EP3267039B1 - Verfahren und system zur regelung einer pumpstation - Google Patents

Verfahren und system zur regelung einer pumpstation Download PDF

Info

Publication number
EP3267039B1
EP3267039B1 EP17001136.5A EP17001136A EP3267039B1 EP 3267039 B1 EP3267039 B1 EP 3267039B1 EP 17001136 A EP17001136 A EP 17001136A EP 3267039 B1 EP3267039 B1 EP 3267039B1
Authority
EP
European Patent Office
Prior art keywords
volume flow
pressure
value
δqd
pumping station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17001136.5A
Other languages
English (en)
French (fr)
Other versions
EP3267039A1 (de
Inventor
Edgar Große-Westhoff
Daniel BÜNING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Publication of EP3267039A1 publication Critical patent/EP3267039A1/de
Application granted granted Critical
Publication of EP3267039B1 publication Critical patent/EP3267039B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/02Use of pumping plants or installations; Layouts thereof arranged in buildings

Definitions

  • the invention relates to a method for regulating a pumping station in a hydraulic network which pressurizes a medium to be conveyed to at least one consumer, the pressure being set as a function of the volume flow through the pumping station according to a control curve.
  • the invention also relates to a system for carrying out the method.
  • a method of the type mentioned is from the DE 10 2014 001 413 A1 known.
  • the object of the underlying invention is to provide a method and a system for regulating a pumping station in a hydraulic network, which regulates the pressure of the pumping station as a function of the volume flow as required and in an energy-efficient manner without any loss of comfort.
  • control curve being formed from a plurality of partial pressure curves, each for a volume flow interval of a number corresponding to the plurality Seamlessly adjoining volume flow intervals can be defined on the basis of pressure and volume flow values of the network that have been determined and are to be evaluated at intervals.
  • the control curve is thus defined in sections without any gaps, ie on the one hand for all possible load cases, on the other hand taking into account the pressure losses actually occurring in the system. Specific knowledge of the hydraulic resistances in the network is not required.
  • a system for regulating a pumping station in a hydraulic network with which a medium to be conveyed to at least one consumer can be pressurized, the pressure being adjustable as a function of the volume flow through the pumping station according to a control curve, the system for this purpose is set up to form the control curve from a plurality of partial pressure curves, and to define these partial pressure curves in each case for a volume flow interval of a number of seamlessly adjoining volume flow intervals corresponding to the plurality on the basis of pressure and volume flow values of the network that are determined and to be evaluated at intervals.
  • the control curve is made up of the plurality of partial pressure curves, each of which is defined for a specific volume flow interval.
  • the respective partial pressure curve of a specific volume flow interval is preferably defined or determined dynamically during operation, pressure and volume flow values being determined for this purpose and those values being evaluated which are assigned to the specific volume flow interval. In this way, a control curve is formed, which when used, the control of the pumping station is optimally adapted to the hydraulic network and the pumping station is operated particularly favorably in terms of energy.
  • FIG. 1 shows a building 10 with a drinking water supply that is fed with pressurized drinking water from a central supply line 9 of a municipal supplier.
  • the drinking water system comprises a pump station 1 set up inside the building 10 in the manner of a pressure booster system, which is connected on the input side via a feed line 16 to the central supply line 9, and on the output side is connected to a hydraulic network 8, 2, which has a large number of consumers 3 to which the drinking water is directed.
  • the consumers 3 are formed here by tapping points for drawing off the drinking water. For example, consumers, water fittings such as sinks, bathtubs or shower fittings, toilets, washing machines or dishwashers, etc. are formed.
  • the network 8, 2 comprises a pressure line 8 connected to the output of the pumping station 1, from which two local supply lines 2 branch off here, along which the consumers 3 are arranged. Viewed hydraulically, the consumers 3 thus all have a different distance from the pumping station 1, so that each line path from the pumping station 1 to one of the consumers 3 causes an individual pressure loss.
  • the pumping station 1 comprises two pumps 17 arranged in parallel, which can be operated alternatively or cumulatively.
  • a control and regulating unit 7 is provided for controlling and / or regulating the pumps 17 and adjusts their output and / or speed accordingly.
  • the pumping station can also have only one pump 17 or more than two pumps, for example three or four pumps 17, which can be hydraulically parallel and / or in series.
  • the control and regulation unit 7 can structurally be part of the pumping station 1, but alternatively it can also be located outside the pumping station, for example part of a central control and / or regulation of a building technology.
  • the hydraulic network can also have two or more pressure lines 8 and / or the pressure line 8 can supply three or more floors. In one embodiment variant, three or more local supply lines 2 can branch off from the pressure line 8.
  • a local supply line may be divided into two or more further lines.
  • the local supply lines 2 the same number of consumers 3 may be present, the local supply lines 2 have the same length, or the spacing between the consumers may be equidistant. So shows Figure 2 an exemplary drinking water system in which the local supply line 2 extending on the second floor is on the one hand shorter than the local supply line 2 extending on the first floor and on the other hand has fewer consumers 3 than the local supply line 2 extending on the first floor .
  • the pumping station 1 increases the pressure of the central supply line 9 and conveys the drinking water via the pressure line 8 and the local supply lines 2 to the consumers 3, provided that at least one of the extraction points 3 opens.
  • the pumping station 1 is regulated in such a way that a certain outlet pressure is present at its outlet, which ensures that there is sufficient flow pressure even at the worst extraction point 3.
  • the pressure losses that exist between the pumping station 1 and the respective extraction point 3 must be taken into account here.
  • the worst extraction point 3, also called the bad point, is generally that extraction point which, viewed geographically, is located at the highest and / or is the furthest away from the pumping station 1. From a hydraulic point of view, it is that extraction point 3 which the water experiences the greatest hydraulic resistance to reach.
  • the pressure of the pumping station 1 at the outlet is set to a constant value according to the prior art, that is to say regulated according to a constant pressure control curve.
  • the pressure p out at the outlet of the pumping station is constant over the volume flow Q.
  • the method according to the invention is based on this mode of operation and adapts the control curve in such a way that the output pressure depends on the volume flow Q is set by the pumping station 1 according to a new control curve.
  • This new control curve is made up of a plurality of partial pressure curves p soll, 1 (Q). ..., p, is to (Q) n formed, respectively, ..., n .DELTA.Q a flow interval .DELTA.Q 1 of a plurality of corresponding number n gaps of adjacent flow .DELTA.Q intervals 1, ..., n on the basis .DELTA.Q determined and pressure and volume flow values of the network to be evaluated at intervals can be defined.
  • the pressure and volume flow values can be at least system pressure values p sys (t v ), p sys, k (t v ) of the system pressure p sys, p sys, k present at a system point 5, 5a, 5b as well as volume flow values Q ( t v ) of the flowing or conveyed volume flow Q at different times t v .
  • the worst point ie the location of the worst extraction point 3 can be selected as system point 5.
  • This has the advantage that the maximum pipe losses that occur are taken into account for the formation of the control curve, thus ensuring that even the worst extraction point 3 is supplied with sufficient operating pressure if the pumping station 1 is regulated according to the partial pressure curves according to the invention.
  • the system pressure p sys of this worst extraction point 3 is therefore preferably determined.
  • this is a withdrawal point 3, which is located at the end of one of the local supply lines 2, in particular that withdrawal point which is the highest.
  • the system point 5 or the first or second system point 5a, 5b can also be located before or after an extraction point 3, in particular before or after the bad point.
  • the resulting inaccuracy in the value acquisition is slight and therefore does not impair the method according to the invention.
  • the system point 5 is preferably located in the immediate vicinity of the extraction point 3, since the installation of a measuring device is easiest there.
  • the system pressure values are preferably determined by measuring by means of a measuring device such as a pressure sensor.
  • the system pressure p sys , p sys, k can alternatively be calculated or estimated from other variables.
  • the volume flow Q is determined. This can also be done by measuring by means of a measuring device such as a volume flow sensor 6, but alternatively also computationally from other variables such as the power or the speed of one of the or both pumps 17.
  • the measuring device 6 can be arranged at the entrance of the pumping station 1, for example.
  • the volume flow can be estimated, for example on the basis of mathematical, electro-mechanical and / or mechanical-hydraulic models of the pumping station 1.
  • one or more measuring devices are present, they preferably form part of the system according to the invention for regulating the pumping station 1.
  • the measuring device for the outlet pressure and / or for the volume flow can be structurally combined with the pumping station 1.
  • the existing measuring devices can be connected to the control and regulation unit 7, for example via a cable connection and / or via a radio connection.
  • a cable connection has the advantage of reliable and essentially simultaneous detection of the system pressure or one of the system pressures, the outlet pressure and / or the volume flow.
  • a radio link has the advantage of easy installation or retrofitting of components to be connected in terms of data technology, such as a measuring device for recording the system pressure, since there is no need to lay a data line.
  • the system pressure p sys , or the respective system pressure p sys, k , and the volume flow Q are suitably assigned to one another over time, ie preferably determined at the same or essentially the same point in time t v . Because of this common time reference, they form a unit in the form of a data tuple. For the definition of the control curve, a large number of data tuples is preferably determined at different times.
  • the determination of the pressure and volume flow values in particular the acquisition of the data tuples, can take place at time intervals, for example either at certain times, such as on the hour, or always after a period of time, e.g. every 15 minutes. They can therefore be determined periodically. Alternatively or cumulatively, certain events can trigger the determination of pressure and volume flow values, for example the opening of an extraction point.
  • the pressure p sys , p sys, k at the system point 5, 5a, 5b is identical or at least almost identical to the output pressure p from the pumping station 1 when no extraction point is open or no consumer 3 consumes anything .
  • the volume flow Q is also zero and the corresponding data tuple cannot be used.
  • these cases can nevertheless initially be recorded as pressure and volume flow values, with filtering of the data tuples then being able to follow, in which such data tuples with volume flow zero and / or those with a system pressure value essentially the output pressure p from the pumping station 1 removed.
  • a system pressure value essentially the output pressure p from the pumping station 1 removed.
  • transition effects are, for example, a settling, ie decaying periodic pressure fluctuations.
  • it can be determined during operation of the pumping station 1 when the change over time of a volume flow Q other than zero is essentially constant for at least a certain period of time, only in this case the pressure value or values p sys (t v ), p sys, k (t v ) and the volume flow value Q (t v ) are recorded. Because in this case the transition effects have largely subsided.
  • the determination of the pressure and volume flow values takes place at least at the beginning of the method and at least for a certain period of time, since they form the basis for the definition of the partial pressure curves.
  • the longer the period the more values or data tuples are collected and the more precisely the control curve can be adapted in sections to the actual conditions. It is not necessary to limit the data collection to this period. Rather, the method according to the invention can be used continuously during the operation of the pumping station 1, and in this way the control curve can be dynamically adapted again and again.
  • the end of the period can be determined by the beginning of the subsequent evaluation of the collected data tuples. A new period within which the data is recorded can then follow the ended period.
  • the determined pressure and volume flow values or data tuples can be evaluated as described below.
  • the data tuples can first be assigned to a volume flow data interval ⁇ Qd i , which correlates with one of the volume flow intervals ⁇ Q i , on the basis of their respective volume flow value Q (t v).
  • the collected data are thus combined into a group with regard to the partial pressure curves to be defined, the groups also being sorted.
  • the time reference of the pressure and volume flow values or the data tuples is then no longer important.
  • the pressure loss ⁇ p from the pumping station 1 to the corresponding system point 5, 5a, 5b is then calculated for each data tuple.
  • this can take place in that the difference is formed from an output pressure setpoint p booster of the pumping station 1 and the system pressure value p sys (t v ), p sys, k (t v ) of the respective data tuple.
  • the output pressure setpoint p booster of the pumping station 1 is known since it corresponds to the constant pressure to which the pumping station 1 is regulated at least at the beginning of the method according to the invention. It defines the initial constant pressure control curve according to which the output pressure p out is set by the control and regulation unit 7.
  • the output pressure p from the pumping station 1 does not, or at least not always, correspond to the output pressure setpoint p booster in practice, because dynamic pressure changes occur upstream and / or downstream of the pumping station, which are regulated accordingly.
  • the pressure losses from the pumping station 1 to the corresponding system point 5, 5a, 5b can be calculated more precisely if the pressure p out actually present at the output of the pumping station 1 is used instead of the output pressure setpoint p booster.
  • the pressure and volume flow values determined or to be determined also include the output pressure p from the pumping station 1.
  • the outlet pressure p can also be determined or estimated from measurement technology or computation, for example on the basis of a mathematical model of the pumping station 1 a pressure sensor which is suitably arranged at the exit of the pumping station 1.
  • each data tuple then comprises three elements and thus forms a data triple.
  • the pressure loss ⁇ p (t v ) can be calculated from the system pressure value p sys (t v ), p sys, k (t v ) and the determined output pressure value p from (t v ) of each data tuple can be determined by forming the difference.
  • a pressure loss ⁇ p (t v ) results from each data tuple.
  • FIG. 4 A diagrammatic representation of the determined data tuples is given in Figure 4 shown.
  • a pQ diagram it shows the output pressure value p from (t v ), the system pressure value p sys (t v ), p sys, k (t v ) - each formed by a small circle - for different data tuples formed at different times t v - and the existing volume flow value Q (t v ).
  • the data tuples of the four times t 1 , t 2 , t 3 , t 4 are particularly emphasized.
  • the vertical distance between the circles corresponds to the pressure loss ⁇ p (t v ) at the respective point in time (t v ).
  • the output pressure value is p from (t v) for all detected data tuples on an output pressure value p booster corresponding line, demonstrating that instead of the actual output pressure values p from (t v) of the output pressure setpoint p booster used without having to accept significant deviations and thus deterioration in the quality of the process.
  • This is in Figure 5 illustrated.
  • a differentiation was made with regard to their location, namely in that this location was referenced by the index k at the corresponding system pressure p sys, k, it ultimately the location of the acquisition does not matter. Because ultimately only the level of the pressure losses and their assignment to a volume flow data interval ⁇ Qd i are important . With two system locations 5a, 5b, only the amount of data tuples recorded in the same time span doubles.
  • a pressure loss can initially be calculated from the system pressure value p sys (t v ), p sys, k (t v ) and the output set point p booster of the pumping station 1 or the determined output pressure value p from (t v ) of each data tuple by forming the difference ⁇ p (t v ) can be determined from the output of the pumping station 1 to the system point 5, 5a, 5b, and then this determined pressure loss ⁇ p (t v ) can be assigned to a volume flow data interval ⁇ Qd i on the basis of the volume flow value Q (t v) of the respective data tuple. The time reference is then no longer important. Rather, the pressure loss ⁇ p can be specified as the j-th value of the i-th volume flow data interval ⁇ Qd i.
  • the intervals are thus each down through a minimum value or initial value and limited upwards by a maximum value (end value), whereby the maximum value of a volume flow interval ⁇ Q 1 corresponds to the minimum value of the next higher volume flow interval ⁇ Q i + 1 or where the minimum value of a volume flow interval ⁇ Q i corresponds to the maximum value of the next lower volume flow interval ⁇ Q i-1 .
  • the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n therefore lie next to one another without any gaps. For a mathematically exact interval definition, these values may of course only be assigned to one of the intervals.
  • a partial pressure curve is established for each volume flow interval ⁇ Q 1 ,..., ⁇ Q n.
  • the number n of volume flow intervals ⁇ Q 1 , ..., ⁇ Q n or the corresponding number of partial pressure curves can in principle be freely selected.
  • at least 6 or 8 volume flow intervals ⁇ Q 1 , ..., ⁇ Q n should be used.
  • the method can also be carried out if only 4 volume flow intervals ⁇ Q 1 , ..., ⁇ Q n are used.
  • volume flow intervals ⁇ Q 1 ,..., ⁇ Q n are used.
  • the number n of volume flow intervals .DELTA.Q 1 ..., .DELTA.Q n are selected to be greater than when in the Figures 1 and 2 1 shown pump station.
  • 20 or 30 volume flow intervals ⁇ Q 1 ,..., ⁇ Q n can also be useful.
  • the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n can already be established before the method according to the invention is carried out.
  • the volume flow intervals can have a width of 0.5 m 3 / h to 3 m 3 / h, in particular 1 m 3 / h.
  • the definition can also be made by defining the number n, in which case the volume flow range 0 ... Q max that can be conveyed by the pumping station 1 is or is divided into this number n volume flow intervals ⁇ Q 1 ..., ⁇ Q n.
  • the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n then have essentially the same width, as a result of which the subdivision is simplified.
  • the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n all have essentially the same width.
  • a division can be made every 1m 3 / h, with the last interval ending at Q max and being narrower than 1m 3 / h.
  • the interval width is then correspondingly smaller in the partial load range, so that a more precise adjustment to the actual pressure losses in the hydraulic network is possible here.
  • the limit values and thus the positions of the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n can already be determined before the method according to the invention is carried out.
  • the volume flow .DELTA.Q intervals 1, ..., n can .DELTA.Q during the inventive process, ie dynamically during operation, are set in dependence of the determined pressure and flow values.
  • the definition can relate to the number n and / or the width of the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n.
  • the recoverable from the pumping station 1 flow range 0 ... Q max may be a function of the determined pressure and flow values to the number n of volume flow .DELTA.Q intervals 1, ..., n .DELTA.Q be divided.
  • volume flow-related density of the data tuples ie on the basis of the number of pressure values occurring in a specific volume flow range.
  • narrower volume flow intervals ie more volume flow intervals
  • another volume flow area of the same width in which there are fewer data tuples In this way, a need-based fine adjustment of the control curve is carried out automatically. It is particularly easy to choose the width of the volume flow intervals ⁇ Q 1 ,..., ⁇ Q n such that they include the same or essentially the same number of data tuples.
  • the flow data intervals ⁇ Qd 1, ..., n are also ⁇ Qd completed portions of the volume flow range of 0 ... Q max that can be conveyed from the pump station. 1 With regard to their definition and width, what has been said above about the volume flow intervals ⁇ Q 1 ..., ⁇ Q n applies. They are thus also limited downwards by a minimum value and upwards by a maximum value.
  • the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n form a type of data container for assigning the data tuples or the calculated pressure losses ⁇ p i, j to a volume flow range. Each volume flow data interval ⁇ Qd i correlates with a volume flow interval ⁇ Q i .
  • each volume flow data interval ⁇ Qd i is assigned to one of the volume flow intervals ⁇ Q i .
  • the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n are congruent with the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n . This is the case with the examples in the Figures 5 to 9 the case.
  • the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n can also be offset from the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n . This is for example in the example in Figure 11 the case that will be described below.
  • the partial pressure curves (the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n ) are offset relative to the volume flow relative to the data containers (the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n ), so that the definition of the pressure curves is not made for the same volume flow intervals for the assignment of the data tuples or the pressure losses takes place.
  • a representative value Dp rep be determined i, the one Pressure loss for the respective volume flow data interval or for the volume flow range covering the volume flow data interval.
  • the representative value ⁇ p rep, i can be, for example, the maximum value of the pressure losses ⁇ p i, j assigned to the corresponding volume flow data interval ⁇ Qd 1 ,..., ⁇ Qd n .
  • the greatest value is to be filtered out of the assigned pressure losses ⁇ p i, j.
  • the arithmetic mean or a quantile in the range from 75% to 95% of the total of the pressure losses ⁇ p i, j assigned to the corresponding volume flow data interval ⁇ Qd 1 ,..., ⁇ Qd n can be used as the representative value ⁇ p rep, i .
  • the quantile ensures that outliers in the calculated upward pressure losses are not taken into account when determining the representative value, so that excessively high pressures from the pumping station are avoided and thus energy is saved.
  • the formation of the arithmetic mean of the assigned pressure loss values of a volume flow interval leads to deviations upwards as well as downwards being compensated or averaged.
  • Figure 6 illustrates the result of determining a representative value ⁇ p rep, 1 , ⁇ p rep, 2 , ⁇ p rep, 3 , ... ⁇ p rep, n for each of the volume flow data interval ⁇ Qd 1 , ..., ⁇ Qd n , here from the amount of one respective volume flow data interval ⁇ Qd i associated pressure losses ⁇ p i, j the maximum is taken in each case.
  • These representative values ⁇ p rep, i thus indicate that there is no higher pressure loss for the corresponding volume flow interval or at least did not occur during the previous period in which the pressure and volume flow values were recorded.
  • a common default pressure value p set can then be added to all representative values ⁇ p rep, 1 ... ⁇ p rep, n .
  • This default pressure value p set can correspond to the pressure that one would like to have at least at an extraction point 3, also called comfort pressure in jargon. Since the representative values ⁇ p rep, i indicate the maximum pressure loss in the respective volume flow data interval ⁇ Qd 1 ,..., ⁇ Qd n , this comfort pressure is also achieved at all extraction points 3 for each volume flow. This addition gives an interval-related setpoint pressure for the pumping station 1, which must at least be achieved for the corresponding volume flow interval in order to ensure the comfort pressure.
  • This basic idea also includes a variant in which the determination of the representative values ⁇ p rep, i and the addition of the default pressure value p set are interchanged over time.
  • the common default pressure value p set can first be added to the pressure losses ⁇ p i, j and then the respective representative value ⁇ p rep, i can be determined.
  • the partial pressure curves p soll, 1 (Q),... P soll, n (Q) can be constant pressure curves.
  • each pressure curve p soll, i (Q) is defined by a constant setpoint pressure.
  • This variant is in Figure 7 illustrated. The p from the total of partial pressure curves will, 1 (Q), ... p soll, n (Q) control curve formed to p (Q) is then discontinuous. It has a jump at the interval limits, ie at the transition from one partial pressure curve to the next.
  • the constant setpoint pressure of the corresponding pressure curve p soll, i (Q) can be directly related to the representative value ⁇ p rep, i of that volume flow data interval ⁇ Qd i correspond, for which the corresponding partial pressure curve p should, i (Q) is at least partially defined.
  • the constant setpoint pressure of the corresponding pressure curve p soll, i (Q) can alternatively be the sum of the default pressure value p set and the representative value ⁇ p rep, i of that volume flow data interval ⁇ Qd i correspond for which the corresponding partial pressure curve p should, i is at least partially defined. It is precisely this second possibility that shows Figure 7 , in which the partial pressure curves p soll, 1 (Q), ... p soll, n (Q) are defined by the sum of the common default value p set and the corresponding representative value ⁇ p rep, i of the respective volume flow data interval ⁇ Qd i .
  • volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n in Figure 7 are congruent with the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n , the definition of the partial pressure curves p soll, 1 (Q), ... p soll, n (Q) takes place here not only partially for a respective volume flow data interval ⁇ Qd i but Completely. If the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n were shifted to the volume flow intervals ⁇ Q 1 , ..., ⁇ Q n , this would not be as it is in Figure 11 the case is.
  • the partial pressure curves p soll, 1 (Q),... P soll, n (Q) can be proportional pressure curves.
  • each partial pressure curve p soll, i (Q) is defined by a setpoint pressure p soll (Q) that increases linearly with the volume flow Q.
  • This variant is in Figures 8 and 9 illustrated. The p from the total of partial pressure curves will, 1 (Q), ... to P, N (Q) control curve formed to p (Q) is then steadily. However, it has a kink at the interval limits, a partial pressure curve p soll, i (Q) to the next p soll, i + 1 (Q).
  • Figure 8 shows that the representative value ⁇ p rep, i determined and established for a volume flow data interval ⁇ Qd i only defines the setpoint pressure at the beginning of the partial pressure curve p soll, i (Q) determined for this volume flow data interval ⁇ Qd i compared to a partial constant pressure curve.
  • the representative value ⁇ p rep, i + 1 determined and established for the next volume flow data interval ⁇ Qd i + 1 determines the setpoint pressure at the end of this partial pressure curve p soll, i (Q).
  • the partial pressure curve p soll, i (Q) is then defined by the line between the two representative values ⁇ p rep, i and ⁇ p rep, i + 1 .
  • the linear setpoint pressure of the corresponding pressure curve p soll, i (Q) can be formed in such a way that it is based on the Representative value ⁇ p rep, i of that volume flow data interval ⁇ Qd 1 for which the corresponding partial pressure curve p soll, i (Q) is at least partially defined, for the first pressure value formed by the representative value ⁇ p rep, i + 1 of the next following volume flow data interval ⁇ Qd i + 1 formed second pressure value increases or decreases.
  • the linear setpoint pressure of the corresponding pressure curve p soll, i (Q) can alternatively be formed in such a way that it is determined by the sum of the default pressure value p set and the representative value ⁇ p rep, i of that volume flow data interval ⁇ Qd 1 for which the corresponding partial pressure curve p should, i (Q) is at least partially defined, the first pressure value, at which the second pressure value, formed by the sum of the default pressure value p set and the representative value ⁇ p i + 1 of the next following volume flow data interval ⁇ Qd i + 1 , rises or falls.
  • the output pressure p out p set , i (Q) of the pumping device 1 for all volume flow intervals can be set in a simple manner as a function of the volume flow Q.
  • some of the partial pressure curves p soll, 1 (Q),... P soll, n (Q) can be constant pressure curves and the remaining part Be proportional pressure curves.
  • Such a mixed variant is in Figure 11 in which the first and the last partial pressure curve pressure curves p soll, 1 (Q), p soll, n (Q) constant pressure curves and the partial pressure curves p soll, 2 (Q), ..., p between these should, n-1 (Q) are proportional pressure curves.
  • the pumping station 1 is not operated in all volume flow ranges during the period in which the pressure and volume flow values are recorded , so that ⁇ Qd 1 ,..., ⁇ Qd n values are not available for all volume flow data intervals.
  • ⁇ Qd 1 ,..., ⁇ Qd n values are not available for all volume flow data intervals.
  • one of the flow rate data intervals ⁇ Qd i no data tuples or no pressure drop Ap (t v), .DELTA.p k (t v) is assigned, as a representative value Dp rep, i for this flow data interval ⁇ Qd the representative value i Ap rep, i -1 , ⁇ p rep, i + 1 of the preceding or following volume flow data interval ⁇ Qd i-1 ⁇ Qd i + 1 can be used. This ensures that the control curve can be defined for the entire volume flow range of the pumping station 1.
  • Figure 10 illustrates an embodiment variant in which the representative values ⁇ p rep, 1 , ... ⁇ p rep, n are not assigned to the beginning of the volume flow data intervals ⁇ Qd 1 , ..., ⁇ Qd n , but approximately to the middle.
  • the volume flow .DELTA.Q intervals 1, ..., n .DELTA.Q have therefore being the same width as the flow data intervals ⁇ Qd 1, ..., n ⁇ Qd they are offset to these by half the width.
  • Figure 11 shows the course of the final partial pressure curves p soll, 1 (Q), ... p soll, n (Q).
  • the first volume flow interval ⁇ Q 1 is only half the width of the remaining volume flow intervals ⁇ Q 2 ,..., ⁇ Q n . This shows that not all volume flow intervals ⁇ Q 1 , ..., ⁇ Q n have to have the same width.
  • a partial constant pressure curve is defined for the first volume flow interval ⁇ Q 1 , the setpoint value of which is defined by the representative value ⁇ p rep, 1 assigned to the first volume flow interval ⁇ Q 1 .
  • partial proportional pressure curves are defined for the remaining volume flow intervals ⁇ Q 2 , ..., ⁇ Q n. This shows that not all partial pressure curves have to be of the same order.
  • the maximum pump curve M limits the operating range of the pumping station 1. No operating points beyond this pump curve M can therefore be reached.
  • the pump curve M thus superimposes the control curve p soll (Q) in the or in the last volume flow interval (s) in such a way that operating points on the partial pressure curve p soll, n (Q), formed for the last or possibly penultimate volume flow interval ⁇ Q n , n (Q), the beyond the maximum pump curve M would lie on the maximum pump curve M.
  • FIGS 3a and 3b now show a graphic representation of a first and second process sequence according to the invention in its basic steps.
  • a first step 11 in both variants, data tuples are determined from pressure and volume flow values.
  • step 12a the assignment of the data tuples to a volume flow data interval follows, which in step 13a is followed by the calculation of a pressure loss for each data tuple.
  • steps 14, 15, 16 are again the same for both variants.
  • a representative value is determined for each volume flow data interval, step 14.From each representative value, a partial pressure curve is then defined for each volume flow interval correlated with the corresponding volume flow data interval, step 15, which is then used to control the pumping station along the lines of the totality of the Subsequent control curve formed partial pressure curves, step 16. The process is then repeated. After step 16, it is continued with step 11 and thus the defined Dynamic control curve, especially adapted again and again.
  • the formation of the partial pressure curves can be described as above.
  • the partial pressure curves can be constant pressure curves, or proportional pressure curves, or partly constant pressure curves and partly proportional pressure curves.
  • the method according to the invention can be carried out as part of a commissioning procedure immediately after the installation of the pumping station 1. If the method is started, one of the extraction points 3 and / or two or more, in particular all extraction points 3, need only be opened one after the other. At least the downside should be among them. This has the advantage that pressure and volume flow values can be recorded in a short time for the entire conveyable volume flow range of the pumping station 1. Then the data acquisition, step 11, can be ended and the evaluation, steps 12 to 15, can be started.
  • the method according to the invention can take place independently of the installation of the pumping station 1 as part of its intended operation. This requires a longer period of time until a sufficient number of pressure and volume flow values are recorded. However, there is no commissioning procedure for data acquisition.
  • the pumping station can initially be regulated according to a pressure curve that is constant over the entire volume flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung einer Pumpstation in einem hydraulischen Netzwerk, die ein zumindest einem Verbraucher zu förderndes Medium unter Druck setzt, wobei der Druck in Abhängigkeit des Volumenstroms durch die Pumpstation gemäß einer Regelkurve eingestellt wird. Des Weiteren betrifft die Erfindung ein System zur Durchführung des Verfahrens.
  • Ein Verfahren der genannten Gattung ist aus der DE 10 2014 001 413 A1 bekannt.
  • Wird ein Medium von einer Pumpstation zu einem Verbraucher gepumpt, liegen entlang der Förderstrecke Druckverluste vor, die zum einen durch die Rohrreibung zum anderen durch Stellglieder innerhalb der Leitung bedingt sind. Je länger dabei die Leitungswege sind, umso höher sind die Verluste. Dies ist bei geschlossenen Systemen wie Heizungs- oder Kühlanlagen ebenso wie bei offenen Systeme, beispielsweise im Falle einer Druckerhöhungsanlage der Trinkwasserversorgung. Regelmäßig ist es der Wunsch, dass am Verbraucher, beispielsweise eine Entnahmestelle für das geförderte Trinkwasser, ein Heizkörper oder ein Kühlkreis, ein genügend Druck vorliegt, um den Verbraucher ausreichend zu versorgen. So soll beispielsweise bei der Dusche ein ausreichend hoher Druck vorhanden sein, um das Duschvergnügen nicht zu beeinträchtigen.
  • Der tatsächliche Druck am Verbraucher ist aber in der Regel nicht bekannt, so dass die Pumpstation stets so überdimensioniert gewählt und übertrieben hoch eingestellt wird, dass mit an Sicherheit grenzender Wahrscheinlichkeit auch bei ungünstigen Systemzuständen der am schlechtesten versorgte Verbraucher stets ausreichend versorgt wird.
  • Bei Druckerhöhungsanlagen in der Trinkwasserversorgung ist es bekannt, auf einen konstanten, vorgegebenen Ausgangsdruck zu regeln. Der Ausgangsdruck dieser Pumpstationen wird somit gemäß einer Konstantdruck-Regelkurve eingestellt, d.h. unabhängig vom Volumenstrom durch die Pumpstation konstant gehalten. Variiert der vom Versorger zur Verfügung gestellte Versorgungsdruck, so gleicht die Druckerhöhungsanlage derartige Druckschwankungen aus. Eine Konstantdruck-Regelung führt jedoch zu einem energetisch nicht optimalen Betrieb. Die Druckverluste steigen mit dem Volumenstrom an, so dass eine Proportionaldruckkurve, entlang welcher die Pumpstation geregelt wird, energetisch günstiger wäre. Die tatsächlichen Druckverluste entlang der zu befördernden Strecke sind jedoch in der Regel nicht bekannt und eine optimale Einstellung der Pumpstation ist deshalb schwierig. Hinzu kommt, dass gerade bei Druckerhöhungsanlagen die Entnahme an mehreren Zapfstellen gleichzeitig zu enormen Druckschwankungen im System führt, die keine für die Praxis sinnvolle Einstellung des Drucks ermöglicht.
  • Aufgabe der zugrunde liegenden Erfindung ist es ein Verfahren und ein System zur Regelung einer Pumpstation in einem hydraulischen Netzwerk zur Verfügung zu stellen, das den Druck der Pumpstation in Abhängigkeit des Volumenstroms ohne Komforteinbruch bedarfsgerecht und energieeffizient regelt.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Zudem wird die Aufgabe durch ein System mit den technischen Merkmalen des Anspruchs 18 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.
  • Erfindungsgemäß wird vorgeschlagen, den Druck der Pumpstation in Abhängigkeit des Volumenstroms durch die Pumpstation gemäß einer Regelkurve einzustellen, wobei die Regelkurve aus einer Mehrzahl partieller Druckkurven gebildet wird, die jeweils für ein Volumenstromintervall einer der Mehrzahl entsprechenden Anzahl lückenlos aneinander angrenzender Volumenstromintervalle auf der Grundlage ermittelter und intervallbezogen auszuwertender Druck- und Volumenstromwerte des Netzwerks definiert werden. Die Regelkurve wird somit lückenlos abschnittsweise definiert, d.h. einerseits für alle möglichen Lastfälle, andererseits unter Berücksichtigung der tatsächlich im System auftretenden Druckverluste. Dabei ist die konkrete Kenntnis der hydraulischen Widerstände im Netzwerk nicht erforderlich.
  • Erfindungsgemäß wird ferner ein System zur Regelung einer Pumpstation in einem hydraulischen Netzwerk vorgeschlagen, mit der ein zu mindestens einem Verbraucher zu förderndes Medium unter Druck setzbar ist, wobei der Druck in Abhängigkeit des Volumenstroms durch die Pumpstation gemäß einer Regelkurve einstellbar ist, wobei das System dazu eingerichtet ist, die Regelkurve aus einer Mehrzahl partieller Druckkurven zu bilden, und diese partieller Druckkurven jeweils für ein Volumenstromintervall einer der Mehrzahl entsprechenden Anzahl lückenlos aneinander angrenzender Volumenstromintervalle auf der Grundlage ermittelter und intervallbezogen auszuwertender Druck- und Volumenstromwerte des Netzwerks zu definieren.
  • Die Regelkurve setzt sich aus der Mehrzahl von partiellen Druckkurven zusammen, die jeweils für ein bestimmtes Volumenstromintervall definiert werden. Die Definition respektive Bestimmung der jeweiligen partiellen Druckkurve eines bestimmten Volumenstromintervalls erfolgt vorzugsweise dynamisch im Betrieb, wobei hierzu Druck- und Volumenstromwerte ermittelt werden und diejenigen Werte ausgewertet werden, die dem bestimmten Volumenstromintervall zugeordnet sind. Auf diese Weise wird eine Regelkurve gebildet, bei deren Verwendung die Regelung der Pumpstation optimal auf das hydraulische Netzwerk angepasst wird und die Pumpstation energetisch besonders günstig betrieben wird.
  • Weitere Vorteile sowie Merkmale und Eigenschaften des erfindungsgemäßen Verfahrens sowie des erfindungsgemäßen Systems werden nachfolgend anhand von Ausführungsbeispielen und der beigefügten Figuren erläutert. Es zeigen:
  • Figur 1
    ein System zur Regelung einer Pumpstation in einem hydraulischen Netzwerk unter Verwendung von Druckwerten von nur einer Systemstelle,
    Figur 2
    ein System zur Regelung einer Pumpstation in einem hydraulischen Netzwerk unter Verwendung von Druckwerten von zwei Systemstellen,
    Figur 3a, b
    Ablaufdiagramme des erfindungsgemäßen Verfahrens,
    Figur 4
    eine Darstellung erfasster Druck- und Volumenstromwerte als Datentupel in einem p-Q Diagramms,
    Figur 5
    eine Zuordnung der Datentupel zu Volumenstromdatenintervallen im Δp-Q Diagramms,
    Figur 6
    eine Darstellung gebildeter Repräsentanzwerte zu den Volumenstromdatenintervallen im Δp-Q Diagramms,
    Figur 7
    eine aus einer Mehrzahl partieller Konstantdruck-Kurven gebildete Regelkurve im p-Q Diagramm aufgrund der Repräsentanzwerte in Figur 6,
    Figur 8
    eine Darstellung gebildeter Repräsentanzwerte zu den Volumenstromdatenintervallen im Δp-Q Diagramm mit linearer Verknüpfung,
    Figur 9
    eine aus einer Mehrzahl partieller Proportionaldruck-Kurven gebildete Regelkurve im p-Q Diagramm aufgrund der Repräsentanzwerte in Figur 8,
    Figur 10
    eine Darstellung gebildeter Repräsentanzwerte zu den Volumenstromdatenintervallen im Δp-Q Diagramm mit linearer Verknüpfung, wobei die Repräsentanzwerte den Mitten der Volumenstromdatenintervalle zugeordnet sind.
    Figur 11
    eine aus einer Mehrzahl partieller Proportionaldruck-Kurven gebildete Regelkurve im p-Q Diagramm aufgrund der Repräsentanzwerte in Figur 10.
  • Figur 1 zeigt ein Gebäude 10 mit einer Trinkwasserversorgung, die von einer zentralen Versorgungsleitung 9 eines kommunalen Versorgers mit druckbehaftetem Trinkwasser gespeist wird. Das Trinkwassersystem umfasst eine innerhalb des Gebäudes 10 aufgestellte Pumpstation 1 in der Art einer Druckerhöhungsanlage, die eingangsseitig über eine Zuleitung 16 mit der zentralen Versorgungsleitung 9 verbunden ist, und ausgangseitig mit einem hydraulischen Netzwerk 8, 2 verbunden ist, welches eine Vielzahl an Verbrauchern 3 aufweist, zu denen das Trinkwasser geleitet Wird. Die Verbraucher 3 sind hier durch Entnahmestellen zur Entnahme des Trinkwassers gebildet. Beispielsweise sind die Verbraucher, Wasserarmaturen wie Spülbecken, Badewannen oder Duscharmaturen, Toiletten, Waschmaschinen oder Spülmaschinen etc. gebildet.
  • Das Netzwerk 8, 2 umfasst eine mit dem Ausgang der Pumpstation 1 verbundene Druckleitung 8, von der hier zwei lokale Versorgungsleitungen 2 abgehen, entlang welcher die Verbraucher 3 angeordnet sind. Hydraulisch betrachtet, haben die Verbraucher 3 somit alle einen unterschiedlichen Abstand zur Pumpstation 1, so dass jeder Leitungsweg von der Pumpstation 1 zu einem der Verbraucher 3 einen individuellen Druckverlust verursacht.
  • Die Pumpstation 1 umfasst zwei parallel angeordnete Pumpen 17, die alternativ oder kumulativ betrieben werden können. Eine Steuer- und Regelungseinheit 7 ist zur Steuerung und/ oder Regelung der Pumpen 17 vorgesehen und stellt diese in ihrer Leistung und/ oder Drehzahl entsprechend ein.
  • Es sei darauf hingewiesen, dass die Darstellung in Figur 1 rein beispielhaft zu verstehen ist und die Erfindung keinesfalls hierauf beschränkt ist. So kann die Pumpstation beispielsweise auch nur eine Pumpe 17 oder mehr als zwei Pumpen, z.B. drei oder vier Pumpen 17 aufweisen, die hydraulisch parallel und/ oder in Reihe liegen können. Die Steuer- und Regelungseinheit 7 kann baulich Teil der Pumpstation 1 sein, sie kann alternativ aber auch außerhalb der Pumpstation liegen, beispielsweise Teil einer zentralen Steuer- und/ oder Regelung einer Gebäudetechnik sein. Ferner kann gemäß einer alternativen Ausführungsvariante das hydraulische Netzwerk auch zwei oder mehr Druckleitungen 8 aufweisen und/oder die Druckleitung 8 drei oder mehr Etagen versorgen. Auch können in einer Ausführungsvariante drei oder mehr lokale Versorgungsleitungen 2 von der Druckleitung 8 abgehen. Schließlich ist es ebenfalls möglich, dass sich eine lokale Versorgungsleitung in zwei oder mehr weitere Leitungen aufteilt. Schließlich müssen auch nicht, wie in Figur 1 dargestellt, in den lokalen Versorgungsleitungen 2 die gleiche Anzahl an Verbrauchern 3 vorhanden sein, die lokalen Versorgungsleitungen 2 dieselbe Länge aufweisen, oder der Beabstandung zwischen den Verbrauchern äquidistant sein. So zeigt Figur 2 ein beispielhaftes Trinkwassersystem, bei dem die sich in der zweiten Etage erstreckende lokale Versorgungsleitung 2 einerseits kürzer ist, als die sich in der ersten Etage erstreckende lokale Versorgungsleitung 2, und andererseits weniger Verbraucher 3 aufweist, als die sich in der ersten Etage erstreckende lokale Versorgungsleitung 2.
  • Die Pumpstation 1 erhöht den Druck der zentralen Zuleitung 9 und fördert das Trinkwasser über die Druckleitung 8 und den lokalen Versorgungsleitungen 2 zu den Verbrauchern 3, sofern sich zumindest eine der Entnahmestellen 3 öffnet. Dabei wird die Pumpstation 1 so geregelt, dass an ihrem Ausgang ein bestimmter Ausgangsdruck vorliegt, der sicherstellt, dass auch an der schlechtesten Entnahmestelle 3 ein ausreichender Fließdruck vorliegt. Hierbei müssen die Druckverluste Berücksichtigung finden, die zwischen der Pumpstation 1 und der jeweiligen Entnahmestelle 3 vorliegen. Die schlechteste Entnahmestelle 3, auch Schlechtpunkt genannt, ist in der Regel diejenige Entnahmestelle, die geografisch betrachtet, am höchsten gelegen ist und/ oder am weitesten von der Pumpstation 1 weg liegt. Hydraulisch betrachtet ist, es diejenige Entnahmestelle 3, zu deren Erreichen das Wasser den größten hydraulischen Widerstand erfährt.
  • Druckschwankungen in der zentralen Versorgungsleitung 9, die beispielsweise einspeisebedingt oder stellgliedbedingt vom Versorger zu verantworten sind oder aus Entnahmeschwankungen in der Nachbarschaft resultieren, müssen von der Pumpstation 1 ebenso ausgeglichen werden, wie Druckänderungen innerhalb des hydraulischen Netzwerks, die aus dem Öffnen und Schließen von einer oder mehr Entnahmestellen resultieren. Zum Ausgleich dieser Druckschwankungen wird der Druck der Pumpstation 1 am Ausgang nach dem Stand der Technik auf einen konstanten Wert eingestellt, d.h. gemäß einer Konstantdruck- Regelkurve geregelt. Somit ist der Druck paus am Ausgang der Pumpstation über dem Volumenstrom Q konstant.
  • Das erfindungsgemäße Verfahren baut auf dieser Betriebsweise auf und passt die Regelkurve so an, dass der Ausgangsdruck in Abhängigkeit des Volumenstroms Q durch die Pumpstation 1 gemäß einer neuen Regelkurve eingestellt wird. Diese neue Regelkurve wird aus einer Mehrzahl partieller Druckkurven psoll,1(Q). ..., psoll,n(Q) gebildet, die jeweils für ein Volumenstromintervall ΔQ1, ...,ΔQn einer der Mehrzahl entsprechenden Anzahl n lückenlos aneinander angrenzender Volumenstromintervalle ΔQ1, ...,ΔQn auf der Grundlage ermittelter und intervallbezogen auszuwertender Druck- und Volumenstromwerte des Netzwerks definiert werden.
  • Zur Bildung der partiellen Druckkurven können die Druck- und Volumenstromwerte mindestens Systemdruckwerte psys(tv), psys,k(tv) des an einer Systemstelle 5, 5a, 5b anliegenden Systemdrucks psys, psys,k sowie Volumenstromwerte Q(tv) des fließenden bzw. geförderten Volumenstroms Q zu verschiedenen Zeitpunkten tv umfassen.
  • Wie in Figur 1 gezeigt, kann als Systemstelle 5, der Schlechtpunkt, d.h. der Ort der schlechtesten Entnahmestelle 3 gewählt werden. Dies hat den Vorteil, dass für die Bildung der Regelkurve die maximal auftretenden Rohrleitungsverluste berücksichtigt werden und somit gewährleistet ist, dass auch die schlechteste Entnahmestelle 3 mit ausreichendem Betriebsdruck versorgt wird, wenn die Pumpstation 1 entsprechend der erfindungsgemäßen partiellen Druckkurven geregelt wird. Es wird also bevorzugt der Systemdruck psys dieser schlechtesten Entnahmestelle 3 ermittelt. In der Regel ist diese eine Entnahmestelle 3, die am Ende einer der lokalen Versorgungsleitungen 2 liegt, insbesondere diejenige Entnahmestelle, die am höchsten gelegen ist.
  • Es ist jedoch nicht immer der Fall und nicht immer klar, dass die am höchsten gelegene Entnahmestelle 3 am Ende einer lokalen Versorgungsleitung 8 den Schlechtpuntk darstellt. Aus diesem Grund zeigt Figur 2 eine Ausführungsvariante, bei der der Systemdruck psys,k an zwei Systemstellen 5a, 5b ermittelt wird, die jeweils einen potentiellen Schlechtpunkt darstellen, weil sie jeweils am Ende eines Zweigs des hydraulischen Netzwerks gelegen sind. Nachfolgend gibt der Index k den Ort der Systemstelle an, so dass bei zwei Systemstellen k = 1 für die erste Systemstelle 5a oder k = 2 für die zweite Systemstelle 5b sein kann.
  • In einem komplexen hydraulischen Netzwerk mit mehreren oder einer Vielzahl verzweigter Leitungswege, sind sogar mehr als zwei potentielle Schlechtpunkte möglich. Es macht dann Sinn, an mehreren unterschiedlichen Systemstellen im Netzwerk, die diese potentielle Schlechtpunkte darstellen, entsprechende Systemdruckwerte zu bestimmen.
  • Es ist nicht erforderlich, den Systemdruck psys, psys,k genau am Ort einer Entnahmestelle zu ermitteln. Er kann vielmehr auch entfernt von dieser, davor oder danach ermittelt werden, wie Figur 2 zeigt. Folglich kann auch die Systemstelle 5 oder die erste oder zweite Systemstelle 5a, 5b vor oder nach einer Entnahmestelle 3, insbesondere vor oder nach dem Schlechtpunkt liegen. Die dadurch bedingte Ungenauigkeit in der Werteerfassung ist gering und beeinträchtigt das erfindungsgemäße Verfahren somit nicht. Bevorzugt befindet sich die Systemstelle5 aber in unmittelbarer Nähe zur Entnahmestelle 3, da dort der Einbau einer Messvorrichtung am einfachsten ist.
  • Vorzugsweise erfolgt die Ermittlung der Systemdruckwerte durch Messen mittels einer Messvorrichtung wie einem Drucksensor. Der Systemdruck psys, psys,k kann alternativ aber auch aus anderen Größen berechnet oder geschätzt werden.
  • Zusätzlich zum Systemdruck psys, psys,k wird der Volumenstrom Q ermittelt. Dies kann ebenfalls durch Messen mittels einer Messvorrichtung wie einem Volumenstromsensor 6, alternativ aber auch rechnerisch aus anderen Größen wie der Leistung oder der Drehzahl eines der oder beider Pumpen 17 erfolgen. Die Messvorrichtung 6 kann beispielsweise am Eingang der Pumpstation 1 angeordnet sein. Weiter alternativ kann eine Schätzung des Volumenstroms erfolgen, beispielsweise aufgrund von mathematischen, elektro-mechanischen und/ oder mechanisch- hydraulischen Modellen der Pumpstation 1.
  • Soweit eine oder mehr Messvorrichtungen vorhanden sind, bilden sie vorzugsweise einen Teil des erfindungsgemäßen Systems zur Regelung der Pumpstation 1. Insbesondere kann die Messvorrichtung für den Ausgangsdruck und/ oder für den Volumenstrom baulich mit der Pumpstation 1 vereinigt sein.
  • Die vorhandenen Messvorrichtungen können mit der Steuer- und Regelungseinheit 7 verbunden sein, beispielsweise über eine Kabelverbindung und/ oder über eine Funkverbindung. Eine Kabelverbindung hat den Vorteil einer zuverlässigen und im Wesentlichen zeitgleichen Erfassung des Systemdrucks oder eines der Systemdrücke, des Ausgangsdrucks und/ oder des Volumenstroms. Demgegenüber hat eine Funkverbindung den Vorteil einer leichten Installation oder Nachrüstung von datentechnisch zu verbindenden Komponenten wie einer Messvorrichtung zur Erfassung des Systemdrucks, da die Verlegung einer Datenleitung entfällt.
  • Der Systemdruck psys, oder jeweilige Systemdruck psys,k, und der Volumenstrom Q werden geeigneterweise einander zeitlich zugeordnet, d.h. vorzugsweise zum selben oder im Wesentlichen gleichen Zeitpunkt tv ermittelt. Aufgrund dieses gemeinsamen zeitlichen Bezugs bilden sie eine Einheit in Gestalt eines Datentupels. Für die Definition der Regelkurve wird bevorzugt eine Vielzahl von Datentupeln zu unterschiedlichen Zeitpunkten ermittelt.
  • Die Ermittlung der Druck- und Volumenstromwerte, insbesondere Erfassung der Datentupel, kann in zeitlichen Abständen erfolgen, beispielsweise entweder zu bestimmten Zeitpunkten, wie zur vollen Stunde, oder immer nach Ablauf einer Zeitspanne, z.B. alle 15 Minuten. Sie können folglich periodisch ermittelt werden. Alternativ oder kumulativ können bestimmte Ereignisse die Ermittlung von Druck- und Volumenstromwerten auslösen, beispielsweise das Öffnen einer Entnahmestelle.
  • Dabei ist zu berücksichtigen, dass der Druck psys, psys,k an der Systemstelle 5, 5a, 5b identisch oder zumindest nahezu identisch dem Ausgangsdruck paus der Pumpstation 1 ist, wenn keine Entnahmestelle geöffnet ist, bzw. kein Verbraucher 3 etwas verbraucht. In diesem Fall ist ferner der Volumenstrom Q gleich null und damit das entsprechende Datentupel nicht brauchbar.
  • Gemäß einer Ausführungsvariante können diese Fälle ungeachtet der damit verbundenen Erkenntnis dennoch zunächst als Druck- und Volumenstromwerte aufgenommen werden, wobei sich dann eine Filterung der Datentupel anschließen kann, bei der solche Datentupel mit Volumenstrom null und/ oder solche mit einem Systemdruckwert im Wesentlichen dem Ausgangsdruck paus der Pumpstation 1 entfernt werden. Um dies zu vermeiden, kann dafür gesorgt werden, dass die nicht brauchbaren Datentupel gar nicht erst erfasst werden. Dies kann dadurch erreicht werden, dass während des Betriebs der Pumpstation 1 ermittelt wird, wann der Volumenstrom Q größer null ist, wobei nur in diesem Fall der oder die Druckwerte Psys(tv), psys,k(tv) und der Volumenstromwert Q(tv) ermittelt werden.
  • Um zudem valide Druck- und Volumenstromwerte zu erhalten, ist es von Vorteil, Übergangseffekte von einem Systemzustand "Entnahmestelle geschlossen" zum anderen Systemzustand "Entnahmestelle geöffnet" auszublenden. Derartige Übergangseffekte sind z.B. ein Einschwingen, d.h. abklingende periodische Druckschwankungen. Gemäß einer bevorzugten Weiterbildung des Verfahrens kann somit zusätzlich oder alternativ zur Feststellung, wann der Volumenstrom größer null ist, während des Betriebs der Pumpstation 1 ermittelt werden, wann die zeitliche Änderung eines von null verschiedenen Volumenstroms Q zumindest für einen bestimmten Zeitraum im Wesentlichen konstant ist, wobei nur in diesem Fall der oder die Druckwerte psys(tv), psys,k(tv) und der Volumenstromwert Q(tv) aufgenommen werden. Denn in diesem Fall sind die Übergangseffekte weitestgehend abgeklungen.
  • Die Ermittlung der Druck- und Volumenstromwerte, insbesondere die Erfassung der Datentupel erfolgt zumindest zu Beginn des Verfahrens und mindestens für einen gewissen Zeitraum, da sie die Grundlage für die Definition der partiellen Druckkurven bilden. Je länger der Zeitraum ist, desto mehr Werte, bzw. Datentupel werden gesammelt und desto genauer kann die Regelkurve abschnittsweise an die tatsächlichen Verhältnisse angepasst werden. Es ist nicht erforderlich, die Datenerfassung auf diesen Zeitraum zu beschränken. Vielmehr kann das erfindungsgemäße Verfahren kontinuierlich im Betrieb der Pumpstation 1 angewendet werden, und auf diese Weise die Regelkurve immer wieder dynamisch angepasst werden. Jedoch kann das Ende des Zeitraums bestimmt sein durch den Beginn der sich anschließenden Auswertung der gesammelten Datentupel. An den beendeten Zeitraum kann sich dann ein neuer Zeitraum anschließen innerhalb dem die Datenerfassung erfolgt.
  • Die Auswertung der ermittelten Druck- und Volumenstromwerte bzw. Datentupel kann wie folgend beschrieben erfolgen.
  • Gemäß einer Ausführungsvariante können zunächst die Datentupel anhand ihres jeweiligen Volumenstromwerts Q(tv) jeweils einem Volumenstromdatenintervall ΔQdi zugeordnet werden, das mit einem der Volumenstromintervalle ΔQi korreliert. Die gesammelten Daten werden somit im Hinblick auf die zu definierenden partiellen Druckkurven zu einer Gruppe zusammengefasst, wobei die Gruppen zudem sortiert sind. Auf den Zeitbezug der Druck- und Volumenstromwerte, respektive der Datentupel kommt es dann nicht mehr an.
  • Anschließend wird zu jedem Datentupel der Druckverlust Δp von der Pumpstation 1 zur entsprechenden Systemstelle 5, 5a, 5b berechnet. Dies kann gemäß einer Ausführungsvariante dadurch erfolgen, dass die Differenz aus einem Ausgangsdrucksollwert pbooster der Pumpstation 1 und dem Systemdruckwert psys(tv), psys,k(tv) des jeweiligen Datentupels gebildet wird. Der Ausgangsdrucksollwert pbooster der Pumpstation 1 ist bekannt, da er dem Konstantdruck entspricht, auf den die Pumpstation 1 zumindest zu Beginn des erfindungsgemäßen Verfahrens geregelt wird. Er definiert die initiale Konstantdruck-Regelkurve, gemäß derer der Ausgangsdruck paus von der Steuer- und Regeleinheit 7 eingestellt wird.
  • Naturgemäß ist es jedoch so, dass der Ausgangsdruck paus der Pumpstation 1 in der Praxis nicht oder zumindest nicht immer dem Ausgangsdrucksollwert pbooster entspricht, weil vor und/ oder hinter der Pumpstation dynamische Druckänderungen vorkommen, die entsprechend ausgeregelt werden. Somit können die Druckverluste von der Pumpstation 1 zur entsprechenden Systemstelle 5, 5a, 5b genauer berechnet werden, wenn anstelle des Ausgangsdrucksollwerts pbooster der tatsächlich am Ausgang der Pumpstation 1 vorliegende Druck paus verwendet wird. Aus diesem Grund ist es von Vorteil, wenn die ermittelten bzw. zu ermittelnden Druck- und Volumenstromwerte auch den Ausgangsdruck paus der Pumpstation 1 umfassen.
  • Wie bei der Systemstelle 5 oder den Systemstellen 5a, 5b kann auch der Ausgangsdruck paus messtechnisch oder rechnerisch ermittelt oder geschätzt werden beispielsweise aufgrund eines mathematischen Modells der Pumpstation 1. Bevorzugt erfolgt auch hier die Ermittlung messtechnisch, beispielsweise mittels einem Drucksensor, der geeigneterweise am Ausgang der Pumpstation 1 angeordnet ist.
  • Verfahrenstechnisch einfach für die Druckverlustermittlung ist es, wenn die Datentupel zusammen mit dem jeweiligen Systemdruckwert psys(tv), psys,k(tv) und Volumenstromwert Q(tv) auch einen Ausgangsdruckwert paus(tv) des am Ausgang der Pumpstation 1 aktuell anliegenden Ausgangsdrucks paus umfassen. Er wird zum selben oder zumindest im Wesentlichen gleichen Zeitpunkt tv wie die anderen beiden Werte ermittelt, so dass ein entsprechender Systemdruckwert psys(tv), psys,k(tv), ein Ausgangsdruckwert paus(tv) und ein Volumenstromwert Q(tv) aufgrund des gemeinsamen Ermittlungszeitpunktes eine Gruppe bilden. Somit umfasst dann in dieser Ausführungsvariante jedes Datentupel drei Elemente und bildet somit ein Datentripel.
  • Gemäß einer Weiterbildung dieser Ausführungsvariante mit Datentripeln, und alternativ zur Berechnung des Druckverlusts von der Pumpstation 1 zur entsprechenden Systemstelle 5, 5a, 5b aufgrund des Ausgangsdrucksollwert pbooster, kann der Druckverlust Δp(tv) aus dem Systemdruckwert psys(tv), psys,k(tv) und dem ermittelten Ausgangsdruckwert paus(tv) eines jeden Datentupels durch Differenzbildung ermittelt werden. Somit ergibt sich aus jedem Datentupel ein Druckverlust Δp(tv).
  • Eine diagrammatische Darstellung der ermittelten Datentupel ist in Figur 4 dargestellt. Sie zeigt in einem pQ-Diagramm für verschiedene, zu unterschiedlichen Zeitpunkten tv gebildete Datentupel den Ausgangsdruckwert paus(tv), den Systemdruckwert psys(tv), psys,k(tv) -jeweils durch einen kleinen Kreis gebildet- und den dabei vorliegenden Volumenstromwert Q(tv). Besonders herausgestellt, sind die Datentupel der vier Zeitpunkte t1, t2, t3, t4. Der vertikale Abstand der Kreise entspricht dabei dem Druckverlust Δp(tv) zum jeweiligen Zeitpunkt (tv). Erkennbar liegt der Ausgangsdruckwert paus(tv) bei allen ermittelten Datentupeln auf einer dem Ausgangsdrucksollwert pbooster entsprechenden Linie, was verdeutlicht, dass anstelle der Ist-Ausgangsdruckwerte paus(tv) der Ausgangsdrucksollwert pbooster verwendet werden kann, ohne bedeutende Abweichungen und damit Verschlechterung in der Qualität des Verfahrens in Kauf nehmen zu müssen.
  • Durch die Zuordnung der Datentupel zu einem der Volumenstromdatenintervalle ΔQd1, ... ΔQdn erhält man im Ergebnis für jedes Volumenstromdatenintervall ΔQdi eine Menge m an Druckverlustwerten Δpi,j (mit i = 1 ...n; j = 1 ... m), die zur Berechnung der jeweiligen partiellen Druckkurve verwendet werden können. Dies ist in Figur 5 veranschaulicht. An dieser Stelle sei darauf hingewiesen, dass obwohl zuvor im Falle der Verwendung von zwei oder mehr Systemstellen 5a, 5a, hinsichtlich ihres Ortes differenziert wurde, nämlich indem bei dem entsprechenden Systemdruck psys,k durch den Index k dieser Ort referenziert wurde, es letztendlich auf den Ort der Erfassung nicht ankommt. Denn von Bedeutung sind letztendlich nur die Höhe der Druckverluste und deren Zuordnung zu einem Volumenstromdatenintervall ΔQdi. Bei zwei Systemstellen 5a, 5b, verdoppelt sich lediglich die in derselben Zeitspanne erfasste Menge an Datentupeln.
  • Dasselbe Ergebnis wie in Figur 5 wird erreicht, wenn die Schritte der Intervallzuordnung und Druckverlustberechnung vertauscht werden. So kann gemäß einer anderen Ausführungsvariante zunächst aus dem Systemdruckwert psys(tv), psys,k(tv) und dem Ausgangssollwert pbooster der Pumpstation 1 oder dem ermitteln Ausgangsdruckwert paus(tv) eines jeden Datentupels durch Differenzbildung ein Druckverlust Δp(tv) vom Ausgang der Pumpstation 1 zu der Systemstelle 5, 5a, 5b ermittelt werden, und anschließend dieser ermittelte Druckverlust Δp(tv) anhand des Volumenstromwerts Q(tv) des jeweiligen Datentupels einem Volumenstromdatenintervall ΔQdi zugeordnet werden. Auf den Zeitbezug kommt es dann nicht mehr an. Der Druckverlust Δp kann vielmehr als j-ter Wert des i-ten Volumenstromdatenintervalls ΔQdi angegeben werden.
  • Die Volumenstromintervalle ΔQ1, ..., ΔQn sind abgeschlossene Teilbereiche des Volumenstrombereichs, der von der Pumpstation 1 gefördert werden kann. Dieser Volumenstrombereich erstreckt sich von Q = 0 bis Q = Qmax, vgl. Figur 4, für den Fall, dass alle Pumpen 17 der Pumpstation 1 gleichzeitig in Betrieb sind. Die Intervalle werden somit jeweils nach unten durch einen Minimalwert oder Anfangswert und nach oben durch einen Maximalwert (Endwert) begrenzt, wobei der Maximalwert eines Volumenstromintervalls ΔQ1 dem Minimalwert des nächst höheren Volumenstromintervalls ΔQi+1 bzw. wobei der Minimalwert eines Volumenstromintervalle ΔQi dem Maximalwert des nächst niedrigeren Volumenstromintervalls ΔQi-1 entspricht. Die Volumenstromintervalle ΔQ1, ..., ΔQn liegen somit lückenlos aneinander. Für eine mathematisch exakte Intervalldefinition dürfen diese Werte natürlich nur einem der Intervalle zugeordnet werden.
  • Erfindungsgemäß wird für jedes Volumenstromintervalle ΔQ1, ..., ΔQn eine partielle Druckkurve festgelegt. Die Anzahl n an Volumenstromintervallen ΔQ1, ..., ΔQn respektive die entsprechende Anzahl an partiellen Druckkurven kann grundsätzlich frei gewählt werden. Um eine gute Anpassung des Ausgangsdrucks der Pumpstation 1 an die volumenstromabhängigen Druckverluste des hydraulischen Systems zu gewährleisten, sollten mindestens 6 oder 8 Volumenstromintervalle ΔQ1, ..., ΔQn verwendet werden. Das Verfahren ist aber ebenso ausführbar, wenn nur 4 Volumenstromintervalle ΔQ1, ..., ΔQn verwendet werden. Es versteht sich von selbst, dass die Anpassung der Regelkurve an die volumenstromabhängigen Druckverluste des hydraulischen Systems umso genauer ist, je mehr Volumenstromintervallen ΔQ1, ..., ΔQn verwendet werden. Ferner kann bei größeren Pumpstationen 1, d.h. solchen mit leistungsstärkeren Pumpen 17 oder mehr als 2 Pumpen 17, die auch entsprechend einen größeren Volumenstrombereich abdecken, die Anzahl n an Volumenstromintervallen ΔQ1 ..., ΔQn größer gewählt werden, als bei der in den Figuren 1 und 2 gezeigten Pumpstation 1. So können durchaus auch 20 oder 30 Volumenstromintervallen ΔQ1, ..., ΔQn sinnvoll sein.
  • Gemäß einer Ausführungsvariante können die Volumenstromintervallen ΔQ1, ..., ΔQn bereits vor der Durchführung des erfindungsgemäßen Verfahrens festgelegt sein. Beispielsweise können die Volumenstromintervalle eine Breite von 0,5 m3/h bis 3 m3/h, insbesondere 1 m3/h aufweisen. Die Festlegung kann aber auch durch die Festlegung der Anzahl n erfolgen, wobei dann entsprechend der von der Pumpstation 1 förderbare Volumenstrombereich 0 ... Qmax in diese Anzahl n Volumenstromintervallen ΔQ1 ..., ΔQn unterteilt wird oder ist. Geeigneterweise weisen die Volumenstromintervalle ΔQ1, ..., ΔQn dann eine im Wesentlichen gleiche Breite auf, wodurch die Unterteilung vereinfacht wird.
  • Es ist aber nicht zwingend erforderlich, dass die Volumenstromintervalle ΔQ1, ..., ΔQn alle eine im Wesentlichen gleiche Breite aufweisen. So kann z.B. eine Einteilung alle 1m3/h vorgenommen werden, wobei das letzte Intervall bei Qmax endet und schmaler ist als 1m3/h. Alternativ kann vorgesehen werden, dass im Teillastbereich mehr Intervalle liegen, als im Vollast- oder Niedriglastbereich. Die Intervallbreite ist dann im Teillastbereich entsprechend kleiner, so dass hier eine genauere Anpassung an die tatsächlichen Duckverluste im hydraulischen Netzwerk möglich ist. Somit können alternativ oder in Kombination zur Festlegung der Anzahl n, auch die Grenzwerte und damit die Lagen der Volumenstromintervallen ΔQ1, ..., ΔQn bereits vor der Durchführung des erfindungsgemäßen Verfahrens festgelegt sein.
  • Gemäß einer anderen Ausführungsvariante können die Volumenstromintervalle ΔQ1, ..., ΔQn während des erfindungsgemäßen Verfahrens, d.h. dynamisch im Betrieb, in Abhängigkeit der ermittelten Druck- und Volumenstromwerte festgelegt werden. Die Festlegung kann die Anzahl n und/ oder die Breite der Volumenstromintervalle ΔQ1, ..., ΔQn betreffen. So kann der von der Pumpstation 1 förderbare Volumenstrombereich 0 ... Qmax in Abhängigkeit der ermittelten Druck- und Volumenstromwerte in die Anzahl n an Volumenstromintervallen ΔQ1, ..., ΔQn unterteilt werden. Dies kann beispielsweise anhand der volumenstrombezogenen Dichte der Datentupel erfolgen, d.h. aufgrund der Anzahl der in einem bestimmten Volumenstrombereich vorkommenden Druckwerte. So können beispielsweise einem Volumenstrombereich, in dem sich Datentupel häufen, schmalere Volumenstromintervalle, d.h. mehr Volumenstromintervalle, verwendet werden als in einem anderen Volumenstrombereich gleicher Breite, in dem sich weniger Datentupel befinden. Auf diese Weise wird eine bedarfsabhängige Feinjustierung der Regelkurve automatisch vorgenommen. Besonders einfach ist es, die Breite der Volumenstromintervalle ΔQ1, ..., ΔQn so zu wählen, dass sie dieselbe oder im Wesentlichen dieselbe Anzahl an Datentupeln umfassen.
  • Die Volumenstromdatenintervalle ΔQd1, ..., ΔQdn sind ebenfalls abgeschlossene Teilbereiche des Volumenstrombereichs 0...Qmax, der von der Pumpstation 1 gefördert werden kann. Hinsichtlich ihrer Festlegung und Breite gilt das zuvor zu den Volumenstromintervallen ΔQ1 ..., ΔQn Gesagte. Sie werden somit ebenfalls jeweils nach unten durch einen Minimalwert und nach oben durch einen Maximalwert begrenzt. Die Volumenstromdatenintervalle ΔQd1, ..., ΔQdn bilden eine Art Datencontainer für die Zuordnung der Datentupel oder der berechneten Druckverluste Δpi,j zu einem Volumenstrombereich. Jedes Volumenstromdatenintervall ΔQdi korreliert mit einem Volumenstromintervall ΔQi. Dies bedeutet, dass jedes Volumenstromdatenintervall ΔQdi einem der Volumenstromintervalle ΔQi zugeordnet ist. Im einfachsten Fall sind die Volumenstromintervalle ΔQ1, ..., ΔQn deckungsgleich mit den Volumenstromdatenintervallen ΔQd1, ..., ΔQdn. Dies ist bei den Beispielen in den Figuren 5 bis 9 der Fall. Alternativ können die Volumenstromintervalle ΔQ1, ..., ΔQn aber auch versetzt zu den Volumenstromdatenintervallen ΔQd1, ..., ΔQdn liegen. Dies ist beispielsweise bei dem Beispiel in Figur 11 der Fall, der nachfolgend noch beschrieben wird. Hier liegen die partiellen Druckkurven (die Volumenstromintervalle ΔQ1, ..., ΔQn) volumenstrombezogen versetzt zu den Datencontainern (den Volumenstromdatenintervallen ΔQd1, ..., ΔQdn), so dass die Definition der Druckkurven nicht für dieselben Volumenstromintervalle erfolgt, für die die Zuordnung der Datentupel oder der Druckverluste erfolgt.
  • Ausgehend von den berechneten, volumenstromdateninterverall-bezogenen Druckverlusten Δpi,j kann für jedes Volumenstromdatenintervall ΔQdi aus den, insbesondere der Gesamtheit der diesem Volumenstromdatenintervall ΔQdi zugeordneten Druckverluste(n) Δpi,j ein Repräsentanzwert Δprep,i bestimmt werden, der einen Druckverlust für das jeweilige Volumenstromdateninterverall bzw. für den das Volumenstromdateninterverall abdeckenden Volumenstrombereich repräsentiert. Durch den Repräsentanzwert Δprep,i werden die einem Volumenstromdatenintervall direkt oder indirekt zugeordneten Druckverluste zu einem repräsentativen Wert vereint.
  • Als Repräsentanzwert Δprep,i kann beispielsweise der Maximalwert der dem entsprechenden Volumenstromdatenintervall ΔQd1, ..., ΔQdn zugeordneten Druckverluste Δpi,j sein. Entsprechend ist aus den zugeordneten Druckverluste Δpi,j der größte Wert herauszufiltern. Alternativ kann als Repräsentanzwert Δprep,i der arithmetische Mittelwert oder ein Quantil im Bereich von 75% bis 95% der Gesamtheit der dem entsprechenden Volumenstromdatenintervall ΔQd1, ..., ΔQdn zugeordneten Druckverluste Δpi,j verwendet werden. Durch das Quantil wird sichergestellt, dass Ausreißer in den berechneten Druckverlusten nach oben bei der Bestimmung des Repräsentanzwerts nicht berücksichtigt werden, so dass zu hohe Drücke durch die Pumpstation vermieden und damit Energie eingespart wird. Die Bildung des arithmetischen Mittelwerts der zugeordneten Druckverlustwerte eines Volumenstromintervalls führt dazu, dass sowohl Abweichungen nach oben als auch nach unten ausgeglichen bzw. gemittelt werden.
  • Figur 6 veranschaulicht das Ergebnis der Ermittlung eines Repräsentanzwert Δprep,1, Δprep,2, Δprep,3, ... Δprep,n für jedes der Volumenstromdatenintervall ΔQd1, ..., ΔQdn, wobei hier aus der Menge der einem jeweiligen Volumenstromdatenintervall ΔQdi zugeordneten Druckverluste Δpi,j jeweils das Maximum genommen ist. Diese Repräsentanzwerte Δprep,i besagen somit, dass es für das entsprechende Volumenstromintervall keinen höheren Druckverlust gibt oder zumindest während des zurückliegenden Zeitraums der Erfassung der Druck- und Volumenstromwerte nicht gegeben hat.
  • In vorteilhafter Weiterbildung kann anschließend allen Repräsentanzwerten Δprep,1 ... Δprep,n ein gemeinsamer Vorgabedruckwert pset hinzuaddiert werden. Dieser Vorgabedruckwert pset kann demjenigen Druck entsprechen, den man an einer Entnahmestelle 3 mindestens haben möchte, im Jargon auch Komfortdruck genannt. Da die Repräsentanzwerte Δprep,i den maximalen Druckverlust im jeweiligen Volumenstromdatenintervall ΔQd1, ..., ΔQdn angeben, wird dieser Komfortdruck auch an allen Entnahmestellen 3 bei jedem Volumenstrom erreicht. Durch diese Addition erhält man einen intervallbezogenen Solldruck für die Pumpstation 1, der für das entsprechende Volumenstromintervall mindestens erreicht werden muss, um den Komfortdruck zu gewährleisten.
  • Von diesem Grundgedanken umfasst, ist auch eine Variante, bei der die Ermittlung der Repräsentanzwerte Δprep,i und die Addition des Vorgabedruckwerts pset zeitlich vertauscht sind. So kann gemäß einer alternativen Ausführungsvariante zunächst den Druckverlusten Δpi,j der gemeinsame Vorgabedruckwert pset hinzuaddiert und anschließend der jeweilige Repräsentanzwert Δprep,i bestimmt werden.
  • Durch die Addition des Vorgabedruckwerts pset werden die Repräsentanzwerte Δprep,i in Figur 6 um pset angehoben. Das Ergebnis dieser Anhebung kann Figur 7 entnommen werden. Die angehobenen Repräsentanzwerte Δprep,i können nun zur Definition der partiellen Druckkurven verwendet werden.
  • Gemäß einer Ausführungsvariante können die partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) Konstantdruck-Kurven sein. In diesem Fall ist jede Druckkurve psoll,i(Q) durch einen konstanten Solldruck festgelegt. Diese Variante ist in Figur 7 veranschaulicht. Die aus der Gesamtheit der partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) gebildete Regelkurve psoll(Q) ist dann unstetig. Sie besitzt an den Intervallgrenzen, d.h.im Übergang von einer partiellen Druckkurve zur nächsten einen Sprung.
  • Sofern die Repräsentanzwerte Δprep,i aus der Summe der Druckverluste Δpi,j und dem Vorgabewert pset ermittelt worden sind, kann der konstante Solldruck der entsprechenden Druckkurve psoll,i(Q) direkt dem Repräsentanzwert Δprep,i desjenigen Volumenstromdatenintervalls ΔQdi entsprechen, für das die entsprechende partielle Druckkurve psoll,i(Q) zumindest teilweise definiert wird. Sofern der Vorgabewert pset aber noch nicht in den Repräsentanzwerten Δprep,i berücksichtigt ist, kann alternativ der konstante Solldruck der entsprechenden Druckkurve psoll,i(Q) der Summe aus dem Vorgabedruckwert pset und dem Repräsentanzwert Δprep,i desjenigen Volumenstromdatenintervalls ΔQdi entsprechen, für das die entsprechende partielle Druckkurve psoll,i zumindest teilweise definiert wird. Eben diese zweitgenannte Möglichkeit zeigt Figur 7, in der die partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) durch die Summe des gemeinsamen Vorgabewerts pset und dem entsprechenden Repräsentanzwert Δprep,i des jeweiligen Volumenstromdatenintervalls ΔQdi definiert werden. Da die Volumenstromdatenintervalle ΔQd1, ..., ΔQdn in Figur 7 deckungsgleich mit den Volumenstromintervallen ΔQ1, ..., ΔQn liegen, erfolgt die Definition der partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) hier nicht nur teilweise für ein jeweiliges Volumenstromdatenintervall ΔQdi sondern vollständig. Wären die Volumenstromdatenintervalle ΔQd1, ..., ΔQdn zu den Volumenstromintervallen ΔQ1, ..., ΔQn verschoben, wäre dies nicht so, wie es in Figur 11 der Fall ist.
  • Gemäß einer anderen Ausführungsvariante können die partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) Proportionaldruck-Kurven sein. In diesem Fall ist jede partielle Druckkurve psoll,i(Q) durch einen linear mit dem Volumenstrom Q ansteigenden Solldruck psoll(Q) festgelegt. Diese Variante ist in Figuren 8 und 9 veranschaulicht. Die aus der Gesamtheit der partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) gebildete Regelkurve psoll(Q) ist dann stetig. Sie besitzt allerdings an den Intervallgrenzen, einer partiellen Druckkurve psoll,i(Q) zur nächsten psoll,i+1(Q) einen Knick.
  • Figur 8 zeigt, dass der für ein Volumenstromdatenintervall ΔQdi ermittelte und festgelegte Repräsentanzwert Δprep,i im Vergleich zu einer partiellen Konstantdruckkurve nur den Solldruck am Anfang der für dieses Volumenstromdatenintervall ΔQdi bestimmten partiellen Druckkurve psoll,i(Q) definiert. Demgegenüber bestimmt der für das nächste Volumenstromdatenintervall ΔQdi+1 ermittelte und festgelegte Repräsentanzwert Δprep,i+1 den Solldruck am Ende dieser partiellen Druckkurve psoll,i(Q). Die partielle Druckkurve psoll,i(Q) wird dann durch die Linie zwischen den beiden Repräsentanzwerten Δprep,i und Δprep,i+1 definiert. Da Figur 8 auf Figur 5 aufbaut, fehlt es hier jedoch noch an dem addierten Vorgabedruckwert pset. Dieser ist in Figur 9 berücksichtigt.
  • Sofern also die Repräsentanzwerte Δprep,i aus der Summe der Druckverluste Δpi,j und dem Vorgabewert pset ermittelt worden sind, kann der lineare Solldruck der entsprechenden Druckkurve psoll,i(Q) so gebildet sein, dass er von dem durch den Repräsentanzwert Δprep,i desjenigen Volumenstromdatenintervalls ΔQd1, für das die entsprechende partielle Druckkurve psoll,i(Q) zumindest teilweise definiert wird, gebildeten ersten Druckwert, zu dem durch den Repräsentanzwert Δprep,i+1 des nächst folgenden Volumenstromdatenintervalls ΔQdi+1 gebildeten zweiten Druckwert ansteigt oder abfällt. Sofern der Vorgabewert pset aber noch nicht in den Repräsentanzwerten Δprep,i berücksichtigt ist, kann -wie in Figur 9- der lineare Solldruck der entsprechenden Druckkurve psoll,i(Q) alternativ so gebildet sein, dass er von dem durch die Summe aus dem Vorgabedruckwert pset und dem Repräsentanzwert Δprep,i desjenigen Volumenstromdatenintervalls ΔQd1, für das die entsprechende partielle Druckkurve psoll,i(Q) zumindest teilweise definiert wird, gebildeten ersten Druckwert, zu dem durch die Summe aus dem Vorgabedruckwert pset und dem Repräsentanzwert Δpi+1 des nächst folgenden Volumenstromdatenintervalls ΔQdi+1 gebildeten zweiten Druckwert ansteigt oder abfällt.
  • Vorzugsweise kann die partielle Proportionaldruck-Kurve für das i-te Volumenstromintervall ΔQi nach der Gleichung: p soll , i Q = p set + Δ prep , i + Δp rep , i + 1 Δp rep , i / ΔQ i , max ΔQ i , min Q Q i , min
    Figure imgb0001
    bestimmt werden oder sein, wobei
    • psoll,i der volumenstromabhängige Druck-Sollwert für das i-te Volumenstromintervall,
    • Q der Volumenstrom,
    • Pset der Vorgabedruckwert,
    • Δprep,1 der Repräsentanzwert für das i-te Volumenstromdatenintervall,
    • Δprep,i+1 der Repräsentanzwert für das (i+1)-te Volumenstromdatenintervall,
    • ΔQi,max der Maximalwert (Endwert) des Volumenstroms im i-ten Volumenstromintervall ist.
    • ΔQi,min der Minimalwert (Anfangswert) des Volumenstroms im i-ten Volumenstromintervall ist.
  • Anhand dieses mathematischen Zusammenhang lässt sich in Abhängigkeit des Volumenstroms Q auf einfache Weise der Ausgangsdruck paus = psoll,i(Q) der Pumpvorrichtung 1 für alle Volumenstromintervalle einstellen.
  • Gemäß einer wiederum anderen Ausführungsvariante können ein Teil der partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) Konstantdruck-Kurven und der übrige Teil Proportionaldruck-Kurven sein. Eine solche Mischvariante ist in Figur 11 gezeigt, bei der die erste und die letzte partielle Druckkurve Druckkurven psoll,1(Q), psoll,n(Q) Konstantdruck-Kurven und die zwischen diesen liegenden partiellen Druckkurven psoll,2(Q), ..., psoll,n-1(Q) Proportionaldruck-Kurven sind.
  • Gegebenenfalls kann der Fall eintreten, dass die Pumpstation 1 während des Zeitraums der Erfassung der Druck- und Volumenstromwerte nicht in allen Volumenstrombereichen betrieben wird, so dass nicht zu allen Volumenstromdatenintervallen ΔQd1, ..., ΔQdn Werte vorliegen. Vorzugsweise kann in dem Fall, dass einem der Volumenstromdatenintervalle ΔQdi kein Datentupel oder kein Druckverlust Δp(tv), Δpk(tv) zugeordnet worden ist, als Repräsentanzwert Δprep,i für dieses Volumenstromdatenintervall ΔQdi der Repräsentanzwert Δprep,i-1, Δprep,i+1 des vorhergehenden oder nachfolgenden Volumenstromdatenintervalls ΔQdi-1 ΔQdi+1 verwendet werden. Dies stellt sicher, dass die Regelkurve für den gesamten Volumenstrombereich der Pumpstation 1 definiert werden kann.
  • Figur 10 veranschaulicht eine Ausführungsvariante, bei der die Repräsentanzwerte Δprep,1, ... Δprep,n nicht dem Anfang der Volumenstromdatenintervallen ΔQd1, ..., ΔQdn zugeordnet werden, sondern etwa der Mitte. Dies führt dazu, dass die Definition der partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) die Volumenstromdatenintervalle ΔQd1, ..., ΔQdn übergreift. Sie verlaufen jeweils von der Mitte des einen Volumenstromdatenintervalls ΔQdi zur Mitte des nächsten Volumenstromdatenintervalls ΔQdi+1. Die Volumenstromintervallen ΔQ1, ..., ΔQn haben somit zwar dieselbe Breite wie die Volumenstromdatenintervallen ΔQd1, ..., ΔQdn sie sind zu diesen jedoch um die halbe Breite versetzt. Dies ist in Figur 11 dargestellt, die den Verlauf der finalen partiellen Druckkurven psoll,1(Q), ... psoll,n(Q) zeigt.
  • Bei der in Figur 11 veranschaulichten Ausführungsvariante hat das erste Volumenstromintervall ΔQ1 nur die halbe Breite der übrigen Volumenstromintervalle ΔQ2, ..., ΔQn. Dies zeigt, dass nicht alle Volumenstromintervalle ΔQ1, ..., ΔQn dieselbe Breite haben müssen.
  • Bei der in Figur 11 veranschaulichten Ausführungsvariante ist ferner zu bemerken, dass für das erste Volumenstromintervall ΔQ1 eine partielle Konstantdruckkurve definiert ist, deren Sollwert durch den dem ersten Volumenstromintervall ΔQ1 zugeordneten Repräsentanzwert Δprep,1 definiert ist. Demgegenüber sind für die übrigen Volumenstromintervalle ΔQ2, ..., ΔQn partielle Proportionaldruckkurven definiert. Dies zeigt, dass nicht alle partiellen Druckkurven dieselbe Ordnung haben müssen.
  • Es sei ferner angemerkt, dass die maximale Pumpenkurve M den Betriebsbereich der Pumpstation 1 begrenzt. Es können somit keine Betriebspunkte jenseits dieser Pumpenkurve M erreicht werden. Die Pumpenkurve M überlagert somit die Regelkurve psoll(Q) in dem oder in den letzten Volumenstromintervall(en) derart, dass Betriebspunkte auf der zum letzten oder gegebenenfalls auch vorletzten Volumenstromintervall ΔQn gebildeten partiellen Druckkurve psoll, n(Q), die jenseits der maximale Pumpenkurve M liegen würden, auf der maximale Pumpenkurve M liegen.
  • Figuren 3a und 3b zeigen nun noch eine grafische Darstellung eines ersten und zweiten erfindungsgemäßen Verfahrensablaufs in seinen grundsätzlichen Schritten. In einem ersten Schritt 11 erfolgt bei beiden Varianten die Ermittlung von Datentupeln aus Druck- und Volumenstromwerten. Bei dem ersten Verfahrensablauf in Figur 3a folgt dann in Schritt 12a die Zuordnung der Datentupel zu einem Volumenstromdatenintervall, woran sich in Schritt 13a die Berechnung eines Druckverlusts für jedes Datentupel anschließt. Diese beiden Schritte sind in dem zweiten Verfahrensablauf in Figur 3b vertauscht, wobei hier in Schritt 12a zunächst die Berechnung eines Druckverlusts für jedes Datentupel erfolgt und anschließend in Schritt 13a diese Druckverluste jeweils einem Volumenstromdatenintervall zugeordnet werden. Die nachfolgenden Schritte 14, 15, 16 sind wieder bei beiden Varianten gleich. Aus den berechneten Druckverlusten wird ein Repräsentanzwert für jedes Volumenstromdatenintervall bestimmt, Schritt 14. Aus jedem Repräsentanzwert wird anschließend jeweils eine partielle Druckkurve für jedes mit dem entsprechenden Volumenstromdatenintervall korrelierte Volumenstromintervall definiert, Schritt 15, woran sich dann die Regelung der Pumpstation entlang der durch die Gesamtheit der partiellen Druckkurven gebildeten Regelkurve anschließt, Schritt 16. Das Verfahren wird sodann wiederholt. Nach Schritt 16 wird es bei Schritt 11 fortgeführt und somit die definierte Regelkurve dynamisch, insbesondere immer wieder angepasst. Die Bildung der partiellen Druckkurven kann wie zuvor beschrieben werden. Dabei können die partielle Druckkurven Konstantdruckkurven, oder Proportionaldruckkurven oder zum Teil Konstantdruckkurven und zum anderen Teil Proportionaldruckkurven sein.
  • Das erfindungsgemäße Verfahren kann gemäß einer Variante im Rahmen einer Inbetriebnahmeprozedur unmittelbar nach der Installation der Pumpstation 1 ausgeführt werden. Wird das Verfahren gestartet, so muss lediglich nacheinander eine der Entnahmestellen 3 und/ oder zwei oder mehr, insbesondere alle Entnahmestellen 3 gleichzeitig geöffnet werden. Zumindest sollte auch der Schlechtpunkte darunter sein. Dies hat den Vorteil, dass für den gesamten förderbaren Volumenstrombereich der Pumpstation 1 Druck- und Volumenstromwerte in kurzer Zeit aufgenommen werden können. Anschließend kann die Datenerfassung, Schritt 11, beendet und mit der Auswertung, Schritte 12 bis 15, begonnen werden.
  • Alternativ kann das erfindungsgemäße Verfahren unabhängig von der Installation der Pumpstation 1 im Rahmen ihres bestimmungsgemäßen Betriebs erfolgen. Dies bedingt zwar einen längeren Zeitraum, bis ausreichend viele Druck- und Volumenstromwerte erfasst sind. Es entfällt jedoch die Inbetriebnahmeprozedur für die Datenermittlung. Bei beiden Varianten kann die Pumpstation zunächst gemäß einer über dem gesamten Volumenstrom konstanten Druckkurve geregelt werden.
  • Bezugszeichenliste
  • 1
    Pumpstation
    2
    lokale Versorgungsleitung
    3
    Verbraucher, Entnahmestelle
    4
    Ausgang der Pumpstation mit Drucksensor
    5, 5a, 5b
    Systemstellemit Drucksensor
    6
    Volumenstromsensor
    7
    Steuer- und Regelungseinheit
    8
    Druckleitung
    9
    zentrale Versorgungsleitung
    10
    Gebäude
    11
    Schritt Betriebswertaufnahme
    12a
    Schritt Datentupelzuordnung
    12b
    Schritt Druckverlustberechnung
    13a
    Schritt Druckverlustberechnung
    13b
    Schritt Druckverlustzuordnung
    14
    Schritt Repräsentanzwertbestimmung
    15
    Schritt Bildung der partiellen Druckkurven
    16
    Schritt Regelung der Pumpstation anhand partieller Druckkurven
    17
    Zuleitung
    18
    Pumpe

Claims (18)

  1. Verfahren zur Regelung einer Pumpstation (1) in einem hydraulischen Netzwerk, die ein zu mindestens einem Verbraucher (3) zu förderndes Medium unter Druck setzt, wobei der Druck in Abhängigkeit des Volumenstroms (Q) durch die Pumpstation (1) gemäß einer Regelkurve eingestellt wird, dadurch gekennzeichnet, dass die Regelkurve aus einer Mehrzahl partieller Druckkurven (psoll,1(Q), ..., psoll,n(Q)) gebildet wird, die jeweils für ein Volumenstromintervall (ΔQ1, ...,ΔQn) einer der Mehrzahl entsprechenden Anzahl (n) lückenlos aneinander angrenzender Volumenstromintervalle (ΔQ1, ΔQn) auf der Grundlage ermittelter und intervallbezogen auszuwertender Druck- und Volumenstromwerte des Netzwerks definiert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Druck- und Volumenstromwerte Datentupel mit zumindest folgenden, einander zeitlich zugeordnete Werten umfassen:
    - einen Systemdruckwert (psys(tv), psys,k(tv)) des an einer Systemstelle (5, 5a, 5b) anliegenden Systemdrucks (psys, psys,k) und
    - einen Volumenstromwert (Q(tv)) des fließenden Volumenstroms (Q).
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Datentupel ferner einen Ausgangsdruckwert (paus(tv)) des am Ausgang der Pumpstation (1) aktuell anliegenden Ausgangsdrucks (paus) umfassen.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Datentupel anhand ihres jeweiligen Volumenstromwerts (Q(tv)) jeweils einem Volumenstromdatenintervall (ΔQdi) zugeordnet werden, das mit einem der Volumenstromintervalle (ΔQi) korelliert, und dass aus dem Systemdruckwert (psys(tv), psys,k(tv)) und einem Ausgangsdrucksollwert (pbooster) der Pumpstation (1) oder dem ermittelten Ausgangsdruckwert (paus(tv)) eines jeden Datentupels durch Differenzbildung ein Druckverlust (Δpi,j) vom Ausgang der Pumpstation (1) zu der Systemstelle (5, 5a, 5b) ermittelt wird.
  5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass aus dem Systemdruckwert (psys(tv), psys,k(tv)) und einem Ausgangssollwert (pbooster) der Pumpstation (1) oder dem ermitteln Ausgangsdruckwert (paus(tv)) eines jeden Datentupels durch Differenzbildung ein Druckverlust (Δpi,j) vom Ausgang der Pumpstation (1) zu der Systemstelle(5, 5a, 5b) ermittelt wird, und dass dieser Druckverlust (Δpi,j) anhand des Volumenstromwerts (Q(tv)) des jeweiligen Datentupels einem Volumenstromdatenintervall (ΔQdi) zugeordnet wird, das mit einem der Volumenstromintervalle (ΔQi) korelliert.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass für jedes Volumenstromdatenintervall (ΔQdi) aus den, insbesondere der Gesamtheit der diesem Volumenstromdatenintervall (ΔQdi) zugeordneten Druckverluste(n) (Δpij) ein Repräsentanzwert (Δprep,i) bestimmt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass allen Repräsentanzwerten (Δprep,i) ein gemeinsamer Vorgabedruckwert (pset) hinzuaddiert wird oder dass den Druckverlusten (Δp(tv), Δpk(tv)) zunächst ein gemeinsamer Vorgabedruckwert (pset) hinzuaddiert wird und anschließend der jeweilige Repräsentanzwert (Δprep,i) bestimmt wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in dem Fall, dass einem der Volumenstromdatenintervalle (ΔQdi) kein Datentupel oder kein Druckverlust (Δp(tv), Δpk(tv)) zugeordnet worden ist, als Repräsentanzwert (Δprep,i) für dieses Volumenstromdatenintervall (ΔQdi) der Repräsentanzwert (Δprep,i-1, Δprep,i+1) des vorhergehenden oder nachfolgenden Volumenstromdatenintervalls (ΔQdi-1, ΔQdi+1) verwendet wird.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass eine, mehrere oder alle partiellen Druckkurven (psoll,1(Q), ... psoll,n(Q)) Konstantdruck-Kurven sind, deren Solldruck jeweils dem Repräsentanzwert (Δprep,i) oder der Summe aus dem Vorgabedruckwert (pset) und dem Repräsentanzwert (Δprep,i) desjenigen Volumenstromdatenintervalls (ΔQdi) entspricht, für das die entsprechende partielle Druckkurve (psoll,i) zumindest teilweise definiert wird.
  10. Verfahren nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass eine, mehrere oder alle partiellen Druckkurven (psoll,1(Q), ... psoll,n(Q)) Proportionaldruck-Kurven sind, deren Solldruck jeweils von dem durch den Repräsentanzwert (Δpi) oder die Summe aus dem Vorgabedruckwert (pset) und dem Repräsentanzwert (Δprep,i) desjenigen Volumenstromdatenintervalls (ΔQdi), für das die entsprechende partielle Druckkurve (psoll,i(Q)) zumindest teilweise definiert wird, gebildeten ersten Druckwert, zu dem durch den Repräsentanzwert (Δpi+1) oder die Summe aus dem Vorgabedruckwert (pset) und dem Repräsentanzwert (Δpi+1) des nächst folgenden Volumenstromdatenintervalls (ΔQdi) gebildeten zweiten Druckwert ansteigt oder abfällt.
  11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Repräsentanzwert (Δprep,i) der Maximalwert, der arithmetische Mittelwert oder ein Quantil im Bereich von 75% bis 95% der Gesamtheit der dem entsprechenden Volumenstromdatenintervall (ΔQd1, ..., ΔQdn) zugeordneten Druckverluste (Δpi,j) ist.
  12. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Volumenstromintervalle (ΔQ1, ..., ΔQn) eine im Wesentlichen gleiche Breite aufweisen.
  13. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der von der Pumpstation (1) förderbare Volumenstrombereich (0 ... Qmax) in Abhängigkeit der ermittelten Druck- und Volumenstromwerte in die Anzahl (n) an Volumenstromintervallen (ΔQ1, ..., ΔQn) unterteilt wird.
  14. Verfahren nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass die Volumenstromintervalle (ΔQ1, ..., ΔQn) deckungsgleich mit den Volumenstromdatenintervallen (ΔQd1, ..., ΔQdn) sind oder hierzu versetzt liegen.
  15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass während des Betriebs der Pumpstation (1) ermittelt wird, wann der Volumenstrom (Q) größer Null ist, und dass nur in diesem Fall der oder die Druckwerte (psys(tv), psys,k(tv), paus(tv)) und der Volumenstromwert (Q(tv)) ermittelt werden.
  16. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass während des Betriebs der Pumpstation (1) ermittelt wird, wann die Änderung des Volumenstroms (Q) für einen Zeitraum im Wesentlichen konstant ist, und dass nur in diesem Fall der oder die Druckwerte (psys(tv), psys,k(tv), paus(tv)) und der Volumenstromwert (Q(tv)) aufgenommen werden.
  17. Verfahren nach einem der Ansprüche 2 bis 16, dadurch gekennzeichnet, dass der Systemdruck (psys(tv), psys,k(tv)) an einer hydraulisch am weitesten von der Pumpstation (1) entfernten Entnahmestelle (5, 5a, 5b) und/ oder am Ende eines Versorgungsstranges (2) ermittelt wird.
  18. System zur Regelung einer Pumpstation (1) in einem hydraulischen Netzwerk, mit der ein zu mindestens einem Verbraucher (3) zu förderndes Medium unter Druck setzbar ist, wobei der Druck in Abhängigkeit des Volumenstroms durch die Pumpstation (Q) gemäß einer Regelkurve einstellbar ist, dadurch gekennzeichnet, dass das System dazu eingerichtet ist, die Regelkurve aus einer Mehrzahl partieller Druckkurven (psoll,1(Q), ... psoll,n(Q)) zu bilden, und diese partiellen Druckkurven (psoll,1(Q), ... psoll,n(Q)) jeweils für ein Volumenstromintervall (ΔQ1, ...,ΔQn) einer der Mehrzahl entsprechenden Anzahl (n) lückenlos aneinander angrenzender Volumenstromintervalle (ΔQ1, ...,ΔQn) auf der Grundlage ermittelter und intervallbezogen auszuwertender Druck- und Volumenstromwerte des Netzwerks zu definieren.
EP17001136.5A 2016-07-04 2017-07-04 Verfahren und system zur regelung einer pumpstation Active EP3267039B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016008016.7A DE102016008016A1 (de) 2016-07-04 2016-07-04 Verfahren und System zur Regelung einer Pumpstation

Publications (2)

Publication Number Publication Date
EP3267039A1 EP3267039A1 (de) 2018-01-10
EP3267039B1 true EP3267039B1 (de) 2021-08-25

Family

ID=59312940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17001136.5A Active EP3267039B1 (de) 2016-07-04 2017-07-04 Verfahren und system zur regelung einer pumpstation

Country Status (2)

Country Link
EP (1) EP3267039B1 (de)
DE (1) DE102016008016A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116335925B (zh) * 2023-05-19 2023-08-04 山东海纳智能装备科技股份有限公司 基于数据增强的煤矿井下乳化泵站智能调控系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011008165A1 (de) * 2011-01-10 2012-07-12 Wilo Se Verfahen zum leistungsoptimierten Betreiben einer elektromotorisch angetriebenen Pumpe bei geringen Volumenströmen
DE102014001413A1 (de) * 2014-02-05 2015-08-06 Wilo Se Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes
DE102014018020A1 (de) * 2014-12-08 2016-06-09 Wilo Se Verfahren zum Betreiben einer Kreiselpumpe

Also Published As

Publication number Publication date
DE102016008016A1 (de) 2018-01-04
EP3267039A1 (de) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2778296B1 (de) Pumpensystem
EP1286240B1 (de) Verfahren zur Ermittlung einer Pumpen-Regelkennlinie
EP2354555B2 (de) Verfahren zur Energieoptimierung von Pumpen
EP2944821B1 (de) Verfahren zur energieoptimierten drehzahlregelung eines pumpenaggregates
EP3495056B1 (de) Verbesserte steuerung der wasserwirtschaft einer kühlstrecke
EP2085707A2 (de) Heizungsanlage und Verfahren zum Betrieb einer Heizungsanlage
WO2010139416A1 (de) Verfahren zur ermittlung von charakteristischen werten, insbesondere von parametern, eines in einer anlage eingebundenen elektromotorisch angetriebenen kreiselpumpenaggregates
DE102015000373A1 (de) Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
EP3097622B1 (de) Windparkregelung mit verbessertem sollwertsprungverhalten
EP3156651A1 (de) Druckerhöhungsvorrichtung
WO2011038800A1 (de) Vorrichtung und verfahren zur geregelten sekundärkühlung einer stranggiessanlage
EP2985536A1 (de) Regelverfahren für ein Pumpenaggregat
EP2915926A2 (de) Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes
EP3267039B1 (de) Verfahren und system zur regelung einer pumpstation
EP0515639B1 (de) Hydrauliksystem
EP3412978A1 (de) Verfahren zur steuerung eines heiz- und/oder kühlsystems
EP3048305B1 (de) Reduzierung des energieverbrauchs einer drehzahlgeregelten wasserpumpe unter berücksichtigung der momentanen systemlast
EP3101352A1 (de) Verfahren zum betreiben einer heizungsanlage und regler mit differenzdrucksensor
EP3026352A1 (de) Verfahren zur hydraulischen regelung mehrerer heizkreisläufe am verteilerbalken
DE102019110710B3 (de) Ansteuerverfahren für ein Hydrauliksystem mit einer Pumpe und mehreren Ventilen; sowie Hydrauliksystem
EP2354554B1 (de) Verfahren zum Ermitteln des funktionalen Zusammenhangs von Pumpen
EP3895819B1 (de) Betrieb einer kühleinrichtung mit einem minimalen arbeitsdruck
DE102015011487A1 (de) Verfahren zur Reduzierung des Energieverbrauchs einer Förderpumpe, die Wasser aus einem Brunnen in ein Leitungsnetz fördert, sowie Anlage zum Fördern von Wasser aus mindestens einem Brunnen in ein Leitungsnetz
EP3508730B1 (de) Verfahren zur einstellung einer druckerhöhungsanlage
DE102009025707A1 (de) Vorrichtung zur Steuerung einer Anlage mit Hydraulikkreisen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUENING, DANIEL

Inventor name: GROSSE-WESTHOFF, EDGAR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180709

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E03B 5/02 20060101ALI20210226BHEP

Ipc: F04D 15/00 20060101AFI20210226BHEP

INTG Intention to grant announced

Effective date: 20210329

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WILO SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1424066

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011258

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011258

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 7

Ref country code: FR

Payment date: 20230621

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1424066

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825