EP3259746B1 - Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung - Google Patents

Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung Download PDF

Info

Publication number
EP3259746B1
EP3259746B1 EP16701765.6A EP16701765A EP3259746B1 EP 3259746 B1 EP3259746 B1 EP 3259746B1 EP 16701765 A EP16701765 A EP 16701765A EP 3259746 B1 EP3259746 B1 EP 3259746B1
Authority
EP
European Patent Office
Prior art keywords
sensor
magnetic field
measurement
vicinity
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16701765.6A
Other languages
English (en)
French (fr)
Other versions
EP3259746A1 (de
Inventor
Nils Larcher
Hannes Wolf
Fernando Suarez Lainez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3259746A1 publication Critical patent/EP3259746A1/de
Application granted granted Critical
Publication of EP3259746B1 publication Critical patent/EP3259746B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/146Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is a limited parking space, e.g. parking garage, restricted space
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/147Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is within an open public zone, e.g. city centre

Definitions

  • the invention relates to a method for operating a sensor device for detecting an object.
  • the invention also relates to a sensor device for detecting an object.
  • the invention also relates to a computer program.
  • sensors are used to monitor parking lots, which transmit the status of the parking lot to a control point.
  • the condition is usually recorded either by magnetic field sensors, cameras or by emitting sensors such as ultrasonic or radar sensors.
  • the sensors are either permanently connected to a power grid or a data network, which means a lot of effort during installation. Or they are battery-operated and communicate wirelessly with the control center.
  • the particular challenge for wireless systems is to maximize the service life, which is limited by the battery capacity.
  • the font WO 2010/069002 A1 discloses a method for operating a sensor device for detecting an object, the sensor device having a first and a second environment sensor for detecting an environment of the sensor device.
  • EP2905765 A1 which falls under Article 54 (3) EPC, concerns a hybrid magnetic radar detector for parking lot management. If the measurement of the magnetic field differs from a single standard measurement in an empty parking lot, a change in the magnetic field is detected, which indicates the presence of a vehicle and which is confirmed by the radar sensor.
  • the object on which the invention is based can therefore be seen in providing an efficient concept which makes it possible to reduce the electrical energy consumption of a sensor device.
  • a computer program which comprises program code for carrying out the method according to the invention when the computer program is executed on a computer.
  • the invention thus includes in particular and among other things the idea of only activating the sensor device of the sensor device when the measurement of the magnetic field sensor is insufficient to be able to say with a predetermined probability whether or not there is an object in the vicinity of the sensor device. Because the sensor device is not activated continuously, that is to say permanently, in order to detect the surroundings of the sensor device, an electrical Energy consumption of the sensor device can be reduced. This is in comparison to a sensor device comprising a magnetic field sensor and a radar device or an ultrasound device, with both the radar device or the ultrasound device and the magnetic field sensor performing a field detection permanently or at least at predetermined intervals.
  • the sensor device has such a battery, or generally an electrical energy supply, for the electrical energy supply.
  • the sensor device can also be used in an advantageous manner in environments that do not have a wired power network for the purpose of energy supply. Thus, the effort involved in installing the sensor device can be reduced.
  • Calculating the corresponding distances between the measured value and the two reference measured values has the particular technical advantage that it can be determined whether a measured value is closer to the first or to the second reference measured value, i.e. whether the measured value is closer to the first or the second reference measured value resembles.
  • the closer a measured value is to a certain reference measured value the higher the probability, in particular, that there is no object in the measuring range of the magnetic field sensor if the measured value is closer to the first reference measured value, or that there is one in the measuring range of the magnetic field sensor Object is located when the measured value is closer to the second reference measured value.
  • the deactivated sensor device is activated and a transit time measurement is carried out. So the sensor device can usually remain deactivated.
  • the decision as to whether there is an object in the measuring range of the magnetic field sensor or not can be performed based on the magnetic field measurement alone.
  • the sensor device is only activated in situations in which the magnetic field measurement is insufficient to reliably detect whether or not there is an object in the vicinity.
  • the sensor device comprises a radar device and / or an ultrasound device.
  • a radar device within the meaning of the present invention comprises, in particular, a radar sensor for detecting radar radiation.
  • the radar device is designed in particular to emit radar radiation, it being possible for reflected radar radiation to be detected by means of the radar sensor.
  • the radar device therefore has, in particular, a radar emitter.
  • the radar device is designed to measure a distance between the radar device and an object which is located in front of the radar device, that is to say in the measuring range of the radar device, that is to say in particular of the radar sensor. This is done by measuring the transit time of the emitted radar radiation.
  • a transit time measurement in connection with the radar device can in particular be referred to as a radar measurement.
  • the sensor data can then be referred to in particular as radar data.
  • An ultrasound device within the meaning of the present invention comprises in particular an ultrasound sensor for detecting ultrasound.
  • the ultrasound is designed in particular to emit ultrasound, wherein reflected ultrasound can be detected by means of the ultrasound sensor.
  • the ultrasound device therefore has, in particular, an ultrasound emitter.
  • the ultrasound device is designed to measure a distance between the ultrasound device and an object which is located in front of the ultrasound device, that is, in the measuring range of the ultrasound device, that is in particular of the ultrasound sensor. This is done by measuring the transit time of the emitted ultrasound.
  • a transit time measurement in connection with the ultrasound device can in particular be referred to as an ultrasound measurement.
  • the sensor data can then be referred to in particular as ultrasound data.
  • the sensor device is designed to emit a signal, for example an ultrasonic signal and / or a radar signal, and to detect or measure a reflected signal, for example a reflected ultrasonic signal and / or a reflected radar signal, so that a transit time measurement of the signal can be performed.
  • the sensor device thus includes, in particular, emitting sensors, which can generally also be referred to as active sensors, for example an active radar sensor and / or an active ultrasound sensor.
  • An active sensor is thus understood to be a sensor that actively reflects a signal and can measure a reflected signal.
  • the radar device thus comprises, for example, an active radar sensor, that is to say a radar sensor that emits radar.
  • the ultrasound device thus comprises, for example, an active ultrasound sensor, that is to say an ultrasound sensor that emits ultrasound.
  • a magnetic field sensor is a passive sensor because it does not emit a signal, but only passively measures the magnetic field in its surroundings or in its surroundings.
  • the sensor device is therefore designed in particular to measure a distance between itself and an object located in the measuring range of the sensor device. This in particular by means of a transit time measurement. Since a signal, for example radar and / or ultrasound, has to be emitted to measure the transit time, the sensor device can also be referred to as an emitting sensor device or as an active sensor device.
  • the sensor device is designed for a transit time measurement means in particular that the sensor device is designed to carry out a transit time measurement. This means that the sensor device carries out a transit time measurement. This, for example, to establish a distance between yourself and an object that is in the measuring range of the sensor device.
  • a transit time measurement includes in particular emitting or transmitting a signal and detecting or measuring a reflected signal.
  • a transit time measurement includes a time measurement between the emitting or the transmission of the signal and the detection or the Measure the reflected signal.
  • a distance is determined or ascertained between the sensor device and an object which is located in the measuring range of the sensor device.
  • Based on the transit time measurement in particular based on the determined distance, according to one embodiment it is determined whether or not there is an object in the vicinity of the sensor device.
  • Sensor data therefore include, in particular, data corresponding to the detected or measured reflected signal.
  • a radar device and a radar measurement are specifically mentioned, this is not to be understood as restrictive. Rather, the sensor device and the transit time measurement should preferably also be read in general. Similarly, the ultrasound device should preferably also be read instead of or in addition to the radar device.
  • the magnetic field sensor is deactivated after the measurement of the magnetic field.
  • this has the technical advantage that the energy consumption of the sensor device can be reduced even further. This is because by deactivating the magnetic field sensor, electrical energy consumption of the magnetic field sensor is further reduced in an advantageous manner.
  • the sensor device is deactivated after the transit time measurement has been carried out. This advantageously brings about the technical advantage that the energy consumption of the sensor device can be reduced even further. This is because the deactivation of the sensor device advantageously further reduces the electrical energy consumption of the sensor device.
  • the magnetic field sensor is deactivated.
  • the sensor device is deactivated.
  • Deactivation within the meaning of the present invention includes, in particular, that the magnetic field sensor or the sensor device is moved into a standby or standby mode.
  • a deactivation in the sense of the present invention includes that a power supply or generally an electrical energy supply for the magnetic field sensor or the sensor device is interrupted. This means in particular that a deactivation can include that the magnetic field sensor or the sensor device is completely disconnected from an electrical energy supply.
  • Activation within the meaning of the present invention includes in particular that the magnetic field sensor or the sensor device is woken up from a sleep state or standby state or standby state.
  • an activation includes that the magnetic field sensor or the sensor device is reconnected to an electrical energy supply if the magnetic field sensor or the sensor device has previously been disconnected from it.
  • a first magnetic field measurement is carried out by means of the magnetic field sensor, during which a measuring area of the magnetic field sensor is free of an object in order to determine the first reference measured value
  • a second magnetic field measurement being carried out by means of the magnetic field sensor, during which time the measuring area of the magnetic field sensor is located an object is located in order to determine the second reference measured value
  • this has the technical advantage that, for example, the reference measured values can be determined during operation of the sensor device.
  • specific environmental conditions can be taken into account in an advantageous manner.
  • an adaptation to changing external influences can be effected in particular in an advantageous manner.
  • Such external influences include, for example, weather or a placement of magnetic objects in the vicinity of the magnetic field sensor.
  • the calculated distances are normalized.
  • the calculated distances are normalized, a difference between the two normalized distances being calculated, the difference between the two normalized distances being compared with a sensor device activation threshold value, the deactivated sensor device being activated depending on the comparison with the sensor device activation threshold value .
  • the sensor device activation threshold is a radar device activation threshold.
  • the sensing device activation threshold is an ultrasound device activation threshold.
  • this has the technical advantage that it can be efficiently recognized when the deactivated sensor device has to be activated.
  • the normalization has the advantageous effect that the sensor device can behave in the same way in different environments.
  • Application-specific means here in particular that different normalization factors are selected depending on the intended application of the sensor device. For example, when the sensor device is used to detect or detect an occupied state of a parking position, a different normalization factor is selected than when the sensor device is used to measure a traffic density.
  • Another embodiment provides that the normalized distances are compared with a threshold value, depending on the Comparison with the threshold value is used to determine whether there is an object in the vicinity of the sensor device.
  • this has the technical advantage that it can be efficiently determined whether there is an object in the vicinity of the sensor device. So this in particular based on the magnetic field measurement.
  • Another embodiment provides that if it is determined based on the sensor data that an object is located in the vicinity of the sensor device, a magnetic field measurement is carried out by means of the magnetic field sensor in order to update the second reference measured value, wherein, if determined based on the sensor data If the surroundings of the sensor device are free of an object, a magnetic field measurement is carried out by means of the magnetic field sensor in order to update the first reference measured value.
  • the magnetic field sensor carries out a magnetic field measurement in order to determine a corresponding measured value. Since it is known from the transit time measurement whether or not there is an object in the environment, this measured value can then be defined either as the first or as the second reference measurement value depending on whether the transit time measurement has shown whether an object is located in the environment or not.
  • the measured value of the magnetic field measurement is defined as the second reference measured value. This means that the second reference measured value is then updated here.
  • the measured value of the magnetic field measurement is then defined as the first reference measured value if the transit time measurement has shown that there is no object in the vicinity of the sensor device. This means that the first reference measured value is then updated here. This is based on the runtime measurement.
  • a result of the determination of whether an object is located in the vicinity of the sensor device is sent via a communication network.
  • a communication network includes, in particular, a WLAN and / or a cellular network.
  • communication via the communication network is or is encrypted.
  • a current result of the determination of whether an object is located in the environment is combined with an earlier result of an earlier determination of whether an object is located in the environment, is compared, the current result being sent via a communication network only if there is a difference between the current and the previous result.
  • a result within the meaning of the present invention includes in particular that an object has been detected, that is to say that an object is present in the environment, that is to say is located in the environment.
  • One result includes, in particular, that no object was detected, that is to say that there is no object in the vicinity.
  • the earlier result was determined analogously to the current result according to the method according to the invention or by means of the sensor device according to the invention. This means that the environment of the sensor device was detected at an earlier point in time in order to determine whether an object is located in the environment or not.
  • the sensor device is arranged in the vicinity of a parking position, so that, based on a result of the determination of whether an object is in the vicinity of the sensor device, it is determined whether the parking position is free or occupied.
  • a free parking position particularly refers to a parking position in which no vehicle is parked.
  • An occupied parking position particularly refers to a parking position in which a vehicle is parked.
  • the sensor device can therefore be referred to as a sensor device for determining an occupied state of a parking position.
  • the object which should or can be detected here is therefore in particular a vehicle.
  • the sensor device can then, for example, also be referred to as a sensor device for detecting a vehicle.
  • control device is designed to control the magnetic field sensor in such a way that a first magnetic field measurement is carried out by means of the magnetic field sensor, during which a measuring area of the magnetic field sensor is free of an object in order to determine the first reference measured value
  • control device being designed is to control the magnetic field sensor in such a way that a second magnetic field measurement is carried out by means of the magnetic field sensor, during which an object is located in the measuring range of the magnetic field sensor in order to determine the second reference measured value.
  • the processor is designed to normalize the calculated distances.
  • the processor is designed to normalize the calculated distances, to calculate a difference between the two normalized distances and to compare the difference between the two normalized distances with a sensor device activation threshold value, the control device being designed to depend on the deactivated sensor device from the comparison with the sensing device activation threshold.
  • the processor is designed to compare the normalized distances with a threshold value and, depending on the comparison with the threshold value, to determine whether there is an object in the vicinity of the sensor device.
  • control device is designed to control the magnetic field sensor in such a way that a magnetic field measurement is carried out by means of the magnetic field sensor in order to update the second reference measured value when it is determined based on the sensor data that an object is in the vicinity of the Sensor device is located, the control device being designed to control the magnetic field sensor in such a way that a magnetic field measurement is carried out by means of the magnetic field sensor in order to update the first reference measured value when it is determined based on the sensor data that an area around the sensor device is free of an object.
  • a communication interface is provided which is designed to send a result of determining whether an object is located in the vicinity of the sensor device via a communication network.
  • an electrical energy supply is provided for an electrical energy supply of electronic elements of the sensor device.
  • Electronic elements of the sensor device are in particular the sensor device, in particular the radar device and / or in particular the ultrasound device, the magnetic field sensor, the control device, the processor and possibly in particular the communication interface.
  • the electrical energy supply comprises one or more batteries.
  • the electrical energy supply comprises one or more accumulators.
  • the processor is designed to determine, based on a result of the determination of whether an object is located in the vicinity of the sensor device, whether a parking position is free or occupied.
  • the object is a vehicle traveling on a road or a container parked in a container storage area.
  • the sensor device can be used to detect or monitor a traffic flow and / or a traffic density.
  • an occupied state of a container space can thus advantageously be recorded or detected by means of the sensor device if the object is a container.
  • the processor and the control device are comprised by a microcontroller.
  • Device features result analogously from corresponding process features and vice versa. So that means in particular that Features, technical advantages and designs relating to the sensor device result analogously from corresponding designs, features and advantages of the method and vice versa. That means in particular that technical functionalities of the method result from the device and vice versa.
  • Fig. 1 shows a flowchart of a method for operating a sensor device for detecting an object.
  • a step 113 provides that the calculated distances are normalized, the normalized distances being compared with a threshold value, depending on the comparison with the Threshold value is determined whether there is an object in the vicinity of the sensor device. This means in particular that, according to step 113, it is determined on the basis of the magnetic field measurement alone whether there is an object in the vicinity of the sensor device. In this case, the radar device does not have to be activated. This brings about a reduced energy consumption of the sensor device in an advantageous manner.
  • Fig. 2 shows a flowchart of a further method for operating a sensor device for detecting an object.
  • the sensor device comprises a magnetic field sensor and a radar device. In particular, it is provided that the sensor device detects whether a parking position is occupied or free.
  • the method starts in a step 201, with a magnetic field sensor being activated for the purpose of a magnetic field measurement and a radar device being deactivated if it is not already deactivated.
  • a first magnetic field measurement is carried out by means of the magnetic field sensor, during which a measurement area of the magnetic field sensor is free of an object in order to determine the first reference value.
  • a second magnetic field measurement is carried out by means of the magnetic field sensor, during which an object is located in the measuring range of the magnetic field sensor in order to determine the second reference measured value.
  • a magnetic field in the vicinity of the sensor device is measured by means of the magnetic field sensor in order to determine a measured value corresponding to the measured magnetic field, the radar device being deactivated during the measurement of the magnetic field.
  • a step 207 it is provided that a first distance between the measured value and the first reference measured value is calculated. In particular, it is provided in step 207 that a second distance between the measured value and the second reference measured value is calculated. According to step 207 it is also provided that the calculated distances are normalized.
  • a step 209 it is provided that the normalized distances are compared with a threshold value. In step 209 it is further provided that, depending on the comparison with the threshold value, it is determined whether there is an object in the vicinity of the sensor device. If there is no object in the vicinity of the sensor device, the method continues to block 211. If there is an object in the vicinity of the sensor device, a state is changed according to a step 213. This state therefore indicates whether the sensor device has detected an object or not, that is to say in particular whether a parking position is free or occupied.
  • the states describe whether or not an object is present in the vicinity of the sensor device. The change affects the functioning of the sensor device, for example, in such a way that the fingerprint belonging to the state is updated in each case.
  • the state can be implemented, for example, by an internal status indicator, which can be referred to as a flag, for example, and can assume the values 0 (no object detected) and 1 (object detected).
  • Block 211 is not a separate function block, so it has no function of its own.
  • the block 211 was only inserted into the flowchart in order to better illustrate the merging of the two decision branches (object present and no object present) for the sake of clarity.
  • step 215 in which a difference between the two normalized distances is calculated.
  • a step 217 it is provided that the difference between the two normalized distances is compared with a radar activation threshold value.
  • either the deactivated radar device is activated in accordance with a step 219 or it is not activated. If the radar device is activated according to step 219, a radar measurement is carried out by means of the activated radar device in the vicinity of the sensor device in order to determine the radar data corresponding to the radar measurement. According to step 219, provision is then made, in particular, for it to be determined based on the radar data whether there is an object in the vicinity of the sensor device.
  • step 221 in which, for example, provision can be made for a result of the determination to be sent out via a communication network.
  • step 223 according to which it can be provided that the sensor device is put into a sleep state.
  • the magnetic field sensor is deactivated.
  • the radar device is deactivated.
  • step 201 or 203 or 205 or started again it is provided that after a predetermined time or at predetermined intervals the method is continued in step 201 or 203 or 205 or started again.
  • Fig. 3 shows a sensor device 301 for detecting an object.
  • the invention therefore includes in particular and among other things the idea of providing an efficient concept by means of which a lifetime of a sensor device, in particular a sensor device for detecting an occupied state of a parking position, comprising a radar device (and / or an ultrasound device, generally a sensor device, which is designed, to carry out a transit time measurement) and a magnetic field sensor can, in that the activation of the radar device (generally the sensor device) is in particular dependent on a signal from the magnetic field sensor.
  • This advantageously reduces power consumption while maintaining the reliability of the detection, since the radar device (generally the sensor device) is only activated when it is needed.
  • an efficient algorithm is therefore provided which decides from a small number of magnetic field measurement data whether activation of the sensor device, in particular the radar device and / or the ultrasound device, is necessary.
  • the core of the invention can be seen in particular in that, based on the distance from a measuring point of the magnetic field measurement to reference measurement data, for example the reference measurement values of an occupied and a free state of a parking position, it is decided whether the sensor device needs to be activated.
  • the concept according to the invention that is to say in particular the sensor device, has in particular the following advantages and technical features: An increased service life of a battery through an intelligent reduction in the activation of the radar device, an extended maintenance interval and reduced operating costs.
  • Detection of the occupied status of the parking position from a current and at least one previous measured value with the magnetic field sensor when the radar device is not required.
  • a quick automatic adaptation to temporary changes for example because a subway is moving below the parking position.
  • the sensor device in particular the sensor device for monitoring parking spaces, that is to say for detecting an occupied status of a parking position, comprises in particular the following components: A magnetic field sensor which, for example, periodically measures a magnetic field acting on it.
  • a radar device that can, for example, measure a distance to an object placed in front of the radar device.
  • a sensor device can be provided which can measure a distance to an object placed in front of the sensor device, in particular by means of a transit time measurement.
  • a microcontroller that runs software that controls the magnetic field sensor and the radar device.
  • the magnetic field sensor and the radar device and any communication interface that may be present, which can also be referred to as a radio interface in the case of wireless communication are activated.
  • the software includes the inventive algorithm proposed here, which decides when the radar device should be activated.
  • a communication interface via which the detection is reported to a higher unit for example an external server, i.e. a remote server.
  • An electrical energy supply for example a battery, which supplies the electronic components, for example the magnetic field sensor, the radar device, the microcontroller, the radio interface, with electricity, i.e. generally with electrical energy.
  • the magnetic field sensor is activated periodically in order to carry out a magnetic field measurement.
  • changes in the ambient magnetic field can advantageously be used to determine whether a vehicle, generally an object, is located in the measuring range of the magnetic field sensor, that is, for example, above or next to the magnetic field sensor.
  • a radar device is also used. As a rule, however, this consumes significantly more electricity than the magnetic field sensor. This current usually has to be supplied or made available by the battery. This can make periodic activation of the radar device uneconomical, since either the battery life is greatly shortened or the response time of the sensor device is significantly lengthened.
  • the radar device is only activated when the radar device is actually needed.
  • two images are created and stored from the measured sensor values of the magnetic field sensor. So these are the two reference measured values.
  • a fingerprint is created from the data from the empty parking position.
  • the other fingerprint (second reference measurement value) is created from a parking position that is occupied.
  • both fingerprints i.e. both images, i.e. both reference measured values
  • both fingerprints are periodically updated during operation in order to advantageously adapt to changes in the measured magnetic field of the environment (e.g. drift by setting a temperature, placing magnetic objects nearby).
  • a new measured value is preferably recorded periodically by means of the magnetic field sensor (compare step 205 according to FIG Fig. 2 ). From this measured value, the distances to the two fingerprints (that is to say to the two reference measured values) are calculated and then normalized (compare step 207 according to FIG Fig. 2 ). The normalized distances are compared with a threshold value (compare step 209 according to FIG Fig. 2 ). Depending on whether the normalized distances are above or below the threshold value, a decision is made as to whether the state has changed or whether the old state is retained. This means that, based on the comparison with the threshold value, a decision is made as to whether an occupied state of the parking position has changed (compare step 213 according to FIG Fig. 2 ) or not.
  • one embodiment provides that the two normalized distances to the stored images are compared with one another (compare steps 215 and 217 according to FIG Fig. 2 ). If this difference between the two normalized distances is smaller than the radar activation threshold value, this means that no reliable decision can be made as to whether the occupied state has changed or not. This means that, according to one embodiment, it is then provided that the radar device is activated for a plausibility check for a distance measurement, in particular only for a short time. This means that after the distance measurement, the radar device is in particular deactivated again.
  • the result of the radar measurement is used to update the fingerprint in question, that is to say either the first or the second reference measured value. This is particularly due to the fact that the magnetic field sensor carries out a new magnetic field measurement.
  • a sensor device in particular an ultrasound device. That is, in the statements made above instead of or in addition to the radar device, an ultrasound device can be provided.
  • a sensor device can generally be provided that is designed to carry out a transit time measurement, that is to say a sensor device that is designed for a transit time measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Sensorvorrichtung zum Detektieren eines Objekts. Die Erfindung betrifft des Weiteren eine Sensorvorrichtung zum Detektieren eines Objekts. Die Erfindung betrifft ferner ein Computerprogramm.
  • Stand der Technik
  • Die Bestimmung der Auslastung von Parkhäusern und bezahlten Parkplätzen ist für deren Betreiben und für die Verkehrsregelung in Städten von hoher Bedeutung. Daher werden Sensoren zur Überwachung von Parkplätzen benutzt, die den Zustand des Parkplatzes an eine Kontrollstelle übermitteln. Die Erfassung des Zustands erfolgt normalerweise entweder über Magnetfeldsensoren, Kameras oder durch emittierende Sensoren wie Ultraschall- oder Radarsensoren.
  • Je nach System sind die Sensoren entweder fest mit einem Stromnetz oder Datennetz verbunden, was einen hohen Aufwand bei der Installation bedeutet. Oder sie sind batteriebetrieben und kommunizieren drahtlos über Funk mit der Kontrollstelle. Die Herausforderung an den drahtlosen Systemen ist es insbesondere, die durch die Batteriekapazität begrenzte Lebensdauer zu maximieren.
  • Offenbarung der Erfindung
  • Die Schrift WO 2010/069002 A1 offenbart ein Verfahren zum Betreiben einer Sensorvorrichtung zum Detektieren eines Objekts, wobei die Sensorvorrichtung einen ersten und einen zweiten Umfeldsensor zum Erfassen eines Umfelds der Sensorvorrichtung aufweist.
  • Die später veröffentlichte Schrift EP2905765 A1 , die unter Artikel 54(3) EPÜ fällt, betrifft einen hybriden magnetischen Radardetektor zur Parkplatzverwaltung. Wenn sich die Messung des Magnetfeldes von einer einzigen Standardmessung bei einem leeren Parkplatz unterscheidet, wird eine Änderung des Magnetfeldes erkannt, was auf die Anwesenheit eines Fahrzeugs hindeutet und was vom Radarsensor bestätigt wird.
  • Die der Erfindung zugrunde liegende Aufgabe kann daher darin gesehen werden, ein effizientes Konzept bereitzustellen, welches es ermöglicht, einen elektrischen Energieverbrauch einer Sensorvorrichtung zu reduzieren.
  • Diese Aufgabe wird mittels des jeweiligen Gegenstands der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von jeweils abhängigen Unteransprüchen.
  • Nach einem Aspekt wird ein Verfahren zum Betreiben einer Sensorvorrichtung zum Detektieren eines Objekts bereitgestellt, wobei die Sensorvorrichtung einen Magnetfeldsensor und ein Sensorgerät umfasst, das für eine Laufzeitmessung ausgebildet ist, umfassend die folgenden Schritte:
    • Messen eines Magnetfelds im Umfeld der Sensorvorrichtung mittels des Magnetfeldsensors, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Sensorgerät während der Messung des Magnetfelds deaktiviert ist,
    • Berechnen einer ersten Distanz des Messwerts zu einem ersten Referenzmesswert, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors frei von einem Objekt ist,
    • Berechnen einer zweiten Distanz des Messwerts zu einem zweiten Referenzmesswert, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors ein Objekt befindet,
    • Aktivieren des deaktivierten Sensorgerät abhängig von den berechneten Distanzen,
    • Durchführen einer Laufzeitmessung im Umfeld der Sensorvorrichtung mittels des aktivierten Sensorgeräts, um der Laufzeitmessung entsprechende Sensordaten zu ermitteln,
    • Ermitteln basierend auf den Sensordaten, ob sich in dem Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Gemäß einem weiteren Aspekt wird eine Sensorvorrichtung zum Detektieren eines Objekts bereitgestellt, umfassend:
    • einen Magnetfeldsensor,
    • ein Sensorgerät, das für eine Laufzeitmessung ausgebildet ist,
    • eine Steuerungseinrichtung zum Steuern des Magnetfeldsensors und des Sensorgerät und
    • einen Prozessor,
    • wobei die Steuerungseinrichtung ausgebildet ist, den Magnetfeldsensor derart zu steuern, dass ein Magnetfeld im Umfeld der Sensorvorrichtung mittels des Magnetfeldsensors gemessen wird, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Sensorgerät während der Messung des Magnetfelds deaktiviert ist,
    • wobei der Prozessor ausgebildet ist, eine erste Distanz des Messwerts zu einem ersten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors frei von einem Objekt ist,
    • wobei der Prozessor ausgebildet ist, eine zweite Distanz des Messwerts zu einem zweiten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors ein Objekt befindet,
    • wobei die Steuerungseinrichtung ausgebildet ist, das deaktivierte Sensorgerät abhängig von den berechneten Distanzen zu aktivieren und derart zu steuern, dass eine Laufzeitmessung im Umfeld der Sensorvorrichtung mittels des aktivierten Sensorgeräts durchgeführt wird, um der Laufzeitmessung entsprechende Sensordaten zu ermitteln,
    • wobei der Prozessor ausgebildet ist, basierend auf den Sensordaten zu ermitteln, ob sich in dem Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Gemäß einem weiteren Aspekt wird ein Computerprogramm bereitgestellt, welches Programmcode zur Durchführung des erfindungsgemäßen Verfahrens umfasst, wenn das Computerprogramm auf einem Computer ausgeführt wird.
  • Die Erfindung umfasst also insbesondere und unter anderem den Gedanken, nur dann das Sensorgerät der Sensorvorrichtung zu aktivieren, wenn die Messung des Magnetfeldsensors nicht ausreicht, um mit einer vorbestimmten Wahrscheinlichkeit sagen zu können, ob sich in dem Umfeld der Sensorvorrichtung ein Objekt befindet oder nicht. Dadurch also, dass das Sensorgerät nicht ständig, also dauerhaft, aktiviert ist, um das Umfeld der Sensorvorrichtung zu erfassen, kann in vorteilhafter Weise ein elektrischer Energieverbrauch der Sensorvorrichtung reduziert werden. Dies im Vergleich zu einer Sensorvorrichtung umfassend einen Magnetfeldsensor und ein Radargerät oder ein Ultraschallgerät, wobei sowohl das Radargerät respektive das Ultraschallgerät als auch der Magnetfeldsensor dauerhaft oder zumindest in vorgegebenen Intervallen eine Umfelderfassung durchführen.
  • Ferner kann dadurch in vorteilhafter Weise eine durch eine Batteriekapazität begrenzte Lebensdauer maximiert werden, wenn die Sensorvorrichtung eine solche Batterie, oder allgemein eine elektrische Energieversorgung, zur elektrischen Energieversorgung aufweist. Somit kann also in vorteilhafter Weise die Sensorvorrichtung auch in Umgebungen eingesetzt werden, die kein drahtgebundenes Stromnetz zwecks Energieversorgung aufweisen. Somit kann also ein Aufwand bei einer Installation der Sensorvorrichtung reduziert werden.
  • Das Berechnen der entsprechenden Distanzen des Messwerts zu den beiden Referenzmesswerten weist insbesondere den technischen Vorteil auf, dass dadurch ermittelt werden kann, ob ein Messwert sich näher an dem ersten oder an dem zweiten Referenzmesswert befindet, also ob der Messwert mehr dem ersten oder dem zweiten Referenzmesswert ähnelt. Je näher ein Messwert an einem bestimmten Referenzmesswert dran liegt, desto höher in der Regel insbesondere die Wahrscheinlichkeit, dass sich in dem Messbereich des Magnetfeldsensors kein Objekt befindet, wenn der Messwert näher an dem ersten Referenzmesswert dran liegt, oder dass sich im Messbereich des Magnetfeldsensors ein Objekt befindet, wenn der Messwert sich näher an dem zweiten Referenzmesswert befindet.
  • Die Formulierung "frei von einem Objekt" heißt insbesondere, dass sich im Messbereich des Magnetfeldsensors kein Objekt befindet.
  • Wenn aber die ermittelten Distanzen derart sind, dass nicht zuverlässig entschieden werden kann, ob sich in dem Messbereich des Magnetfeldsensors ein Objekt oder nicht befindet, dies allein basierend auf dem Messwert, so wird das deaktivierte Sensorgerät aktiviert und eine Laufzeitmessung durchgeführt. So kann also in der Regel das Sensorgerät deaktiviert bleiben. Die Entscheidung, ob sich in dem Messbereich des Magnetfeldsensors ein Objekt befindet oder nicht, kann allein basierend auf der Magnetfeldmessung durchgeführt werden. Nur in Situationen, in denen die Magnetfeldmessung nicht ausreicht, um zuverlässig zu detektieren, ob sich in dem Umfeld ein Objekt befindet oder nicht, wird das Sensorgerät aktiviert.
  • In einer Ausführungsform ist vorgesehen, dass das Sensorgerät ein Radargerät und/oder ein Ultraschallgerät umfasst.
  • Ein Radargerät im Sinne der vorliegenden Erfindung umfasst insbesondere einen Radarsensor zum Erfassen einer Radarstrahlung. Das Radargerät ist insbesondere ausgebildet, eine Radarstrahlung zu emittieren, wobei eine reflektierte Radarstrahlung mittels des Radarsensors erfasst werden kann. Das Radargerät weist also insbesondere einen Radaremitter auf. Insbesondere ist das Radargerät nach einer Ausführungsform ausgebildet, einen Abstand zwischen dem Radargerät und einem Objekt zu messen, welches sich vor dem Radargerät, also im Messbereich des Radargeräts, also insbesondere des Radarsensors, befindet. Dies mittels einer Laufzeitmessung der emittierten Radarstrahlung. Eine Laufzeitmessung im Zusammenhang mit dem Radargerät kann insbesondere als eine Radarmessung bezeichnet werden. Die Sensordaten können dann inbesondere als Radardaten bezeichnet werden.
  • Ein Ultraschallgerät im Sinne der vorliegenden Erfindung umfasst insbesondere einen Ultraschallsensor zum Erfassen von Ultraschall. Das Ultraschall ist insbesondere ausgebildet, Ultraschall zu emittieren, wobei reflektierter Ultraschall mittels des Ultraschallsensors erfasst werden kann. Das Ultraschallgerät weist also insbesondere einen Ultraschallemitter auf. Insbesondere ist das Ultraschallgerät nach einer Ausführungsform ausgebildet, einen Abstand zwischen dem Ultraschallgerät und einem Objekt zu messen, welches sich vor dem Ultraschallgerät, also im Messbereich des Ultraschallgerät, also insbesondere des Ultraschallsensors, befindet. Dies mittels einer Laufzeitmessung des emittierten Ultraschalls. Eine Laufzeitmessung im Zusammenhang mit dem Ultraschallgerät kann insbesondere als eine Ultraschallmessung bezeichnet werden. Die Sensordaten können dann insbesondere als Ultraschalldaten bezeichnet werden.
  • Das Sensorgerät ist nach einer Ausführungsform ausgebildet, ein Signal, zum Beispiel ein Ultraschallsignal und/oder ein Radarsignal, zu emittieren und ein reflektiertes Signal, zum Beispiel ein reflektiertes Ultraschallsignal und/oder ein reflektiertes Radarsignal, zu erfassen oder zu messen, so dass eine Laufzeitmessung des Signals durchgeführt werden kann. Das Sensorgerät umfasst also insbesondere emittierende Sensoren, die allgemein auch als aktive Sensoren bezeichnet werden können, zum Beispiel einen aktiven Radarsensor und/oder einen aktiven Ultraschallsensor. Unter einem aktiven Sensor wird somit ein Sensor verstanden, der aktiv ein Signal reflekiert und ein reflektiertes Signal messen kann. So umfasst also das Radargerät zum Beispiel einen aktiven Radarsensor, also einen Radar emittierenden Radarsensor. So umfasst also das Ultraschallgerät zum Beispiel einen aktiven Ultraschallsensor, also einen Ultraschall emittierenden Ultraschallsensor.
  • Im Gegensatz dazu ist ein Magnetfeldsensor ein passiver Sensor, da er kein Signal emittiert, sondern lediglich passiv das Magnetfeld in seiner Umgebung oder in seinem Umfeld misst.
  • Das Sensorgerät ist also insbesondere ausgebildet, einen Abstand zwischen sich und einem im Messbereich des Sensorgeräts befindlichen Objekt zu messen. Dies insbesondere mittels einer Laufzeitmessung. Da zur Laufzeitmessung ein Signal, zum Beispiel Radar und/oder Ultraschall, emittiert werden muss, kann das Sensorgerät auch als ein emittierendes Sensorgerät oder als ein aktives Sensorgerät bezeichnet werden.
  • Dass das Sensorgerät für eine Laufzeitmessung ausgebildet ist, bedeutet insbesondere, dass das Sensorgerät ausgebildet ist, eine Laufzeitmessung durchzuführen. Das heißt also, dass das Sensorgerät eine Laufzeitmessung durchführen. Dies zum Beispiel, um einen Abstand zwischen sich und einem Objekt durchzuführen, welches sich im Messbereich des Sensorgeräts befindet.
  • Eine Laufzeitmessung umfasst insbesondere das Emittieren oder das Aussenden eines Signals und ein Erfassen oder ein Messen eines reflektierten Signals. Insbesondere umfasst eine Laufzeitmessung eine Zeitmessung zwischen dem Emittieren oder dem Aussenden des Signals und dem Erfassen oder dem Messen des reflektierten Signals. Basierend auf der Laufzeitmessung ist nach einer Ausführungsform vorgesehen, dass ein Abstand zwischen dem Sensorgerät und einem Objekt bestimmt oder ermittelt wird, welches sich im Messbereich des Sensorgeräts befindet. Basierend auf der Laufzeitmessung, insbesondere basierend auf dem bestimmten Abstand, wird nach einer Ausführungsform ermittelt, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet oder nicht. Sensordaten umfassen also insbesondere dem erfassten oder gemessenen reflektierten Signal entsprechende Daten.
  • Wenn im Lichte dieser Beschreibung speziell von einem Radargerät und einer Radarmessung geschrieben wird, so soll das nicht als einschränkend verstanden werden. Vielmehr soll vorzugsweise allgemein das Sensorgerät und die Laufzeitmessung mitgelesen werden. Analog soll vorzugsweise anstelle oder zusätzlich zum Radargerät das Ultraschallgerät mitgelesen werden.
  • Nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass der Magnetfeldsensor nach der Messung des Magnetfelds deaktiviert wird. Dadurch wird insbesondere der technische Vorteil bewirkt, dass ein Energieverbrauch der Sensorvorrichtung noch weiter reduziert werden kann. Denn durch das Deaktivieren des Magnetfeldsensors wird in vorteilhafter Weise ein elektrischer Energieverbrauch des Magnetfeldsensors weiter reduziert.
  • Nach einem weiteren Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass das Sensorgerät nach dem Durchführen der Laufzeitmessung deaktiviert wird. Dadurch wird in vorteilhafter Weise der technische Vorteil bewirkt, dass ein Energieverbrauch der Sensorvorrichtung noch weiter reduziert werden kann. Denn durch das Deaktivieren des Sensorgeräts wird in vorteilhafter Weise ein elektrischer Energieverbrauch des Sensorgeräts weiter reduziert.
  • Das heißt also insbesondere, dass nach dem Erfassen des Umfelds mittels des Magnetfeldsensors, also nach der Magnetfeldmessung, der Magnetfeldsensor deaktiviert wird.
  • Das heißt also insbesondere, dass nach dem Erfassen des Umfelds mittels des Sensorgerät, also nach der Laufzeitmessung, das Sensorgerät deaktiviert wird.
  • Ein Deaktivieren im Sinne der vorliegenden Erfindung umfasst insbesondere, dass der Magnetfeldsensor respektive das Sensorgerät in einen Standby- oder Bereitschaftsmodus gefahren wird. Insbesondere umfasst ein Deaktivieren im Sinne der vorliegenden Erfindung, dass eine Stromversorgung oder allgemein eine elektrische Energieversorgung für den Magnetfeldsensor respektive das Sensorgerät unterbrochen wird. Das heißt also insbesondere, dass ein Deaktivieren umfassen kann, dass der Magnetfeldsensor respektive das Sensorgerät vollständig von einer elektrischen Energieversorgung abgetrennt wird.
  • Ein Aktivieren im Sinne der vorliegenden Erfindung umfasst insbesondere, dass der Magnetfeldsensor respektive das Sensorgerät aus einem Schlafzustand oder Standbyzustand oder Bereitschaftszustand aufgeweckt wird. Insbesondere umfasst ein Aktivieren, dass der Magnetfeldsensor respektive das Sensorgerät wieder an eine elektrische Energieversorgung angeschlossen wird, wenn der Magnetfeldsensor respektive das Sensorgerät zuvor von dieser getrennt wurde.
  • Die Formulierung "respektive" im Sinne der vorliegenden Erfindung umfasst insbesondere die Formulierung "und/oder".
  • Nach einer Ausführungsform ist vorgesehen, dass mittels des Magnetfeldsensors eine erste Magnetfeldmessung durchgeführt wird, währenddessen ein Messbereich des Magnetfeldsensors frei von einem Objekt ist, um den ersten Referenzmesswert zu ermitteln, wobei mittels des Magnetfeldsensors eine zweite Magnetfeldmessung durchgeführt wird, währenddessen sich im Messbereich des Magnetfeldsensors ein Objekt befindet, um den zweiten Referenzmesswert zu ermitteln.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass zum Beispiel während des Betriebs der Sensorvorrichtung die Referenzmesswerte ermittelt werden können. Somit kann in vorteilhafter Weise auf konkret vorliegende Umweltbedingungen Rücksicht genommen werden. Somit kann insbesondere in vorteilhafter Weise eine Anpassung an wechselnde äußere Einflüsse bewirkt werden. Solche äußeren Einflüsse umfassen beispielsweise eine Witterung oder eine Platzierung von magnetischen Gegenständen in der Nähe des Magnetfeldsensors.
  • Nach einer Ausführungsform ist vorgesehen, dass die berechneten Distanzen normalisiert werden.
  • In einer anderen Ausführungsform ist vorgesehen, dass die berechneten Distanzen normalisiert werden, wobei eine Differenz der beiden normalisierten Distanzen berechnet wird, wobei die Differenz der beiden normalisierten Distanzen mit einem Sensorgerätaktivierungsschwellwert verglichen werden, wobei das deaktivierte Senorgerät abhängig von dem Vergleich mit dem Sensorgerätaktivierungsschwellwert aktiviert wird. Im Fall eines Radargeräts ist der Sensorgerätaktivierungsschwellwert ein Radargerätaktivierungsschwellwert. Im Fall eines Ultraschallgeräts ist der Sensorgerätaktivierungsschwellwert ein Ultraschallgerätaktivierungsschwellwert.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass effizient erkannt werden kann, wann das deaktivierte Sensorgerät aktiviert werden muss.
  • Die Normalisierung bewirkt in vorteilhafter Weise, dass sich die Sensorvorrichtung in unterschiedlichen Umgebungen gleich verhalten kann. Die Berechnung für die Normalisierung ist nach einer Ausführungsform wie folgt: Normalisierte Distanz = Distanz / Normalisierungsfaktor ,
    Figure imgb0001
    wobei der Normalisierungsfaktor insbesondere anwendungspezifisch gewählt ist. Anwendungsspezifisch heißt hier insbesondere, dass je nach vorgesehener Anwendung der Sensorvorrichtung, unterschiedliche Normalisierungsfaktoren gewählt werden. Wenn zum Beispiel die Sensorvorrichtung verwendet wird, um einen Belegtzustand einer Parkposition zu erfassen oder zu detektieren, so wird ein anderer Normalisierungsfaktor gewählt, als wenn die Sensorvorrichtung verwendet wird, um eine Verkehrsdichte zu messen.
  • In einer anderen Ausführungsform ist vorgesehen, dass die normalisierten Distanzen mit einem Schwellwert verglichen werden, wobei abhängig von dem Vergleich mit dem Schwellwert ermittelt wird, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass effizient ermittelt werden kann, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet. Dies also insbesondere basierend auf der Magnetfeldmessung.
  • In einer anderen Ausführungsform ist vorgesehen, dass, wenn basierend auf den Sensordaten ermittelt wird, dass sich ein Objekt im Umfeld der Sensorvorrichtung befindet, eine Magnetfeldmessung mittels des Magnetfeldsensors durchgeführt wird, um den zweiten Referenzmesswert zu aktualisieren, wobei, wenn basierend auf den Sensordaten ermittelt wird, dass ein Umfeld der Sensorvorrichtung frei von einem Objekt ist, eine Magnetfeldmessung mittels des Magnetfeldsensors durchgeführt wird, um den ersten Referenzmesswert zu aktualisieren.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass Ergebnisse der Laufzeitmessung effizient und effektiv für die Aktualisierung der beiden Referenzmesswerte verwendet werden können. Das heißt also insbesondere, dass nach der Laufzeitmessung der Magnetfeldsensor eine Magnetfeldmessung durchführt, um einen entsprechenden Messwert zu ermitteln. Da durch die Laufzeitmessung bekannt ist, ob sich in dem Umfeld ein Objekt befindet oder nicht, kann dieser Messwert dann entweder als der erste oder als der zweite Referenzmesswert definiert werden abhängig davon, ob die Laufzeitmessung ergeben hat, ob sich in dem Umfeld ein Objekt befindet oder nicht.
  • Das heißt also insbesondere, dass, wenn die Laufzeitmessung ergeben hat, dass sich im Umfeld der Sensorvorrichtung ein Objekt befindet, der Messwert der Magnetfeldmessung als der zweite Referenzmesswert definiert wird. Das heißt also, dass hier dann der zweite Referenzmesswert aktualisiert wird. Entsprechend wird dann der Messwert der Magnetfeldmessung als der erste Referenzmesswert definiert, wenn die Laufzeitmessung ergeben hat, dass sich in dem Umfeld der Sensorvorrichtung kein Objekt befindet. Das heißt also, dass hier dann der erste Referenzmesswert aktualisiert wird. Dies also basierend auf der Laufzeitmessung.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass ein Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet, über ein Kommunikationsnetzwerk gesendet wird.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass das Ergebnis auch entfernt von der Sensorvorrichtung zur Verfügung gestellt werden kann. Zum Beispiel wird das Ergebnis über ein Kommunikationsnetzwerk gesendet. Ein Kommunikationsnetzwerk umfasst insbesondere ein WLAN und/oder ein Mobilfunknetzwerk.
  • Insbesondere ist nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, vorgesehen, dass eine Kommunikation über das Kommunikationsnetzwerk verschlüsselt wird respektive ist.
  • Nach einem weiteren Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass ein aktuelles Ergebnis des Ermittelns, ob sich in dem Umfeld ein Objekt befindet, mit einem früheren Ergebnis eines zeitlich früheren Ermittelns, ob sich in dem Umfeld ein Objekt befindet, verglichen wird, wobei nur bei einem Unterschied zwischen dem aktuellen und dem früheren Ergebnis das aktuelle Ergebnis über ein Kommunikationsnetzwerk gesendet wird.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass ein elektrischer Energieverbrauch der Sensorvorrichtung noch weiter reduziert werden kann. Denn es wird nur das aktuelle Ergebnis über das Kommunikationsnetzwerk gesendet, wenn ein Unterschied zwischen dem aktuellen und dem früheren Ergebnis festgestellt wurde. Insbesondere wird dadurch in vorteilhafter Weise bewirkt, dass eine vorhandene Datenbandbreite effizient genutzt werden kann. Ein Ergebnis im Sinne der vorliegenden Erfindung umfasst insbesondere, dass ein Objekt detektiert wurde, dass also ein Objekt im Umfeld vorhanden ist, sich also im Umfeld befindet. Ein Ergebnis umfasst insbesondere, dass kein Objekt detektiert wurde, sich also kein Objekt im Umfeld befindet.
  • Das frühere Ergebnis wurde analog zum aktuellen Ergebnis gemäß dem erfindungsgemäßen Verfahren respektive mittels der erfindungsgemäßen Sensorvorrichtung ermittelt. Das heißt also, dass zu einem zeitlich früheren Zeitpunkt das Umfeld der Sensorvorrichtung erfasst wurde, um zu ermitteln, ob sich in dem Umfeld ein Objekt befindet oder nicht.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass die Sensorvorrichtung im Umfeld einer Parkposition angeordnet ist, so dass basierend auf einem Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet, ermittelt wird, ob die Parkposition frei oder belegt ist.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass effizient und effektiv ermittelt werden kann, ob die Parkposition frei oder belegt ist. Eine freie Parkposition bezeichnet insbesondere eine Parkposition, auf welcher kein Fahrzeug abgestellt ist. Eine belegte Parkposition bezeichnet insbesondere eine Parkposition, auf welcher ein Fahrzeug abgestellt ist.
  • In dieser Ausführungsform kann also die Sensorvorrichtung als eine Sensorvorrichtung zum Ermitteln eines Belegtzustands einer Parkposition bezeichnet werden. Das Objekt, welches hier also detektiert werden soll respektive kann, ist also insbesondere ein Fahrzeug. Die Sensorvorrichtung kann zum Beispiel dann auch als Sensorvorrichtung zum Detektieren eines Fahrzeugs bezeichnet werden.
  • In einer Ausführungsform ist vorgesehen, dass die Steuerungseinrichtung ausgebildet ist, den Magnetfeldsensor derart zu steuern, dass mittels des Magnetfeldsensors eine erste Magnetfeldmessung durchgeführt wird, währenddessen ein Messbereich des Magnetfeldsensors frei von einem Objekt ist, um den ersten Referenzmesswert zu ermitteln, wobei die Steuerungseinrichtung ausgebildet ist, den Magnetfeldsensor derart zu steuern, dass mittels des Magnetfeldsensors eine zweite Magnetfeldmessung durchgeführt wird, währenddessen sich im Messbereich des Magnetfeldsensors ein Objekt befindet, um den zweiten Referenzmesswert zu ermitteln.
  • Nach einer Ausführungsform ist vorgesehen, dass der Prozessor ausgebildet ist, die berechneten Distanzen zu normalisieren.
  • In einer anderen Ausführungsform ist vorgesehen, dass der Prozessor ausgebildet ist, die berechneten Distanzen zu normalisieren, eine Differenz der beiden normalisierten Distanzen zu berechnen und die Differenz der beiden normalisierten Distanzen mit einem Sensorgerätaktivierungsschwellwert zu vergleichen, wobei die Steuerungseinrichtung ausgebildet ist, das deaktivierte Sensorgerät abhängig von dem Vergleich mit dem Sensorgerätaktivierungsschwellwert zu aktivieren.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass der Prozessor ausgebildet ist, die normalisierten Distanzen mit einem Schwellwert zu vergleichen und abhängig von dem Vergleich mit dem Schwellwert zu ermitteln, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Nach noch einer Ausführungsform ist vorgesehen, dass die Steuerungseinrichtung ausgebildet ist, den Magnetfeldsensor derart zu steuern, dass eine Magnetfeldmessung mittels des Magnetfeldsensors durchgeführt wird, um den zweiten Referenzmesswert zu aktualisieren, wenn basierend auf den Sensordaten ermitteln wird, dass sich ein Objekt im Umfeld der Sensorvorrichtung befindet, wobei die Steuerungseinrichtung ausgebildet ist, den Magnetfeldsensor derart zu steuern, dass eine Magnetfeldmessung mittels des Magnetfeldsensors durchgeführt wird, um den ersten Referenzmesswert zu aktualisieren, wenn basierend auf den Sensordaten ermittelt wird, dass ein Umfeld der Sensorvorrichtung frei von einem Objekt ist.
  • Nach noch einer Ausführungsform ist vorgesehen, dass eine Kommunikationsschnittstelle vorgesehen ist, die ausgebildet ist, ein Ergebnis, des Ermittelns, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet, über ein Kommunikationsnetzwerk zu senden.
  • In einer anderen Ausführungsform ist vorgesehen, dass eine elektrische Energieversorgung für eine elektrische Energieversorgung von elektronischen Elementen der Sensorvorrichtung vorgesehen ist. Dadurch wird insbesondere der technische Vorteil bewirkt, dass eine autarke Energieversorgung der Sensorvorrichtung gegeben ist. Elektronische Elemente der Sensorvorrichtung sind insbesondere das Sensorgerät, insbesondere das Radargerät und/oder insbesondere das Ultraschallgerät, der Magnetfeldsensor, die Steuerungseinrichtung, der Prozessor und eventuell gegebenenfalls insbesondere die Kommunikationsschnittstelle. Nach einer Ausführungsform umfasst die elektrische Energieversorgung eine oder mehrere Batterien. In einer weiteren Ausführungsform umfasst die elektrische Energieversorgung einen oder mehrere Akkumulatoren.
  • In einer anderen Ausführungsform ist vorgesehen, dass der Prozessor ausgebildet ist, basierend auf einem Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet, zu ermitteln, ob eine Parkposition frei oder belegt ist.
  • Nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass das Objekt ein auf einer Straße fahrendes Fahrzeug oder ein auf einem Containerlagerplatz abgestellter Container ist. Das heißt also insbesondere, dass die Sensorvorrichtung verwendet werden kann, um einen Verkehrsfluss und/oder eine Verkehrsdichte zu erfassen respektive zu überwachen. Insbesondere kann somit in vorteilhafter Weise mittels der Sensorvorrichtung ein Belegtzustand eines Containerplatzes erfasst oder detektiert werden, wenn das Objekt ein Container ist.
  • Nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, sind der Prozessor und die Steuerungseinrichtung von einem Microcontroller umfasst.
  • Vorrichtungsmerkmale ergeben sich analog aus entsprechenden Verfahrensmerkmalen und umgekehrt. Das heißt also insbesondere, dass sich Merkmale, technische Vorteile und Ausführungen betreffend die Sensorvorrichtung sich analog aus entsprechenden Ausführungen, Merkmalen und Vorteilen des Verfahrens und umgekehrt ergeben. Das heißt also insbesondere, dass sich technische Funktionalitäten des Verfahrens aus der Vorrichtung und umgekehrt ergeben.
  • Die Erfindung wird im Folgenden anhand von bevorzugten Ausführungsbeispielen näher erläutert, die jeweils zeigen
    • Fig. 1 ein Ablaufdiagramm eines Verfahrens zum Betreiben einer Sensorvorrichtung,
    • Fig. 2 ein Ablaufdiagramm eines weiteren Verfahrens zum Betreiben einer Sensorvorrichtung und
    • Fig. 3 eine Sensorvorrichtung.
  • Fig. 1 zeigt ein Ablaufdiagramm eines Verfahrens zum Betreiben einer Sensorvorrichtung zum Detektieren eines Objekts.
  • Die Sensorvorrichtung umfasst einen Magnetfeldsensor und ein Radargerät. Es sind insbesondere die folgenden Schritte vorgesehen:
    • Messen 101 eines Magnetfelds im Umfeld der Sensorvorrichtung mittels des Magnetfeldsensors, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Radargerät während der Messung des Magnetfelds deaktiviert ist,
    • Berechnen 103 einer ersten Distanz des Messwerts zu einem ersten Referenzmesswert, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors frei von einem Objekt ist,
    • Berechnen 105 einer zweiten Distanz des Messwerts zu einem zweiten Referenzmesswert, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors ein Objekt befindet,
    • Aktivieren 107 des deaktivierten Radargeräts abhängig von den berechneten Distanzen,
    • Durchführen 109 einer Radarmessung im Umfeld der Sensorvorrichtung mittels des aktivierten Radargeräts, um der Radarmessung entsprechende Radardaten zu ermitteln,
    • Ermitteln 111 basierend auf den Radardaten, ob sich in dem Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Wenn basierend auf den berechneten Distanzen festgestellt wird, dass das deaktivierte Radargerät nicht aktiviert werden muss, so ist gemäß einem Schritt 113 vorgesehen, dass die berechneten Distanzen normalisiert werden, wobei die normalisierten Distanzen mit einem Schwellwert verglichen werden, wobei abhängig von dem Vergleich mit dem Schwellwert ermittelt wird, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet. Das heißt also insbesondere, dass gemäß dem Schritt 113 allein basierend auf der Magnetfeldmessung ermittelt wird, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet. In diesem Fall muss also das Radargerät nicht aktiviert werden. Dies bewirkt in vorteilhafter Weise einen reduzierten Energieverbrauch der Sensorvorrichtung.
  • Fig. 2 zeigt ein Ablaufdiagramm eines weiteren Verfahrens zum Betreiben einer Sensorvorrichtung zum Detektieren eines Objekts.
  • Die Sensorvorrichtung umfasst einen Magnetfeldsensor und ein Radargerät. Insbesondere ist vorgesehen, dass mittels der Sensorvorrichtung erfasst wird, ob eine Parkposition belegt oder frei ist.
  • Das Verfahren startet in einem Schritt 201, wobei ein Magnetfeldsensor zwecks einer Magnetfeldmessung aktiviert wird und ein Radargerät deaktiviert wird, wenn es nicht bereits deaktiviert ist.
  • In einem Schritt 203 ist vorgesehen, dass mittels des Magnetfeldsensors eine erste Magnetfeldmessung durchgeführt wird, währenddessen ein Messbereich des Magnetfeldsensors frei von einem Objekt ist, um den ersten Referenzwert zu ermitteln. Insbesondere ist gemäß dem Schritt 203 vorgesehen, dass mittels des Magnetfeldsensors eine zweite Magnetfeldmessung durchgeführt wird, währenddessen sich im Messbereich des Magnetfeldsensors ein Objekt befindet, um den zweiten Referenzmesswert zu ermitteln. Das heißt also, dass gemäß dem Schritt 203 vorgesehen ist, dass die beiden Referenzmesswerte initialisiert werden. Dies kann zum Beispiel während einer Erstmontage durchgeführt werden. Insbesondere wird diese Initialisierung der Referenzmesswerte gemäß dem Schritt 203 während eines Betriebs der Sensorvorrichtung durchgeführt.
  • In einem Schritt 205 ist vorgesehen, dass ein Magnetfeld im Umfeld der Sensorvorrichtung mittels des Magnetfeldsensors gemessen wird, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Radargerät während der Messung des Magnetfelds deaktiviert ist.
  • In einem Schritt 207 ist vorgesehen, dass eine erste Distanz des Messwerts zu dem ersten Referenzmesswert berechnet wird. Insbesondere ist im Schritt 207 vorgesehen, dass eine zweite Distanz des Messwerts zu dem zweiten Referenzmesswert berechnet wird. Gemäß dem Schritt 207 ist ferner vorgesehen, dass die berechneten Distanzen normalisiert werden.
  • In einem Schritt 209 ist vorgesehen, dass die normalisierten Distanzen mit einem Schwellwert verglichen werden. Im Schritt 209 ist ferner vorgesehen, dass abhängig von dem Vergleich mit dem Schwellwert ermittelt wird, ob sich im Umfeld der Sensorvorrichtung ein Objekt befindet. Sofern sich im Umfeld der Sensorvorrichtung kein Objekt befindet, geht das Verfahren weiter zum Block 211. Sofern sich im Umfeld der Sensorvorrichtung ein Objekt befindet, wird gemäß einem Schritt 213 ein Zustand gewechselt. Dieser Zustand zeigt also an, ob die Sensorvorrichtung ein Objekt detektiert hat oder nicht, also insbesondere, ob eine Parkposition frei oder belegt ist. Die Zustände beschreiben, ob ein Objekt im Umfeld der Sensorvorrichtung vorhanden ist oder nicht. Der Wechsel wirkt sich auf die Arbeitsweise der Sensorvorrichtung zum Beispiel so aus, dass jeweils der zum Zustand gehörende Fingerabdruck aktualisiert wird. Ansonsten ist der Wechsel von einem Zustand zum anderen Zustand binär, es gibt keine Übergangsphase. Der Zustand kann zum Beispiel durch einen internen Statusindikator realisiert werden, der zum Beispiel als Flag bezeichnet werden kann, und die Werte 0 (kein Objekt detektiert) und 1 (Objekt detektiert) annehmen kann.
  • Dann geht das Verfahren weiter zum Block 211. Der Block 211 gemäß Fig. 2 ist kein eigener Funktionsblock, weist also keine eigene Funktion auf. Der Block 211 wurde lediglich in das Ablaufdiagramm eingefügt, um der Übersicht halber besser das Zusammenführen der zwei Entscheidungszweige (Objekt vorhanden und kein Objekt vorhanden) darstellen zu können.
  • Von dort geht das Verfahren weiter zum Schritt 215, in welchem eine Differenz der beiden normalisierten Distanzen berechnet wird.
  • In einem Schritt 217 ist vorgesehen, dass die Differenz der beiden normalisierten Distanzen mit einem Radaraktivierungsschwellwert verglichen werden.
  • Abhängig von dem Vergleich mit dem Radaraktivierungsschwellwert wird entweder das deaktivierte Radargerät gemäß einem Schritt 219 aktiviert oder es wird nicht aktiviert. Sofern also gemäß dem Schritt 219 das Radargerät aktiviert wird, wird eine Radarmessung mittels des aktivierten Radargeräts im Umfeld der Sensorvorrichtung durchgeführt, um der Radarmessung entsprechende Radardaten zu ermitteln. Gemäß dem Schritt 219 ist dann weiter insbesondere vorgesehen, dass basierend auf den Radardaten ermittelt wird, ob sich in dem Umfeld der Sensorvorrichtung ein Objekt befindet.
  • Das Verfahren geht anschließend weiter zum Schritt 221, in welchem beispielsweise vorgesehen sein kann, ein Ergebnis des Ermittelns über ein Kommunikationsnetzwerk auszusenden. Das Verfahren endet dann in einem Schritt 223, gemäß welchem vorgesehen sein kann, dass die Sensorvorrichtung in einen Schlafzustand versetzt wird. Insbesondere wird der Magnetfeldsensor deaktiviert. Insbesondere wird das Radargerät deaktiviert.
  • Insbesondere ist nach einer weiteren Ausführungsform vorgesehen, dass nach Ablauf einer vorbestimmten Zeit oder in vorbestimmten Intervallen das Verfahren im Schritt 201 oder 203 oder 205 fortgesetzt respektive von neuem gestartet wird.
  • Fig. 3 zeigt eine Sensorvorrichtung 301 zum Detektieren eines Objekts.
  • Die Sensorvorrichtung 301 umfasst:
    • einen Magnetfeldsensor 303,
    • ein Radargerät 305,
    • eine Steuerungseinrichtung 307 zum Steuern des Magnetfeldsensors 303 und des Radargeräts 305 und
    • einen Prozessor 309,
    • wobei die Steuerungseinrichtung 307 ausgebildet ist, den Magnetfeldsensor 303 derart zu steuern, dass ein Magnetfeld im Umfeld der Sensorvorrichtung 301 mittels des Magnetfeldsensors 303 gemessen wird, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Radargerät 305 während der Messung des Magnetfelds deaktiviert ist,
    • wobei der Prozessor 309 ausgebildet ist, eine erste Distanz des Messwerts zu einem ersten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors 303 frei von einem Objekt ist,
    • wobei der Prozessor 309 ausgebildet ist, eine zweite Distanz des Messwerts zu einem zweiten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors 303 ein Objekt befindet,
    • wobei die Steuerungseinrichtung 307 ausgebildet ist, das deaktivierte Radargerät 305 abhängig von den berechneten Distanzen zu aktivieren und derart zu steuern, dass eine Radarmessung im Umfeld der Sensorvorrichtung 301 mittels des aktivierten Radargeräts 305 durchgeführt wird, um der Radarmessung entsprechende Radardaten zu ermitteln,
    • wobei der Prozessor 309 ausgebildet ist, basierend auf den Radardaten zu ermitteln, ob sich in dem Umfeld der Sensorvorrichtung 301 ein Objekt befindet.
  • Die Erfindung umfasst also insbesondere und unter anderem den Gedanken, ein effizientes Konzept bereitzustellen, mittels welchem eine Lebenszeit einer Sensorvorrichtung, insbesondere einer Sensorvorrichtung zum Detektieren eines Belegtzustands einer Parkposition, umfassend ein Radargerät (und/oder ein Ultraschallgerät, allgemein Sensogerät, welches ausgebildet ist, eine Laufzeitmessung durchzuführen) und einen Magnetfeldsensor, erhöht werden kann, indem die Aktivierung des Radargeräts (allgemein des Sensorgeräts) insbesondere abhängig von einem Signal des Magnetfeldsensors ist. Dadurch reduziert sich in vorteilhafter Weise ein Stromverbrauch bei gleichbleibender Zuverlässigkeit der Erkennung, da das Radargerät (allgemein das Sensorgerät) nur dann aktiviert wird, wenn es benötigt wird. Es wird also erfindungsgemäß ein effizienter Algorithmus bereitgestellt, der aus einer geringen Anzahl von Magnetfeldmessdaten entscheidet, ob eine Aktivierung des Sensorgeräts, insbesondere des Radargeräts und/oder des Ultraschallgeräts, notwendig ist.
  • Der erfindungsgemäße Kern ist insbesondere darin zu sehen, dass anhand des Abstands von einem Messpunkt der Magnetfeldmessung zu Referenzmessdaten, also zum Beispiel den Referenzmesswerten von einem belegten und einem freien Zustand einer Parkposition, entschieden wird, ob das Sensorgerät aktiviert werden muss. Das erfindungsgemäße Konzept, also insbesondere die Sensorvorrichtung, weist insbesondere folgende Vorteile und technische Merkmale auf:
    Eine erhöhte Lebensdauer einer Batterie durch eine intelligente Reduzierung der Aktivierung des Radargeräts, ein verlängertes Wartungsintervall sowie reduziertere Betriebskosten.
  • Eine Erkennung des Belegtzustands der Parkposition aus einem aktuellen und mindestens einem vorherigen Messwert mit dem Magnetfeldsensor, wenn das Radargerät nicht benötigt wird.
  • Eine Erkennung des Belegtzustands der Parkposition aus einem aktuellen und mindestens einem vorherigen Messwert, ob die Aktivierung des Radargeräts notwendig ist.
  • Eine kontinuierliche, insbesondere eigenständige und/oder automatische, Kalibrierung der Referenzdaten, also der Referenzmesswerte, um sich in vorteilhafter Weise an wechselnde Umgebungen anzupassen, zum Beispiel unterschiedliche Installationsorte, wechselnde äußere Einflüsse durch Witterung, Platzierung von magnetischen Gegenständen in der Nähe der Sensorvorrichtung.
  • Eine schnelle automatische Adaption an temporäre Änderungen, zum Beispiel weil eine U-Bahn sich unterhalb der Parkposition bewegt.
  • Die Sensorvorrichtung, insbesondere die Sensorvorrichtung zur Parkplatzüberwachung, also zur Detektion eines Belegtzustands einer Parkposition, umfasst insbesondere folgende Komponenten:
    Einen Magnetfeldsensor, welcher zum Beispiel periodisch ein auf ihn wirkendes Magnetfeld misst.
  • Ein Radargerät, welches zum Beispiel einen Abstand zu einem vor dem Radargerät platzierten Objekt messen kann. Allgemein kann ein Sensorgerät vorgesehen sein, welches einen Abstand zu einem vor dem Sensorgerät platzierten Objekt messen kann, dies insbesondere mittels einer Laufzeitmessung.
  • Einen Microcontroller, welcher Software ausführt, die den Magnetfeldsensor und das Radargerät steuert. Dafür werden also insbesondere der Magnetfeldsensor und das Radargerät und eine eventuell vorhandene Kommunikationsschnittstelle, die auch als eine Funkschnittstelle im Falle einer drahtlosen Kommunikation bezeichnet werden kann, angesteuert. Insbesondere umfasst die Software den hier vorgeschlagenen erfindungsgemäßen Algorithmus, der entscheidet, wann das Radargerät aktiviert werden soll.
  • Eine Kommunikationsschnittstelle, über die die Erkennung an eine höhere Einheit, zum Beispiel einen externen Server, also einen entfernten Server, gemeldet wird.
  • Eine elektrische Energieversorgung, zum Beispiel eine Batterie, welche die elektronischen Komponenten, zum Beispiel den Magnetfeldsensor, das Radargerät, den Microcontroller, die Funkschnittstelle, mit Strom, also allgemein mit elektrischer Energie, versorgt.
  • Nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass der Magnetfeldsensor periodisch aktiviert wird, um eine Magnetfeldmessung durchzuführen. Dadurch kann also in vorteilhafter Weise über Änderungen des Umgebungsmagnetfelds festgestellt werden, ob sich ein Fahrzeug, allgemein ein Objekt, im Messbereich des Magnetfeldsensors, also zum Beispiel über oder neben dem Magnetfeldsensor, befindet. Nun kann es jedoch vorkommen, dass diese Magnetfeldmessung von anderen äußeren Einflüssen gestört wird. Daher ist erfindungsgemäß vorgesehen, dass zusätzlich ein Radargerät eingesetzt wird. Dieses verbraucht in der Regel jedoch deutlich mehr Strom als der Magnetfeldsensor. Dieser Strom muss in der Regel von der Batterie geliefert oder bereitgestellt werden. Dies kann eine periodische Aktivierung des Radargeräts unwirtschaftlich machen, da entweder eine Batterielebensdauer stark verkürzt oder eine Reaktionszeit der Sensorvorrichtung deutlich verlängert wird.
  • Diese Nachteile werden insbesondere dadurch überwunden, dass das Radargerät erfindungsgemäß nur dann aktiviert wird, wenn das Radargerät auch wirklich benötigt wird. Es ist nach einer Ausführungsform insbesondere vorgesehen, dass von den gemessenen Sensorwerten des Magnetfeldsensors zwei Abbilder (Fingerabdrücke) erstellt und gespeichert werden. Dies sind also die beiden Referenzmesswerte.
  • Ein Fingerabdruck (erster Referenzmesswert) wird aus den Daten der leeren Parkposition erstellt. Der andere Fingerabdruck (zweiter Referenzmesswert) wird von einer Parkposition erstellt, die belegt ist.
  • Nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, ist vorgesehen, dass beide Fingerabdrücke, also beide Abbilder, also beide Referenzmesswerte, im laufenden Betrieb periodisch aktualisiert werden, um sich in vorteilhafter Weise an Änderungen des gemessenen Magnetfelds der Umgebung (zum Beispiel Drift durch eine Temperatur, Platzieren von magnetischen Gegenständen in der Nähe) anzupassen.
  • Um nun einen Belegtzustand der Parkposition zu bestimmen oder zu detektieren, ist Folgendes nach weiteren Ausführungsformen vorgesehen:
    Vorzugsweise wird periodisch ein neuer Messwert mittels des Magnetfeldsensors aufgenommen (vergleiche Schritt 205 gemäß Fig. 2). Von diesem Messwert werden die Distanzen zu den beiden Fingerabdrücken (also zu den beiden Referenzmesswerten) berechnet und anschließend normalisiert (vergleiche Schritt 207 gemäß Fig. 2). Die normalisierten Distanzen werden mit einem Schwellwert verglichen (vergleiche Schritt 209 gemäß Fig. 2). Abhängig davon, ob die normalisierten Distanzen jeweils über oder unter dem Schwellwert liegen, wird entschieden, ob der Zustand gewechselt hat oder ob der alte Zustand beibehalten wird. Das heißt also, dass basierend auf dem Vergleich mit dem Schwellwert entschieden wird, ob ein Belegtzustand der Parkposition gewechselt hat (vergleiche Schritt 213 gemäß Fig. 2) oder nicht.
  • Um nun zu entscheiden, ob das Radargerät aktiviert werden muss, ist nach einer Ausführungsform vorgesehen, dass die beiden normalisierten Distanzen zu den gespeicherten Abbildern miteinander verglichen werden (vergleiche Schritte 215 und 217 gemäß Fig. 2). Ist diese Differenz der beiden normalisierten Distanzen kleiner als der Radaraktivierungsschwellwert, so bedeutet dies, dass keine zuverlässige Entscheidung getroffen werden kann, ob der Belegtzustand gewechselt hat oder nicht. Das heißt also, dass dann nach einer Ausführungsform vorgesehen ist, dass das Radargerät zur Plausibilisierung für eine Abstandsmessung aktiviert wird, dies insbesondere nur kurzzeitig. Das heißt also, dass nach der Abstandsmessung das Radargerät insbesondere wieder deaktiviert wird.
  • Anschließend ist nach einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, vorgesehen, dass das Ergebnis der Radarmessung dazu verwendet wird, den betreffenden Fingerabdruck zu aktualisieren, also entweder den ersten oder den zweiten Referenzmesswert. Dies insbesondere dadurch, indem der Magnetfeldsensor eine erneute Magnetfeldmessung durchführt.
  • Die vorstehend gemachten Ausführungen, insbesondere die im Zusammenhang mit den Fig. 1, Fig.2 und Fig. 3 gemachten Ausführungen, gelten analog für Sensorvorrichtungen, die allgemein ein Sensorgerät umfassen, insbesondere ein Ultraschallgerät. Das heißt, dass in den vorstehend gemachten Ausführungen anstelle oder zusätzlich zum Radargerät ein Ultraschallgerät vorgesehen sein kann. Das heißt, dass in den vorstehend gemachten Ausführungen allgemein ein Sensorgerät vorgesehen sein kann, dass ausgebildet ist, eine Laufzeitmessung durchzuführen, also ein Sensorgerät, das für eine Laufzeitmessung ausgebildet ist.

Claims (18)

  1. Verfahren zum Betreiben einer Sensorvorrichtung (301) zum Detektieren eines Objekts, wobei die Sensorvorrichtung (301) einen Magnetfeldsensor (303) und ein Sensorgerät (305) umfasst, das für eine Laufzeitmessung ausgebildet ist, umfassend den folgenden Schritt:
    - Messen (101) eines Magnetfelds im Umfeld der Sensorvorrichtung (301) mittels des Magnetfeldsensors (303), um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das
    Sensorgerät (305) während der Messung des Magnetfelds deaktiviert ist, dadurch gekennzeichnet, dass das Verfahren weiter die folgende Schritte umfasst:
    - Berechnen (103) einer ersten Distanz des Messwerts zu einem ersten Referenzmesswert, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors (303) frei von einem Objekt ist,
    - Berechnen (105) einer zweiten Distanz des Messwerts zu einem zweiten Referenzmesswert, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors (303) ein Objekt befindet,
    - Aktivieren (107) des deaktivierten Sensorgeräts (305) abhängig von den berechneten Distanzen,
    - Durchführen (109) einer Laufzeitmessung im Umfeld der Sensorvorrichtung (301) mittels des aktivierten Sensorgeräts (305), um der Laufzeitmessung entsprechende Sensordaten zu ermitteln,
    - Ermitteln (111) basierend auf den Sensordaten, ob sich in dem Umfeld der Sensorvorrichtung (301) ein Objekt befindet.
  2. Verfahren nach Anspruch 1, wobei mittels des Magnetfeldsensors (303) eine erste Magnetfeldmessung durchgeführt wird, währenddessen ein Messbereich des Magnetfeldsensors (303) frei von einem Objekt ist, um den ersten Referenzmesswert zu ermitteln, wobei mittels des Magnetfeldsensors (303) eine zweite Magnetfeldmessung durchgeführt wird, währenddessen sich im Messbereich des Magnetfeldsensors (303) ein Objekt befindet, um den zweiten Referenzmesswert zu ermitteln.
  3. Verfahren nach Anspruch 1 oder 2, wobei die berechneten Distanzen normalisiert werden, wobei eine Differenz der beiden normalisierten Distanzen berechnet (215) wird, wobei die Differenz der beiden normalisierten Distanzen mit einem Sensorgerätaktivierungsschwellwert verglichen (217) werden, wobei das deaktivierte Sensorgerät (305) abhängig von dem Vergleich mit dem Sensorgerätaktivierungsschwellwert aktiviert wird (219).
  4. Verfahren nach Anspruch 3, wobei die normalisierten Distanzen mit einem Schwellwert verglichen (209) werden, wobei abhängig von dem Vergleich mit dem Schwellwert ermittelt (113) wird, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet.
  5. Verfahren nach einem der vorherigen Ansprüche, wobei, wenn basierend auf den Sensordaten ermittelt wird, dass sich ein Objekt im Umfeld der Sensorvorrichtung (301) befindet, eine Magnetfeldmessung mittels des Magnetfeldsensors (303) durchgeführt wird, um den zweiten Referenzmesswert zu aktualisieren, wobei, wenn basierend auf den Sensordaten ermittelt wird, dass ein Umfeld der Sensorvorrichtung (301) frei von einem Objekt ist, eine Magnetfeldmessung mittels des Magnetfeldsensors (303) durchgeführt wird, um den ersten Referenzmesswert zu aktualisieren.
  6. Verfahren nach einem der vorherigen Ansprüche, wobei ein Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet, über ein Kommunikationsnetzwerk gesendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Sensorvorrichtung (301) im Umfeld einer Parkposition angeordnet ist, so dass basierend auf einem Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet, ermittelt wird, ob die Parkposition frei oder belegt ist.
  8. Verfahren nach einem der vorherigen Ansprüche, wobei das Sensorgerät (305) ein Radargerät (305) und/oder ein Ultraschallgerät umfasst.
  9. Sensorvorrichtung (301) zum Detektieren eines Objekts, umfassend:
    - einen Magnetfeldsensor (303),
    - ein Sensorgerät (305), das für eine Laufzeitmessung ausgebildet ist,
    - eine Steuerungseinrichtung (307) zum Steuern des Magnetfeldsensors (303) und des Sensorgeräts (305) und
    - einen Prozessor (309),
    - wobei die Steuerungseinrichtung (307) ausgebildet ist, den Magnetfeldsensor (303) derart zu steuern, dass ein Magnetfeld im Umfeld der Sensorvorrichtung (301) mittels des Magnetfeldsensors (303) gemessen wird, um einen dem gemessenen Magnetfeld entsprechenden Messwert zu ermitteln, wobei das Sensorgerät (305) während der Messung des Magnetfelds
    deaktiviert ist, dadurch gekennzeichnet, dass -
    der Prozessor (309) ausgebildet ist, eine erste Distanz des Messwerts zu einem ersten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn ein Messbereich des Magnetfeldsensors (303) frei von einem Objekt ist,
    - der Prozessor (309) ausgebildet ist, eine zweite Distanz des Messwerts zu einem zweiten Referenzmesswert zu berechnen, der einem Magnetfeld entspricht, wenn sich im Messbereich des Magnetfeldsensors (303) ein Objekt befindet,
    - die Steuerungseinrichtung (307) ausgebildet ist, das deaktivierte Sensorgerät (305) abhängig von den berechneten Distanzen zu aktivieren und derart zu steuern, dass eine Laufzeitmessung im Umfeld der Sensorvorrichtung (301) mittels des aktivierten Sensorgeräts (305) durchgeführt wird, um der Laufzeitmessung entsprechende Sensordaten zu ermitteln,
    - der Prozessor (309) ausgebildet ist, basierend auf den Sensordaten zu ermitteln, ob sich in dem Umfeld der Sensorvorrichtung (301) ein Objekt befindet.
  10. Sensorvorrichtung (301) nach Anspruch 9, wobei die Steuerungseinrichtung (307) ausgebildet ist, den Magnetfeldsensor (303) derart zu steuern, dass mittels des Magnetfeldsensors (303) eine erste Magnetfeldmessung durchgeführt wird, währenddessen ein Messbereich des Magnetfeldsensors (303) frei von einem Objekt ist, um den ersten Referenzmesswert zu ermitteln, wobei die Steuerungseinrichtung (307) ausgebildet ist, den Magnetfeldsensor (303) derart zu steuern, dass mittels des Magnetfeldsensors (303) eine zweite Magnetfeldmessung durchgeführt wird, währenddessen sich im Messbereich des Magnetfeldsensors (303) ein Objekt befindet, um den zweiten Referenzmesswert zu ermitteln.
  11. Sensorvorrichtung (301) nach Anspruch 9 oder 10, wobei der Prozessor (309) ausgebildet ist, die berechneten Distanzen zu normalisieren, eine Differenz der beiden normalisierten Distanzen zu berechnen und die Differenz der beiden normalisierten Distanzen mit einem Sensorgerätaktivierungsschwellwert zu vergleichen, wobei die Steuerungseinrichtung (307) ausgebildet ist, das deaktivierte Sensorgerät (305) abhängig von dem Vergleich mit dem Sensorgerätaktivierungsschwellwert zu aktivieren.
  12. Sensorvorrichtung (301) nach Anspruch 11, wobei der Prozessor (309) ausgebildet ist, die normalisierten Distanzen mit einem Schwellwert zu vergleichen und abhängig von dem Vergleich mit dem Schwellwert zu ermitteln, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet.
  13. Sensorvorrichtung (301) nach einem der Ansprüche 9 bis 12, wobei die Steuerungseinrichtung (307) ausgebildet ist, den Magnetfeldsensor (303) derart zu steuern, dass eine Magnetfeldmessung mittels des Magnetfeldsensors (303) durchgeführt wird, um den zweiten Referenzmesswert zu aktualisieren, wenn basierend auf den Sensordaten ermitteln wird, dass sich ein Objekt im Umfeld der Sensorvorrichtung (301) befindet, wobei die Steuerungseinrichtung (307) ausgebildet ist, den Magnetfeldsensor (303) derart zu steuern, dass eine Magnetfeldmessung mittels des Magnetfeldsensors (303) durchgeführt wird, um den ersten Referenzmesswert zu aktualisieren, wenn basierend auf den Sensordaten ermittelt wird, dass ein Umfeld der Sensorvorrichtung (301) frei von einem Objekt ist.
  14. Sensorvorrichtung (301) nach einem der Ansprüche 9 bis 13, wobei eine Kommunikationsschnittstelle vorgesehen ist, die ausgebildet ist, ein Ergebnis, des Ermittelns, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet, über ein Kommunikationsnetzwerk zu senden.
  15. Sensorvorrichtung (301) nach einem der Ansprüche 9 bis 14, wobei eine elektrische Energieversorgung für eine elektrische Energieversorgung von elektronischen Elementen der Sensorvorrichtung (301) vorgesehen ist.
  16. Sensorvorrichtung (301) nach einem der Ansprüche 9 bis 15, wobei der Prozessor (309) ausgebildet ist, basierend auf einem Ergebnis des Ermittelns, ob sich im Umfeld der Sensorvorrichtung (301) ein Objekt befindet, zu ermitteln, ob eine Parkposition frei oder belegt ist.
  17. Sensorvorrichtung (301), nach einem der Ansprüche 9 bis 16, wobei das Sensorgerät (305) ein Radargerät (305) und/oder ein Ultraschallgerät umfasst.
  18. Computerprogramm, umfassend Programmcode zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, wenn das Computerprogramm auf einem Computer ausgeführt wird.
EP16701765.6A 2015-02-17 2016-01-27 Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung Active EP3259746B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202784.8A DE102015202784A1 (de) 2015-02-17 2015-02-17 Verfahren zum Betreiben einer Sensorvorrichtung und Sensorvorrichtung
PCT/EP2016/051643 WO2016131621A1 (de) 2015-02-17 2016-01-27 Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung

Publications (2)

Publication Number Publication Date
EP3259746A1 EP3259746A1 (de) 2017-12-27
EP3259746B1 true EP3259746B1 (de) 2021-09-08

Family

ID=55237650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16701765.6A Active EP3259746B1 (de) 2015-02-17 2016-01-27 Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung

Country Status (6)

Country Link
US (1) US10290209B2 (de)
EP (1) EP3259746B1 (de)
JP (1) JP6437129B2 (de)
CN (1) CN107251122B (de)
DE (1) DE102015202784A1 (de)
WO (1) WO2016131621A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214293B4 (de) * 2017-08-16 2019-10-10 Volkswagen Aktiengesellschaft Verfahren, Vorrichtung und computerlesbares Speichermedium mit Instruktionen zum Verarbeiten von Daten in einem Kraftfahrzeug für einen Versand an ein Backend
JP6946908B2 (ja) * 2017-09-29 2021-10-13 オムロン株式会社 状態判定ユニット、検知装置、状態判定方法、および状態判定プログラム
DE102017220139A1 (de) * 2017-11-13 2019-05-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen einer Position wenigstens eines Objekts
DE102017223696A1 (de) * 2017-12-22 2019-06-27 Robert Bosch Gmbh Verfahren zur Kalibrierung einer Vorrichtung zur Bestimmung eines Belegungszustands eines Stellplatzes eines Parkraums
CN108734794A (zh) * 2018-05-11 2018-11-02 深圳市方格尔科技有限公司 车辆泊位检测方法及装置
DE102018213940A1 (de) * 2018-08-17 2020-02-20 Robert Bosch Gmbh Vorrichtung mit einer Sensoreinheit und einer Selbstkalibrierungsfunktion
DE102018220421A1 (de) * 2018-11-28 2020-05-28 Robert Bosch Gmbh Magnetischer Parksensor
CN111376244B (zh) * 2018-12-27 2021-10-29 深圳市优必选科技有限公司 一种机器人唤醒方法、系统及机器人
DE102019127621A1 (de) 2019-10-14 2021-04-15 Smart City System GmbH Sensoreinrichtung zur Parkraumüberwachung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521316B2 (de) * 1972-12-27 1980-06-09
JPH1194566A (ja) * 1997-09-16 1999-04-09 Nissan Motor Co Ltd 走行位置センサ
JP2001175988A (ja) * 1999-12-16 2001-06-29 Nippon Signal Co Ltd:The 車種判別装置
JP4615762B2 (ja) * 2001-05-23 2011-01-19 株式会社日立国際電気 移動体検知システム
WO2010069002A1 (en) * 2008-12-19 2010-06-24 Park Assist Pty Ltd Method, apparatus and system for vehicle detection
EP2905764B1 (de) 2014-02-10 2021-04-07 Circet Hybrider magnetischer Radardetektor zur Platzverwaltung
WO2016041170A1 (en) * 2014-09-18 2016-03-24 Marlatt Frederick Lawrence Michael Vehicle sensor, detecting method thereof and self enforcing pay-by-phone parking system using the same

Also Published As

Publication number Publication date
JP2018513447A (ja) 2018-05-24
JP6437129B2 (ja) 2018-12-12
CN107251122A (zh) 2017-10-13
WO2016131621A1 (de) 2016-08-25
CN107251122B (zh) 2020-11-10
DE102015202784A1 (de) 2016-08-18
US20180268688A1 (en) 2018-09-20
EP3259746A1 (de) 2017-12-27
US10290209B2 (en) 2019-05-14

Similar Documents

Publication Publication Date Title
EP3259746B1 (de) Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung
EP3111168B1 (de) Verfahren und ein system zum lokalisieren einer mobilen einrichtung
WO2016131619A1 (de) Verfahren zum betreiben einer sensorvorrichtung und sensorvorrichtung
EP3254136B1 (de) Verarbeitung von sensormessungen eines fahrzeugumfeldes bei geringer querauflösung
DE112015005986T5 (de) Fahrzeugbordeinheit und fahrzeugbordeinheitdiagnosesystem
DE102015217386A1 (de) Verfahren und System zum Betreiben eines Kraftfahrzeugs
DE102016111371A1 (de) Parameterschätzung für schnellen Verkehr
WO2010139649A1 (de) Verfahren und vorrichtung zur kommunikation mit einem anderen fahrzeug oder mit einer infrastruktureinrichtung
WO2013017667A1 (de) Verkehrsflächenüberwachungsvorrichtung
EP2953111A1 (de) Verfahren und Vorrichtung zur Ermittlung freier Abstellplätze auf LKW-Parkplätzen und Mitteilung an LKW-Fahrer
DE102015211053B4 (de) Steuerung eines Parkplatzsensors
EP3038878A2 (de) Vorrichtung und verfahren zum schienenseitigen überwachen einer position eines abgestellten schienengeführten fahrzeugs
WO2019072524A1 (de) Verfahren zur kartierung eines streckenabschnitts
WO2020135991A1 (de) Verfahren zum assistieren eines kraftfahrzeugs
DE102019115650A1 (de) Verfahren zum vorhersagen der verbleibenden zeit und des erwarteten verbrauchs bis zum erreichen eines niedrigen fluidstands eines fluidsystems
DE102017200319A1 (de) Konzept zum Leiten eines nach einem freien Stellplatz eines mehrere Stellplätze umfassenden Parkplatzes suchenden Kraftfahrzeugs
DE102017221304A1 (de) System und Verfahren zur Bestimmung eines Belegungszustands eines Stellplatzes eines Parkraums sowie Parkraum mit einem solchen System
DE102011076245A1 (de) Anordnung und Verfahren zur Lokalisierung eines Fahrzeugs
EP3809394A1 (de) Sensoreinrichtung zur parkraumüberwachung
DE102017218932B4 (de) Verfahren zur Bewertung einer Trajektorie eines Fortbewegungsmittels
EP3446553B1 (de) Leuchtvorrichtung mit übermittlung von betriebsdaten
DE102019208890A1 (de) Verfahren zum zumindest teilautomatisierten Führen eines Kraftfahrzeugs
EP3714505A1 (de) Sensorvorrichtung und verfahren zu deren betrieb
DE102016218527A1 (de) Sensorvorrichtung zum Detektieren eines Objeks und Verfahren zum Betrieb einer solchen Sensorvorrichtung
WO2018086780A1 (de) Beleuchtungssystem mit analysesignalauswertung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1429294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013790

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220324

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013790

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

26N No opposition filed

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1429294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016013790

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908