EP3262672B1 - Bestrahlungsvorrichtung mit einem einseitig gesockelten infrarotstrahler, zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer - Google Patents

Bestrahlungsvorrichtung mit einem einseitig gesockelten infrarotstrahler, zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer Download PDF

Info

Publication number
EP3262672B1
EP3262672B1 EP15823162.1A EP15823162A EP3262672B1 EP 3262672 B1 EP3262672 B1 EP 3262672B1 EP 15823162 A EP15823162 A EP 15823162A EP 3262672 B1 EP3262672 B1 EP 3262672B1
Authority
EP
European Patent Office
Prior art keywords
radiator
tube
conductor
cladding tube
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15823162.1A
Other languages
English (en)
French (fr)
Other versions
EP3262672A1 (de
Inventor
Siegfried Grob
Martin Klinecky
Thomas Piela
Sven Linow
Thomas Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP3262672A1 publication Critical patent/EP3262672A1/de
Application granted granted Critical
Publication of EP3262672B1 publication Critical patent/EP3262672B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body
    • H01K1/20Mountings or supports for the incandescent body characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/40Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K7/00Lamps for purposes other than general lighting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material

Definitions

  • the present invention relates to an irradiation device for coupling infrared radiation in a vacuum processing chamber, with a single-ended infrared radiator comprising a radiator shroud in the form of a round tube made of glass, of which a closed end protrudes into the vacuum processing chamber, and with a Vacuum feedthrough for holding and gas-tight implementation of the Strahlerhüllrohres through an opening of the vacuum processing chamber, wherein in the Strahlerhüllrohr formed as a Walkerfilament heating element and designed as a current return return conductor are arranged, wherein the heating element in the surrounded by the vacuum passage portion of the Strahlerhüllrohres has a connection element , which is led out of the Strahlerhüllrohr.
  • Lamps and infrared radiators with a heating conductor (also referred to below as heating filament) made of a conductive material with a high melting temperature are known.
  • heating filaments take the form of straight wires or sheets, or the shape of a meander, a ribbon, a helix or a loop. A voltage is applied between the ends of the heating filament so that a current can flow while generating heat.
  • An infrared radiator therefore has two electrical connection elements, one of which is connected to the Schufilament and the other to the current feedback. The connection elements are led out of the radiator tube by means of seals, also called current feedthroughs.
  • infrared radiators in vacuum or in vacuum processes with reactive atmospheres in which a considerable amount of heat is to be introduced into a substrate to be processed in a short time, presents a particular challenge to the components and materials used.
  • the radiator tube In high power infrared radiators in which the radiator tube is exposed to high thermal performance of the heating filament and which can be used in high temperature or chemically aggressive environments, the radiator tube typically consists of a high-silica glass, such as quartz glass, characterized by a very low thermal Expansion coefficient and very high temperature resistance distinguishes. Therefore, the problem arises for the heating filaments and their connections to find suitable, electrically good conductive materials, which also have a melting temperature of about 2000 ° C and a similar thermal expansion coefficient over the temperature range from room temperature to the processing temperature of quartz glass.
  • Gas-tight current feed-throughs comprise a so-called "pinch” in which a thin molybdenum foil as a conductive electrical contact and intermediate element between inner and outer terminal elements, usually in the form of pins, is melted into the crimped end of the quartz glass emitter tube.
  • a considerable radiant power is also transported in the axial direction, similar to an optical fiber, so that the thermal expansion of the heating conductor and the current return in relation to the thermal expansion of the radiator cladding may not be neglected constructively.
  • the infrared radiator mounted in the chamber wall of a vacuum process chamber, it should also be noted that it is the transition from rough vacuum to fine vacuum in the residual atmosphere and above a voltage of 80 volts with appropriate heat to flashovers between the electrical leads to each other or to the chamber wall can come.
  • the holder of the radiator in the process chamber wall is possible by attaching flanges on the radiator tube or on the process chamber wall, which form part of a vacuum feedthrough.
  • flanges must be movably mounted in the direction of the radiator axis against the process chamber wall in order not to convert small thermal expansions destructive tensile stress for the radiator tube: Since the thermal expansion of the quartz glass is about an order of magnitude lower than that of the metallic chamber wall, already small Variations in the temperature of the chamber wall or the cladding tube made of quartz glass lead to problems with regard to a pressure-resistant and thermally stable seal or current feedthrough. The installation of vacuum feedthroughs for spotlight tubes is therefore also associated with risks.
  • double-capped IR radiators with a radiator round tube or with a twin tube are known for use in a vacuum process chamber.
  • the radiators are held on both sides by vacuum feedthroughs in the chamber wall.
  • In the vacuum feedthrough is an O-ring, which fixes the spotlight in the sealing position.
  • the radiator In the area of the vacuum feedthrough, the radiator has an opaque tube section which reduces the heating power emanating from the IR radiator in the direction of the vacuum feedthrough and the outer bruises.
  • the production of such a precisely positioned, opaque pipe section is expensive. It is therefore preferable to postpone additional, opaque quartz glass tube sections to the cladding tube of the IR radiator.
  • a disadvantage of this arrangement is that an additional component in the form of the deferred pipe section is required.
  • the overall cross section of the IR radiator in the area of the seal is increased by the pushed-on pipe section, so that the opening in the vacuum process chamber wall must also be correspondingly large.
  • the opening in the vacuum process chamber wall must also be correspondingly large.
  • a single-ended IR emitter in a vacuum feedthrough of a process chamber is also in WO01 / 35699 A1 disclosed.
  • the IR radiator is arranged in a circular tube closed on one side of quartz glass, wherein the infrared radiation source is connectable to a not further disclosed energy source in the vacuum process chamber.
  • a cooling device is provided by means of air cooling within the radiator tube. The cooling acts on the entire radiator cladding tube and also reduces the heat at the radiator tube end that is open to the outside in the area of the vacuum feedthrough. The establishment of a corresponding cooling, however, is complicated, prone to failure and rather contradicts the requirement of the most effective heating power in relation to the process material in the vacuum process chamber.
  • the object of the invention is therefore to provide an irradiation device for coupling infrared radiation in vacuum process chambers, in which the disadvantages of the prior art are avoided and safe operation, in particular of long IR radiators, even at high heat output in a simple manner, is guaranteed without additional components or cooling.
  • the return conductor has a means for compensating for the thermal expansion in the part of the radiator cladding tube surrounded by the vacuum feedthrough.
  • a safe operation of the introduced into the vacuum process chamber, one-sided socketed IR emitter is ensured by a plurality of complementary features:
  • the heat transfer to the vacuum seal is reduced by guiding the connecting element of the heating conductor in this section of the lamp tube into a heat-insulating pipe section.
  • the connecting element is formed from a straight piece of wire, wherein a material for the connecting element is preferred, which has a lower thermal conductivity compared to the heating conductor.
  • the pipe section By the pushed onto the connecting element of the heating element pipe section, the temperature in the region of the vacuum feedthrough during operation of the IR emitter compared to the temperature of the set nominal power of the heating element can be reduced. At the same time the pipe section also prevents the risk that the connecting element of the heating element comes into contact with the return conductor.
  • the return conductor in the part of the radiator cladding tube surrounded by the vacuum feedthrough has a means for compensating for the thermal expansion, which prevents the return conductor from becoming twisted due to its thermal expansion, thereby coming into contact with the heating conductor or otherwise forming short circuits which are adjacent
  • the electrical interference also lead to locally particularly strong heat.
  • a centric guidance of the return conductor in a small space is made possible in this way.
  • the combination of the aforementioned features results in a total safe operation and a long life of the irradiation device with the infrared radiator according to the invention even at high power.
  • the measure for reducing the heat transfer to the vacuum feedthrough by using the pipe section around the connection element of the heating element is also to be observed. As a result, additional measures for the inventive irradiation device Cooling of the IR emitter at its ends is not required.
  • the infrared radiator according to the invention is also suitable to withstand vibrations during operation, as far as they do not exceed a deflection of 0.7 mm from the entire radiator in the range of 2 Hz to 10 Hz.
  • an acceleration of 20 m / s 2 can act harmlessly on the radiator.
  • the tube piece, through which the heating conductor is guided in the subsection of the radiator cladding tube surrounded by the vacuum feedthrough is formed as a quartz glass tube, and the connection element of the heating conductor is formed from a wire made of molybdenum or of a molybdenum compound.
  • Quartz glass is a particularly suitable material due to its heat-insulating effect. Furthermore, quartz glass has a very high temperature resistance, so that no deformation of this pipe section occurs even in the event of heat accumulation occurring in the area of the vacuum feedthrough. Basically, as an alternative to quartz glass and pipe sections made of ceramic high-temperature materials come into question. From a manufacturing point of view, however, a small variety of materials is preferred, so that quartz glass, which is also generally used for the radiator cladding tube, also represents the preferred material for the tube piece in question. Furthermore, the connecting element of the heat conductor consists of a wire made of molybdenum or of a molybdenum compound.
  • Molybdenum has lower thermal conductivity compared with tungsten, which is commonly used as a material for the heating filament, so that the use of molybdenum or a molybdenum alloy as a material for the terminal of the heating conductor contributes to a reduction in the temperature load in the area of the vacuum feedthrough.
  • the spring element of the return conductor in the part of the radiator cladding tube surrounded by the vacuum feedthrough is able to absorb significant changes in length of a few centimeters, which occur especially with long radiators and numerous switching operations during operation.
  • the spring element therefore contributes to the safe operation of the IR radiator.
  • the spring element is designed in the form of a wire winding, which is wound around the pipe section of the connecting element of the heating element.
  • the return conductor has no welds, but consists throughout as a wire made of molybdenum or a molybdenum alloy, which also serves as a connection element for the return conductor and is led out of the radiator cladding.
  • welding operations or other types of connections for connecting portions of the return conductor are avoided, which also reduces the risk of defects in the joints (welds).
  • the means for compensating the thermal expansion of the return conductor is formed as a sliding bearing made of carbon, which has at least two electrically conductive sliding bearing elements which are slidingly in contact, wherein one of the sliding bearing elements is designed as a sliding rod and the other of the sliding bearing elements as a sliding bushing ,
  • the sliding bearing forms an electrically conductive component, which allows a powerless compensation of the length expansion of the return conductor.
  • the length compensation takes place without spring action solely by a cohesive, conductive, sliding contact of the sliding elements with each other.
  • Carbon, especially graphite, is particularly suitable as a bearing material, since its abrasion acts self-lubricating. It also has good electrical conductivity.
  • a support element is guided in the closed end of the radiator cladding tube, which is connected to the heating conductor.
  • the support element is fixed on the one hand in the glass wall of the cladding tube, for example, by melting, and on the other hand so connected to the heating conductor, that this moves at a thermal change in length substantially only along its longitudinal axis and a slackening or sagging is counteracted.
  • the support element is formed as a rod of molybdenum or of a molybdenum compound, which is guided in the closed end of the radiator cladding tube in alignment with the Schufilament.
  • the rod made of molybdenum or a molybdenum compound is positively or materially connected to the heating filament and the leadership in the closed end of the radiator cladding tube by means of a pinch of the radiator cladding tube.
  • the material molybdenum (or a molybdenum alloy) has proven itself because of its temperature resistance for use in IR emitters.
  • the rod is positioned so that it runs as a support element in alignment with the Schufilament and is thereby fixed in the glass wall of the cladding tube by means of a pinch.
  • the connection to the filament is positive or cohesive, for example, a positive connection is made by a round rod is inserted into the turns of a coiled Walkerfilaments and is covered by the windings.
  • a cohesive connection is possible by welding the support element to the Schufilament.
  • crimping machines which, for example, have two burners rotating about the radiator cladding tube to be squeezed and two crimping jaws located opposite one another. Once the radiator shroud is softened, the torch rotation stops, so that the crimp jaws are moved past the burners and against the tube to compress it to enclose the support element (rods) inserted therein in the pinch.
  • the infrared radiator according to the invention proves to be particularly advantageous when the return conductor is guided in the section parallel to the heating filament in a quartz glass tube.
  • the return conductor is insulated from the heating conductor so that no electrical arcing can occur.
  • the radiation emanating from the heating filament is only slightly shadowed by the quartz glass tube surrounding the return conductor, so that practically no substantial loss of the radiant power results from this measure, but an improvement with regard to the safe operation of the IR radiator.
  • the heating filament is supported by at least one spacer with respect to the inner wall of the radiator cladding tube on the one hand and with respect to the return conductor guided in the quartz glass tube on the other hand.
  • the spacer may be in the form of a tantalum disc formed by recesses or slots to hold the heating filament and the quartz glass tube leading the return conduit at a safe distance from each other and from the inner wall of the radiator sheath tube.
  • tantalum and niobium as a material for the spacer in question.
  • Advantageous in this context is the relatively low thermal conductivity and a high specific electrical resistance of tantalum and niobium compared to tungsten or molybdenum, as materials that come for the heating element or the return conductor in question.
  • the spacer can be kept in a particular position along the longitudinal axis of the radiator, in particular in the vertical use of the IR radiator by small elevations of glass are attached to the inner wall of the radiator cladding tube.
  • spacers of Advantage to ensure an orderly leadership in particular of the heat conductor over the length of the radiator, so that the risk of short circuits is excluded by twisting or sagging of the heating element.
  • FIG. 1 schematically shows an infrared radiator 1 with an axisymmetric radiator sheath tube 2 made of quartz glass with a round cross section (outer diameter 19 mm).
  • the infrared radiator 1 is held by means of a vacuum feedthrough 3, which comprises a sealing ring 4 and a kind of stuffing box 5, in the opening of a vacuum processing chamber and protrudes with its closed end into the vacuum processing chamber.
  • the IR emitter 1 is designed for an operating temperature above 800 ° C.
  • a helical heating element 6 (heating filament) made of tungsten with a (heated) length of 140 cm and a return conductor 7 (current return) is arranged.
  • the return conductor 7 is guided parallel to the heated region of the heating conductor 6 in a quartz glass tube 8.
  • heating conductor 6 and return conductor 7 are connected to each other via a short connector 9.
  • a support member 10 which is a holder for the heating element 6 and which is fixed in the radiator sheath 2.
  • the return conductor 7 has in the region of the vacuum feedthrough 3 a spring element 14 in the form of a wire winding.
  • the wire winding comprises up to eight turns on an axial length of 15 mm and is wound around the short quartz glass tube 11, which is pushed onto the connecting element 12 of the heating conductor 6 in this section.
  • the wire winding compensates for the thermal expansion of the return conductor 7, assuming an expansion of 8 mm during operation of the IR emitter at 2,500 ° C.
  • FIG. 2 shows only the portion of the IR radiator 1, which is located in the region of the vacuum feedthrough 3.
  • a plain bearing 15 of high-purity technical carbon which is connected to the return conductor 7.
  • the sliding bearing 15 is a sanding-mounted distance compensation element with a slide bushing 16 with two through holes, which receive in pairs each a sliding rod 17 made of molybdenum in sliding fit H7 / h7.
  • the slide rods have a diameter of 1.4 mm.
  • a sliding rod is connected to the molybdenum wire of the return conductor 7 by welding, the other sliding rod is connected to the electrical connection element 12 'of the return conductor 7, which is led out of the front end of the cladding tube 2, also by welding.
  • the molybdenum wire of the return conductor 7 is wound on the weld rod at the weld with a few turns and then welded.
  • the molybdenum wire connection of the return conductor 7 and the connection to the connecting element 12 'opposite ends of the sliding rods protrude from the Gleitbuchsenteil respectively and are provided with a thickening 18, which prevents slipping of the slide rods 17 from the slide bush 16.
  • the sliding bearing 15 forms an electrically conductive component between the return conductor 7 and the connecting element 12 ', which allows a powerless compensation of the longitudinal extent of the return conductor 7 during operation.
  • the length compensation takes place without spring action solely by a cohesive, conductive, sliding contact of the sliding elements with each other.
  • FIG. 3 is the section A of FIG. 1 shown in a detail view with the closed end of the Strahlerhüllrohres 2.
  • a support element 10 designed as a round rod of molybdenum is fixed in the glass wall of the cladding tube 2 by means of a pinch 21.
  • the rod is held by a support coil 19, which is adapted to the inner diameter of the radiator sheath tube 2 and rests against the inner wall of the cladding tube 2.
  • the diameter of the rod is 0.875 mm and is tuned so that it can be positively inserted into the turns of Bankfilaments 6.
  • the rod is oriented so that the heating filament 6 does not sag even in thermal expansion and the concomitant loss of rigidity, but is guided substantially in alignment, so remains in its radial position. This minimizes the risk that the heating filament 6 in this section touches the return conductor 7 due to thermal expansion and that short circuits occur.
  • a connecting piece 9 between heating conductor 6 and return conductor 7 can be seen, which in this case is a piece of wire made of molybdenum with few windings at both ends, which are welded to the heating conductor 6 and to the return conductor 7.
  • a connector 9 is also a straight wire without windings or a otherwise sheet metal part can be used, which is welded to the heating or return conductor and meets the corresponding electrical requirements.
  • FIG. 4 shows a cross section through the radiator sheath tube 2 in the heated length, where a plurality of spacers 20 are provided from tantalum for the purpose of exact positioning of the heating element 6 and return conductor 7 in the radiator sheath tube 2.
  • the spacer 20 is supported against the inner wall of the Strahlerhüllrohres 2 on the one hand and against the run in the quartz glass tube 8 return conductor 7 on the other hand, wherein the spacer 20 has a guide slot 21 and an open, circular recess 22. In the guide slot 21 of the heating element 6 is guided and the open, circular recess 22 receives the surrounding the return conductor 7 quartz glass tube 8.
  • the heating conductor 6 and the quartz glass tube 8 leading the return conductor 7 are kept at a safe distance from each other and from the inner wall of the radiator sheath tube 2.
  • the spacer 20 is held on the inner wall of the radiator cladding tube by small elevations or nubs 23 made of glass, which fix the spacer 20 in a particular position along the longitudinal axis of the radiator, in particular during vertical use of the IR radiator.
  • One or more spacers of this type ensure an orderly guidance, in particular of the heat conductor over the length of the radiator, especially with long radiators.

Landscapes

  • Resistance Heating (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft eine Bestrahlungsvorrichtung zur Einkopplung von Infrarot-Strahlung in eine Vakuum-Prozesskammer, mit einem einseitig gesockelten Infrarotstrahler, der ein Strahlerhüllrohr in Form eines Rundrohres aus Glas umfasst, von dem ein geschlossenes Ende in die Vakuum-Prozesskammer hineinragt, und mit einer Vakuumdurchführung zur Halterung und gasdichten Durchführung des Strahlerhüllrohres durch eine Öffnung der Vakuum-Prozesskammer, wobei in dem Strahlerhüllrohr ein als ein Heizfilament ausgebildeter Heizleiter und ein als Stromrückführung ausgebildeter Rückleiter angeordnet sind, wobei der Heizleiter in dem von der Vakuumdurchführung umgebenen Teilabschnitt des Strahlerhüllrohres ein Anschlusselement aufweist, das aus dem Strahlerhüllrohr herausgeführt ist.
  • Stand der Technik
  • Lampen und Infrarotstrahler (kurz "IR-Strahler") mit einem Heizleiter (im Folgenden auch als Heizfilament bezeichnet) aus einem leitfähigen Material mit hoher Schmelztemperatur sind bekannt. Solche Heizfilamente haben die Form von geraden Drähten oder Blechen, oder die Form eines Mäanders, eines Bandes, einer Wendel oder einer Schleife. Zwischen den Enden des Heizfilaments wird eine Spannung angelegt, so dass ein Strom fließen kann und dabei Wärme erzeugt wird. Ein Infrarotstrahler weist daher zwei elektrische Anschluss-elemente auf, von denen eines an das Heizfilament und das andere an die Stromrückführung angeschlossen ist. Die Anschlusselemente werden über Abdichtungen, auch Stromdurchführungen genannt, aus dem Strahlerhüllrohr herausgeführt.
  • Das Betreiben von Infrarotstrahlern im Vakuum oder in Vakuumprozessen mit reaktiven Atmosphären, bei denen in kurzer Zeit eine erhebliche Wärmemenge in ein zu bearbeitendes Substrat eingebracht werden soll, stellt eine besondere Herausforderung an die verwendeten Bauteile und Materialien dar.
  • Bei Infrarotstrahlern für hohe Leistung, bei denen das Strahlerrohr einer hohen thermischen Leistung des Heizfilaments ausgesetzt ist und die bei hoher Temperatur oder chemisch aggressiver Umgebung einsetzbar sind, besteht das Strahlerrohr typischerweise aus einem hochkieselsäurehaltigen Glas, wie etwa Quarzglas, das sich durch einen sehr geringen thermischen Ausdehnungskoeffizienten und sehr hoher Temperaturbeständigkeit auszeichnet. Es ergibt sich daher das Problem für die Heizfilamente und deren Anschlüsse passende, elektrisch gut leitfähigen Werkstoffe zu finden, die zugleich eine Schmelztemperatur von über 2000 °C und einen ähnlichen thermischen Ausdehnungskoeffizienten über den Temperaturbereich von Raumtemperatur bis zur Bearbeitungstemperatur von Quarzglas besitzen. Gasdichte Stromdurchführung umfassen eine so genannte "Quetschung", bei der eine dünne Molybdänfolie als leitendes elektrisches Kontakt- und Zwischenelement zwischen innerem und äußerem Anschlusselementen, meist in Form von Stiften, in das zusammengequetschte Ende des Quarzglas-Strahlerrohres eingeschmolzen wird. In Quarzglasrohren wird überdies eine erhebliche Strahlungsleistung in axialer Richtung transportiert, - ähnlich wie in einer optischen Faser -, so dass die Wärmedehnung des Heizleiters und der Stromrückführung im Verhältnis zur Wärmedehnung des Strahlerhüllrohres konstruktiv nicht vernachlässigt werden darf. Bei solchen Strahlern kommt es gerade im Bereich der Rohrenden zu einem Wärmestau, der besonders die Abdichtungen betrifft. Maßgeblich ist dabei die Leistung pro Stahlerlänge, so dass diese Problematik besonders bei langen und leistungsstarken Strahlern berücksichtigt werden muss.
  • Werden die Infrarotstrahler in der Kammerwand einer Vakuum-Prozesskammer montiert, so ist darüber hinaus zu beachten, dass es beim Übergang von Grobvakuum zu Feinvakuum in der Restatmosphäre und oberhalb einer Spannung von 80 Volt bei entsprechender Wärme zu Überschlägen zwischen den elektrischen Zuleitungen untereinander oder zur Kammerwand hin kommen kann.
  • Den vorgenannten Problemen kann zwar durch entsprechend geringe Betriebsleistung der Strahler begegnet werden, was aber kontraproduktiv im Sinne der für den jeweiligen Behandlungsprozess erforderlichen Heizleistung in der Bearbeitungskammer ist.
  • Die Halterung der Strahler in der Prozesskammerwand ist durch Anbringung von Flanschen am Strahlerrohr bzw. an der Prozesskammerwand möglich, die einen Teil einer Vakuumdurchführung bilden. Solche Flansche müssen jedoch in Richtung der Strahlerachse gegen die Prozesskammerwand beweglich gelagert werden, um geringfügige thermische Ausdehnungen nicht in eine für das Strahlerrohr zerstörerische Zugspannung umzusetzen: Da die thermische Ausdehnung des Quarzglases etwa eine Größenordnung niedriger ist, als die der metallischen Kammerwand, können bereits geringe Variationen der Temperatur der Kammerwand oder des Hüllrohres aus Quarzglas zu Problemen hinsichtlich einer druckfesten und thermisch stabilen Abdichtung oder Stromdurchführung führen. Die Anbringung von Vakuumdurchführungen für Strahlerrohre ist daher auch mit Risiken verbunden.
  • Aus DE 10 2008 063 677 A1 sind zweiseitig gesockelte IR-Strahler mit einem Strahlerrundrohr oder mit einem Zwillingsrohr für den Einsatz in einer Vakuum-Prozesskammer bekannt. Die Strahler werden beidseitig von Vakuumdurchführungen in der Kammerwand gehalten. In der Vakuumdurchführung befindet sich als Abdichtung ein O-Ring, der den Strahler in der Dichtposition fixiert. Der Strahler weist im Bereich der Vakuumdurchführung einen opaken Rohrabschnitt auf, der die vom IR-Strahler ausgehende Heizleistung in Richtung der Vakuumdurchführung und der außen liegenden Quetschungen reduziert. Die Herstellung eines solchen exakt positionierten, opaken Rohrabschnitts ist aufwendig. Es ist daher bevorzugt zusätzliche, opake Rohrabschnitte aus Quarzglas auf das Hüllrohr des IR-Strahlers aufzuschieben. Nachteilig an dieser Anordnung ist, dass ein zusätzliches Bauteil in Form des aufgeschobenen Rohrabschnitts erforderlich ist. Überdies wird durch den aufgeschobenen Rohrabschnitt der Gesamtquerschnitt des IR-Strahlers in Bereich der Dichtung vergrößert, so dass auch die Öffnung in der Vakuum-Prozesskammerwand entsprechend groß sein muss. Im Sinne einer raumsparenden Anordnung der IR-Strahler und eines möglichst geringen Risikos für ein Vakuumleck sind aber relativ große Öffnungen in der Kammerwand kontraproduktiv.
  • Ein einseitig gesockelter IR-Strahler in einer Vakuumdurchführung einer Prozesskammer ist auch in WO01/35699 A1 offenbart. Der IR-Strahler ist in einem einseitig geschlossenen Rundrohr aus Quarzglas angeordnet, wobei die Infrarot-Strahlungsquelle mit einer nicht näher offenbarten Energiequelle in der Vakuum-Prozesskammer verbindbar ist. Um eine hohe Strahlungsleistung zu gewährleisten, ist eine Kühlungseinrichtung mittels Luftkühlung innerhalb des Strahlerrohres vorgesehen. Die Kühlung wirkt auf das gesamte Strahlerhülllrohr und reduziert dabei auch die Hitze am nach außen offenen Strahler-Rohrende im Bereich der Vakuumdurchführung. Die Einrichtung einer entsprechenden Kühlung ist jedoch aufwendig, störanfällig und widerspricht eher der Anforderung einer möglichst effektiven Heizleistung in Bezug auf das Prozessgut in der Vakuum-Prozesskammer.
  • Technische Aufgabenstellung
  • Aufgabe der Erfindung ist es daher eine Bestrahlungsvorrichtung zur Einkopplung von Infrarot-Strahlung in Vakuum-Prozesskammern bereitzustellen, bei welcher die Nachteile des Standes der Technik vermieden werden und ein sicherer Betrieb, insbesondere von langen IR-Strahlern, auch bei hoher Heizleistung auf einfache Weise, ohne zusätzliche Bauteile oder Kühlung gewährleistet ist.
  • Allgemeine Beschreibung der Erfindung
  • Diese Aufgabe wird ausgehend von einem Infrarotstrahler mit den eingangs genannten Merkmalen erfindungsgemäß dadurch gelöst, dass der Rückleiter in dem von der Vakuumdurchführung umgebenen Teilabschnitt des Strahlerhüllrohres ein Mittel zur Kompensation der Wärmedehnung aufweist.
  • Bei der erfindungsgemäßen Bestrahlungsvorrichtung wird ein sicherer Betrieb des in die Vakuum-Prozesskammer eingeführten, einseitig gesockelten IR-Strahlers durch mehrere, sich ergänzende Merkmale gewährleistet:
    Im Bereich der Vakuumdurchführung wird die Wärmeübertragung auf die Vakuumdichtung reduziert indem das Anschlusselement des Heizleiters in diesem Teilabschnitt des Strahlerhüllrohres in einem wärmeisolierenden Rohrstück geführt wird. Ein derartiges, relativ kurzes Rohrstück kann im Fertigungsablauf ohne großen Aufwand auf das Anschlusselement aufgeschoben werden. Das Anschlusselement wird aus einem geraden Drahtstück gebildet, wobei ein Material für das Anschlusselement bevorzugt wird, das im Vergleich zum Heizleiter eine geringere thermische Leitfähigkeit aufweist. Durch das auf das Anschlusselement des Heizleiters aufgeschobene Rohrstück kann die Temperatur im Bereich der Vakuumdurchführung während des Betriebs des IR-Strahlers im Vergleich zur Temperatur der eingestellten Nennleistung des Heizleiters reduziert werden. Zugleich verhindert das Rohrstück auch das Risiko, dass das Anschlusselement des Heizleiters in Kontakt mit dem Rückleiter kommt.
  • Weiterhin weist der Rückleiter in dem von der Vakuumdurchführung umgebenen Teilabschnitt des Strahlerhüllrohres ein Mittel zur Kompensation der Wärmedehnung auf, was verhindert, dass der Rückleiter sich durch seine thermische Ausdehnung verwindet und dabei in Kontakt mit dem Heizleiter kommt oder auf andere Weise Kurzschlüsse bildet, die neben der elektrischen Störfunktion auch zu lokal besonders starker Wärmeentwicklung führen. Darüber hinaus wird auf diese Weise eine zentrische Führung des Rückleiters auf engem Raum ermöglicht.
  • Durch die Kombination der vorgenannten Merkmale ergeben sich insgesamt ein sicherer Betrieb und eine hohe Lebensdauer der Bestrahlungsvorrichtung mit dem erfindungsgemäßen Infrarotstrahlers auch bei hoher Leistung. Dies gilt und insbesondere beim Einsatz von langen Strahlern, bei denen die Wärmedehnung des Heizleiters und des Rückleiters sich besonders stark auswirken. Es ist mit einer Längenausdehnung von etwa 0,6 mm auf 100 mm Länge für den Heizleiter und den Rückleiter bei einer Temperatur von 1000 °C zu rechnen. Neben der Berücksichtigung der Wärmedehnung ist auch die Maßnahme zur Verringerung der Wärmeübertragung auf die Vakuumdurchführung durch Einsatz des Rohrstücks um das Anschlusselement des Heizleiters zu beachten. Hierdurch sind für die erfindungsgemäße Bestrahlungsvorrichtung zusätzliche Maßnahmen zur Kühlung des IR-Strahlers an seinen Enden nicht erforderlich. Der erfindungsgemäße Infrarotstrahler ist darüber hinaus geeignet auch Vibrationen während des Betriebs standzuhalten, soweit sie im Bereich von 2 Hz bis 10 Hz eine Auslenkung von 0,7 mm vom gesamten Strahler nicht überschreiten. Außerdem kann eine Beschleunigung von 20 m/s2 schadlos auf den Strahler einwirken.
  • In einer bevorzugten Ausführungsform ist das Rohrstück, durch den der Heizleiter in dem von der Vakuumdurchführung umgebenen Teilabschnitt des Strahlerhüllrohres geführt ist, als ein Quarzglasrohr ausgebildet und das Anschlusselement des Heizleiters wird aus einem Draht aus Molybdän oder aus einer Molybdänverbindung gebildet.
  • Quarzglas ist durch seine wärmeisolierende Wirkung ein besonders geeignetes Material. Weiterhin hat Quarzglas eine sehr hohe Temperaturbeständigkeit, so dass auch bei eventuell auftretenden Hitzestaus im Bereich der Vakuumdurchführung keine Verformung diese Rohrstücks eintritt. Grundsätzlich können alternativ zu Quarzglas auch Rohrstücke aus keramischen Hochtemperaturwerkstoffen in Frage kommen. Unter fertigungstechnischen Gesichtspunkten wird jedoch eine geringe Materialvielfalt bevorzugt, so dass Quarzglas, das auch in der Regel für das Strahlerhüllrohr verwendet wird, für das fragliche Rohrstück auch das bevorzugte Material darstellt. Weiterhin besteht das Anschlusselement des Heizleiters aus einem Draht aus Molybdän oder aus einer Molybdänverbindung. Molybdän hat im Vergleich zu Wolfram, das üblicherweise als Material für das Heizfilament verwendet wird, eine geringere thermische Leitfähigkeit, so dass die Verwendung von Molybdän oder einer Molybdänlegierung als Material für das Anschlusselement des Heizleiters zu einer Reduzierung der Temperaturbelastung im Bereich der Vakuumdurchführung beiträgt.
  • Es hat sich bewährt, wenn das Mittel zur Kompensation der Wärmedehnung des Rückleiters als ein Federelement ausgebildet ist.
  • Das Federelement des Rückleiters in dem von der Vakuumdurchführung umgebenen Teilabschnitt des Strahlerhüllrohres ist in der Lage erhebliche Längenänderungen von einigen Zentimetern aufzunehmen, die gerade bei langen Strahlern und zahlreichen Schaltvorgängen während des Betriebs auftreten. Das Federelement trägt daher zum sicheren Betrieb des IR-Strahlers bei.
  • Dabei ist vorteilhafterweise das Federelement in Form einer Drahtwicklung ausgebildet ist, die um das Rohrstück des Anschlusselementes des Heizleiters herum gewickelt ist.
  • Auf diese Weise ist eine kompakte Bauform innerhalb des Teilabschnitt des Strahlerhüllrohres im Bereich um die Vakuumdurchführung möglich.
  • Soweit eine Drahtwicklung als Mittel zur Kompensation der Wärmedehnung des Rückleiters vorgesehen ist, ist es bevorzugt dieses (das Mittel zur Kompensation der Wärmedehnung) und den Rückleiter selbst einstückig als ein Draht aus Molybdän oder aus einer Molybdänverbindung auszubilden.
  • In diesem Fall weist der Rückleiter keine Schweißstellen auf, sondern besteht durchgängig als ein Draht aus Molybdän oder aus einer Molybdänlegierung, der zusätzlich auch als Anschlusselement für den Rückleiter dient und aus dem Strahlerhüllrohr herausgeführt ist. Mit dieser Ausführungsform werden Schweißvorgänge oder andere Verbindungsarten zum Verbinden von Teilabschnitten des Rückleiters vermieden, was auch das Risiko für Fehlstellen an den Verbindungen (Schweißstellen) verringert.
  • Alternativ zu dem Federelement ist das Mittel zur Kompensation der Wärmedehnung des Rückleiters als ein Gleitlager aus Kohlenstoff ausgebildet, das mindestens zwei elektrisch leitfähige Gleitlagerelemente aufweist, die aufeinander gleitend in Kontakt sind, wobei eines der Gleitlagerelemente als Gleitstab und das andere der Gleitlagerelemente als Gleitbuchse ausgeführt ist.
  • Das Gleitlager bildet ein elektrisch leitendes Bauteil, welches eine kraftlose Kompensation der Längenausdehnung des Rückleiters ermöglicht. Die Längenkompensation erfolgt dabei ohne Federwirkung allein durch einen stoffschlüssigen, leitfähigen, gleitenden Kontakt der Gleitelemente untereinander. Kohlenstoff, insbesondere Graphit, ist als Lagerwerkstoff besonders geeignet, da sein Abrieb selbstschmierend wirkt. Er verfügt darüber hinaus über eine gute elektrische Leitfähigkeit.
  • Für Fälle, bei denen sehr große Längenänderungen zu kompensieren sind, können auch mehrere Gleitlager vorgesehen sein. Es hat sich herausgestellt, dass ein solches Bauteil die Anforderungen bezüglich elektrischer Leitfähigkeit, thermischer Beständigkeit und mechanischer Langlebigkeit erfüllt und zur Verlängerung der Lebensdauer von Infrarotstrahlern beiträgt, insbesondere auch von Infrarotstrahlern großer Länge. Derartige Gleitlager können grundsätzlich auch als Mittel zur Kompensation der Wärmedehnung des Heizleiters eingesetzt werden.
  • Als weitere Maßnahme im Sinne eines sicheren Betriebs des erfindungsgemäßen IR-Strahlers wird im geschlossenen Ende des Strahlerhüllrohres ein Stützelement geführt, das mit dem Heizleiter verbunden ist.
  • Das Stützelement ist einerseits in der Glaswand des Hüllrohres fixiert, beispielsweise durch Einschmelzen, und andererseits so mit dem Heizleiter verbunden, dass dieser bei einer thermischen Längenänderung sich im Wesentlichen nur entlang seiner Längsachse bewegt und einem Erschlaffen oder Durchhängen entgegen gewirkt wird.
  • In einer bevorzugten Ausführungsform des Infrarotstrahlers, ist das Stützelement als ein Stab aus Molybdän oder aus einer Molybdänverbindung ausgebildet, der in dem geschlossenen Ende des Strahlerhüllrohres fluchtend mit dem Heizfilament geführt ist.
  • Vorteilhafterweise ist der Stab aus Molybdän oder aus einer Molybdänverbindung dabei form- oder stoffschlüssig mit dem Heizfilament verbunden und die Führung in dem geschlossenen Ende des Strahlerhüllrohres erfolgt mittels einer Quetschung des Strahlerhüllrohres.
  • Der Werkstoff Molybdän (oder eine Molybdänlegierung) hat sich wegen seiner Temperaturbeständigkeit für den Einsatz in IR-Strahlern bewährt. Der Stab wird so positioniert, dass er als Stützelement fluchtend mit dem Heizfilament verläuft und dabei in der Glaswand des Hüllrohres mittels einer Quetschung fixiert ist. Die Verbindung zum Heizfilament ist form - oder stoffschlüssig, wobei beispielsweise eine formschlüssige Verbindung hergestellt wird, indem ein rundes Stäbchen in die Windungen eines gewendelten Heizfilaments eingesteckt ist und von den Windungen umfasst wird. Eine stoffschlüssige Verbindung ist durch Anschweißen des Stützelements an das Heizfilament möglich. Durch diese Maßnahme wird bei einer thermischen Längenänderung des Heizfilaments ein Verbiegen, Erschlaffen, Verdrehen oder Durchhängen des Heizfilaments verhindert.
  • Zur Herstellung der Quetschungen werden Quetschmaschinen eingesetzt, welche beispielsweise zwei um das zu quetschende Strahlerhüllrohr rotierende Brenner und zwei sich gegenüberliegende Quetschbacken aufweisen. Sobald das Strahlerhüllrohr erweicht ist, stoppt die Brenner-Rotation, so dass die Quetschbacken an den Brennern vorbei gegen das Rohr bewegt werden und dieses zusammenpressen, um das darin eingelegte Stützelement (Stäbchen) in der Quetschung einzuschließen.
  • Der erfindungsgemäße Infrarotstrahler erweist sich dann besonders vorteilhaft, wenn der Rückleiter im Abschnitt parallel zum Heizfilament in einem Quarzglasrohr geführt ist.
  • Durch das Quarzglasrohr wird der Rückleiter gegenüber dem Heizleiter isoliert, so dass es zu keinen elektrischen Überschlägen kommen kann. Gleichzeitig wird die Strahlung, die vom Heizfilament ausgeht, durch das den Rückleiter umgebende Quarzglasrohr nur geringfügig abgeschattet, so dass sich praktisch kein wesentlicher Verlust der Strahlungsleistung durch diese Maßnahme ergibt, - wohl aber eine Verbesserung hinsichtlich des sicheren Betriebs des IR-Strahlers.
  • In einer weiteren bevorzugten Ausführungsform wird das Heizfilament von mindestens einem Abstandshalter gegenüber der Innenwand des Strahlerhüllrohres einerseits und gegenüber dem im Quarzglasrohr geführten Rückleiter andererseits abgestützt.
  • Der Abstandshalter kann in Form einer Scheibe aus Tantal vorliegen, die durch Aussparungen oder Schlitze so gestaltet ist, dass sie das Heizfilament und das den Rückleiter führende Quarzglasrohr in einer sicheren Abstand voneinander und von der Innenwand des Strahlerhüllrohres hält. Neben Tantal kommt auch Niob als Material für den Abstandshalter in Frage. Vorteilhaft in diesem Zusammenhang ist die relativ geringe Wärmeleitfähigkeit und ein hoher spezifischer elektrischer Widerstand von Tantal und Niob im Vergleich zu Wolfram oder Molybdän, als Werkstoffe, die für den Heizleiter bzw. den Rückleiter in Frage kommen. Der Abstandshalter kann insbesondere beim vertikalen Einsatz des IR-Strahlers auf einer bestimmten Position entlang der Längsachse des Strahlers gehalten werden indem an der Innenwandung des Strahlerhüllrohres kleine Erhebungen aus Glas angebracht sind. Gerade bei langen Strahlern sind derartige Abstandshalter von Vorteil um eine geordnete Führung insbesondere des Heizleiters über die Länge des Strahlers zu gewährleisten, so dass die Gefahr von Kurzschlüssen durch Verdrehen oder Durchhängen des Heizleiters ausgeschlossen wird.
  • Ausführunqsbeispiel
  • Nachfolgend wird die Erfindung anhand einer Patentzeichnung und eines Ausführungsbeispiels näher erläutert. Im Einzelnen zeigt in schematischer Darstellung:
  • Figur 1
    eine erste Ausführungsform des Infrarotstrahlers für die erfindungsgemäße Bestrahlungsvorrichtung mit einem Rückleiter mit Federelement,
    Figur 2
    eine alternative Ausführungsform des Infrarotstrahlers mit einem Rückleiter mit Gleitlager im Bereich der Vakuumdurchführung,
    Figur 3
    eine Detailansicht von Ausschnitt A der Figuren 1 und 2 mit einem Stützelement am geschlossenen Ende des Strahlerhüllrohres,
    Figur 4
    einen Abstandshalter zum Einsatz in den Infrarotstrahler.
  • Figur 1 zeigt schematisch einen Infrarotstrahler 1 mit einem axialsymmetrischen Strahlerhüllrohr 2 aus Quarzglas mit rundem Querschnitt (Außendurchmesser 19 mm). Der Infrarotstrahler 1 ist mittels einer Vakuumdurchführung 3, die einen Dichtring 4 und eine Art Stopfbuchse 5 umfasst, in der Öffnung einer Vakuum-Prozesskammer gehalten und ragt mit seinem geschlossenen Ende in die Vakuum-Prozesskammer hinein. Der IR-Strahler 1 ist für eine Betriebstemperatur oberhalb von 800 °C ausgelegt.
  • Im Strahlerhüllrohr 2 ist ein wendelförmiger Heizleiter 6 (Heizfilament) aus Wolfram mit einer (beheizten) Länge von 140 cm und ein Rückleiter 7 (Stromrückführung) angeordnet. Der Rückleiter 7 ist parallel zum beheizten Bereich des Heizleiters 6 in einem Quarzglasrohr 8 geführt. Im Bereich des geschlossenen Endes des Strahlerhüllrohres 2 sind Heizleiter 6 und Rückleiter 7 über ein kurzes Verbindungsstück 9 miteinander verbunden. Weiterhin befindet sich dort ein Stützelement 10, das eine Halterung für den Heizleiter 6 darstellt und das im Strahlerhüllrohr 2 fixiert ist.
  • Im Teilabschnitt des Strahlerhüllrohres, der im Bereich der Vakuumdurchführung 3 liegt, ist ein kurzes Rohr 11 von 60 bis 80 mm Länge aus Quarzglas auf das Anschlusselement 12 des Heizleiters 6 aufgeschoben, was die Wärmeübertragung auf die Dichtung 4 der Vakuumdurchführung 3 stark reduziert. Die Temperatur liegt im Bereich der Vakuumdurchführung 3 aufgrund des auf das Anschlusselement 12 aufgeschobenen Rohres 11 aus Quarzglas unter etwa 250 °C, während der Heizleiter 6 im Bereich der Nutzlänge des IR-Strahlers Temperaturen von bis zu 2.500 °C erreicht. An den Heizleiter 6 und an den Rückleiter 7 sind jeweils elektrische Anschlusselemente 12, 12' angeschweißt, die über außerhalb der Vakuumdurchführung 3 liegende Quetschungen 13 aus den Strahlerhüllrohr 2 heraus zu einem nicht dargestellten Anschlusssockel geführt sind.
  • Der Rückleiter 7 weist im Bereich der Vakuumdurchführung 3 ein Federelement 14 in Form einer Drahtwicklung auf. Die Drahtwicklung umfasst bis zu acht Windungen auf einem axialen Längenabschnitt von 15 mm und ist um das kurze Quarzglasrohr 11, das in diesem Abschnitt auf das Anschlusselement 12 des Heizleiters 6 aufgeschoben ist, herum gewickelt. Durch die Drahtwicklung wird die thermische Längenausdehnung des Rückleiters 7 ausgeglichen, wobei von einer Ausdehnung von 8 mm beim Betrieb des IR-Strahlers bei 2.500 °C auszugehen ist.
  • Figur 2 zeigt nur den Teilbereich des IR-Strahlers 1, der im Bereich der Vakuumdurchführung 3 liegt. Im Unterschied zu Figur 1 ist das Mittel zur Kompensation der Wärmedehnung kein Federelement, sondern ein Gleitlager 15 aus hochreinem technischem Kohlenstoff, das mit dem Rückleiter 7 verbunden ist. Das Gleitlager 15 ist ein schleifgelagertes Distanzausgleichselement mit einer Gleitbuchse 16 mit zwei Durchgangsbohrungen, die paarweise jeweils einen Gleitstab 17 aus Molybdän in Gleitpassung H7/h7 aufnehmen. Die Gleitstäbe haben einen Durchmesser von 1,4 mm. Ein Gleitstab ist mit dem Molybdändraht des Rückleiters 7 durch Anschweißen verbunden, der andere Gleitstab ist mit dem elektrischen Anschlusselement 12' des Rückleiters 7, der aus dem stirnseitigen Ende des Hüllrohres 2 herausgeführt ist, ebenfalls durch Anschweißen verbunden.
  • Zum Ausgleich des Unterschieds im Durchmesser von Molybdändraht des Rückleiters 7 (Drahtdurchmesser etwa 0,9 mm) zum Molybdänstab des Gleitlages (Durchmesser 1,4 mm) wird der Molybdändraht an der Anschweißstelle mit wenigen Windungen auf den Gleitstab aufgewickelt und anschließend verschweißt. Die dem Molybdändraht-Anschluss des Rückleiters 7 bzw. dem Anschluss an das Anschlusselement 12' gegenüberliegenden Enden der Gleitstäbe ragen aus dem Gleitbuchsenteil jeweils heraus und sind mit einer Verdickung 18 versehen, die das Durchrutschen der Gleitstäbe 17 aus der Gleitbuchse 16 verhindert. Das Gleitlager 15 bildet ein elektrisch leitendes Bauteil zwischen dem Rückleiter 7 und dem Anschlusselement 12', was eine kraftlose Kompensation der Längenausdehnung des Rückleiters 7 während des Betriebes erlaubt. Die Längenkompensation erfolgt dabei ohne Federwirkung allein durch einen stoffschlüssigen, leitfähigen, gleitenden Kontakt der Gleitelemente untereinander.
  • In Figur 3 ist der Ausschnitt A von Figur 1 mit dem geschlossenen Endes des Strahlerhüllrohres 2 in einer Detailansicht dargestellt. Ein als rundes Stäbchen aus Molybdän ausgebildetes Stützelement 10, ist in der Glaswand des Hüllrohres 2 mittels einer Quetschung 21 fixiert. Zusätzlich wird das Stäbchen von einer Stützwendel 19 gehalten, die dem Innendurchmesser des Strahlerhüllrohres 2 angepasst ist und an der Innenwandung des Hüllrohres 2 anliegt. Der Durchmesser des Stäbchen liegt bei 0,875 mm und ist so abgestimmt, dass es formschlüssig in die Windungen des Heizfilaments 6 eingesteckt werden kann. Das Stäbchen ist so ausgerichtet, dass das Heizfilament 6 auch bei thermischer Ausdehnung und dem damit einhergehenden Verlust an Steifigkeit nicht durchhängt, sondern im Wesentlichen fluchtend geführt wird, also in seiner radialen Position verbleibt. Damit ist das Risiko, dass durch thermische Ausdehnung das Heizfilament 6 in diesem Abschnitt den Rückleiter 7 berührt und es zu Kurzschlüssen kommt, minimiert. In Figur 3 ist weiterhin ein Verbindungsstück 9 zwischen Heizleiter 6 und Rückleiter 7 erkennbar, das in diesem Fall ein Drahtstück aus Molybdän mit wenigen Wicklungen an beiden Enden, die an den Heizleiter 6 bzw. an den Rückleiter 7 angeschweißt sind. Als Verbindungsstück 9 ist jedoch auch ein gerader Draht ohne Wicklungen oder ein anderweitiges Blechteil einsetzbar, das an den Heiz- bzw. Rückleiter angeschweißt wird und die entsprechenden elektrischen Anforderungen erfüllt.
  • Figur 4 zeigt einen Querschnitt durch das Strahlerhüllrohr 2 im Bereich der beheizten Länge, wo mehrere Abstandshalter 20 aus Tantal zwecks exakter Positionierung vom Heizleiter 6 und Rückleiter 7 im Strahlerhüllrohr 2 vorgesehen sind. Der Abstandshalter 20 stützt sich gegenüber der Innenwand des Strahlerhüllrohres 2 einerseits und gegenüber dem im Quarzglasrohr 8 geführten Rückleiter 7 andererseits ab, wobei der Abstandhalter 20 einen Führungsschlitz 21 und eine offene, kreisförmige Aussparung 22 aufweist. Im Führungsschlitz 21 wird der Heizleiter 6 geführt und die offene, kreisförmige Aussparung 22 nimmt das den Rückleiter 7 umgebende Quarzglasrohr 8 auf. Auf diese Weise wird der Heizleiter 6 und das den Rückleiter 7 führende Quarzglasrohr 8 in einem sicheren Abstand voneinander und von der Innenwand des Strahlerhüllrohres 2 gehalten. Der Abstandshalter 20 ist an der Innenwandung des Strahlerhüllrohres durch kleine Erhebungen oder Noppen 23 aus Glas gehalten, die den Abstandhalter 20 insbesondere beim vertikalen Einsatz des IR-Strahlers auf einer bestimmten Position entlang der Längsachse des Strahlers fixieren. Ein oder mehrere Abstandshalter dieser Art gewährleisten gerade bei langen Strahlern eine geordnete Führung insbesondere des Heizleiters über die Länge des Strahlers.

Claims (11)

  1. Bestrahlungsvorrichtung zur Einkopplung von Infrarot-Strahlung in eine Vakuum-Prozesskammer, mit einem einseitig gesockelten Infrarotstrahler, der ein Strahlerhüllrohr (2) in Form eines Rundrohres aus Glas umfasst, von dem ein geschlossenes Ende dazu ausgebildet ist, in die Vakuum-Prozesskammer hineinzuragen, und mit einer Vakuumdurchführung (3) zur Halterung und gasdichten Durchführung des Strahlerhüllrohres (2) durch eine Öffnung der Vakuum-Prozesskammer, wobei in dem Strahlerhüllrohr (2) ein als ein Heizfilament ausgebildeter Heizleiter (6) und ein als Stromrückführung ausgebildeter Rückleiter (7) angeordnet sind, wobei der Heizleiter (6) in dem von der Vakuumdurchführung (3) umgebenen Teilabschnitt des Strahlerhüllrohres (2) ein Anschlusselement aufweist, das aus dem Strahlerhüllrohr (2) herausgeführt ist, wobei das Anschlusselement des Heizleiters (6) durch ein Rohrstück geführt ist, dadurch gekennzeichnet, dass der Rückleiter (7) in dem von der Vakuumdurchführung (3) umgebenen Teilabschnitt des Strahlerhüllrohres (2) ein Mittel zur Kompensation der Wärmedehnung aufweist.
  2. Infrarotstrahler nach Anspruch 1, dadurch gekennzeichnet, dass das Rohrstück, durch das das Anschlusselement des Heizleiters (6) geführt ist, als ein Quarzglasrohr (8) und das Anschlusselement des Heizleiters (6) aus einem Draht aus Molybdän oder aus einer Molybdänverbindung ausgebildet ist.
  3. Infrarotstrahler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Mittel zur Kompensation der Wärmedehnung des Rückleiters (7) als ein Federelement (14) ausgebildet ist.
  4. Infrarotstrahler nach Anspruch 3, dadurch gekennzeichnet, dass das Federelement (14) in Form einer Drahtwicklung ausgebildet ist, die um das Rohrstück des Anschlusselementes des Heizleiters (6) gewickelt ist.
  5. Infrarotstrahler nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Mittel zur Kompensation der Wärmedehnung des Rückleiters (7) und der Rückleiter (7) einstückig als ein Draht aus Molybdän oder aus einer Molybdänverbindung ausgebildet sind.
  6. Infrarotstrahler nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Mittel zur Kompensation der Wärmedehnung des Rückleiters (7) als ein Gleitlager (15) aus Kohlenstoff ausgebildet ist, das mindestens zwei elektrisch leitfähige Gleitlagerelemente aufweist, die aufeinander gleitend in Kontakt sind, wobei eines der Gleitlagerelemente als Gleitstab (17) und das andere der Gleitlagerelemente als Gleitbuchse (16) ausgeführt ist.
  7. Infrarotstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem geschlossenen Ende des Strahlerhüllrohres (2) ein Stützelement (10) geführt ist, das mit dem Heizleiter (6) verbunden ist.
  8. Infrarotstrahler nach Anspruch 7, dadurch gekennzeichnet, dass das Stützelement (10) als ein Stab aus Molybdän oder aus einer Molybdänverbindung ausgebildet ist, der in dem geschlossenen Ende des Strahlerhüllrohres (2) fluchtend mit dem Heizleiter (6) geführt ist.
  9. Infrarotstrahler nach Anspruch 8, dadurch gekennzeichnet, dass der Stab aus Molybdän oder aus einer Molybdänverbindung form- oder stoffschlüssig mit dem Heizleiter (6) verbunden ist und die Führung in dem geschlossenen Ende des Strahlerhüllrohres (2) mittels einer Quetschung der Strahlerhüllrohres (2) erfolgt.
  10. Infrarotstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rückleiter (7) im Abschnitt parallel zum Heizleiter in einem Quarzglasrohr (8) geführt ist.
  11. Infrarotstrahler nach Anspruch 10, dadurch gekennzeichnet, dass der Heizleiter (6) von mindestens einem Abstandshalter (20) gegenüber der Innenwand des Strahlerhüllrohres (2) einerseits und gegenüber dem im Quarzglasrohr (8) geführten Rückleiter (7) andererseits abgestützt wird.
EP15823162.1A 2015-02-25 2015-12-23 Bestrahlungsvorrichtung mit einem einseitig gesockelten infrarotstrahler, zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer Not-in-force EP3262672B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015102665.1A DE102015102665A1 (de) 2015-02-25 2015-02-25 Bestrahlungsvorrichtung zur Einkopplung von Infrarot-Strahlung in eine Vakuum-Prozesskammer mit einem einseitig gesockelten Infrarotstrahler
PCT/EP2015/081155 WO2016134808A1 (de) 2015-02-25 2015-12-23 Bestrahlungsvorrichtung zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer mit einem einseitig gesockelten infrarotstrahler

Publications (2)

Publication Number Publication Date
EP3262672A1 EP3262672A1 (de) 2018-01-03
EP3262672B1 true EP3262672B1 (de) 2019-02-06

Family

ID=55083392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15823162.1A Not-in-force EP3262672B1 (de) 2015-02-25 2015-12-23 Bestrahlungsvorrichtung mit einem einseitig gesockelten infrarotstrahler, zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer

Country Status (6)

Country Link
US (1) US20180054856A1 (de)
EP (1) EP3262672B1 (de)
JP (1) JP2018508100A (de)
CN (1) CN107210186B (de)
DE (1) DE102015102665A1 (de)
WO (1) WO2016134808A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070382A1 (en) * 2017-10-06 2019-04-11 Applied Materials, Inc. INFRARED LAMP RADIATION PROFILE CONTROL BY DESIGNING AND POSITIONING LAMP FILAMENT
EP3664121A1 (de) 2018-12-05 2020-06-10 ASML Netherlands B.V. Hochspannungsvakuumdurchführung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124713A (en) * 1964-03-10 Spring-loaded lamp
DE1969200U (de) * 1967-04-06 1967-09-28 Saalmann Fa Gerhard Elektrischer strahler.
CN2263430Y (zh) * 1996-12-24 1997-09-24 郭建国 吸收式红外电热板
WO2001035699A1 (de) 1999-11-09 2001-05-17 Centrotherm Elektrische Anlagen Gmbh & Co. Strahlungsheizung mit einer hohen infrarot-strahlungsleistung für bearbeitungskammern
DE10137928A1 (de) * 2001-08-07 2003-03-06 Heraeus Noblelight Gmbh Infrarot-Strahler mit einem Zwillings-Hüllrohr
CN201004717Y (zh) * 2006-02-15 2008-01-09 杭州五源科技实业有限公司 高能量全波段红外辐射加热器
DE102008063677B4 (de) * 2008-12-19 2012-10-04 Heraeus Noblelight Gmbh Infrarotstrahler und Verwendung des Infrarotstrahlers in einer Prozesskammer
CN201766730U (zh) * 2010-08-26 2011-03-16 王孝来 一种单端出线碳纤维电热管
DE102011115841A1 (de) * 2010-11-19 2012-05-24 Heraeus Noblelight Gmbh Bestrahlungsvorrichtung
DE102014105769B4 (de) * 2014-01-28 2015-10-15 Heraeus Noblelight Gmbh Infrarotstrahler mit gleitgelagertem Heizfilament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107210186A (zh) 2017-09-26
WO2016134808A1 (de) 2016-09-01
JP2018508100A (ja) 2018-03-22
US20180054856A1 (en) 2018-02-22
EP3262672A1 (de) 2018-01-03
CN107210186B (zh) 2018-09-14
DE102015102665A1 (de) 2016-08-25

Similar Documents

Publication Publication Date Title
DE10029437B4 (de) Infrarotstrahler und Verfahren zum Betreiben eines solchen Infrarotstrahlers
DE10041564C2 (de) Kühlbares Infrarotstrahlerelement
EP2359386A1 (de) Infrarotstrahler-anordnung für hochtemperatur-vakuumprozesse
DE4438870B4 (de) Infrarotstrahler mit langgestrecktem Widerstandskörper als Strahlenquelle
EP2641263B1 (de) Bestrahlungsvorrichtung
EP3262672B1 (de) Bestrahlungsvorrichtung mit einem einseitig gesockelten infrarotstrahler, zur einkopplung von infrarot-strahlung in eine vakuum-prozesskammer
DE4242123A1 (de) Hochdruckentladungslampe mit einem keramischen Entladungsgefäß
WO2010124904A1 (de) Entladungslampe
EP0569824A1 (de) Elektrische Lampe
DE10137928A1 (de) Infrarot-Strahler mit einem Zwillings-Hüllrohr
DE102014105769B4 (de) Infrarotstrahler mit gleitgelagertem Heizfilament
DE102014108919B4 (de) Düsenheizung mit einer Rohrwendelpatrone
DE1929622A1 (de) Elektrische Lampe in Langform mit abgebogenem Ende
DE102005046483A1 (de) Entladungslampe
EP0321867B1 (de) Hochdruckentladungslampe
DE60028321T2 (de) Elektrische glühlampe
DE2515607C2 (de) Einrichtung zur Erzeugung von UV-C-Strahlung mit hoher spektraler Strahldichte
EP0923109A1 (de) Stiftsockel-Niedervolt-Halogenlampe mit Stromzuführungsleiter
DE102011108421B3 (de) Infrarotstrahler
EP2052399B1 (de) Verfahren zum fertigen und einbringen eines elektrodengestells mit einer lampenwendel in ein entladungsgefäss einer entladungslampe
WO2008006763A2 (de) Stromdurchführungssystem für eine lampe
DE102004011555B3 (de) Gasentladungslampe
WO2009146751A1 (de) Leitungsdurchführung mit gekrümmtem folienprofil
DE102010023000B3 (de) Strahler mit Quarzglaskolben und Stromdurchführung
DE3339190A1 (de) Gluehlampe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1095414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007919

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190507

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007919

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015007919

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015007919

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015007919

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1095414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206