716

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190612

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2735436

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005013

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240326

Year of fee payment: 9

Ref country code: IE

Payment date: 20240220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240207

Year of fee payment: 9

Ref country code: FI

Payment date: 20240219

Year of fee payment: 9

Ref country code: DE

Payment date: 20240228

Year of fee payment: 9

Ref country code: BG

Payment date: 20240222

Year of fee payment: 9

Ref country code: GB

Payment date: 20240219

Year of fee payment: 9

Ref country code: CH

Payment date: 20240301

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240219

Year of fee payment: 9

Ref country code: PL

Payment date: 20240119

Year of fee payment: 9

Ref country code: NO

Payment date: 20240222

Year of fee payment: 9

Ref country code: IT

Payment date: 20240228

Year of fee payment: 9

Ref country code: FR

Payment date: 20240221

Year of fee payment: 9