EP3265271B1 - Appareil d'apport de particules - Google Patents

Appareil d'apport de particules Download PDF

Info

Publication number
EP3265271B1
EP3265271B1 EP16710602.0A EP16710602A EP3265271B1 EP 3265271 B1 EP3265271 B1 EP 3265271B1 EP 16710602 A EP16710602 A EP 16710602A EP 3265271 B1 EP3265271 B1 EP 3265271B1
Authority
EP
European Patent Office
Prior art keywords
pressure
transport fluid
seal
fluid flow
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16710602.0A
Other languages
German (de)
English (en)
Other versions
EP3265271A1 (fr
Inventor
Daniel Mallaley
Richard Joseph BROECKER
Robert Mitchell KOCOL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cold Jet LLC
Original Assignee
Cold Jet LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cold Jet LLC filed Critical Cold Jet LLC
Priority to PL16710602T priority Critical patent/PL3265271T3/pl
Publication of EP3265271A1 publication Critical patent/EP3265271A1/fr
Application granted granted Critical
Publication of EP3265271B1 publication Critical patent/EP3265271B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0092Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed by mechanical means, e.g. by screw conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4625Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow
    • B65G53/4633Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow
    • B65G53/4641Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow with means for clearing out the pockets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk
    • B65G2201/042Granular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/16Pneumatic conveyors
    • B65G2812/1608Pneumatic conveyors for bulk material
    • B65G2812/1616Common means for pneumatic conveyors
    • B65G2812/1625Feeding or discharging means

Definitions

  • the present disclosure relates generally to the continuous or nearly continuous transfer of particles from a first area across a pressure differential to a second area having a pressure different than the first area, and is particularly directed to an apparatus and method for sealing between the two areas during the transfer of particles.
  • the invention relates to feeder assemblies according to the preambles of independent claims 1 and 13 and a method of sealing according to the preamble of independent claim 17, the preambles of claims 1 and 17 being known from document WO 02/060647 A and the preamble of claim 13 being known from document US 7 112 120 B2 .
  • an apparatus which introduces cryogenic particles received from a source of particles, having a first pressure, into a moving transport fluid, having a second pressure, for ultimate delivery to a workpiece or target as particles entrained in a transport fluid flow which seals between the source of particles and the transport fluid flow.
  • Carbon dioxide systems including apparatuses for creating solid carbon dioxide particles, for entraining particles in a transport gas and for directing entrained particles toward objects are well known, as are the various component parts associated therewith, such as nozzles, are shown in U.S. Patents 4,744,181 , 4,843,770 , 5,018,667 , 5,050,805 , 5,071,289 , 5,188,151 , 5,249,426 , 5,288,028 , 5,301,509 , 5,473,903 , 5,520,572 , 6,024,304 , 6,042,458 , 6,346,035 , 6,695,679 , 6,726,549 , 6,739,529 , 6,824,450 , 7,112,120 , 8,187,057 and 8,869,551 , all of which are incorporated herein in their entirety by reference.
  • a feeder is known with a feeding cylinder with cavities which transport cryogenic particles from a bunker to a venturi which takes form by a conical supply and a conical discharge where in the intervening space an element in the form of a roof the cleft between supply and discharge cone enlarges or reduces. The element with the form of a roof is moved with the help of gas-pressure to the feeding cylinder.
  • the invention thus concerns a first feeder assembly according to claim 1, a second feeder assembly according to claim 13 and a method of sealing between a peripheral surface of a rotor of a feeder assembly and a sealing surface of a seal according to claim 17.
  • Fig. 1 diagrammatically illustrates apparatus 2 which receives particles from particle source 4, receives moving transport fluid from transport fluid source 6, entrains the particles in the moving transport fluid and discharges the entrained particle fluid flow 8, which flows to an ultimate use, such as being directed against a workpiece or other target.
  • Particle source 4 may be any suitable source, such as a holding or storage device, for example a hopper, or a continuous distribution device, for example a device in which particles flow upon creation directly and continuously with substantially no storage of the particles to apparatus 2 is configured to entrain the particles in the transport fluid flow and seal between the different pressures to prevent or minimize leakage from the higher pressure area to the lower pressure area.
  • FIGS. 2 and 3 illustrate feeder assembly 10, which is a representative embodiment of apparatus 2.
  • Feeder assembly 10 comprises base 12, feeder block 14, bearing supports 16a, 16b, rotor 18, upper seal 20, and lower seal 22.
  • Feeder block 14 may also be referred to as housing 14.
  • Lower seal 22 may be part of lower seal/piston assembly as described below.
  • Bearing supports 16a, 16b may be mounted directly to feeder block 14, aligned relative thereto by aligning features which may comprise locating pins 24a extending from feeder block 14 into locating bores 24b.
  • Bearing supports 16a and 16b may be secured to feeder block 14 in any suitable manner, such as through the use of fasteners 26 extending through bores 28 (see FIG. 3 ) and threadingly engaging feeder block 14.
  • Bearing supports 16a, 16b may include disassembly feature 30, which, in the embodiment depicted, is a threaded hole into which a threaded member may be inserted and rotated to push against feeder block 14 thereby separating bearing supports 16a, 16b from feeder block 16.
  • Each bearing support 16a, 16b supports a respective bearing 32a, 32b, which may be a sealed bearing.
  • Bearings 32a, 32b locate and rotatably support rotor 18 for rotation.
  • Rotor 18 includes interface 18a for engaging a source of rotational power in a manner as is well known.
  • Thrust bearing plate 34 and retaining plate 36 retain rotor 18 at its other end.
  • Thrust bearing plate 34 may be made of any suitable material, such as UHMW plastic.
  • Fasteners 38a, 38b, 38c, 38d removably secure thrust bearing plate 34 and retaining plate 36 to bearing support 16a, allowing withdrawal of rotor 18 through bearing 32a.
  • Upper seal 20 and lower seal 22 may be made of any suitable material such as, by way of example only, an unreinforced, semi-crystalline thermoplastic polyester based on polyethylene terephthalate (PET-P), such as is sold under the trade name Ertalyte®.
  • Upper seal 20 may be supported by bearing supports 16a, 16b via fasteners 38a, 38b, 40a, 40b, in sealing engagement with the upper portion 18b of peripheral surface 18c (see FIG. 4 ) upper surface of rotor 18.
  • Upper seal 20 includes opening 42 which is configured to receive particles from particle source 4, which as noted above, may be any suitable source, such as a hopper or a device which meters particles from a storage area, such as shaving or passing particles through openings, directly to opening 42 with substantially no storage of the particles.
  • particle source 4 which as noted above, may be any suitable source, such as a hopper or a device which meters particles from a storage area, such as shaving or passing particles through openings, directly to opening 42 with substantially no storage of the particles.
  • upper seal 20 provides suitable sealing with upper portion 18b without creating significant drag on rotor 18.
  • lower seal 22 is part of lower seal/piston assembly 46, which comprises lower seal 22, piston 48, and retaining system 50.
  • Retaining system 50 comprises fasteners 52 and load distributing straps 54.
  • retaining system 50 secures lower seal 22 to piston 48 but allows relative movement therebetween.
  • Fasteners 52 may be configured as illustrated as shoulder bolts which extend through openings 22c in upper surface 22b to engage piston 48 to establish a dimension L between upper surface 48a of piston 48 and lower surface 54a which is greater than dimension H, the height of lower seal 22 from lower surface 22a to upper surface 22b.
  • Fasteners 52 are illustrated as shoulder bolts which are tightened against respective steps 48b of bores 48c thereby establishing the distance between upper surface 48a and the lower surface of the head of fastener 52, which bears against load distributing straps 54.
  • the amount of float allows lower seal 22 to align itself to rotor 18. This float, inter alia, reduces the precision required to achieve the alignment needed between lower seal 22 and rotor 18 to provide the desired amount of sealing between lower seal 22 and peripheral surface 18c.
  • FIG. 4 illustrates gap 56 between peripheral surface 18c and lower seal 22.
  • piston 48 may be configured to urge lower seal 22 into sealing engagement with rotor 18.
  • Straps 54 include respective grooves 54b disposed in lower surface 54a surrounding respective openings 22c through which respective fasteners 52 are disposed.
  • Respective seals 60 illustrated as O-rings which may be made of any suitable material such as Buna-N, are disposed in respective grooves 54b to seal openings 22c against pressure leaking out of inlet side chamber 62 and outlet side chamber 64. Seals 60 may be configured to provide such sealing throughout the entire range of float of lower seal 22.
  • Seal 59 is disposed in groove 58a sealing between lower seal 22 and cavity 58.
  • a higher horsepower motor such as 1 ⁇ 2 horsepower
  • 1 ⁇ 2 horsepower to rotate rotor 26 to overcome the parasitic drag, and causing faster wear of rotor 26 and lower seal pad 58.
  • Lower seal 22 includes chambers 62 and 64 which are in fluid communication with passageways 70 and 78 respectively. When transport fluid flows through the internal transport fluid flow path, the static pressure of the flow acts on the interior surfaces of chambers 62 and 64 and passageways 70 and 78, urging lower seal 22 away from piston 48 against rotor 18, causing it to come into alignment therewith when lower seal is urged toward rotor 18.
  • the maximum relative movement of lower seal 22 and piston 48 away from each other is limited by the amount of float.
  • increasing the transport fluid operating pressure once the maximum relative movement has been reached will not cause the maximum to be exceeded.
  • the float in addition to allowing alignment also functions to limit the amount of sealing pressure resulting from the transport fluid operating pressure acting on the interior surfaces of lower seal 22.
  • the float between lower seal 22 and piston 48 could be omitted, such as but not limited to if lower seal 22 and piston 48 were of unitary construction, which such configuration would not result in increased sealing pressure against rotor 18.
  • feeder block 14 comprises an annular pressure chamber 80 at its bottom, defined on the inside by centrally disposed raised portion 82 and on the outside by cavity wall 58a.
  • Piston 48 includes downwardly depending annular extension 84 which surrounds or defines recess 84a. Seal groove 86 is formed on the inside of annular extension 84, which receives seal 88, which may be of any suitable shape and material, such as without limitation an 0-ring made of Buna-N.
  • Seal 88 seals between raised portion 82 and annular extension 84. There is clearance, such as without limitation .005 inches on a side, between piston 48 and cavity 58 sufficient to permit transport fluid to pressurize annular pressure chamber 80. The pressure in annular pressure chamber 80 urges lower seal/piston assembly 46 into sealing engagement with rotor 18. By sealing central raised portion 82 from annular pressure chamber 80, less than the entire normal surface area of piston 48 (or lower seal as in the prior art) is acted upon by the transport fluid pressure.
  • the multiplying effect of pressure based on surface area can be reduced substantially, as much as by an order of magnitude or more, making it easier to keep the sealing pressure on rotor 18 limited to a smaller range of adequate sealing pressure, thus reducing the applied load on the rotor compared to the prior art, reducing the torque required to turn rotor 18 thereby allowing the use of a smaller motor and reducing wear.
  • the surface area of annular pressure chamber 80 may be selected to provide adequate sealing pressure against rotor 18 over the desired low to high range of transport fluid operating pressure, such selection may be based on for example, theoretical and empirical determinations.
  • port 90 may be formed in centrally disposed raised portion 82 aligned with opening 92 in base 12 to vent the cavity to the ambient. Port 90 and opening 92 allows any fluid transport fluid that might leak past seal 88 to escape, preventing any pressure, or moisture, buildup which may add to the sealing pressure beyond the desired range.
  • a controlled secondary fluid pressure could be applied to the cavity to supplement the sealing force, such as at start up or when the operating pressure of the transport fluid is low.
  • controlled secondary fluid pressure could be used as the primary or sole source of the sealing force against rotor 18, with any appropriate modifications to annular pressure chamber 80.
  • a range of different designs of rotor 18 and/or lower seal/piston assembly 46 could be compensated for by secondary fluid pressure applied through port 90.
  • pressure chamber 80 is depicted as having an annular shape disposed about central raised portion 82, it may have any suitable shape, size and location.
  • pressure chamber 80 could be centrally disposed surrounded by a raised portion.
  • controlled secondary fluid pressure may be applied at start up through port 90 thereby controlling the timing of the closing of gap 56 to occur at a suitable time. Such controlled secondary fluid pressure could be maintained throughout the time the system is on or could be removed as soon as gap 56 is closed.
  • Feeder assembly 110 is the same as feeder assembly 10, except that feeder block 114 is configured with inlet passageway 194 through which annular pressure chamber 180 is placed in direct fluid communication with inlet 166, and outlet passageway 196 through which annular pressure cavity 180 is placed in direct fluid communication with outlet 168.
  • Piston 148 includes passages 148d, which may be of any suitable configuration such as the depicted slots, at either end aligned with inlet passageway 194 and outlet passageway 196.
  • Inlet passageway 194 and outlet passageway 196 are sized, angled and located to provide sufficient pressure within annular pressure chamber 180 to produce adequate sealing force between lower seal 122 and rotor 118 over the desired low to high range of transport fluid operating pressure and to have the desired response time to always create sufficient sealing force between lower seal 122 and rotor 118 to close gap 156 before flow of transport fluid therethrough becomes great enough to prevent closing gap 156.
  • inlet passageway 194 may be .25 inches (6.35mm) in diameter and formed at a 30° angle to the axis of inlet 166
  • outlet passageway 196 may be .125 inches in diameter and formed at a 30° angle to the axis of outlet 168.
  • Inlet passageway 194 utilizes the relationship of total pressure as the sum of dynamic pressure and static pressure, to provide desired pressure within annular pressure chamber 180.
  • dynamic pressure is a measure of the kinetic energy per unit volume of the moving transport fluid, which is a function of the fluid's density and velocity
  • the total pressure entering inlet can be expressed as vector 198 indicating the total pressure's corresponding inlet velocity magnitude and direction.
  • Dynamic velocity can also be expressed by vector 200.
  • the orientation, including the angle, and size of inlet passageway 194 are selected relative to the transport fluid's total pressure at inlet passageway 194, with the levels of static pressure and dynamic pressure at inlet passageway 194 resulting at least in part from passageway alignment angle ⁇ .
  • Angle ⁇ and size of inlet passageway 194 are selected such that a sufficient amount of dynamic pressure is available at startup in the secondary flow through inlet passageway 194 into annular pressure chamber 180 to provide the desired sealing in a sufficiently quick response time by pressurizing annular pressure chamber 180.
  • Outlet passageway 196 and annular pressure chamber 180 are sized such that the resulting force exerted on piston 148 at the lowest of the operating pressure range produces adequate sealing pressure between lower seal 122 and rotor 118.
  • Inlet passageway 194, annular pressure chamber 180 and outlet passageway 196 are also configured to provide a sufficiently quick response time of force sufficient for lower seal 122 to seal against rotor 118 quickly enough to prevent transport fluid flow between lower seal 122 and rotor 118 at gap 156 during start up from preventing achieving adequate steady state sealing between lower seal 122 and rotor 118 at the steady state low operating pressure.
  • the effective flow area experienced by the secondary flow increases as the secondary flow travels from inlet passageway 194 into annular pressure chamber 180. The resulting drop in velocity of the secondary flow reduces the dynamic pressure producing a correlating increase in static pressure.
  • the surface area of piston 148 which forms a boundary of annular pressure chamber 180 is sized to provide the desired response time and steady state sealing force produced by the static pressure in annular pressure chamber 180 acting thereon.
  • the secondary flow path for the secondary flow which in the embodiment depicted comprises inlet passageway 194, annular pressure chamber 180 and outlet passageway 196, may be of any suitable configuration and structure.
  • annular pressure chamber 180 may have any shape and volume which functions to produce the desired sealing and timing of effecting the seal between rotor 118 and seal 122.
  • Inlet passageway 194 may be configured to be in fluid communication with the transport fluid upstream of inlet 166, such as for example being configured as a tap or port formed in communication with an upstream transport fluid passageway disposed at an orientation sufficient to provide a sufficient level of total pressure in the secondary flow sufficient to achieve the desired functionality of sealing and timing of sealing.
  • Outlet passageway 196 functions to provide suitable and desired reduction in velocity of the secondary flow within annular pressure chamber 180 to decrease dynamic pressure so as to adequately increase static pressure by presenting a desired resistance to the secondary flow at outlet passageway 196.
  • An alternative embodiment of outlet passageway 196 comprises a flow control valve which may be operated in any suitable manner (such as manually or controlled electronically) to produce the desired static pressure within annular pressure chamber 180.
  • the amount of restriction provided by such a flow control valve may, for example, be varied in dependence on the transport fluid operating pressure.
  • the size of the surface area of piston 148 on which the static pressure within annular pressure chamber 180 acts is based at least in part on the static pressure within annular pressure chamber 180.
  • the size of centrally disposed raised portion 182 is complementary to the size of the surface area of piston 148 on which the static pressure within annular pressure chamber 180 is based.
  • annular pressure chamber 180 and outlet passageway 196 which may be sized to reduce the possibility of foreign object buildup or contamination of the path of the secondary flow.
  • water or secondary contaminant particles such as sand or dirt which enter through inlet passageway 194 would be carried by the secondary flow through chamber 180 and out outlet passageway 196 without blockage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Sealing Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (20)

  1. Ensemble de dispositif d'alimentation (10) configuré pour transporter un milieu de soufflage d'une source de milieu dans un écoulement de gaz de transport, le dispositif d'alimentation comprenant :
    a. un rotor (18) comprenant une surface périphérique (18c), le rotor pouvant tourner autour d'un axe de rotation ;
    b. une cavité (58) définie par au moins une paroi de cavité (58a) et un fond de cavité, la cavité comprenant un axe de cavité ;
    c. un joint étanche (22) comprenant une première surface (22b), la première surface étant disposée adjacente à au moins une partie de la surface périphérique ;
    d. un piston (48) disposé de manière mobile au moins partiellement dans la cavité (58), le piston (48) étant mobile le long de l'axe de cavité, le piston (48) ayant un fond ;
    e. une admission (66) pouvant être raccordée à une source de fluide de transport ;
    f. une évacuation (68) ;
    g. un trajet d'écoulement de fluide de transport, au moins une partie du trajet d'écoulement de fluide de transport étant définie par le joint étanche et le piston (48), le trajet d'écoulement de fluide de transport comprenant une entrée et une sortie, l'entrée étant en communication fluidique avec l'admission (66), la sortie étant en communication fluidique avec l'évacuation (68) ;
    h. une chambre de pression (80) définie par le piston (48) et au moins une partie respective de l'au moins une paroi de cavité et le fond de cavité,
    caractérisé en ce que le piston (48) et le joint étanche sont configurés de sorte qu'une pression à l'intérieur de la chambre de pression (80) commande le degré de force d'étanchéité avec laquelle la première surface est pressée contre la surface périphérique.
  2. Ensemble de dispositif d'alimentation selon la revendication 1, dans lequel le joint étanche et le piston (48) sont de construction unitaire.
  3. Ensemble de dispositif d'alimentation selon la revendication 2, dans lequel lorsque la pression dans la chambre de pression (80) dépasse une première pression, le piston (48) vient en contact avec le joint étanche.
  4. Ensemble de dispositif d'alimentation selon la revendication 1, comprenant un boîtier (14), le boîtier comprenant l'au moins une paroi de cavité et le fond de cavité.
  5. Ensemble de dispositif d'alimentation selon la revendication 1, dans lequel la chambre de pression (80) est annulaire et le piston (48) comprend un prolongement annulaire façonné de manière complémentaire à la chambre de pression annulaire.
  6. Ensemble de dispositif d'alimentation selon la revendication 1, dans lequel une pression d'un fluide de transport s'écoulant à travers le trajet d'écoulement de fluide de transport est la source de pression pour la chambre de pression (80).
  7. Ensemble de dispositif d'alimentation selon la revendication 1, comprenant un passage d'admission, le passage d'admission comprenant une première extrémité et une seconde extrémité, la première extrémité étant disposée en communication fluidique avec le trajet d'écoulement de fluide de transport, la seconde extrémité étant disposée en communication fluidique avec la première chambre de pression (80), selon lequel un fluide de transport s'écoulant dans le trajet d'écoulement de fluide de transport est la source de la pression à l'intérieur de la chambre de pression.
  8. Ensemble de dispositif d'alimentation selon la revendication 7, comprenant un passage d'évacuation en communication fluidique avec la chambre de pression (80).
  9. Ensemble de dispositif d'alimentation selon la revendication 8, dans lequel le passage d'admission, la chambre de pression (80) et le passage d'évacuation sont configurés pour fournir un temps de réponse suffisamment rapide d'une force pendant un démarrage d'écoulement de fluide de transport à travers le trajet d'écoulement de fluide de transport suffisante pour que la première surface assure l'étanchéité contre la surface périphérique assez rapidement pour empêcher un écoulement de fluide de transport entre la première surface et la surface périphérique d'empêcher la réalisation d'une étanchéité adéquate à l'état stabilisé entre la première surface et la surface périphérique pendant une basse pression de fonctionnement à l'état stabilisé de l'écoulement de fluide de transport.
  10. Ensemble de dispositif d'alimentation selon la revendication 7, dans lequel le passage d'admission est dimensionné et orienté par rapport au trajet d'écoulement de fluide de transport de sorte que pendant un démarrage d'écoulement de fluide de transport à travers le trajet d'écoulement de fluide de transport la chambre de pression est sous pression en réponse à un écoulement d'un fluide de transport à travers le trajet d'écoulement de fluide de transport avec une pression suffisante pour presser la première surface contre la surface périphérique suffisamment rapidement pour surmonter la pression de tout fluide de transport s'écoulant entre la première surface et la surface périphérique de sorte à former un joint étanche entre la première surface et la surface périphérique.
  11. Ensemble de dispositif d'alimentation selon la revendication 7, dans lequel le passage d'admission est dimensionné et orienté par rapport au trajet d'écoulement de fluide de transport de sorte que pendant un démarrage d'écoulement de fluide de transport à travers le trajet d'écoulement de fluide de transport une quantité suffisante de pression dynamique du fluide de transport s'écoulant à travers le trajet d'écoulement de fluide de transport est disponible dans le passage d'admission en aval de la première extrémité pour mettre sous pression la chambre de pression avec une pression suffisante pour presser la première surface contre la surface périphérique, suffisamment rapidement pour surmonter tout fluide de transport s'écoulant entre la première surface et la surface périphérique de sorte à former un joint étanche entre la première surface et la surface périphérique.
  12. Ensemble de dispositif d'alimentation selon la revendication 7, dans lequel la première extrémité est en communication fluidique avec l'admission.
  13. Ensemble de dispositif d'alimentation (10) configuré pour transporter un milieu de soufflage d'une source de milieu dans un écoulement de gaz de transport, le dispositif d'alimentation comprenant :
    a. un rotor (18) comprenant une surface périphérique (18c), le rotor pouvant tourner autour d'un axe de rotation ;
    b. une cavité (58) définie par au moins une paroi de cavité (58a) et un fond de cavité, la cavité comprenant un axe de cavité ; et
    c. un trajet d'écoulement de fluide de transport, au moins une partie du trajet d'écoulement de fluide de transport étant définie par le joint étanche ;
    caractérisé en ce que :
    d. un joint étanche (22) est disposé de manière mobile au moins partiellement dans la cavité (58), le joint étanche étant mobile le long de l'axe de cavité, le joint étanche comprenant une première surface (22b), la première surface étant disposée adjacente à au moins une partie de la surface périphérique (18c) ; et
    e. un jeu entre le joint étanche et l'au moins une paroi de cavité est configuré pour permettre à la première surface (22b) de s'aligner avec la partie de la surface périphérique (18c) en réponse à une pression à l'intérieur du trajet d'écoulement de fluide de transport lorsque ledit joint étanche est pressé dans une mise en prise d'étanchéité avec la surface périphérique.
  14. Ensemble de dispositif d'alimentation selon la revendication 13, comprenant un piston (48) disposé de manière mobile au moins partiellement dans la cavité, le piston (48) étant mobile le long de l'axe de cavité, une partie du trajet d'écoulement de fluide de transport étant définie par le piston, dans lequel lorsque le piston est pressé vers le rotor, le joint étanche est pressé simultanément vers le rotor (18).
  15. Ensemble de dispositif d'alimentation selon la revendication 1 ou 13, dans lequel le joint étanche est mobile par rapport au piston.
  16. Ensemble de dispositif d'alimentation selon la revendication 1 ou 15, comprenant un système de retenue, le système de retenue fixant le joint étanche au piston tout en permettant un mouvement relatif entre ceux-ci.
  17. Méthode pour assurer l'étanchéité entre une surface périphérique d'un rotor (18) d'un ensemble de dispositif d'alimentation (10) et une surface d'étanchéité d'un joint étanche, comprenant les étapes consistant à :
    a. démarrer un écoulement de gaz de transport à travers un trajet d'écoulement de gaz de transport, le trajet d'écoulement de gaz de transport étant partiellement défini par le joint étanche, le joint étanche étant configuré de sorte que la surface d'étanchéité ne soit pas pressée dans une mise en prise d'étanchéité avec la surface périphérique en réponse à l'écoulement d'un gaz de transport à l'intérieur du trajet d'écoulement de gaz de transport ;
    b. diriger une fraction du gaz de transport s'écoulant à travers le trajet d'écoulement de gaz de transport dans une chambre de pression (80),
    et
    c. augmenter la pression à l'intérieur de la chambre de pression (80) résultant de la fraction de sorte à presser la surface d'étanchéité contre la surface périphérique assez rapidement pour empêcher un écoulement de fluide de transport entre la surface d'étanchéité et la surface périphérique d'empêcher la réalisation d'une étanchéité adéquate à l'état stabilisé entre la surface d'étanchéité et la surface périphérique pendant une basse pression de fonctionnement à l'état stabilisé de l'écoulement de fluide de transport ;
    caractérisé en ce que la chambre de pression (80) est configurée de sorte qu'une pression à l'intérieur de la chambre de pression (80) commande le degré de force d'étanchéité avec laquelle la surface d'étanchéité est pressée contre la surface périphérique.
  18. Méthode selon la revendication 17, dans laquelle l'étape consistant à diriger une fraction comprend le fait que la fraction a une quantité suffisante de pression dynamique du gaz de transport s'écoulant pour exécuter l'étape consistant à augmenter la pression.
  19. Méthode selon la revendication 17, dans laquelle l'étape consistant à augmenter la pression comprend la diminution d'une pression dynamique de la fraction de sorte à accroître de manière adéquate une pression statique à l'intérieur de la chambre de pression (80) .
  20. Méthode selon la revendication 17, dans laquelle la fraction comprend un écoulement secondaire à travers la chambre de pression (80).
EP16710602.0A 2015-03-06 2016-03-07 Appareil d'apport de particules Active EP3265271B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16710602T PL3265271T3 (pl) 2015-03-06 2016-03-07 Podajnik cząstek

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562129483P 2015-03-06 2015-03-06
PCT/US2016/021189 WO2016144874A1 (fr) 2015-03-06 2016-03-07 Appareil d'apport de particules

Publications (2)

Publication Number Publication Date
EP3265271A1 EP3265271A1 (fr) 2018-01-10
EP3265271B1 true EP3265271B1 (fr) 2019-09-11

Family

ID=55543122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16710602.0A Active EP3265271B1 (fr) 2015-03-06 2016-03-07 Appareil d'apport de particules

Country Status (15)

Country Link
US (2) US10315862B2 (fr)
EP (1) EP3265271B1 (fr)
JP (1) JP6707555B2 (fr)
KR (1) KR102092526B1 (fr)
CN (1) CN107820454B (fr)
AU (1) AU2016229994C1 (fr)
BR (1) BR112017018987B1 (fr)
CA (1) CA2978611C (fr)
DK (1) DK3265271T3 (fr)
ES (1) ES2755514T3 (fr)
MX (2) MX2017011387A (fr)
PL (1) PL3265271T3 (fr)
RU (1) RU2703762C2 (fr)
TW (1) TWI657989B (fr)
WO (1) WO2016144874A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2994269T (pt) * 2013-05-06 2019-12-10 Ics Ice Cleaning Systems S R O Dispositivo para misturar partículas sólidas de gelo seco com uma corrente de um meio gasoso
CN107820454B (zh) * 2015-03-06 2020-06-30 冷喷有限责任公司 颗粒馈送器
US11607774B2 (en) 2015-10-19 2023-03-21 Cold Jet, Llc Blast media comminutor
JP6481639B2 (ja) * 2016-02-25 2019-03-13 株式会社デンソー 粉体供給装置および粉体供給方法
US10085376B1 (en) * 2017-03-09 2018-10-02 Cnh Industrial Canada, Ltd. Meter roller for an agricultural metering system
US20190321942A1 (en) 2018-04-24 2019-10-24 Cold Jet, Llc Particle blast apparatus
WO2020076272A2 (fr) * 2018-10-11 2020-04-16 Lang Yuzer Otomotiv Yan San. Ve Tic. A.S. Machine de projection de glace avec broyeur
CN109249199B (zh) * 2018-11-19 2021-01-29 宁波工程学院 一种用于梳子生产的颗粒自动装配系统
MX2022002136A (es) 2019-08-21 2022-05-18 Cold Jet Llc Aparato de chorro de partículas.
US11247853B2 (en) 2019-09-06 2022-02-15 Michael Nolen Rotary airlock device and system for moving and placing granulate material
TWI832028B (zh) 2019-12-31 2024-02-11 美商冷卻噴射公司 粒子噴射系統及從一噴射噴嘴排出一挾帶粒子流之方法
US11761538B2 (en) * 2020-02-06 2023-09-19 Tamar (R.C.) Technologies Development Ltd. Sealing system for rotary shaft
CN112207721A (zh) * 2020-09-28 2021-01-12 程群 一种气动式数控喷丸机
CN112192451A (zh) * 2020-09-28 2021-01-08 程群 一种可连续喷丸作业的数控喷丸机
BR112023022256A2 (pt) 2021-05-07 2023-12-26 Cold Jet Llc Método e aparelho para formar dióxido de carbono sólido
US20230264320A1 (en) 2022-02-21 2023-08-24 Cold Jet, Llc Method and apparatus for minimizing ice build up within blast nozzle and at exit
WO2024006405A1 (fr) 2022-07-01 2024-01-04 Cold Jet, Llc Procédé et appareil avec ventilation ou extraction de fluide de transport à partir d'un flux de soufflage

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875677A (en) * 1929-11-14 1932-09-06 Thaler Wilhelm Rotary feeder for pneumatic conveyers
US3151784A (en) * 1961-10-24 1964-10-06 John P Tailor Rotary air lock
US3161442A (en) * 1962-04-18 1964-12-15 Frank A Reed Transmission of granular material
US3516714A (en) * 1966-03-23 1970-06-23 Beloit Corp Chip feeder valve
US3522972A (en) * 1968-05-13 1970-08-04 Acf Ind Inc Granular material separator and conveyor
GB1233272A (fr) * 1968-11-13 1971-05-26
US3612307A (en) * 1969-01-28 1971-10-12 Clarence W Vogt Feeder and liner assembly therefor
US3610476A (en) * 1969-08-06 1971-10-05 Bauer Bros Co Rotary valve
US3770179A (en) * 1971-04-08 1973-11-06 Gen Electric Self-pressurizing seal for rotary shafts
JPS529917B2 (fr) * 1972-01-22 1977-03-19
US3955486A (en) * 1973-08-24 1976-05-11 General Mills, Inc. Food processing apparatus
DE2428579A1 (de) * 1974-06-14 1976-01-08 Hoechst Ag Dosiervorrichtung fuer fliessfaehige feststoffe mit pneumatischer entleerung
JPS5359742A (en) * 1976-11-10 1978-05-29 Plibrico Japan Co Ltd Spraying machine for cement mix
JPS53131297U (fr) * 1978-03-14 1978-10-18
DE3031219C2 (de) * 1980-05-27 1983-10-06 Aliva AG, 8967 Widen, Mutschellen Materialzuspeiser für Anlagen zum pneumatischen Fördern von Schüttgütern
US4486126A (en) * 1982-06-11 1984-12-04 John Hellerman Pneumatic conveyor for silage and haylage
US4536121A (en) * 1983-04-22 1985-08-20 Foster Wheeler Energy Corporation Divided rotary valve feeder
US4613281A (en) * 1984-03-08 1986-09-23 Goulds Pumps, Incorporated Hydrodynamic seal
US4617064A (en) * 1984-07-31 1986-10-14 Cryoblast, Inc. Cleaning method and apparatus
US4744181A (en) 1986-11-17 1988-05-17 Moore David E Particle-blast cleaning apparatus and method
US4843770A (en) 1987-08-17 1989-07-04 Crane Newell D Supersonic fan nozzle having a wide exit swath
US4947592A (en) * 1988-08-01 1990-08-14 Cold Jet, Inc. Particle blast cleaning apparatus
US5109636A (en) * 1988-08-01 1992-05-05 Cold Jet, Inc. Particle blast cleaning apparatus and method
US5050805A (en) 1989-02-08 1991-09-24 Cold Jet, Inc. Noise attenuating supersonic nozzle
US5018667A (en) 1989-02-08 1991-05-28 Cold Jet, Inc. Phase change injection nozzle
DE4010521C2 (de) * 1989-04-08 1999-07-15 Mbt Holding Ag Betonspritzmaschine
IT1234118B (it) * 1989-06-12 1992-04-29 Inzerillo Giuseppe Nordio Fran Metodo per la produzione di quadranti in vetro murrino
US5071289A (en) 1989-12-27 1991-12-10 Alpheus Cleaning Technologies Corp. Particulate delivery system
DE4127408A1 (de) * 1991-08-19 1993-02-25 Kloeckner Humboldt Deutz Ag Zellenradschleuse fuer druckbehaelter
US5188151A (en) 1991-10-22 1993-02-23 Cold Jet, Inc. Flow diverter valve
DE4244655C2 (de) * 1992-05-06 2000-05-31 Reimelt Dietrich Kg Zellenradschleuse
US5265983A (en) * 1992-06-02 1993-11-30 The Babcock & Wilcox Company Cascading pressure continuous blow bottle
US5249426A (en) 1992-06-02 1993-10-05 Alpheus Cleaning Technologies Corp. Apparatus for making and delivering sublimable pellets
US5301509A (en) 1992-07-08 1994-04-12 Cold Jet, Inc. Method and apparatus for producing carbon dioxide pellets
WO1995027591A1 (fr) 1992-07-08 1995-10-19 Cold Jet, Inc. Appareil et procede pour fabriquer des granules de neige carbonique
ATE146758T1 (de) * 1992-09-09 1997-01-15 Nestle Sa Zellenradschleuse
US5288028A (en) 1992-09-10 1994-02-22 Alpheus Cleaning Technologies Corp. Apparatus for enhancing the feeding of particles from a hopper
GB9303384D0 (en) * 1993-02-19 1993-04-07 Molins Plc Pneumatic conveying system for rod-like articles
NO177899C (no) * 1993-03-26 1995-12-13 Hans Hiorth Trykktett sluse for innmating av pulvermateriale
US5480268A (en) * 1993-06-07 1996-01-02 Smoot Company Rotary airlock feeder with low pressure purge system
NZ248895A (en) * 1993-10-08 1995-07-26 Convertech Group Ltd Transfer device having intermittently rotated carousel having through passageways with assembly sealing pressure maximised during rotor dwell periods
JP2772464B2 (ja) 1993-10-22 1998-07-02 昭和炭酸株式会社 粉粒体の供給装置
JPH07172575A (ja) * 1993-12-17 1995-07-11 Nordson Kk 粉粒体の供給搬送方法
DE4405828A1 (de) * 1994-02-23 1995-08-24 Krupp Polysius Ag Zellenradschleuse
US5520572A (en) 1994-07-01 1996-05-28 Alpheus Cleaning Technologies Corp. Apparatus for producing and blasting sublimable granules on demand
LU88648A1 (de) * 1995-08-25 1997-02-25 Wurth Paul Sa Vorrichtung zum Austragen von Schuettgut aus einem Druckbehaelter
US5645379A (en) * 1995-11-22 1997-07-08 Reed Manufacturing, Inc. Material flow and air-quality protection, in a particulate-material gun usable with silica fume
US6042458A (en) 1996-05-31 2000-03-28 Cold Jet, Inc. Turn base for entrained particle flow
US6346035B1 (en) 1998-12-24 2002-02-12 Cae Alpheus, Inc. Generation of an airstream with subliminable solid particles
US6739529B2 (en) 1999-08-06 2004-05-25 Cold Jet, Inc. Non-metallic particle blasting nozzle with static field dissipation
US7112120B2 (en) * 2002-04-17 2006-09-26 Cold Jet Llc Feeder assembly for particle blast system
US6726549B2 (en) 2000-09-08 2004-04-27 Cold Jet, Inc. Particle blast apparatus
US6524172B1 (en) 2000-09-08 2003-02-25 Cold Jet, Inc. Particle blast apparatus
NL1017210C2 (nl) * 2001-01-29 2002-07-30 Huibert Konings Doseerapparaat voor cryogene deeltjes.
US20030064665A1 (en) 2001-09-28 2003-04-03 Opel Alan E. Apparatus to provide dry ice in different particle sizes to an airstream for cleaning of surfaces
US6695685B2 (en) 2001-10-12 2004-02-24 Cae Alpheus, Inc. Low flow rate nozzle system for dry ice blasting
US6695679B2 (en) 2001-10-15 2004-02-24 Cae Alpheus, Inc. Enablement of selection of gas/dry ice ratios within an allowable range, and dynamic maintenance of the ratio in a blasting stream
RU2222421C1 (ru) * 2002-07-23 2004-01-27 Гречишкин Олег Иванович Аэроабразивный смеситель устройства для абразивно-струйной обработки поверхности
US7094004B2 (en) * 2003-01-09 2006-08-22 Air Pump Industries Apparatus and method for moving and placing granulate material
US7125204B2 (en) * 2003-10-31 2006-10-24 Finn Corporation Portable pneumatic blower
DE102004001965B4 (de) * 2004-01-13 2014-06-18 Schenck Process Gmbh Zellenradschleuse
EP1851003A1 (fr) * 2005-01-31 2007-11-07 Cold Jet LLC Appareil de nettoyage par projection de particules avec recipient sous pression
TWI296956B (en) 2005-03-11 2008-05-21 Cold Jet Llc Particle blast system with synchronized feeder and particle generator
CN2801303Y (zh) * 2005-06-23 2006-08-02 佛山市南海震华机械工程有限公司 一种单管干冰清洗机
IL174005A0 (en) * 2006-02-28 2008-01-20 Tamar R C Technologies Dev Ltd Apparatus for delivering sealant to a stuffing box of a rotary shaft
WO2009009189A2 (fr) * 2007-04-20 2009-01-15 General Electric Company Transport de matière particulaire
US9095956B2 (en) 2007-05-15 2015-08-04 Cold Jet Llc Method and apparatus for forming carbon dioxide particles into a block
CN201055857Y (zh) * 2007-07-02 2008-05-07 林淑焕 单管干冰清洗机
ES2684093T3 (es) * 2008-10-30 2018-10-01 Gaudfrin Dispositivo de extracción de tortas resultantes de la filtración de discos a presión y el proceso de extracción asociado
US8187057B2 (en) 2009-01-05 2012-05-29 Cold Jet Llc Blast nozzle with blast media fragmenter
DE202010000713U1 (de) * 2010-01-08 2010-05-06 Tq-Systems Gmbh Verarbeitungsmaschine bzw. -gerät für Trockeneis
NO332973B1 (no) * 2010-06-22 2013-02-11 Vetco Gray Scandinavia As Trykkreguleringssystem for motor- og pumpebarrierefluider med differensialtrykkstyring
ES2667340T3 (es) 2010-10-19 2018-05-10 Cold Jet Llc Método y aparato para formar partículas de dióxido de carbono en bloques
WO2012159037A2 (fr) 2011-05-19 2012-11-22 Cold Jet Llc Procédé et appareil de formation de pastilles de dioxyde de carbone
JP6234941B2 (ja) 2012-02-02 2017-11-22 コールド・ジェット・エルエルシーCold Jet, LLC 粒子を保管せずに高流量粒子ブラストするための機器および方法
US20140110510A1 (en) 2012-10-24 2014-04-24 Cold Jet Llc Apparatus Including at Least an Impeller or Diverter and for Dispensing Carbon Dioxide Particles and Method of Use
PT2994269T (pt) * 2013-05-06 2019-12-10 Ics Ice Cleaning Systems S R O Dispositivo para misturar partículas sólidas de gelo seco com uma corrente de um meio gasoso
WO2014183204A1 (fr) * 2013-05-17 2014-11-20 Victor Juchymenko Procédé et système d'étanchéité d'équipements tournants tels que des détendeurs ou des compresseurs
TW201527213A (zh) 2013-10-16 2015-07-16 Cold Jet Llc 形成固體二氧化碳之方法及裝置
US9931639B2 (en) 2014-01-16 2018-04-03 Cold Jet, Llc Blast media fragmenter
DE102014007480B4 (de) * 2014-04-17 2024-02-29 Zeppelin Systems Gmbh Ausblaseinrichtung für eine Zellenradschleuse
IL233615A (en) * 2014-07-10 2016-02-29 Ettem Eng S A Ltd Method and devices for discharging pollutants from a sealing chamber
CN107820454B (zh) 2015-03-06 2020-06-30 冷喷有限责任公司 颗粒馈送器
US9700989B1 (en) * 2015-03-12 2017-07-11 Nu-Ice Age, Inc. Dry ice blast cleaning system and method for operating the same
US11607774B2 (en) 2015-10-19 2023-03-21 Cold Jet, Llc Blast media comminutor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2978611A1 (fr) 2016-09-15
CN107820454A (zh) 2018-03-20
RU2017135225A (ru) 2019-04-08
AU2016229994C1 (en) 2020-05-14
KR102092526B1 (ko) 2020-03-24
JP6707555B2 (ja) 2020-06-10
BR112017018987B1 (pt) 2021-10-26
US20190291975A1 (en) 2019-09-26
MX2017011387A (es) 2018-06-07
RU2703762C2 (ru) 2019-10-22
DK3265271T3 (da) 2019-11-18
EP3265271A1 (fr) 2018-01-10
US10737890B2 (en) 2020-08-11
KR20170127517A (ko) 2017-11-21
AU2016229994B2 (en) 2019-12-12
MX2022005889A (es) 2022-06-14
US10315862B2 (en) 2019-06-11
BR112017018987A2 (pt) 2018-04-17
ES2755514T3 (es) 2020-04-22
TWI657989B (zh) 2019-05-01
RU2017135225A3 (fr) 2019-04-08
CN107820454B (zh) 2020-06-30
CA2978611C (fr) 2021-11-09
PL3265271T3 (pl) 2020-03-31
US20160257506A1 (en) 2016-09-08
JP2018514396A (ja) 2018-06-07
WO2016144874A1 (fr) 2016-09-15
AU2016229994A1 (en) 2017-09-28
TW201702162A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
EP3265271B1 (fr) Appareil d'apport de particules
KR102140548B1 (ko) 입자 블라스트 장치
MXPA04010241A (es) Ensamble alimentador para sistema de tratamiento con chorro de particulas.
RU2793045C2 (ru) Воздуходувный аппарат для частиц

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BROECKER, RICHARD, JOSEPH

Inventor name: KOCOL, ROBERT, MITCHELL

Inventor name: MALLALEY, DANIEL

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1177829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A., CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016020349

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191111

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 32819

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1177829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190911

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2755514

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016020349

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 8

Ref country code: DK

Payment date: 20230329

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230221

Year of fee payment: 8

Ref country code: IT

Payment date: 20230321

Year of fee payment: 8

Ref country code: BE

Payment date: 20230327

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 8

Ref country code: CH

Payment date: 20230402

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 9

Ref country code: CZ

Payment date: 20240223

Year of fee payment: 9

Ref country code: GB

Payment date: 20240327

Year of fee payment: 9

Ref country code: SK

Payment date: 20240220

Year of fee payment: 9