EP3265605B1 - Élément textile électriquement conducteur et son procédé de production - Google Patents

Élément textile électriquement conducteur et son procédé de production Download PDF

Info

Publication number
EP3265605B1
EP3265605B1 EP16758509.0A EP16758509A EP3265605B1 EP 3265605 B1 EP3265605 B1 EP 3265605B1 EP 16758509 A EP16758509 A EP 16758509A EP 3265605 B1 EP3265605 B1 EP 3265605B1
Authority
EP
European Patent Office
Prior art keywords
textile element
metal
cotton
textile
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16758509.0A
Other languages
German (de)
English (en)
Other versions
EP3265605A1 (fr
EP3265605A4 (fr
Inventor
Zijian Zheng
Casey YAN
Lee Cheung LAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epro Development Ltd
Original Assignee
Epro Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epro Development Ltd filed Critical Epro Development Ltd
Priority to PL16758509T priority Critical patent/PL3265605T3/pl
Publication of EP3265605A1 publication Critical patent/EP3265605A1/fr
Publication of EP3265605A4 publication Critical patent/EP3265605A4/fr
Application granted granted Critical
Publication of EP3265605B1 publication Critical patent/EP3265605B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/06Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of animal origin, e.g. wool or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/08Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin
    • D06M14/12Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/14Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/08Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin
    • D06M14/12Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M14/16Polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to the field of electrically conductive textile elements and methods of producing same.
  • SI-ATRP is not able to be suitable performed under ambient conditions and requires nitrogen protection.
  • SI-ATRP reaction involves a relatively long period of time (-24 hours) which is undesirable and not cost-effective for mass production.
  • CN102995395A and CN102121194B disclose the modification of silanised textiles with positively charged polyelectrolytes. Plating with a metal is then performed after a treatment step with [PdCl4]2-catalyst.
  • the present invention seeks to alleviate at least one of the above-described problems.
  • the negatively-charged polyelectrolyte may includes at least one of poly(methacrylic acid sodium salt) and poly(acrylic acid sodium salt).
  • the metal particles may include at least one of copper and nickel particles.
  • the textile element may include at least one of a yarn and a fiber configured for being formed in to a fabric.
  • the textile element may include at least one of a polyester, nylon, cotton and silk yarn or fiber.
  • the present invention provides an apparatus for producing an electrically conductive textile element according to claim 7.
  • the negatively-charged polyelectrolyte may include at least one of poly(methacrylic acid sodium salt) and poly(acrylic acid sodium salt).
  • the coating apparatus may be configured to coat the modified surface of the textile element with metal particles by electroless metal deposition.
  • the metal particles may include at least one of copper and nickel particles.
  • the textile element may include at least one of a yarn and a fiber configured for being formed in to a fabric.
  • the textile element may include at least one of a polyester, nylon, cotton and silk yarn or fiber.
  • the present invention provides an electrically conductive textile element produced in accordance with the method steps of the present invention.
  • the present invention provides a fabric formed from at least one textile element wherein the at least one textile element is produced in accordance with the method steps of the present invention.
  • a procedure for preparing PMANa polyelectrolytes on textile substrates such as cotton yarn is illustrated schematically.
  • the embodiment involves an in-situ free radical polymerization method which may be performed upon cotton yarns by way of example to prepare poly(methacrylic acid sodium salt) (PMANa)-coated cotton yarns. Subsequent ion exchange, ion reduction and electroless deposition of metal particles onto the PMANa-coated cotton yarns may then be performed in order to yield electrically conductive cotton yarns of suitable quality for production on a commercial scale. It should be noted that this embodiment may also be applicable to the preparation of PAANa polyelectrolytes on textile substrates.
  • the cotton yarns are then rinsed thoroughly with fresh deionized (DI) water so as to remove any excess physical adsorbed silane and byproduct molecules.
  • DI deionized
  • the rinsed cotton yarns are then placed into an oven at 100-120°C for between approximately 15-30 minutes to complete the condensation reaction.
  • the silane-modified cotton yarns are immersed into approximately 50 mL aqueous solution comprising of 3-7g of MANa powder and 35-75mg of K2S2O8 (similarly, AANa powder may be used in respect of PAANa polyelectrolytes).
  • the whole solution mixture with cotton yarns is heated at 60-80°C in an oven for 0.5-1 hour in order to carry out the free radical polymerization.
  • the double bond of silane can be opened by the free radicals resulting in the growth of PMANa polyelectrolyte onto the cotton fiber surface.
  • This step of free radical polymerisation is represented by (110) in Fig. 1 .
  • the PMANa-coated cotton yarns are immersed into a 39 g/L copper(II) sulphate pentahydrate solution for 0.5-1 hour, where the Cu2+ ions are immobilized onto the polymer by ion exchange.
  • Cu2+ will be reduced to Cu particles which act as nucleation sites for the growth of Cu in the subsequent electroless deposition of Cu. This step of ion exchange and reduction is represented by (120) in Fig. 1 .
  • the polymer-coated cotton after reduction in sodium borohydride solution is immersed in a copper electroless plating bath consisting of 12 g/L sodium hydroxide, 13 g/L copper(II) sulphate pentahydrate, 29 g/L potassium sodium tartrate, and 9.5 mL/L formaldehyde in water for 60-180 minutes.
  • the as-synthesized Cu-coated yarns are rinsed with deionized (DI) water and blown dry.
  • DI deionized
  • the step of performing electroless metal deposition is represented by (130) in Fig. 1 and an exemplary Cu-coated cotton yarn produced in accordance with the methods steps of this first embodiment is represented by (200) in Fig. 2 .
  • FTIR Fourier transform infrared spectroscopy
  • the PMANa-grafted cotton is also able to be characterized by energy-dispersive X-ray spectroscopy (EDX). It is shown in Fig. 4 that polymerization of MANa leaves the cotton sample with a sodium element which indicates the presence of PMANa. Referring further to the Fig. 5 scanning electron microscopy (SEM) image, no obvious difference between the morphology on the surfaces of silanized cotton fiber surface and the raw cotton fiber surfaces may be visibly evident. However, after polymerization of PMANa upon the silanized cotton fiber surface, it is notable that a layer of coating had been wrapped on the cotton fiber surface. Figures 5D-F show that the copper metal particles are deposited relatively evenly, without any signs of cracks.
  • SEM scanning electron microscopy
  • the conductivity of the copper-coated cotton yarns is able to be characterized by a two-probe electrical testing method.
  • linear resistance of the copper-coated yarns in the fabrication is found to be ⁇ 1.4 ⁇ /cm as shown in Fig. 6A , and with superior tensile properties compared to the untreated cotton yarns, with both increase in tensile extension (+33.6 %) and maximum load (+27.3 %) as shown in Fig. 6B .
  • the increase in tensile extension and maximum load is perceived to be due to the reinforcement on the strength of cotton yarns by a layer of copper.
  • the copper-coated cotton yarns are first woven into a fabric first.
  • As-synthesized copper-coated cotton yarns shown in Fig. 7A are firstly wound upon a cone as shown in Fig. 7B by use of an industrial yarn winder. Thereafter, the cone is transferred to a CCI weaving machine as shown in Fig. 7C whereby the copper-coated yarns are woven into a fabric.
  • the copper-coated cotton yarns are configured to form the wefts of the fabric while the warps of the fabric are formed by the untreated cotton yarns as shown in the inset image of Fig. 7D which are initially mounted on the weaving machine.
  • 1 washing cycle is equivalent to approximately 5 commercial machine laundering cycles. In total, 6 washing cycles are conducted, which accordingly, is considered to equate to approximately 30 commercial machine laundering cycles.
  • Changes in the electrical resistance of the washed fabrics are able to be evaluated using a four-probe method whereby the sheet resistances of the fabrics produced in accordance with this embodiment are measured to be 0.9 ⁇ 0.2 ohm/sq (unwashed), and 73.8 ⁇ 13.4 ohm/sq after the fourth wash which is equivalent to approximately 20 commercial machine laundering cycles as shown in Fig. 8 .
  • the surface morphology of the washed copper-coated cotton yarns are able to be characterized by unraveled the washed copper-coated cotton yarns from the fabric and examined under an SEM. As shown in the SEM images of Fig. 9 , it is visibly evident that the copper metal particles are retained on the surface of the cotton fibers. One perceived reason for the increase in sheet resistance is due to the loosened structure of the cotton fibers arising from repeated washing cycles.
  • nickel metal particles may instead be electrolessly plated on to the textile surface by using the same approach described above.
  • the source of nickel that may be utilised is 120 g/L nickel(II) sulphate solution in the ion exchange procedure.
  • an electroless nickel plating bath is utilised consisting of 40 g/L nickel sulphate hexahydrate, 20 g/L sodium citrate, 10 g/L lactic acid, and 1 g/L dimethylamine borane (DMAB) in water for 60-180 minutes.
  • the sheet resistance of the resulting nickel-coated cotton fabric is found to exhibit substantially similar results as that of the copper coated fiber yarns as shown in Fig. 8 .
  • an exemplary nickel-coated cotton fabric is represented by (300) which exhibits a high degree of evenness of nickel metal, with bulk resistance measured as 3.2 ⁇ .
  • an exemplary PAANa-assisted copper-coated yarn produced in accordance with an embodiment of the present invention is shown represented by (400) in Fig. 11A
  • an exemplary PAANa-assisted nickel-coated silk yarn produced in accordance with an embodiment of the present invention is shown represented by (500) in Fig.
  • an exemplary PAANa-assisted copper-coated nylon yarn produced in accordance with an embodiment of the present invention is shown represented by (600) in Fig 12A
  • an exemplary polyester fabric formed from PAANa-assisted copper-coated nylon yarn produced in accordance with an embodiment of the present invention is represented by (700) in Fig. 12B .
  • electrically conductive textile elements may be produced which may be suitably flexible, wearable, durable and/or washable for integration into a textile/fabric.
  • electrically conductive textile elements fibers, yarns and fabrics
  • such high performance electrically conductive textile elements may be produced utilising relatively low-cost technology cost-effectively on a mass scale based upon the chemical reaction of in-situ free radical polymerization to grow negatively-charged polyelectrolytes such as PMANa or PAANa on textile substrates which may conveniently provide an improved negatively-charged polyelectrolyte layer bridging the electrolessly deposited metal and textile elements and substrates.
  • the adhesion of conductive metal to textile substrates may be greatly improved by such surface modification of a layer of negatively-charged polyelectrolyte PMANa or PAANa, in which the electrical performance of such conductive textiles may be more reliable, robust and durable under repeated cycles of rubbing, stretching, and washing.
  • the in-situ free radical polymerization method used to prepare the negatively-charged polyelectrolyte may be performed under ambient and aqueous conditions without using any strong chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Claims (14)

  1. Méthode de production d'un élément textile électriquement conducteur, caractérisée en ce qu'elle comprend les étapes de :
    (i) silanisation d'une surface de l'élément textile avec un silane à double liaison carbone-carbone pour obtenir une surface silanisée ;
    (ii) greffage de monomères d'un polyélectrolyte chargé négativement sur la surface silanisée par polymérisation radicale libre in-situ ;
    (iii) addition d'ions métalliques au polyélectrolyte par échange d'ions ;
    (iv) réduction des ions métalliques en métal élémentaire; et
    (v) revêtement de l'élément textile avec des particules métalliques.
  2. Méthode telle que revendiquée dans la revendication 1, dans laquelle le polyélectrolyte chargé négativement comprend au moins l'un des poly(sels de sodium d'acide méthacrylique) et poly(sels de sodium d'acide acrylique).
  3. Méthode telle que revendiquée dans la revendication 1 ou la revendication 2, dans laquelle l'étape (v) comprend le revêtement de l'élément textile avec des particules métalliques par dépôt de métal sans courant.
  4. Méthode telle que revendiquée dans une quelconque des revendications précédentes, dans laquelle les particules métalliques comprennent au moins une des particules de cuivre et de nickel.
  5. Méthode telle que revendiquée dans une quelconque des revendications précédentes, dans laquelle l'élément textile comprend au moins l'un d'un fil et d'une fibre configurés pour être formés en un tissu.
  6. Méthode telle que revendiquée dans une quelconque des revendications précédentes, dans laquelle l'élément textile comprend au moins un fil ou une fibre de polyester, de nylon, de coton et de soie.
  7. Appareil en vue de la production d'un élément textile électriquement conducteur, caractérisé en ce qu'il comprend :
    un appareil configuré pour la silanisation d'une surface de l'élément textile avec un silane à double liaison carbone-carbone pour obtenir une surface silanisée ;
    un appareil configuré pour le greffage de monomères d'un polyélectrolyte chargé négativement sur la surface silanisée par polymérisation radicale libre in-situ ;
    un appareil configuré pour l'addition d'ions métalliques au polyélectrolyte par échange d'ions ;
    un appareil configuré pour la réduction des ions métalliques en métal élémentaire ; et
    un appareil configuré pour le revêtement de l'élément textile avec des particules métalliques.
  8. Appareil tel que revendiqué dans la revendication 7, dans lequel le polyélectrolyte chargé négativement comprend au moins l'un des poly(sels de sodium d'acide méthacrylique) et poly(sels de sodium d'acide acrylique).
  9. Appareil tel que revendiqué dans la revendication 7 ou la revendication 8, dans laquelle l'appareil de revêtement est configuré pour revêtir l'élément textile avec des particules métalliques par dépôt de métal sans courant.
  10. Appareil tel que revendiqué dans une quelconque des revendications 7 à 9, dans lequel les particules métalliques comprennent au moins une des particules de cuivre et de nickel.
  11. Appareil tel que revendiqué dans une quelconque des revendications 7 à 10, dans lequel l'élément textile comprend au moins l'un d'un fil et d'une fibre configurés pour être formés en un tissu.
  12. Appareil tel que revendiqué dans une quelconque des revendications 7 à 11, dans lequel l'élément textile comprend au moins un fil ou une fibre de polyester, de nylon, de coton et de soie.
  13. Élément textile électriquement conducteur produit selon la méthode selon une quelconque des revendications 1 à 6.
  14. Tissu formé à partir d'au moins un élément textile, dans lequel au moins l'un des textiles est produit selon la méthode selon une quelconque des revendications 1 à 6.
EP16758509.0A 2015-03-03 2016-02-16 Élément textile électriquement conducteur et son procédé de production Active EP3265605B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16758509T PL3265605T3 (pl) 2015-03-03 2016-02-16 Elektrycznie przewodzący element tekstylny i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HK15102150 2015-03-03
PCT/IB2016/000132 WO2016139521A1 (fr) 2015-03-03 2016-02-16 Élément textile électriquement conducteur et son procédé de production

Publications (3)

Publication Number Publication Date
EP3265605A1 EP3265605A1 (fr) 2018-01-10
EP3265605A4 EP3265605A4 (fr) 2018-10-24
EP3265605B1 true EP3265605B1 (fr) 2021-06-02

Family

ID=56849253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16758509.0A Active EP3265605B1 (fr) 2015-03-03 2016-02-16 Élément textile électriquement conducteur et son procédé de production

Country Status (9)

Country Link
US (2) US20180080171A1 (fr)
EP (1) EP3265605B1 (fr)
JP (1) JP6736573B2 (fr)
CN (1) CN107614783B (fr)
ES (1) ES2884301T3 (fr)
HK (2) HK1220860A2 (fr)
HU (1) HUE055483T2 (fr)
PL (1) PL3265605T3 (fr)
WO (1) WO2016139521A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3386916B1 (fr) 2016-07-27 2021-04-14 Epro Development Limited Améliorations apportées à la production de nanoparticules de silicium et leurs utilisations
KR101863276B1 (ko) * 2017-01-12 2018-05-31 한국과학기술연구원 용해 공정을 이용한 복합 재료 리페어 방법 및 장치
TWI671453B (zh) 2018-09-14 2019-09-11 安炬科技股份有限公司 石墨烯導電織物之製造方法
KR102620871B1 (ko) 2020-12-10 2024-01-04 인하대학교 산학협력단 번역 기반 문장 데이터 변형과 딥러닝 보정을 이용한 문장 분류 데이터 증강 방법 및 장치
CN114277474A (zh) * 2021-12-23 2022-04-05 江南大学 一种纱线表面镀层的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121194B (zh) * 2010-01-11 2013-08-14 香港理工大学 导电织物制造方法及其制造的织物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA990679A (en) * 1971-11-22 1976-06-08 Veb Textilkombinat Cottbus Electroplating organic polymer film carrying grafted metal salt
US3801478A (en) * 1972-01-27 1974-04-02 Cottbus Textilkombinat Process of metallizing polymeric materials
DE3301669A1 (de) * 1983-01-20 1984-07-26 Bayer Ag, 5090 Leverkusen Blitzschutzverbundmaterial
JPH04160164A (ja) * 1990-01-08 1992-06-03 Mitsui Petrochem Ind Ltd 金属メッキされたα−オレフィン系重合体不織布およびその製造方法、ならびに該不織布からなる電磁波シールド材
US7468332B2 (en) * 2005-09-02 2008-12-23 Jamshid Avloni Electroconductive woven and non-woven fabric
WO2008133672A2 (fr) * 2006-12-22 2008-11-06 Drexel University Nanofils et revêtements contenant des nanoparticules auto-assemblées
CH699118A1 (de) * 2008-07-15 2010-01-15 Tex A Tec Ag Multifunktionelle, responsive Funktionsschichten auf festen Oberflächen und Verfahren zur Herstellung dazu.
CN102995395B (zh) * 2011-09-15 2014-12-17 香港理工大学 一种导电纺织品及其制作方法
GB201303284D0 (en) * 2013-02-25 2013-04-10 Sec Dep For Business Innovation And Skills The Conductive fabric
KR101574307B1 (ko) * 2013-04-04 2015-12-21 제일모직주식회사 전자파 차폐특성이 우수한 탄소나노섬유 복합체의 제조방법
JP2016160480A (ja) * 2015-02-28 2016-09-05 住江織物株式会社 めっき繊維及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121194B (zh) * 2010-01-11 2013-08-14 香港理工大学 导电织物制造方法及其制造的织物

Also Published As

Publication number Publication date
HK1248780A1 (zh) 2018-10-19
EP3265605A1 (fr) 2018-01-10
CN107614783B (zh) 2020-11-17
HK1220860A2 (zh) 2017-05-12
US20200071877A1 (en) 2020-03-05
JP2018512514A (ja) 2018-05-17
US20180080171A1 (en) 2018-03-22
PL3265605T3 (pl) 2022-01-31
WO2016139521A1 (fr) 2016-09-09
EP3265605A4 (fr) 2018-10-24
CN107614783A (zh) 2018-01-19
ES2884301T3 (es) 2021-12-10
JP6736573B2 (ja) 2020-08-05
HUE055483T2 (hu) 2021-11-29

Similar Documents

Publication Publication Date Title
US20200071877A1 (en) Electrically conductive textile element and method of producing same
Ali et al. Copper electroless plating of cotton fabrics after surface activation with deposition of silver and copper nanoparticles
Zhao et al. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite
Peng et al. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization
CN102995395B (zh) 一种导电纺织品及其制作方法
Wang et al. Aqueous and Air‐Compatible Fabrication of High‐Performance Conductive Textiles
Wang et al. A novel preparation of silver-plated polyacrylonitrile fibers functionalized with antibacterial and electromagnetic shielding properties
Liu et al. A facile way of fabricating a flexible and conductive cotton fabric
CN102121194B (zh) 导电织物制造方法及其制造的织物
CN112538762B (zh) 一锅法制备稳定超疏水抗菌织物的方法
Yu et al. Preparation of silver-plated wool fabric with antibacterial and anti-mould properties
CN110904675A (zh) 一种导电织物及其制备方法
CN109629085A (zh) 一种空间三维网络结构的石墨烯导电织物以及制备方法和应用
CN111335026B (zh) 一种超疏水抗菌导电织物及其制备方法
Shao et al. Preparation of silver-deposited aromatic polysulfonamide fibers with excellent performance via electroless nanoplating using a chlorine-aided silver activation system
Wang et al. Preparation of durable antibacterial and electrically conductive polyacrylonitrile fibers by copper sulfide coating
TW201732103A (zh) 導電織物及其製備方法
Keshavarz et al. Electro‐conductive modification of polyethylene terephthalate fabric with nano carbon black and washing fastness improvement by dopamine self‐polymerized layer
CN112626841A (zh) 一种耐久性抗菌针织面料及其制备方法
CN115323790A (zh) 电导性纺织品元件及其制备方法
Zhao et al. Fabrication of conductive soybean protein fiber for electromagnetic interference shielding through electroless copper plating
Kwak et al. Surface modification of polyester fibers by thermal reduction with silver carbamate complexes
Shen et al. Fabrication of electromagnetic shielding polyester fabrics with carboxymethyl chitosan-palladium complexes activation
CN111139637B (zh) 一种涂覆织物基材及其制备方法与使用方法
CN108442118A (zh) 一种导电织物的制备方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180926

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/32 20060101ALI20180918BHEP

Ipc: D06M 14/00 20060101ALI20180918BHEP

Ipc: D06M 14/16 20060101ALI20180918BHEP

Ipc: D06M 101/06 20060101ALI20180918BHEP

Ipc: C23C 18/16 20060101ALI20180918BHEP

Ipc: D06M 14/14 20060101ALI20180918BHEP

Ipc: D06M 14/04 20060101ALI20180918BHEP

Ipc: D06M 13/513 20060101ALI20180918BHEP

Ipc: D06M 11/83 20060101AFI20180918BHEP

Ipc: C23C 18/38 20060101ALI20180918BHEP

Ipc: D06M 15/263 20060101ALI20180918BHEP

Ipc: D06M 14/06 20060101ALI20180918BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398522

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016058840

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1398522

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210602

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E055483

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2884301

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016058840

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230216

Year of fee payment: 8

Ref country code: FR

Payment date: 20230223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230222

Year of fee payment: 8

Ref country code: PL

Payment date: 20230210

Year of fee payment: 8

Ref country code: BE

Payment date: 20230222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240319

Year of fee payment: 9

Ref country code: NL

Payment date: 20240220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240207

Year of fee payment: 9

Ref country code: FI

Payment date: 20240219

Year of fee payment: 9

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

Ref country code: GB

Payment date: 20240222

Year of fee payment: 9