EP3261869A1 - Hybridantriebsstrang - Google Patents

Hybridantriebsstrang

Info

Publication number
EP3261869A1
EP3261869A1 EP16708355.9A EP16708355A EP3261869A1 EP 3261869 A1 EP3261869 A1 EP 3261869A1 EP 16708355 A EP16708355 A EP 16708355A EP 3261869 A1 EP3261869 A1 EP 3261869A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
electric machine
drive train
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP16708355.9A
Other languages
English (en)
French (fr)
Inventor
Thorsten MARINGER
Marco Brun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutz AG filed Critical Deutz AG
Publication of EP3261869A1 publication Critical patent/EP3261869A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/103Infinitely variable gearings of fluid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • B60W30/1888Control of power take off [PTO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • B60K2025/065Auxiliary drives from the transmission power take-off the transmission being fluidic, e.g. hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/20Energy converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the invention relates to a hybrid drive train of a vehicle, in particular a mobile work machine with an internal combustion engine and an electric machine.
  • a hybrid powertrain is known from ATZ 7-8 / 2002, pages 664-674.
  • the electric machine is connected to the internal combustion engine and a hydraulic pump.
  • Construction machines are usually operated in their work phases with high constant rated speeds of the internal combustion engine in order to provide the maximum system performance at high dynamic load peaks at any time.
  • a P-grade is usually set in the engine control unit, which raises the working speed further, as soon as the maximum utilization of the internal combustion engine is not reached. If the load is higher than the maximum load of the internal combustion engine, so that the internal combustion engine is pressed or even threatens to be strangled, usually engages a load limit control, which reduces the load of the internal combustion engine at the expense of the work to be done the construction machine to the extent Induces that the rated speed can be kept stationary.
  • the object is to develop a method of increasing the torque of the entire drive train during acceleration phases of the internal combustion engine from a lower rotational speed to a higher rotational speed, with which the nominal rotational speed of construction machinery can be dynamically controlled during the working phases, without sacrificing dynamic load peaks to suffer.
  • the system must be able to accelerate dynamically from lower to higher rated speeds even with very dynamic load requirements.
  • the rated speed of construction machinery can be maintained over a wide range at the lowest possible and efficient speed in terms of fuel consumption.
  • the invention is also based on the object to improve a hybrid powertrain of a vehicle.
  • the object is achieved by a method according to claim 1 or by a device according to claim 3.
  • the illustrated embodiment employs the electric machine as an integrated starter and generator, a torque assistance of the internal combustion engine takes place in such a way that a high torque is available for a short time ( ⁇ 1 sec.).
  • the conventional drive train of a mobile work machine consisting of an internal combustion engine and hydraulic drive units, is extended by a parallel-arranged electric machine, which spatially replaces the flywheel.
  • the electric machine is powered by a power electronics from an electrical energy storage and can be operated in all four quadrants.
  • the diesel-electric hybrid is operated speed-controlled in the given arrangement. That is, the driver's request is interpreted as a target speed. This mode of operation has established itself above all in the field of mobile machines.
  • the diesel-electric hybrid should adjust the desired speed of the device operator, even when the load is variable, by adjusting the torque generated by the diesel-electric hybrid accordingly.
  • the load is generated by the working hydraulics, the drive load and other outputs.
  • the start of the internal combustion engine (VKM) is compared to the conventional drive not a separate starter motor, but directly on the electric machine. Unlike in the known powertrain, the internal combustion engine can be started within a very short period, which is approximately in the region of or below 200 milliseconds. In this way, the internal combustion engine can be operated in automatic start / stop mode.
  • the start / stop operation causes the internal combustion engine to operate only when it is actually needed. If the internal combustion engine is at low idle for a certain period of time, it will be shut down by the system if desired.
  • Operator components may be the accelerator pedal, the steering device, the actuation unit of the working hydraulics or the joystick.
  • the electric machine is operated by a motor to increase the torque of the entire drive.
  • the required torque which is necessary to maintain the desired speed of the device operator, is calculated by a control algorithm and implemented by the power electronics.
  • the system takes into account all relevant states in the system such as state of charge of the energy storage, temperatures of individual components, etc.
  • the rated speed is the desired speed of the internal combustion engine at full load.
  • the working speed is the currently set speed with consideration of the P degree.
  • the work phases are phases in which the construction machine is used, that is, the internal combustion engine is loaded. In phases in which you do not work with the construction machine, the rated speed is usually placed in the low idle.
  • This function of dynamic speed reduction allows the use of a reduced-speed internal combustion engine.
  • the power remains the same, which is required by the operator.
  • the speed is lowered, but increases in accordance with the torque of the internal combustion engine.
  • Short-term peak performance can be covered by the support of the motor-driven electric machine, so that the internal combustion engine no longer has to be designed for the required / desired peak power.
  • top performances which are required in any case even at high nominal speeds (eg 2000 rpm), must continue to be provided by the internal combustion engine as far as possible.
  • additional power peaks are added, which arise during the acceleration phases.
  • a motor power can be used to increase the dynamics the electric machine are applied until this limitation is no longer necessary by sufficient boost pressure.
  • the charging of the electrical energy storage takes place by the generation of a generator torque of the electric machine during operation.
  • the generated torque is dependent on the state of charge of the energy storage, the utilization of the internal combustion engine and various system conditions.
  • the torque can be switched as a manipulated variable of a controller or controlled.
  • Recuperation generally refers to the recovery of mechanical braking energy into electrical energy.
  • the braking energy is achieved by applying a braking torque to the electric machine.
  • the high engine speeds are avoided, on the other hand, the braking energy is fed via the electric machine and the power electronics in the electrical energy storage.
  • hybrid powertrains of mobile machines consisting of the components of the invention internal combustion engine (diesel engine), electric machine with inverter, electric energy storage and hydraulic drive and drive, is used to reduce CO 2 - emissions and fuel consumption, inter alia, the function of load point shift.
  • the optimal target Speed determined and transferred as a setpoint to the downstream speed controller.
  • the optimum setpoint speed is determined on the basis of the information from the HMI interfaces (Human Machine Interface).
  • HMI interfaces Human Machine Interface
  • the state of charge of the energy storage z. B. does not matter.
  • the speed controller of the internal combustion engine is still in the engine control unit.
  • the speed specification ie the setpoint speed, is determined in the hybrid control unit.
  • the internal combustion engine is speed-controlled.
  • the electric machine is torque-controlled.
  • the target torque is calculated from the speed difference (see position ⁇ in FIG. 5).
  • a high power reserve is maintained in order to respond adequately to the load changes due to the very dynamic load changes of the driving or working drive during operation of the internal combustion engine.
  • this power reserve is necessary to reduce the duration of the boost pressure build-up.
  • the hybrid powertrain it is possible to save this power reserve Significantly reduce internal combustion engine.
  • a motor power of the electric machine is applied until the internal combustion engine is at an operating point in which it can independently apply the requested power. This strategy is particularly favored by the rapid adjustment of the moment of the electric machine.
  • FIG. 3 shows in a characteristic diagram the function "load point shift"
  • FIG. 4 shows a system topology of a mildly hybrid system of a construction machine, by way of example with an electric electric machine and energy storage
  • Figure 5 schematic diagram for determining the target speed of the internal combustion engine with dynamic
  • An internal combustion engine 1 which is in particular a self-igniting internal combustion engine (diesel engine), is directly coupled to an electric machine 2, which is connected to the crankshaft of the internal combustion engine 1 instead of a flywheel.
  • the stator of this electric machine 2 is connected to the crankcase and the rotor is connected to the crankshaft.
  • the rotor is further connected to a gear pump 3 and further to an axial piston pump 4.
  • the output of the gear pump 3 is connected via proportional valves 5 (for example) with a working cylinder 6, a lifting cylinder 7 and a steering cylinder 8.
  • Gear pump 3 and axial piston pump 4 are hydraulic working machines.
  • the electric machine 2 is connected via a Vierquadrantenumrichter 12 with an electrical energy storage 13. Furthermore, a hybrid control unit 21 is provided with which all individual control devices of the components, in particular of the drive train and of the storage line, can be coordinated.
  • P1 - P2 corresponds to the dynamic speed reduction when the load (power) remains stationary.
  • P2 - P3 corresponds to the course with dynamic speed reduction and support of the electric machine (2).
  • P2 - P4 corresponds to the course with dynamic speed reduction, but without support of the electric machine (2).
  • FIG. 4 shows, in combination with FIG. 5, how the nominal rotational speed of the internal combustion engine of a construction machine can be accelerated highly dynamically during a working phase despite dynamic load peaks.
  • the internal combustion engine is extended to a mild hybrid system.
  • the extension consists of an energy storage device 13 and an electric machine 2, which can be connected both directly to the crankshaft and to a PTO (power take-off).
  • the electric machine 2 with the associated energy storage 13 can be designed both electrically and hydraulically.
  • the electric machine 2 operates in the delivery or absorption of energy in comparison to the internal combustion engine 1 highly dynamically.
  • the internal combustion engine 1 operates during its work phases with the lowest possible speed.
  • the internal combustion engine 1 is supported during the acceleration process to the higher target speed of the electric machine 2 in parallel high dynamic, z.
  • the energy storage device 13 is recharged by means of the electric machine 2, for example, by the generator operation of the electric machine 2.
  • the load requirement must be be detected as early as possible in order to support the Verbrennungskraftma- machine 1 very quickly with the help of the electric machine 2 in the acceleration phase can. This is done fastest by evaluating the signals of the HMI interfaces 20, such. B. the joysticks 20, operated by the operator.
  • the electric machine 2 of mildly hybrid drive supports the internal combustion engine 1 highly dynamically during the acceleration phases the desired higher rated speed.
  • the electric machine 2 is connected directly to the crankshaft or to a PTO.
  • the electric machine 2 with its energy storage 13 can be designed both electrically and hydraulically.
  • batteries and / or capacitors and / or hydraulic accumulator come into consideration.
  • the method and the device are suitable in principle for all construction machines that are currently operating at high rated speeds during the work phases due to the provision of power reserves in dynamic load requirements see.
  • a special application takes place, for example, in an industrial excavator.
  • the HMI signal is received via the CAN bus from the hybrid control unit, the transmission rate is in the range of about 10 m sec or less.
  • the HMI signal represents z. B. is the deflection of a joystick 20 from left to right and is transmitted via CAN as a signal with a range of - 100% to + 100%.
  • all HMI signals are read by the hybrid control unit, which lead to an increase in the load on the internal combustion engine.
  • All HMI signals are evaluated in the hybrid control unit 21 and calculated therefrom a desired speed for the internal combustion engine 1. The evaluation takes place via maps and a weighting factor for each HMI signal.
  • Rapid change of an HMI signal also results in a rapid change of the setpoint speed R in FIG. 5.
  • the rapid change of the HMI signal always means a rapid load increase for the internal combustion engine 1, which counteracts a rapid adaptation of the actual speed to the target speed.
  • the speed difference is used to calculate the desired torque of the electric machine 2 - ⁇ in FIG. 5.
  • HMI Human Machine Interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft einen Parallelhybrid-Antriebsstrang, insbesondere für eine Arbeitsmaschine, mit einem Verbrennungsmotor (1), einer elektrischen Maschine (2) sowie hydraulischen Aggregate (3, 4, 5, 9) zum Antrieb von Arbeitsgeräten (6-8) und zur Bewegung der Arbeitsmaschine. Zur Erhöhung des Wirkungsgrades wird die Drehzahl des Verbrennungsmotors abgesenkt, also der Lastpunkt verschoben. Erhöhte Leistungsanforderungen werden über eine Fahrereingabe erkannt und liefern eine Soll-Drehzahl. Die elektrische Maschine unterstützt die Beschleunigung des Verbrennungsmotors auf diese Soll-Drehzahl.

Description

Hybridantriebsstrang
B E S C H R E I B U N G
Die Erfindung betrifft einen Hybridantriebsstrang eines Fahrzeugs, insbesondere einer mobilen Arbeitsmaschine mit einer Verbrennungskraftmaschine und einer Elektromaschine. Ein derartiger Hybridantriebsstrang ist aus der ATZ 7-8/2002, Seiten 664 - 674 bekannt. Dabei ist die Elektromaschine mit der Verbrennungskraftmaschine und einer Hydraulikpumpe verschaltet.
Baumaschinen werden üblicherweise in ihren Arbeitsphasen mit hohen konstanten Nenndrehzahlen der Verbrennungskraftmaschine betrieben, um jederzeit bei hochdynamischen Belastungsspitzen die maximale Systemleistung zur Verfügung stellen zu können. Darüber hinaus wird meist im Motorsteuergerät ein P-Grad eingestellt, der die Arbeitsdrehzahl weiter anhebt, sobald die maximale Auslastung der Verbrennungskraftmaschine nicht erreicht ist. Ist die Belastung höher als die maximale Auslastung der Verbrennungskraftmaschine, so dass die Verbrennungskraftmaschine gedrückt wird oder gar droht abgewürgt zu werden, greift in der Regel eine Grenzlastregelung ein, die die Belastung der Verbrennungskraftmaschine auf Kosten der zu verrichtenden Arbeit der Baumaschine auf das Maß re- duziert, dass die Nenndrehzahl stationär gehalten werden kann.
Es wird also über die gesamte Arbeitsphase eine hohe Nenndrehzahl eingestellt, die aber nur bei Belastungsspitzen wirklich erforderlich ist. In den übrigen Bereichen würde eine geringere Nenndrehzahl der Verbrennungs- kraftmaschine ausreichen, um die gerade geforderte Leistung zur Verfügung zu stellen. Die Verringerung der Nenndrehzahl hat signifikanten Ein- fluss auf die Verringerung des Kraftstoffverbrauchs der Verbrennungskraft-
BESTÄTIGUNGSKOPIE maschine und somit der Reduktion der Kohlendioxid-Emissionen (Verminderung des Treibhauseffekts, geringere Umweltbelastung).
Würde man die Nenndrehzahl stets so tief wie gerade nötig halten und nur bei entsprechenden Belastungsphasen, die sehr dynamisch angefordert werden können, um das nötige Maß anheben, würde es die Verbrennungskraftmaschine oftmals nicht alleine schaffen, die Nenndrehzahl so dynamisch zu erhöhen, dass die geforderte Leistung im gleichen Maße zur Verfügung gestellt werden kann, wie es bei einer dauerhaften hohen Nenn- drehzahl der Fall wäre.
Während die Verbrennungskraftmaschine also in dem Fall versucht, auf die neüe höhere Nenndrehzahl zu beschleunigen, wirkt die aktuell anstehende Last an der Verbrennungskraftmaschine der Beschleunigung entgegen und kann sogar durchaus dazu führen, das die Drehzahl abfällt statt steigt, weil die Verbrennungskraftmaschine nicht schnell genug das notwendige Drehmoment aufbauen kann.
Aufgabe ist es, ein Verfahren zu entwickeln, das Drehmoment des gesam- ten Antriebsstranges während Beschleunigungsphasen der Verbrennungskraftmaschine von einer niedrigeren Drehzahl auf eine höhere Drehzahl zu erhöhen, mit dem die Nenndrehzahl bei Baumaschinen während den Arbeitsphasen dynamisch geregelt werden kann, ohne Einbußen bei dynamischen Belastungsspitzen zu erleiden. Dazu muss das System auch bei sehr dynamischen Lastanforderungen in der Lage sein, von niedrigeren auf höhere Nenndrehzahlen hochdynamisch beschleunigen zu können. Somit kann die Nenndrehzahl bei Baumaschinen über weite Bereiche auf einer möglichst niedrigen und effizienten Drehzahl bezüglich des Kraftstoffverbrauchs gehalten werden.
Der Erfindung liegt auch die Aufgabe zugrunde, einen Hybridantriebsstrang eines Fahrzeugs zu verbessern. Gelöst wird die Aufgabe durch ein Verfahren gemäß Anspruch 1 bzw. durch eine Vorrichtung gemäß Anspruch 3.
Dies wird u. a. dadurch erreicht, dass der Antriebsstrang eine hydraulische Arbeitsmaschine aufweist.
Gemäß der vorliegenden Erfindung werden folgende Vorteile erzielt:
- Kraftstoffersparnis durch Vergrößerung der mittleren Auslastung der Ver- brennungskraftmaschine, größeres Drehmoment bei kleinerer Drehzahl
- Verbesserung der dynamischen Eigenschaften des Antriebs.
Die dargestellten Ausgestaltung setzt die Elektromaschine als integrierten Starter und Generator ein, eine Drehmomentunterstützung der Verbren- nungskraftmaschine erfolgt in der Weise, dass ein hohes Drehmoment für kurze Zeit (< 1 sec.) zur Verfügung steht.
Anordnung der Komponenten
Der konventionelle Antriebsstrang einer mobilen Arbeitsmaschine, beste- hend aus einer Verbrennungskraftmaschine und hydraulischen Antriebseinheiten, wird um eine parallel angeordnete Elektromaschine erweitert, die räumlich an die Stelle des Schwungrades tritt. Die Elektromaschine wird über eine Leistungselektronik aus einem elektrischen Energiespeicher gespeist und kann in allen vier Quadranten betrieben werden.
Der Diesel-Elektro-Hybrid wird in der gegebenen Anordnung drehzahlgeregelt betrieben. Das heißt, der Fahrerwunsch wird als Soll-Drehzahl interpretiert. Diese Betriebsart hat sich vor allem im Bereich der mobilen Arbeitsmaschinen etabliert. Dabei soll der Diesel-Elektro-Hybrid auch bei wechselnder Belastung möglichst die vom Gerätebediener gewünschte Drehzahl einregeln, indem das vom Diesel-Elektro-Hybrid erzeugte Moment entsprechend angepasst wird. Die Belastung wird durch die Arbeitshydraulik, die Antriebsbelastung und andere Abtriebe erzeugt. Der Start der Verbrennungskraftmaschine (VKM) erfolgt gegenüber dem konventionellen Antrieb nicht über einen separaten Anlassermotor, sondern direkt über die Elektromaschine. Anders als im bekannten Antriebsstrang kann die Verbrennungskraftmaschine innerhalb eines sehr kurzen Zeit- raums, der in etwa in einem Bereich um oder unter 200 Millisekunden beträgt, gestartet werden. Auf diese Weise kann die Verbrennungskraftmaschine im automatischen Start/Stopp-Betrieb betrieben werden.
Der Start/Stopp-Betrieb bewirkt, dass die Verbrennungskraftmaschine nur dann betrieben wird, wenn sie tatsächlich benötigt wird. Befindet sich die Verbrennungskraftmaschine für einen bestimmten Zeitraum im niedrigen Leerlauf, wird sie auf Wunsch vom System abgestellt.
Sobald der Gerätebediener eine Bedienungskomponente betätigt, wird die Verbrennungskraftmaschine sofort wieder gestartet, so dass der Bediener nahezu keine Verzögerung wahrnimmt. Bedienkomponenten können sein, das Fahrpedal, die Lenkeinrichtung, die Ansteuereinheit der Arbeitshydraulik oder der Joystick. Durch Vermeidung von unnötigen Leerlaufzeiten führt diese Funktion zur Kraftstoffeinsparung.
In geeigneten Betriebspunkten wird die Elektromaschine motorisch betrieben, um das Drehmoment des gesamten Antriebs zu erhöhen.
Das benötigte Drehmoment, welches zur Aufrechterhaltung der vom Gerätebediener gewünschten Drehzahl notwendig ist, wird durch einen Regelalgorithmus berechnet und von der Leistungselektronik umgesetzt. Das System berücksichtigt dabei alle im System relevanten Zustände wie zum Beispiel Ladezustand des Energiespeichers, Temperaturen einzelner Komponenten etc.
Die Nenndrehzahl ist die gewünschte Drehzahl der Verbrennungskraftmaschine bei Volllast. Die Arbeitsdrehzahl ist die aktuell eingestellte Drehzahl mit Berücksichtigung des P-Grades. Die Arbeitsphasen sind Phasen, in der mit der Baumaschine gearbeitet wird, also die Verbrennungskraftmaschine belastet wird. In Phasen, in denen nicht mit der Baumaschine gearbeitet wird, wird die Nenndrehzahl meist in den niedrigen Leerlauf gestellt.
Diese Funktion der dynamischen Drehzahlabsenkung ermöglicht den Einsatz einer Verbrennungskraftmaschine mit verringerter Drehzahl. Die Leis- tung bleibt gleich, die wird vom Bediener gefordert. Die Drehzahl wird gesenkt, dafür steigt entsprechend des Drehmoment der Verbrennungskraftmaschine.
Leistung = Drehmoment x Drehzahl.
Kurzfristig auftretende Spitzenleistungen können durch die Unterstützung der motorisch betriebenen Elektromaschine abgedeckt werden, so dass die Verbrennungskraftmaschine nicht mehr auf die benötigte/gewünschte Spitzenleistung ausgelegt werden muss. Hierbei gilt, dass Spitzenleistungen, die ohnehin schon bei hohen Nenndrehzahlen (z. B. 2000 1/min) gefordert werden, weiterhin möglichst von der Verbrennungskraftmaschine erbracht werden müssen. Hier kommen nur zusätzlich Leistungsspitzen hinzu, die während den Beschleunigungsphasen entstehen.
Genau diese Leistungen können in der Regel nicht von der Verbrennungskraftmaschine schnell genug erbracht werden, da die Drehzahl zu niedrig ist und das Drehmoment nicht schnell genug durch die Verbrennungskraftmaschine alleine aufgebracht werden kann.
Neben dem Boosten bei der Abdeckung von Leistungsspitzen besteht die Möglichkeit, den motorischen Betrieb der Elektromaschine zur Steigerung der Dynamik des Antriebsstrangs zu nutzen.
Insbesondere, wenn die Einspritzmenge der Verbrennungskraftmaschine durch die ladedruckabhängige Füllungsbegrenzung unterhalb der Dachkurve limitiert wird, kann zur Steigerung der Dynamik eine motorische Leistung der Elektromaschine so lange aufgebracht werden, bis diese Limitierung durch ausreichenden Ladedruck nicht mehr notwendig ist.
Das Aufladen des elektrischen Energiespeichers erfolgt durch das Erzeu- gen eines generatorischen Drehmoments der Elektromaschine während des Betriebs. Dabei ist das erzeugte Drehmoment von dem Ladezustand des Energiespeichers, der Auslastung der Verbrennungskraftmaschine und verschiedenen Systembedingungen abhängig. Das Drehmoment kann als Stellgröße eines Reglers oder auch gesteuert aufgeschaltet werden.
Unter Rekuperation versteht man generell die Rückgewinnung der mechanischen Bremsenergie in elektrische Energie.
Bei konventionellen mobilen Arbeitsmaschinen wird nahezu der vollständi- ge Anteil der Bremsenergie durch den Schleppbetrieb der Verbrennungskraftmaschine bei hohen Drehzahlen und durch gezieltes Aufschalten hydraulischer Lasten erzielt.
Bei dieser Konfiguration eines Hybrid-Antriebes wird die Bremsenergie durch Aufschalten eines Bremsmoments auf die Elektromaschine erzielt. Hierdurch werden zum einen die hohen Motordrehzahlen vermieden, zum anderen wird die Bremsenergie über die Elektromaschine und die Leistungselektronik in den elektrischen Energiespeicher gespeist. Bei hybriden Antriebssträngen mobiler Arbeitsmaschinen, bestehend aus den erfindungsgemäßen Komponenten Verbrennungskraftmaschine (Dieselmotor), Elektromaschine mit Umrichter, elektrischem Energiespeicher und hydraulischem Fahr- und Arbeitsantrieb, wird zur Reduktion von C02- Emissionen und Kraftstoffverbrauch unter anderem die Funktion der Last- punktverschiebung eingesetzt.
Mittels dieser Funktion werden die jeweiligen Arbeitspunkte im Kennfeld der Verbrennungskraftmaschine (Moment als Funktion der Drehzahl) entlang der Kurven konstanter Leistung (Leistungshyperbeln) verschoben, um die Arbeitspunkte der Verbrennungskraftmaschine in die Bereiche des jeweilig optimalen Kraftstoffverbrauchs zu verlagern.
Bei der Lastpunktverschiebung wird vom Hybrid-Steuergerät, unter ande- rem in Abhängigkeit der Parameter aktuelles Moment der Verbrennungskraftmaschine, aktuelles Moment der Elektromaschine, Ladezustand des Energiespeichers und aktueller Drehzahl von Verbrennungskraftmaschine und Elektromaschine, mittels einer im Hybrid-Steuergerät implementierten Betriebsstrategie die optimale Soll-Drehzahl ermittelt und als Sollwert dem nachgeschalteten Drehzahlregler übergeben.
Hierbei gilt, die optimale Solldrehzahl wird anhand der Informationen aus den HMI-Schnittstellen (Human Machine Interface) ermittelt. Der Ladezustand des Energiespeichers z. B. spielt dabei keine Rolle.
Der Drehzahlregler der Verbrennungskraftmaschine befindet sich nach wie vor im Motorsteuergerät. Die Drehzahlvorgabe, also die Solldrehzahl, wird im Hybrid-Steuergerät ermittelt. Die Verbrennungskraftmaschine wird drehzahlgeregelt. Die Elektromaschine wird drehmomentgeregelt. Das Sollmoment wird aus der Drehzahldifferenz (siehe Position © in Fig. 5) berechnet.
Gegenüber konventionellen Antriebssträngen mobiler Arbeitsmaschinen bestehen beim Einsatz der Funktion Lastpunktverschiebung mit einem hybriden Antrieb folgende Vorteile:
- Bei einem konventionellen Antrieb wird aufgrund der sehr dynamischen Laständerungen des Fahr- oder Arbeitsantriebs beim Betrieb der Verbren- nungskraftmaschine eine hohe Leistungsreserve vorgehalten, um auf die Laständerungen adäquat reagieren zu können. Insbesondere bei aufgeladenen Verbrennungskraftmaschinen ist diese Leistungsreserve notwendig, um die zeitliche Dauer des Ladedruckaufbaus zu reduzieren. Beim hybriden Antriebsstrang besteht die Möglichkeit, diese Leistungsreserve der Verbrennungskraftmaschine deutlich zu reduzieren. Bei dynamischen Laständerungen wird so lange eine motorische Leistung der Elektromaschine aufgebracht, bis die Verbrennungskraftmaschine sich in einem Arbeitspunkt befindet, in dem diese eigenständig die angeforderte Leistung aufbringen kann. Besonders durch die schnelle Stellmöglichkeit des Moments der Elektromaschine wird diese Strategie begünstigt.
- Die Lastpunktverschiebung bei konventionellen Antrieben hin zu geringeren Drehzahlen und somit höheren Drehmomenten ist maximal bis zu der Drehzahl der Verbrennungskraftmaschine möglich, bei der diese das maximale Drehmoment aufbringt. Dies ist darin begründet, dass bei Drehzahlen kleiner als die Drehzahl maximalen Drehmoments eine Laständerung schnell zum Abwürgen der Verbrennungskraftmaschine führen kann beziehungsweise führt. Bei hybriden Antriebssträngen wird auch hier eine motorische Leistung der Elektromaschine dazu genutzt, die Verbrennungskraftmaschine in einen Arbeitspunkt zu verlagern, in dem diese die Leistung eigenständig aufbringen kann.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind der Zeichnungsbeschreibung zu entnehmen, in der ein in den Figuren dargestelltes Ausführungsbeispiel der Erfindung näher beschrieben ist.
Es zeigen:
Figur 1 in einer schematischen Ansicht die Anordnung und das Zusammenwirken der einzelnen Komponenten
Figur 2 in einem Kennfeld die Funktion der Lastpunktverschiebung mit
Auswirkung auf den spezifischen Verbrauch (Muscheldiagramm)
Figur 3 in einem Kennfeld die Funktion "Lastpunktverschiebung"
Figur 4 eine Systemtopologie eines mildhybriden Systems einer Baumaschine, beispielhaft mit elektrischem Elektromaschine und Energiespeicher Figur 5 Prinzipskizze zur Ermittlung der Soll-Drehzahl des Verbrennungskraftmaschines mit dynamischer
Drehzahlabsenkung und des Sollmomentes der Elektromaschine. Eine Verbrennungskraftmaschine 1 , die insbesondere eine selbstzündende Brennkraftmaschine (Dieselmotor) ist, ist direkt mit einer Elektromaschine 2 gekoppelt, die anstelle eines Schwungrades mit der Kurbelwelle der Verbrennungskraftmaschine 1 verschaltet ist. Der Stator dieser Elektromaschine 2 ist dabei mit dem Kurbelgehäuse verbunden und der Rotor mit der Kurbelwelle verschaltet. Der Rotor ist weiterhin mit einer Zahnradpumpe 3 und weiter mit einer Axialkolbenpumpe 4 verschaltet. Der Ausgang der Zahnradpumpe 3 ist über Proportionalventile 5 (beispielsweise) mit einem Arbeitszylinder 6, einem Hubzylinder 7 und einem Lenkzylinder 8 verschaltet. Zahnradpumpe 3 und Axialkolbenpumpe 4 sind hydraulische Arbeits- maschinen.
Die Elektromaschine 2 ist über einen Vierquadrantenumrichter 12 mit einem elektrischen Energiespeicher 13 verschaltet. Weiterhin ist ein Hybrid- Steuergerät 21 vorgesehen, mit dem alle Einzelsteuergeräte der Kompo- nenten, insbesondere des Antriebsstrangs und des Speicherstrangs, koordiniert werden können.
Fig. 2 zeigt ein typisches Kennfeld einer Verbrennungskraftmaschine (Moment als Funktion der Drehzahl). In diesem Kennfeld ist als Dachkurve das von der Verbrennungskraftmaschine erreichbare maximale Drehmoment Mdmax eingetragen. Unter dieser Dachkurve sind als Muschelkurven die Linien mit konstantem spezifischen (Kraftstoff)-Verbrauch dargestellt, wobei, ausgehend von der bemin Linie, die weiteren Linien einen stufenweise steigenden Verbrauch kennzeichnen. Schließlich sind die Kurven konstanter Leistung Pkonst (Leistungshyperbeln) der Verbrennungskraftmaschine eingetragen. Grundsätzlich kann nun die Verbrennungskraftmaschine, die mit einer konstanten Leistung Pkonst an dem Punkt P1 betrieben wird, mit der gleichen konstanten Leistung Pkonst an dem Punkt P2 betrieben werden, wobei der Punkt P2 aber im bemin Feld liegt. Durch diese Verstellung wird bei gleicher Leistungsabgabe eine Verbrauchsreduzierung der Verbrennungskraftmaschine erreicht.
Problematisch ist aber bei konventionellem derartigen Antriebsstrang, dass bei einer solchen Verstellung - wie in Fig. 3 dargestellt - dies immer mit einer Annäherung an die Dachkurve des erreichbaren maximalen Drehmoments verbunden ist. Wird, wie in Fig. 3 dargestellt, bei der Verstellung die Dachkurve mit dem Leistungspunkt P2 angefahren, weist die Verbrennungskraftmaschine auch schon bei geringen Laständerungen keine Leis- tungsreserven mehr auf und die Verbrennungskraftmaschine wird abgewürgt, wie in Punkt 4 dargestellt. Verlauf mit dynamischer Drehzahlabsenkung, aber ohne Unterstützung der Elektromaschine. Durch die erfindungsgemäße Ausgestaltung steht dann aber noch die Leistung, die durch die Elektromaschine aufgebracht werden kann, additiv zur Verfügung. Das heißt mit anderen Worten, es kann bedenkenlos eine Leistungsverstellung bis auf die dmax Kurve hin zu einer Verringerung des Verbrauchs gefahren werden, ohne dass bei Laständerungen ein Abwürgen der Verbrennungskraftmaschine zu befürchten ist, da für diesen Fall die zusätzliche Leistung der Elektromaschine zur Verfügung steht.
P1 - P2 entspricht der dynamischen Drehzahlabsenkung, wenn die Last (Leistung) stationär bleibt.
Durch dynamisches Auslenken des Joysticks (20) (HMI-Signal) wird genau so dynamisch die Last für den Verbraucher erhöht.
P2 - P3 entspricht dem Verlauf mit dynamischer Drehzahlabsenkung und Unterstützung der Elektromaschine (2). P2 - P4 entspricht dem Verlauf mit dynamischer Drehzahlabsenkung, aber ohne Unterstützung der Elektromaschine (2).
P1 - P2 entspricht dem Verlauf bei Lastsprung ohne dynamische Drehzahlabsenkung. Figur 4 zeigt in Kombination mit Figur 5, wie die Nenndrehzahl der Verbrennungskraftmaschine einer Baumaschine während einer Arbeitsphase trotz dynamischen Belastungsspitzen hochdynamisch beschleunigt werden kann. Hierfür wird die Verbrennungskraftmaschine zu einem mildhybriden System erweitert. Die Erweiterung besteht aus einem Energiespeicher 13 und einer Elektromaschine 2, die sowohl direkt an der Kurbelwelle als auch an einem PTO (Power take off) angeschlossen sein kann. Dabei kann die Elektromaschine 2 mit dem zugehörigen Energiespeicher 13 sowohl elektrisch als auch hydraulisch ausgeführt sein.
Die Elektromaschine 2 arbeitet bei der Abgabe bzw. Aufnahme der Energie im Vergleich zur Verbrennungskraftmaschine 1 hochdynamisch. Die Verbrennungskraftmaschine 1 arbeitet während ihrer Arbeitsphasen mit einer möglichst niedrigen Drehzahl. Bei Lastanforderungen, die eine höhere Drehzahl der Verbrennungskraftmaschine 1 erfordern, wird die Verbrennungskraftmaschine 1 während des Beschleunigungsvorgangs bis zur höheren Soll-Drehzahl von der Elektromaschine 2 parallel hochdynamisch unterstützt, z. B. im motorischen Betrieb der Elektromaschine 2. Die dazu notwendige Energie der Elektromaschine 2 kommt aus dem Energiespeicher 13. In Phasen geringerer Lastanforderung wird mittels der Elektromaschine 2 der Energiespeicher 13 wieder aufgeladen, beispielsweise durch den generatorischen Betrieb der Elektromaschine 2. Die Lastanforderung muss dabei möglichst früh erkannt werden, um die Verbrennungskraftma- schine 1 sehr schnell mit Hilfe der Elektromaschine 2 in der Beschleunigungsphase unterstützen zu können. Dies erfolgt am schnellsten durch das Auswerten der Signale der HMI-Schnittstellen 20, wie z. B. der Joysticks 20, die der Maschinenführer bedient. Mit der ermittelten Lastanforderung wird die notwendige Drehzahl der Verbrennungskraftmaschine 1 - die Nenndrehzahl - ermittelt. Diese wird über das Steuergerät der Verbrennungskraftmaschine 22 eingestellt. Während die Verbrennungskraftmaschine 1 nun bereits von sich aus schon versucht, auf die neue Nenndrehzahl zu beschleunigen, wird sie dabei von der Elekt- romaschine 2 mit einem hochdynamischen Drehmomentenaufbau unterstützt. Das Sollmoment der Elektromaschine 2 wird aus der Differenz aus Nenn- und Ist-Drehzahl ermittelt. Die Ermittlung der Nenndrehzahl der Verbrennungskraftmaschine 1 erfolgt durch Auswertung der HMI-Schnittstellen 20, es erfolgt die Nutzung einer dynamischen Drehzahlabsenkung der Verbrennungskraftmaschine 1 in einer Baumaschine mit Hilfe einer Elektromaschine 2. Die Elektromaschine 2 des mildhybriden Antriebs unterstützt die Verbrennungskraftmaschine 1 hochdynamisch während der Beschleunigungsphasen auf die gewünschte höhere Nenndrehzahl. Die Elektromaschine 2 ist direkt an der Kurbelwelle oder an einem PTO angeschlossen.
Die Elektromaschine 2 mit ihrem Energiespeicher 13 kann sowohl elekt- risch als auch hydraulisch ausgeführt sein. Hierfür kommen Batterien und/ oder Kondensatoren und/oder Hydraulikspeicher in Betracht.
Das Verfahren und die Vorrichtung eignen sich prinzipiell für alle Baumaschinen, die aufgrund der Vorhaltung von Leistungsreserven bei dynami- sehen Lastanforderungen zur Zeit mit hohen Nenndrehzahlen während der Arbeitsphasen betrieben werden. Eine spezielle Anwendung erfolgt beispielsweise in einem Umschlagbagger.
Das HMI-Signal wird über den CAN-BUS vom Hybrid-Steuergerät empfan- gen, die Übertragungsrate liegt im Bereich von etwa 10 msec oder kleiner.
Das HMI-Signal stellt z. B. die Auslenkung eines Joysticks 20 von links nach rechts dar und wird über CAN als Signal mit einem Wertebereich von - 100 % bis + 100 % übertragen.
So werden alle HMI-Signale vom Hybrid-Steuergerät ausgelesen, die zu einer Erhöhung der Last an der Verbrennungskraftmaschine führen. Alle HMI-Signale werden in dem Hybrid-Steuergerät 21 ausgewertet und daraus eine Soll-Drehzahl für die Verbrennungskraftmaschine 1 berechnet. Die Auswertung erfolgt über Kennfelder und einen Gewichtungsfaktor für jedes HMI-Signal.
Bei schneller Änderung eines HMI-Signals resultiert auch eine schnelle Änderung der Soll-Drehzahl ® in Fig. 5.
Dadurch ergibt sich zunächst eine große Differenz © in Fig. 5 zwischen Soll- und Ist-Drehzahl der Verbrennungskraftmaschine 1 , da der Verbrennungskraftmaschine 1 a) der Soll-Drehzahl aufgrund der vergleichbar geringen Eigendynamik nicht schnell genug folgen kann,
b) die schnelle Änderung des HMI-Signals immer einen schnellen Lastanstieg für die Verbrennungskraftmaschine 1 bedeutet, der einer schnellen Anpassung der Ist-Drehzahl an die Soll-Drehzahl entgegenwirkt.
Die Drehzahldifferenz wird dazu genutzt, das Sollmoment der Elektroma- schine 2 zu berechnen - © in Fig. 5.
Wenn die Soll- Ist-Drehzahl schnell sehr groß wird, wird auch schnell das Sollmoment der Elektromaschine 2 groß. Im Falle, dass die Ist-Drehzahl größer als die Soll-Drehzahl ist, wird kein Drehmoment von der Elektro- maschine 2 abverlangt. Bezugszeichen
1 Verbrennungskraftmaschine
2 Elektromaschine
3 Zahnradpumpe
4 Axialkolbenpumpe
5 Proportionalventile
6 Arbeitszylinder
7 Hubzylinder
8 Lenkzylinder
9 Axialkolbenmotor
10 Getriebestufe
1 1 Antriebsräder
12 Vierquadrantenumrichter
13 Energiespeicher
20 Human Machine Interface (HMI)- Schnittstellen, Joystick
21 Hybrid-Steuergerät (ECU)
22 Steuergerät der Verbrennungskraftmaschine (ECU)

Claims

A N S P R Ü C H E
1. Verfahren zur dynamischen Drehzahlabsenkung einer Verbrennungskraftmaschine, insbesondere in einer Baumaschine, insbesondere unter Zuhilfenahme einer Elektromaschine, wobei es die folgenden Schritte um- fasst:
Ermittlung der Nenndrehzahl der Verbrennungskraftmaschine,
Nutzung einer dynamischen Drehzahlabsenkung der Verbrennungskraftmaschine, insbesondere in einer Baumaschine, mit Hilfe einer Elektromaschine. Dabei wird die Elektromaschine dazu benötigt, die Beschleunigungsphasen der Verbrennungskraftmaschine von niedrigeren Drehzahlen auf höhere Drehzahlen zu unterstützen.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Ermittlung der Nenndrehzahl insbesondere durch eine Auswertung der HMI-Schnittstellen 20 erfolgt.
3. Hybridantriebsstrang eines Fahrzeugs, insbesondere zur Anwendung des Verfahrens nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass insbesondere eine mobile Arbeitsmaschine mit einer Verbrennungskraftmaschine (1 ) und einer Elektromaschine (2) zum Einsatz kommt und/oder der Antriebsstrang weiterhin eine hydraulische Arbeitsmaschine aufweist.
4. Hybridantriebsstrang nach Anspruch 1 ,
dadurch gekennzeichnet, dass die Arbeitsmaschine eine Axialkolbenpumpe (4) aufweist. Die Arbeitsmaschine hat eine Axialkolbenpumpe (4), von der Leistung der Verbrennungskraftmaschine 1 bzw. der Elektromaschine (2) angefordert wird.
5. Hybridantriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit der Arbeitsmaschine ein hydraulischer Motor, insbesondere ein Axialkolbenmotor (9), verschaltet ist.
6. Hybridantriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit der Arbeitsmaschine zumindest ein hydraulisches Stellelement, insbesondere ein Arbeitszylinder (6), ein Hubzylinder (7) und/oder ein Lenkzylinder (8) gesteuert, insbesondere über ein oder mehrere Proportionalventile (5) verschaltet ist/sind.
7. Hybridantriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Antriebsstrang drehzahlgeregelt betrieben wird.
8. Hybridantriebsstrang nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Hybridantriebsstrang in der Form steuerbar ist, dass an der Verbrennungskraftmaschine (1 ) eine Lastpunktver- Schiebung einstellbar ist.
9. Hybridantriebsstrang nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine Lastpunktverschiebung bis in den Be- reich des Erreichen des maximalen Drehmoments der Verbrennungskraftmaschine (1 ) erfolgt und dass dann die Elektromaschine (2) motorisch betrieben wird.
10. Hybridantriebsstrang nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Elektromaschine (2) ein mildhybrider Antrieb ist.
EP16708355.9A 2015-02-23 2016-02-19 Hybridantriebsstrang Ceased EP3261869A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015002111.7A DE102015002111A1 (de) 2015-02-23 2015-02-23 Hybridantriebsstrang
PCT/EP2016/000290 WO2016134835A1 (de) 2015-02-23 2016-02-19 Hybridantriebsstrang

Publications (1)

Publication Number Publication Date
EP3261869A1 true EP3261869A1 (de) 2018-01-03

Family

ID=55484944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16708355.9A Ceased EP3261869A1 (de) 2015-02-23 2016-02-19 Hybridantriebsstrang

Country Status (6)

Country Link
US (1) US20180009309A1 (de)
EP (1) EP3261869A1 (de)
JP (2) JP2018508396A (de)
CN (1) CN107107736B (de)
DE (1) DE102015002111A1 (de)
WO (1) WO2016134835A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085974A1 (en) * 2016-11-08 2018-05-17 Guangxi Liugong Machinery Co., Ltd. Multiple level work hydraulics anti-stall
EP3489530A1 (de) * 2017-11-28 2019-05-29 B&R Industrial Automation GmbH Hydrauliksystem mit servoantrieb und einem hydraulischen verbraucher und regelung für das hydrauliksystem
EP3628522A3 (de) 2018-09-26 2020-05-06 Elephant Racing LLC Elektrische hybride nachrüstung von nicht-hybriden fahrzeugen mit verbrennungsmotor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261278B4 (de) * 2002-12-27 2018-12-13 Volkswagen Ag Verfahren und Vorrichtung zur Drehmomentänderung
JP3921218B2 (ja) * 2004-11-25 2007-05-30 本田技研工業株式会社 ハイブリッド車両の制御装置
DE102007002739A1 (de) * 2007-01-18 2008-07-24 Robert Bosch Gmbh Verfahren zur Drehzahlveränderung eines Antriebs eines Fahrzeugs
DE102007019156A1 (de) * 2007-04-20 2008-10-23 Deutz Ag Hybridantriebsstrang
DE102007038585A1 (de) * 2007-08-16 2009-03-19 Zf Friedrichshafen Ag Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug
KR101199244B1 (ko) * 2008-06-27 2012-11-09 스미토모 겐키 가부시키가이샤 하이브리드식 건설기계
JP5550064B2 (ja) * 2009-07-01 2014-07-16 住友重機械工業株式会社 ハイブリッド型作業機械
DE102011106399A1 (de) * 2011-07-02 2013-01-03 Magna E-Car Systems Gmbh & Co Og Antriebsstrang
JP5828808B2 (ja) * 2012-06-29 2015-12-09 日立建機株式会社 油圧作業機械
WO2014087978A1 (ja) * 2012-12-03 2014-06-12 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JP2021073128A (ja) 2021-05-13
CN107107736B (zh) 2020-01-21
CN107107736A (zh) 2017-08-29
DE102015002111A1 (de) 2016-10-20
JP2018508396A (ja) 2018-03-29
US20180009309A1 (en) 2018-01-11
WO2016134835A1 (de) 2016-09-01

Similar Documents

Publication Publication Date Title
EP2137039B1 (de) Hybridantriebsstrang
EP2022972B1 (de) Druckhaltefunktion bei vollhybridantrieb
DE102004055128A1 (de) Verfahren zur Steuerung eines Betriebs eines Hybridkraftfahrzeugs sowie Hybridfahrzeug
DE102019203721B4 (de) Verfahren zum Betreiben eines Antriebsstrangs für eine Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
WO2009021913A2 (de) Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug
DE102013021607A1 (de) Selbstfahrende Arbeitsmaschine sowie Verfahren zum Abbremsen einer solchen Arbeitsmaschine
DE102007049253A1 (de) Verfahren zur Regelung eines Leistungsverzweigungsgetriebes
DE102010062337A1 (de) Verfahren und Vorrichtung zur Änderung der mechanischen Ankopplung eines Antriebaggregates an einen Triebstrang eines Kraftfahrzeuges, dessen Triebstrang mit mindestens zwei Antriebsaggregaten ausgerüstet ist
DE102011013746A1 (de) Über Nebentrieb verbundener Hybridantrieb
DE102017112979A1 (de) System und verfahren zur steuerung eines antriebsstrangs eines fahrzeugs
EP3261869A1 (de) Hybridantriebsstrang
DE102008023305A1 (de) Verfahren zur Steuerung eines Rekuperationsmomentes einer Hybridantriebseinheit
WO2010054735A1 (de) Verfahren zum frühzeitigen einleiten eines zustarts eines verbrennunsmotors bei einem fahrzeug mit hybridantrieb
DE102019203726A1 (de) Verfahren zum Betreiben eines Antriebsstrangs einer Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
WO2009083221A1 (de) Verfahren zur ansteuerung eines fahrantriebs
EP2220357A1 (de) Verfahren zum einstellen eines kraftstoffdrucks
DE10261278B4 (de) Verfahren und Vorrichtung zur Drehmomentänderung
DE102012219848A1 (de) Verfahren zur Steuerung oder Regelung eines Fahrerassistenzsystems
EP2790943B1 (de) Verfahren zum betreiben eines hydraulischen hybrid-antriebsystems
EP2191996B1 (de) Mobile Arbeitsmaschine, insbesondere Flurförderzeug, und Verfahren zum Betreiben der mobilen Arbeitsmaschine
DE102007028700A1 (de) Verfahren zur Steuerung eines Betriebes eines Hybridfahrzeuges sowie Hybridfahrzeug
DE102012200196A1 (de) Verfahren sowie Steuer- und/oder Regeleinrichtung zur Steuerung und/oder Regelung der Antriebsleistung eines Fahrzeugs
DE102011002890A1 (de) Verfahren zur Regelung der Lastpunktverschiebung eines Verbrennungsmotors und zumindest einer elektrischen Maschine mit unterschiedlichem Ansprechverhalten im hybriden Fahrzustand in einem Parallel-Hybrid-Antriebsstrang
DE102010011164B4 (de) Verfahren zur Motorsteuerung in einem Hybridfahrzeug, Motorsteuerungsgerät und Hybridfahrzeug mit einem über Schubabschaltung abschaltbaren Verbrennungsmotor
DE102021201894A1 (de) Verfahren zum Betreiben eines Antriebsstrangs für eine Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B60W 10/08 20060101ALI20160907BHEP

Ipc: B60W 10/06 20060101ALI20160907BHEP

Ipc: B60K 6/485 20071001AFI20160907BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210409

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTZ AKTIENGESELLSCHAFT

18R Application refused

Effective date: 20230504