EP3265850A1 - Film made of metal or a metal alloy - Google Patents

Film made of metal or a metal alloy

Info

Publication number
EP3265850A1
EP3265850A1 EP16720042.7A EP16720042A EP3265850A1 EP 3265850 A1 EP3265850 A1 EP 3265850A1 EP 16720042 A EP16720042 A EP 16720042A EP 3265850 A1 EP3265850 A1 EP 3265850A1
Authority
EP
European Patent Office
Prior art keywords
graphene
film
silicon
film according
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16720042.7A
Other languages
German (de)
French (fr)
Inventor
Holger Thorsten SCHUBART
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neutrino Deutschland GmbH
Original Assignee
Neutrino Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neutrino Deutschland GmbH filed Critical Neutrino Deutschland GmbH
Publication of EP3265850A1 publication Critical patent/EP3265850A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a foil made of metal or a metal alloy, in particular a foil made of aluminum or an aluminum alloy, a so-called neutrino or Ntrino foil (registered trademarks), a process for the production and use of a foil of metal or a metal alloy.
  • Metal foils especially aluminum foils, are well known in the art.
  • the object of the present invention is to further improve metal foils, in particular aluminum foils. These can then serve to convert invisible solar energy into direct current, this is done in particular by neutrino radiation is converted into energy.
  • This object is achieved according to a first aspect of the invention by a film of metal or a metal alloy, wherein the film has a coating comprising graphene and silicon.
  • the film has a coating comprising graphene and silicon.
  • On the metallic support in different processes (vapor-deposited, sprayed, glued on) further materials are applied in a different sequence.
  • the effect achieved is that kinetic energy of radiations (the invisible spectrum of solar or space radiation such as neutrinos) is converted into electricity. This is done by a nanotechnologically modified lattice structure of the applied materials.
  • the modified and compressed lattice structure serves as a braking medium (for example, doped graphene) which slows the wave by about 0.1% by causing molecules of the non-visible spectrum of the solar or space energy to strike molecules of the compacted, so non-natural lattice structure .
  • the pendulum motion is transferred in the next step to a conductive medium (e.g., silicon) and then to the transfer medium (e.g., aluminum, silver, gallium, etc.).
  • a conductive medium e.g., silicon
  • the transfer medium e.g., aluminum, silver, gallium, etc.
  • the metallic carrier or metal alloy may be a common alloy.
  • the foil is made of silver, gold, copper, gallium or aluminum or one of its alloys, in particular of a silver or gold alloy or an aluminum-gallium alloy.
  • a film made of aluminum or an aluminum alloy has cost advantages.
  • a foil made of silver or a silver alloy will achieve better results.
  • An aluminum alloy may be a common aluminum metal alloy.
  • an aluminum-gold or -silver alloy is possible.
  • Other alloys, such as aluminum-manganese, magnesium, copper, silicon, nickel, zinc, beryllium, and mixtures thereof are also possible.
  • the film is made of an aluminum gallium alloy or of gold or silver, a gold or silver alloy. This has the merit of higher conductivity by increasing the flow rate.
  • the film has a thickness of 0.01 mm to 4 mm, preferably from 0.01 mm to 1 mm, particularly preferably 0.05 mm - 1 mm.
  • the coating may comprise about 10% to 80% silicon, preferably 10% to 50% silicon, particularly preferably 25% silicon.
  • the coating may have 20% to 90% graphene, preferably 50% to 90% graphene, most preferably 75% graphene.
  • the coating has organic or inorganic adhesive components.
  • Other common bonding methods other than bonding, for example, by applying are advantageous.
  • the coating can be carried out in individual layered substances or by means of a mixture. It is particularly advantageous if the nanotechnologically processed substances are individually stratified, as this results in a higher efficiency, that is, more electricity is produced. It is particularly advantageous if the coating is a nano-coating in which graphene and silicon are present as nanoparticles.
  • the particles of the Silicon have a size of 5nm to 500nm, more preferably 5nm, and that of graphene 20nm to 500nm, more preferably 20nm, since the smaller the particles are, the higher the efficiency is.
  • Vorteühaft know the coating alternately layers of silicon and graphene, in particular 10 to 20 silicon graphene layers in particular 12 silicon graphene has layers.
  • 12 layers are particularly advantageous because after 12 layers, the voltage decreases again.
  • the performance of the film can be increased when applied to the silicon germanium, selenium, Kupferoxidal or tellurium.
  • Other experiments that increased performance were made with tantalum, niobium, molybdenum, and antimony.
  • the doping of the graphene contributes significantly to the increase in performance.
  • both a doping in a vacuum by ion implantation as well as a neutron transmutation doping can be doped with the ions of the following particles. Ferroniobium, nickel niobium, yttrium or samarium oxide.
  • the coating should preferably take place with exclusion of air, since, depending on the doping, the oxidation effect occurs more quickly. Even after the coating has been completed, the sequence should be sealed, as the air seal increases the stability.
  • 757g of all materials are used on 1km A 2.
  • the metallic carrier represents the negative pole, the graph the positive pole.
  • the film can be rolled or stacked to achieve the highest values.
  • a DinA4 film can be 1 watt, if you stack the films to a mobile power plant, an insulating layer should be placed between the films.
  • the power generation causes no decomposition of the conductor.
  • the conductor has a negative temperature coefficient. The optimum is 26.2 to 26.7 ° C.
  • the film can be used underground and in the water and works better at night than during the day.
  • a second aspect of the invention relates to a method for producing a film from a metal or a metal alloy, in particular a film according to the invention wherein in a first step, a silicon layer is applied to the film, in particular by spraying or steaming, in a second step, the silicon layer cured, dried and is flushed with liquid nitrogen, in a third step, a graphene layer is applied to the film and cured in a fourth step, the graphene layer, dried and rinsed with liquid nitrogen.
  • germanium, selenium, copper oxide, tellurium, tantalum, niobium, molybdenum and / or antimony can be applied in a further step.
  • the graphene can be doped, in particular with ferroniobium, nickel niumium, yttrium or samarium oxide, in particular by ion implantation or by neutron transmutation doping.
  • a third aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, wherein in a first step graphene and silicon are pulverized and mixed and in a second step the pulverized graphene and silicon are applied to the film.
  • a fourth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein in a first step graphene and silicon are pulverized and mixed and in a second step an adhesive layer is applied to the film and in a third step, the powdered graphene and silicon are applied to the adhesive layer.
  • Other common bonding methods other than bonding, for example, by applying are advantageous.
  • a fifth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein graphene and silicon are pulverized and mixed in a first step and mixed with an adhesive in a second step Silicon and graphene powder is mixed and in a third step, the mixture is applied to the film or firmly connected to the film.
  • Other common bonding methods other than bonding, for example, by applying are advantageous.
  • a sixth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein in a first step, an adhesive layer is applied to the film and applied in a second step, a graphene and / or silicon layer and in a third step, a second adhesive layer is applied to the film and in a fourth step, a further silicon and / or graphene layer is applied to the film.
  • Other common bonding methods other than bonding, for example, by applying are advantageous.
  • a seventh aspect of the invention relates to a use of a film according to the invention for the production of direct current from invisible solar energy.
  • the mode of operation can be summed up as follows: Nature has relatively "wide-meshed” molecules, so that the neutrinos fly through because of the low mass, so the atoms in the molecules as well as the molecules in the material structure must be so tightly “packed” that part of the neutrinos can not fly through without touching the particles.
  • the surface of the film therefore has nanotechnologically processed structures, so that analogous to a mechanical pendulum chain, the molecules abut each other and thus from the mass and the kinetic energy of a molecule flow and current flow is created (so-called lattice-guiding effect). This is analogous to a current flow in a line to understand: by magnet and coil, the molecules are set in motion in the generator and so we can use the electricity.

Abstract

The invention relates to a film made of metal or a metal alloy, in particular a film made of aluminum or an aluminum alloy, a so-called neutrino or ntrino film (registered trademarks), to a method of production and to a use of a film made of metal or a metal alloy.

Description

Folie aus Metall oder einer Metalllegierung  Foil of metal or a metal alloy
Die Erfindung betrifft eine Folie aus Metall oder einer Metalllegierung insbesondere eine Folie aus Aluminium oder einer Aluminiumlegierung eine sogenannte Neutrinooder Ntrino-Folie (registrierte Marken) , ein Verfahren zur Herstellung sowie eine Verwendung einer Folie aus Metall oder einer Metalllegierung. The invention relates to a foil made of metal or a metal alloy, in particular a foil made of aluminum or an aluminum alloy, a so-called neutrino or Ntrino foil (registered trademarks), a process for the production and use of a foil of metal or a metal alloy.
Metallfolien insbesondere Aluminiumfolien sind aus dem Stand der Technik zahlreich bekannt. Metal foils, especially aluminum foils, are well known in the art.
Aufgabe der vorliegenden Erfindung ist es, Metallfolien insbesondere Aluminiumfolien weiter zu verbessern. Diese können dann dazu dienen, nicht sichtbare Solarenergie in Gleichstrom zu wandeln, dies erfolgt insbesondere indem Neutrino-Strahlung in Energie gewandelt wird. The object of the present invention is to further improve metal foils, in particular aluminum foils. These can then serve to convert invisible solar energy into direct current, this is done in particular by neutrino radiation is converted into energy.
Diese Aufgabe wird nach einem ersten Aspekt der Erfindung durch eine Folie aus Metall oder einer Metalllegierung gelöst, wobei die Folie eine Beschichtung aufweist, die Graphen und Silizium aufweist. Auf den metallischen Träger werden in unterschiedlichen Verfahren (aufgedampft, besprüht, aufgeklebt) weitere Materialien in unterschiedlicher Abfolge aufgetragen. Der Effekt der damit erzielt wird besteht darin, dass Bewegungsenergie von Strahlungen (das nichtsichtbare Spektrum der Sonnen- bzw. Raumstrahlung wie z.B. Neutrinos) in Strom gewandelt wird. Dies erfolgt durch eine nanotechnologisch veränderte Gitterstruktur der aufgetragenen Materialien. Die veränderte und verdichtete Gitterstruktur dient als Bremsmedium (beispielsweise dotiertes Graphen) welches die Welle um ca. 0. 1 %o verlangsamt, indem molekühle des nicht sichtbaren Spektrums der Sonnen- bzw. Raumenergie Molekühle der verdichteten, so nicht in der Natur vorkommenden Gitterstruktur anstoßen. Jene Pendelbewegung wird im nächsten Schritt auf ein Leitermedium übertragen (z.B. Silizium) und dann auf das Überträgermedium ( z.B. Aluminium, Silber, Gallium usw.). This object is achieved according to a first aspect of the invention by a film of metal or a metal alloy, wherein the film has a coating comprising graphene and silicon. On the metallic support in different processes (vapor-deposited, sprayed, glued on) further materials are applied in a different sequence. The effect achieved is that kinetic energy of radiations (the invisible spectrum of solar or space radiation such as neutrinos) is converted into electricity. This is done by a nanotechnologically modified lattice structure of the applied materials. The modified and compressed lattice structure serves as a braking medium (for example, doped graphene) which slows the wave by about 0.1% by causing molecules of the non-visible spectrum of the solar or space energy to strike molecules of the compacted, so non-natural lattice structure , The pendulum motion is transferred in the next step to a conductive medium (e.g., silicon) and then to the transfer medium (e.g., aluminum, silver, gallium, etc.).
BESTÄTIGUNGSKOPIE Bei dem metallischen Träger bzw. der Metalllegierung kann es sich um eine gängige Legierung handeln. Vorteilhafterweise ist die Folie aus Silber, Gold, Kupfer, Gallium oder Aluminium oder einer ihrer Legierungen, insbesondere aus einer Silber- oder Goldlegierung oder einer Aluminium-Gallium-Legierung. Dabei hat eine Folie aus Aluminium oder einer Aluminiumlegierung Kostenvorteile. Eine Folie aus Silber oder einer Silberlegierung erzielen bessere Werte. CONFIRMATION COPY The metallic carrier or metal alloy may be a common alloy. Advantageously, the foil is made of silver, gold, copper, gallium or aluminum or one of its alloys, in particular of a silver or gold alloy or an aluminum-gallium alloy. A film made of aluminum or an aluminum alloy has cost advantages. A foil made of silver or a silver alloy will achieve better results.
Bei einer Aluminiumlegierung kann es sich um eine gängige Aluminiummetalllegierung handeln. Beispielsweise eine Aluminium- Gold- oder - Silberlegierung ist möglich. Auch andere Legierungen, wie beispielsweise eine Aluminium-Mangan, -Magnesium-, -Kupfer-, -Silizium-, -Nickel-, -Zink-, Berylliumlegierung, sowie deren Mischungen sind möglich. An aluminum alloy may be a common aluminum metal alloy. For example, an aluminum-gold or -silver alloy is possible. Other alloys, such as aluminum-manganese, magnesium, copper, silicon, nickel, zinc, beryllium, and mixtures thereof are also possible.
Besonders vorteilhaft ist, wenn die Folie aus einer Aluminium- Galliumlegierung oder aus Gold oder Silber, einer Gold oder Silberlegierung ist. Dies hat den Vorzug einer höheren Leitfähigkeit, indem die Flussgeschwindigkeit erhöht wird. . It is particularly advantageous if the film is made of an aluminum gallium alloy or of gold or silver, a gold or silver alloy. This has the merit of higher conductivity by increasing the flow rate. ,
Weiter von Vorteil ist, wenn die Folie eine Dicke von 0,01 mm bis 4 mm, vorzugsweise von 0,01 mm bis 1 mm, besonders vorzugsweise 0,05 mm - 1 mm aufweist. Weiter kann die Beschichtung ca. 10% bis 80% Silizium, vorzugsweise 10% bis 50% Silizium, besonders vorzugsweise 25% Silizium, aufweisen. It is further advantageous if the film has a thickness of 0.01 mm to 4 mm, preferably from 0.01 mm to 1 mm, particularly preferably 0.05 mm - 1 mm. Furthermore, the coating may comprise about 10% to 80% silicon, preferably 10% to 50% silicon, particularly preferably 25% silicon.
Ebenfalls kann die Beschichtung 20% bis 90% Graphen, vorzugsweise 50% bis 90% Graphen, besonders vorzugsweise 75% Graphen, aufweisen. Also, the coating may have 20% to 90% graphene, preferably 50% to 90% graphene, most preferably 75% graphene.
Weiter von Vorteil ist, wenn die Beschichtung organische oder anorganische Klebebestandteile aufweist. Auch andere gängige Verbindungsverfahren außer Kleben beispielsweise auch durch Auftragen sind vorteilhaft. Die Beschichtung kann in einzelnen geschichteten Substanzen erfolgen oder anhand einer Mischung. Besonders vorteilhaft ist, wenn die nanotechnologisch aufbereiteten Substanzen einzeln geschichtete werden, da damit eine höhere Effizienz entsteht, das heißt mehr Strom produziert wird. Besonders vorteilhaft ist, wenn die Beschichtung eine Nanobeschichtung ist, in der Graphen und Silizium als Nanopartikel vorliegen. Hierbei sollten die Partikel des Siliziums eine Größe von 5nm bis 500nm besonders vorzugsweise von 5nm und die des Graphen 20nm bis 500nm besonders vorzugsweise 20nm aufweisen, da der Wirkungsgrad erhöht wird, je kleiner die Partikel sind. It is also advantageous if the coating has organic or inorganic adhesive components. Other common bonding methods other than bonding, for example, by applying are advantageous. The coating can be carried out in individual layered substances or by means of a mixture. It is particularly advantageous if the nanotechnologically processed substances are individually stratified, as this results in a higher efficiency, that is, more electricity is produced. It is particularly advantageous if the coating is a nano-coating in which graphene and silicon are present as nanoparticles. Here, the particles of the Silicon have a size of 5nm to 500nm, more preferably 5nm, and that of graphene 20nm to 500nm, more preferably 20nm, since the smaller the particles are, the higher the efficiency is.
Vorteühafterweise weißt die Beschichtung wechselweise Schichten aus Silizium und Graphen auf, insbesondere 10 bis 20 Silizium- Graphen Schichten insbesondere 12 Silizium-Graphen Schichten aufweist. Dabei sind 12 Schichten besonders vorteilhaft, da nach 12 Lagen, die Spannung wieder abnimmt. Vorteühafterweise know the coating alternately layers of silicon and graphene, in particular 10 to 20 silicon graphene layers in particular 12 silicon graphene has layers. In this case, 12 layers are particularly advantageous because after 12 layers, the voltage decreases again.
Weiter kann die Leistung der Folie gesteigert werden, wenn auf das Silizium Germanium, Selen, Kupferoxidal oder Tellur aufgetragen wird. Weitere Experimente, die die Leistung gesteigert haben, erfolgten mit Tantal, Niob, Molybdän und Antimon. Furthermore, the performance of the film can be increased when applied to the silicon germanium, selenium, Kupferoxidal or tellurium. Other experiments that increased performance were made with tantalum, niobium, molybdenum, and antimony.
Wesentlich zur Steigerung der Leistung trägt die Dotierung des Graphens bei. Hierbei kann sowohl eine Dotierung im Vakuum durch Ionenimplantation erfolgen als auch einen Neutronen-Transmutationsdotierung. Dabei kann mit den Ionen folgender Partikel dotiert werden. Ferroniobium, Nickelniobium, Yttrium oder Samariumoxid. Mit Hilfe der Dotierung wird die Fläche des Graphens um den Faktor 10Λ6 vergrößert was unter Anderem zur Leistungssteigerung führt. Die Beschichtung sollte vorzugsweise unter Luftabschluss erfolgen, da je nach Dotierung der Oxidationseffekt schneller eintritt. Auch nach der erfolgten Beschichtung sollte die Folge versiegelt werden, da der Luftabschluss die Standfestigkeit erhöht. Vorteilhafterweise werden 757g aller Materialien auf lkmA2 verwendet. Der metallische Träger stellt den Minuspol dar, das Graphen den Pluspol. The doping of the graphene contributes significantly to the increase in performance. In this case, both a doping in a vacuum by ion implantation as well as a neutron transmutation doping. It can be doped with the ions of the following particles. Ferroniobium, nickel niobium, yttrium or samarium oxide. With the help of the doping the area of the graphene is increased by the factor 10 Λ 6 which among other things leads to an increase in performance. The coating should preferably take place with exclusion of air, since, depending on the doping, the oxidation effect occurs more quickly. Even after the coating has been completed, the sequence should be sealed, as the air seal increases the stability. Advantageously, 757g of all materials are used on 1km A 2. The metallic carrier represents the negative pole, the graph the positive pole.
In der Anwendung können die Folie gerollt oder gestapelt werden, um die höchsten Werte zu erzielen. Eine DinA4 Folie kann 1 Watt, wenn man die Folien zu einem mobilen Kraftwerk stapelt, sollte eine Isolationssicht zwischen den Folien gelegt werden. In the application, the film can be rolled or stacked to achieve the highest values. A DinA4 film can be 1 watt, if you stack the films to a mobile power plant, an insulating layer should be placed between the films.
Die Stromerzeugung bewirkt keine Zersetzung des Leiters. Der Leiter hat einen negativen Temperaturkoeffizienten. Das Optimum liegt bei 26,2 bis 26,7 °C. Die Folie kann unter der Erde und im Wasser verwendet werden und funktioniert besser bei Nacht als bei Tage. The power generation causes no decomposition of the conductor. The conductor has a negative temperature coefficient. The optimum is 26.2 to 26.7 ° C. The film can be used underground and in the water and works better at night than during the day.
Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zum Herstellen einer Folie aus einem Metall oder einer Metalllegierung insbesondere einer erfindungsgemäßen Folie wobei in einem ersten Schritt eine Siliziumschicht auf die Folie aufgetragen wird, insbesondere durch Sprühen oder Dampfen, in einem zweiten Schritt die Siliziumschicht gehärtet, getrocknet und mit flüssigen Stickstoff gespült wird, in einem dritten Schritt eine Graphenschicht auf die Folie aufgetragen wird und in einem vierten Schritt die Graphenschicht gehärtet, getrocknet und mit flüssigem Stickstoff gespült wird. A second aspect of the invention relates to a method for producing a film from a metal or a metal alloy, in particular a film according to the invention wherein in a first step, a silicon layer is applied to the film, in particular by spraying or steaming, in a second step, the silicon layer cured, dried and is flushed with liquid nitrogen, in a third step, a graphene layer is applied to the film and cured in a fourth step, the graphene layer, dried and rinsed with liquid nitrogen.
Vorteilhafterweise kann in einem weiteren Schritt Germanium, Selen, Kupferoxidal, Tellur, Tantal, Niob, Molybdän und/ oder Antimon aufgetragen werden. In einem weiteren Schritt kann das Graphen dotiert werden, insbesondere mit Ferroniobium, Nickelniobium, Yttrium oder Samariumoxid insbesondere durch Ionenimplantation oder durch Neutronen-Transmutationsdotierung. Advantageously, germanium, selenium, copper oxide, tellurium, tantalum, niobium, molybdenum and / or antimony can be applied in a further step. In a further step, the graphene can be doped, in particular with ferroniobium, nickel niumium, yttrium or samarium oxide, in particular by ion implantation or by neutron transmutation doping.
Ein dritter Aspekt der Erfindung betrifft ein Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung, wobei in einem ersten Schritt Graphen und Silizium pulverisiert und vermischt werden und in einem zweiten Schritt das pulverisierte Graphen und Silizium auf die Folie aufgebracht werden. A third aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, wherein in a first step graphene and silicon are pulverized and mixed and in a second step the pulverized graphene and silicon are applied to the film.
Ein vierter Aspekt der Erfindung betrifft ein Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung, insbesondere zum Herstellen einer erfindungsgemäßen Folie, wobei in einem ersten Schritt Graphen und Silizium pulverisiert und vermischt werden und in einem zweiten Schritt eine Klebeschicht auf die Folie aufgebracht wird und in einem dritten Schritt das pulverisierte Graphen und Silizium auf die Klebeschicht aufgebracht werden. Auch andere gängige Verbindungsverfahren außer Kleben beispielsweise auch durch Auftragen sind vorteilhaft. A fourth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein in a first step graphene and silicon are pulverized and mixed and in a second step an adhesive layer is applied to the film and in a third step, the powdered graphene and silicon are applied to the adhesive layer. Other common bonding methods other than bonding, for example, by applying are advantageous.
Ein fünfter Aspekt der Erfindung betrifft ein Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung, insbesondere zum Herstellen einer erfindungsgemäßen Folie, wobei in einem ersten Schritt Graphen und Silizium pulverisiert und vermischt werden und in einem zweiten Schritt ein Kleber mit Silizium- und Graphenpulver vermischt wird und in einem dritten Schritt die Mischung auf die Folie aufgebracht oder mit der Folie fest verbunden wird. Auch andere gängige Verbindungsverfahren außer Kleben beispielsweise auch durch Auftragen sind vorteilhaft. Ein sechster Aspekt der Erfindung betrifft ein Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung, insbesondere zum Herstellen einer erfindungsgemäßen Folie, wobei in einem ersten Schritt eine Klebeschicht auf die Folie aufgebracht wird und in einem zweiten Schritt eine Graphen- und /oder Siliziumschicht aufgebracht wird und in einem dritten Schritt eine zweite Klebeschicht auf die Folie aufgebracht wird und in einem vierten Schritt eine weitere Silizium- und/oder Graphenschicht auf die Folie aufgebracht wird. Auch andere gängige Verbindungsverfahren außer Kleben beispielsweise auch durch Auftragen sind vorteilhaft. Ein siebter Aspekt der Erfindung betrifft eine Verwendung einer erfindungsgemäßen Folie zur Gewinnung von Gleichstrom aus nicht sichtbarer Sonnenenergie. A fifth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein graphene and silicon are pulverized and mixed in a first step and mixed with an adhesive in a second step Silicon and graphene powder is mixed and in a third step, the mixture is applied to the film or firmly connected to the film. Other common bonding methods other than bonding, for example, by applying are advantageous. A sixth aspect of the invention relates to a method for producing a film of aluminum or an aluminum alloy, in particular for producing a film according to the invention, wherein in a first step, an adhesive layer is applied to the film and applied in a second step, a graphene and / or silicon layer and in a third step, a second adhesive layer is applied to the film and in a fourth step, a further silicon and / or graphene layer is applied to the film. Other common bonding methods other than bonding, for example, by applying are advantageous. A seventh aspect of the invention relates to a use of a film according to the invention for the production of direct current from invisible solar energy.
Die Funktionsweise kann zusammenfassend wie folgt beschrieben werden: Die Natur hat relativ„weitmaschige" Moleküle, sodass die Neutrinos auf Grund der geringen Masse durchfliegen. Sowohl die Atome in den Molekülen als auch die Moleküle in der Stoff- Struktur müssen so eng„gepackt" werden, dass ein Teil der Neutrinos nicht ohne Berührung der Teilchen durchfliegen kann. Die Folienoberfläche weist daher nanotechnologisch bearbeitet Strukturen auf, sodass analog einer mechanischen Pendelkette sich die Moleküle gegenseitig anstoßen und somit aus der Masse und der Bewegungsenergie ein Molekülfluss und Stromfluss entsteht (sog. Gitterführungseffekt). Dies ist analog zu einem Stromfluss in einer Leitung zu verstehen: durch Magnet und Spule werden die Moleküle im Generator in Bewegung gesetzt und so können wir die Elektrizität nutzen. The mode of operation can be summed up as follows: Nature has relatively "wide-meshed" molecules, so that the neutrinos fly through because of the low mass, so the atoms in the molecules as well as the molecules in the material structure must be so tightly "packed" that part of the neutrinos can not fly through without touching the particles. The surface of the film therefore has nanotechnologically processed structures, so that analogous to a mechanical pendulum chain, the molecules abut each other and thus from the mass and the kinetic energy of a molecule flow and current flow is created (so-called lattice-guiding effect). This is analogous to a current flow in a line to understand: by magnet and coil, the molecules are set in motion in the generator and so we can use the electricity.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert. Graphen und Silizium werden in einem Mörser zerstoßen oder anderweitig pulverisiert (bis Nanogröße). Auf eine handelsübliche Aluminiumfolie wird eine organische Klebeschicht aufgetragen. Auf diese wird das Silizium- und Graphenpulver aufgebracht. So entsteht eine Folie aus Aluminium mit einer Beschichtung mit einer Dicke von 0, 1 mm oder darunter. Das Verhältnis der Bestandteile Graphen und Silizium in der Beschichtung der Folie ist ca. 75% Graphen und 25% Silizium. The invention will be explained in more detail with reference to an embodiment. Graphene and silicon are crushed in a mortar or otherwise pulverized (up to nano size). On a commercial aluminum foil, an organic adhesive layer is applied. On these the silicon and graphene powder is applied. This results in a foil made of aluminum with a coating with a thickness of 0, 1 mm or less. The ratio of the components graphene and silicon in the coating of the film is about 75% graphene and 25% silicon.

Claims

Patentansprüche claims
1. Folie aus Metall oder einer Metalllegierung, dadurch gekennzeichnet, dass die Folie eine Beschichtung aufweist, die Graphen und Silizium aufweist. 1. foil of metal or a metal alloy, characterized in that the foil has a coating comprising graphene and silicon.
2. Folie nach Anspruch 1 , dadurch gekennzeichnet, dass die Folie aus Silber, Gold, Kupfer, Gallium oder Aluminium oder einer ihrer Legierungen, insbesondere aus einer Silber- oder Goldlegierung oder einer Aluminium-Gallium-Legierung ist. 2. A film according to claim 1, characterized in that the film of silver, gold, copper, gallium or aluminum or one of their alloys, in particular of a silver or gold alloy or an aluminum-gallium alloy.
3. Folie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Folie eine Dicke von 0,01 mm bis 4 mm, vorzugsweise von 0,01 mm bis 1 mm, aufweist. 3. A film according to claim 1 or 2, characterized in that the film has a thickness of 0.01 mm to 4 mm, preferably from 0.01 mm to 1 mm.
4. Folie nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Beschichtung 10% bis 80% Silizium, vorzugsweise 10% bis 50% Silizium, besonders vorzugsweise 25% Silizium, aufweist. 4. A film according to any one of claims 1 to 3, characterized in that the coating 10% to 80% silicon, preferably 10% to 50% silicon, particularly preferably 25% silicon.
5. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung 20% bis 90% Graphen, vorzugsweise 50% bis 90% Graphen, besonders vorzugsweise 75% Graphen, aufweist. 5. A film according to any one of the preceding claims, characterized in that the coating 20% to 90% graphene, preferably 50% to 90% graphene, particularly preferably 75% graphene.
6. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung organisch oder anorganische Klebebestandteile aufweist. 6. Film according to one of the preceding claims, characterized in that the coating comprises organic or inorganic adhesive components.
7. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung eine Nanobeschichtung ist, in der Graphen und Silizium als Nanopartikel vorliegen. 7. A film according to any one of the preceding claims, characterized in that the coating is a nano-coating in which graphene and silicon are present as nanoparticles.
8. Folie nach Anspruch 7, dadurch gekennzeichnet, dass die Partikel des Siliziums eine Grösse vom 5 nm bis 500 nm insbesondere 5 nm aufweisen und die Partikel des Graphens eine Größe von 20 nm bis 500 nm insbesondere 20 nm aufweisen. 8. A film according to claim 7, characterized in that the particles of silicon have a size of 5 nm to 500 nm, in particular 5 nm and the particles of the graphene have a size of 20 nm to 500 nm, in particular 20 nm.
9. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung wechselweise Schichten auf wechselweise Silizium und Graphen aufweist, insbesondere 10 bis 20 Silizium-Graphen Schichten insbesondere 12 Silizium-Graphen Schichten. 9. A film according to any one of the preceding claims, characterized in that the coating has alternating layers of alternating silicon and graphene, in particular 10 to 20 silicon-graphene layers, in particular 12 silicon-graphene layers.
10. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung Germanium, Selen, Kupferoxidal, Tellur, Tantal, Niob, Molybdän und/oder Antimon aufweist. 10. A film according to any one of the preceding claims, characterized in that the coating comprises germanium, selenium, Kupferoxidal, tellurium, tantalum, niobium, molybdenum and / or antimony.
11. Folie nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Graphen dotiert ist, insbesondere mit Ferroniobium, Nickelniobium, Yttrium oder Samariumoxid. 11. A film according to any one of the preceding claims, characterized in that the graphene is doped, in particular with ferroniobium, nickel niumium, yttrium or samarium oxide.
12. Verfahren zum Herstellen einer Folie aus einem Metall oder einer Metalllegierung, insbesondere nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass 12. A method for producing a film of a metal or a metal alloy, in particular according to one of claims 1 to 1 1, characterized in that
in einem ersten Schritt eine Siliziumschicht auf die Folie aufgetragen wird, insbesondere durch Sprühen oder Dampfen  In a first step, a silicon layer is applied to the film, in particular by spraying or steaming
in einem zweiten Schritt die Siliziumschicht gehärtet, getrocknet und mit flüssigen Stickstoff gespült wird,  in a second step, the silicon layer is hardened, dried and rinsed with liquid nitrogen,
in einem dritten Schritt eine Graphenschicht auf die Folie aufgetragen wird, in einem vierten Schritt die Graphenschicht gehärtet, getrocknet und mit flüssigen Stickstoff gespült wird.  In a third step, a graphene layer is applied to the film, in a fourth step, the graphene layer is cured, dried and rinsed with liquid nitrogen.
13. Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung nach Anspruch 1 1 , dadurch gekennzeichnet, dass in einem weiteren Schritt Germanium, Selen, Kupferoxidal, Tellur, Tantal, Niob, Molybdän und /oder Antimon aufgetragen wird. 13. A method for producing a film of aluminum or an aluminum alloy according to claim 1 1, characterized in that germanium, selenium, Kupferoxidal, tellurium, tantalum, niobium, molybdenum and / or antimony is applied in a further step.
14. Verfahren zum Herstellen einer Folie aus Aluminium oder einer Aluminiumlegierung nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass in einem weiteren Schritt das Graphen dotiert wird, insbesondere mit Ferroniobium, Nickelniobium, Yttrium oder Samariumoxid insbesondere durch Ionenimplantation oder durch Neutronen-Transmutationsdotierung. 14. A method for producing a film of aluminum or an aluminum alloy according to claim 1 1 or 12, characterized in that the graphene is doped in a further step, in particular with ferroniobium, nickel niumium, yttrium or samarium, in particular by ion implantation or by neutron transmutation doping.
15. Verwendung einer Folie nach einem der Ansprüche 1 bis 1 1 zur Gewinnung von15. Use of a film according to any one of claims 1 to 1 1 for the production of
Gleichstrom aus nicht sichtbarer Sonnenenergie. DC from invisible solar energy.
EP16720042.7A 2015-03-06 2016-03-07 Film made of metal or a metal alloy Pending EP3265850A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015002789 2015-03-06
DE102015014721 2015-11-17
PCT/EP2016/000410 WO2016142056A1 (en) 2015-03-06 2016-03-07 Film made of metal or a metal alloy

Publications (1)

Publication Number Publication Date
EP3265850A1 true EP3265850A1 (en) 2018-01-10

Family

ID=55910201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16720042.7A Pending EP3265850A1 (en) 2015-03-06 2016-03-07 Film made of metal or a metal alloy

Country Status (3)

Country Link
US (2) US20180053941A1 (en)
EP (1) EP3265850A1 (en)
WO (1) WO2016142056A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018009125A1 (en) 2018-11-21 2020-05-28 Neutrino Deutschland Gmbh Foil made of metal or a metal alloy
DE102019008982A1 (en) 2019-12-23 2021-06-24 Neutrino Deutschland Gmbh Foil with coating
EP4245917A1 (en) 2022-03-14 2023-09-20 Jürgen Frenzel Monoblock steel tie and method for its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140170483A1 (en) * 2011-03-16 2014-06-19 The Regents Of The University Of California Method for the preparation of graphene/silicon multilayer structured anodes for lithium ion batteries
CN103035889B (en) * 2011-10-09 2015-09-23 海洋王照明科技股份有限公司 Graphene/nanometer silicon compound electric pole piece and preparation method thereof
CN103515604A (en) * 2012-06-21 2014-01-15 海洋王照明科技股份有限公司 Silicon nanowire-graphene composite and preparation method thereof, and lithium ion battery
TWI461555B (en) * 2013-06-26 2014-11-21 Univ Nat Taiwan Science Tech Multilayer si/graphene composite anode structure

Also Published As

Publication number Publication date
US20210135235A1 (en) 2021-05-06
US20180053941A1 (en) 2018-02-22
WO2016142056A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
EP3417498B1 (en) Method for the production of silicone-based anodes for secondary butteries
DE112012004803T5 (en) Thermoelectric device with interfacial materials and method of making the same
EP3265850A1 (en) Film made of metal or a metal alloy
DE102020127447A1 (en) Hybrid design of stator core components for an axial flux motor
EP2834859A2 (en) Powder metallurgical production of a thermoelectric component
DE102013213646A1 (en) Anisotropic rare earth-free matrix-bonded high-performance permanent magnet with nanocrystalline structure and method for its production
WO2017042094A1 (en) Method for producing structured surfaces
EP2389687A2 (en) Thermoelectric semiconductor component
DE102013201370A1 (en) Permanent magnet and motor and current generator using it
DE102017223268A1 (en) Method for producing a magnetic material, magnetic material, hard magnet, electric motor, starter and generator
EP2571828B1 (en) Structural element for generating thermoelectric power and method for the production thereof
WO2010097228A2 (en) Method for producing a semiconductor, and semiconductor and electric element
EP3634091B1 (en) Device for converting energy in the atmosphere and method for manufacturing the same
EP3398212B1 (en) Conversion material
EP3523829B1 (en) Room temperature printing method for producing a pv layer sequence and pv layer sequence obtained using the method
DE102012000718A1 (en) Reversible electrical energy storage device such as reversible battery for fossil fuel propelled vehicle, has non-conductive, insulating depletion region that is formed in electride portion of n-type semiconductor portion
DE102017102163B4 (en) Magnetocaloric heat exchanger and process for its manufacture
DE102012223556A1 (en) Method for manufacturing hetero junction type solar cell, involves forming metal interconnects on surface of solar cell by local application of conductive paste and by sintering with laser radiation
DE102012000084A1 (en) High energy density reversible electrical energy storage structure for vehicle, has P-type and N-type semiconductors which are penetrated with each other in form of complementary and electrically conductive coherent network
WO2021129901A1 (en) Film with a coating
WO2023078988A1 (en) Method for producing copper-rich silicon foams from at least binary mixed phases
DE19910182B4 (en) Method for producing and magnetizing permanent magnetic films
DE102013005761A1 (en) ENERGY STORAGE - ONE
DE202011108146U1 (en) thick film
DE102013216373A1 (en) Thermoelectric molding and process for its preparation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUBART, HOLGER THORSTEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE