EP3259378B1 - Method for producing a strand from stainless steel - Google Patents
Method for producing a strand from stainless steel Download PDFInfo
- Publication number
- EP3259378B1 EP3259378B1 EP16704447.8A EP16704447A EP3259378B1 EP 3259378 B1 EP3259378 B1 EP 3259378B1 EP 16704447 A EP16704447 A EP 16704447A EP 3259378 B1 EP3259378 B1 EP 3259378B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- billet
- stainless steel
- strand
- gas atmosphere
- protective gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 15
- 239000010935 stainless steel Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 16
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010622 cold drawing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Definitions
- the present invention relates to a method for producing a strand of austenitic stainless steel by cold-forming a shell to form the work-hardened strand and then annealing the strand.
- Strand-shaped stainless steel products i.e. in particular profiles, rods and tubes, are often produced by cold forming a semi-finished product, referred to in this application as a hollow, into the actual strand.
- the shell In addition to a change in its dimensions, the shell also experiences strain hardening during cold forming.
- Cold forming gives the stainless steel strand properties that cannot be achieved through hot forming.
- strands with high tensile strengths can be produced by cold forming, which cannot or can only be achieved with difficulty in any other way.
- the elongation of cold-formed strands made of stainless steel is rather low compared to strands made by other forming processes.
- a method for cold forming a strand is known, the strand being annealed at a temperature of 450 ° C. after the cold forming.
- the metastable austenitic stainless steel wire for a spring with high strength and high rigidity contains components that are 0.03 to 0.14% C, 0.1 to 4.0% Si, 1.0 to 8.0% Mn, 1 , 0 to 5.0% NiCr and 0.05 to 0.30% N and the remainder contain Fe with the inevitable impurities, the value of Md30 expressed by the specified formula being -10 to 40 ° C.
- a pipe made of a duplex stainless steel is known with a tensile strength (YS LT ) of 689.1 to 1000.5 MPa in the pipe axis direction, the tensile strength (Y-SLT), the compressive strength (YS LC ) in the pipe axis direction, the tensile strength (YS CT ) in the circumferential direction of the pipe and the compressive strength (YScc) in the circumferential direction of the pipe made of the duplex stainless steel satisfy equations (1) to (4): (1) 0.09 YS LC / YS LT 1.11; (2) 0.90 YS cc / YS CT 1.11; (3) 0.90 YS cc / YS LT 1.11; and (4) 0.90 YS CT / YS LT 1.11.
- At least one of the aforementioned objects is achieved by a method according to claim 1.
- this information relates to the surface temperature of the work-hardened strand itself.
- Cold forming processes in the sense of the present application are all forming processes in which the shell, i.e. the semi-finished product, is formed at temperatures that are below the recrystallization temperature of the austenitic stainless steel used.
- cold forming takes place in particular by cold pilger rolling or cold drawing.
- an extended hollow, raw-like shell as a semi-finished product is cold-reduced by compressive stresses in the completely cooled state.
- the shell is formed into a tube with a defined, reduced outer diameter and a defined wall thickness or thickness.
- the hollow shell is pushed over a calibrated rolling mandrel, i.e. the inner diameter of the finished pipe, and encompassed from the outside by two calibrated rollers, i.e., the outer diameter of the finished pipe defining, and rolled out in the longitudinal direction over the rolling mandrel.
- a calibrated rolling mandrel i.e. the inner diameter of the finished pipe
- two calibrated rollers i.e., the outer diameter of the finished pipe defining, and rolled out in the longitudinal direction over the rolling mandrel.
- the billet is fed step-by-step in the direction of the rolling mandrel or over it.
- the rollers are rotated over the mandrel and thus moved over the billet and roll out the billet.
- the rolls release the shell and this is advanced by a further step in the direction of the tool, ie the roll mandrel or the rolls.
- the billet is advanced over the mandrel with the aid of a translationally driven clamping slide, which executes a translational movement in a direction parallel to the axis of the rolling mandrel and transfers this to the billet.
- the billet is also rotated around its longitudinal axis in order to enable the billet to be rolled out evenly.
- the feed steps are usually smaller than the total stroke of the roll stand between the two reversal points.
- a strand-shaped billet is pulled through a drawing die, which has an inner diameter that is smaller than the outer diameter of the billet, and thus reshaped and re-dimensioned.
- drawing tubes between the so-called hollow draw, in which the deformation is only reduced with a previously described drawing die (also referred to as a drawing ring, draw hollow or drawing die), and the so-called core draw or rod draw, in which the The inner diameter and the wall thickness of the drawn tube can be defined by a drawing core arranged in the interior of the shell.
- the tensile strength in the sense of the present application is understood to mean the stress that is calculated in the tensile test from the maximum tensile force achieved immediately before the sample breaks, based on the original cross-section of the sample.
- the dimension of tensile strength is force per area.
- Elongation in the context of the present application is understood to mean the permanent elongation of a strand, which is pulled under the action of force until it breaks, based on the initial measuring length.
- This elongation is also referred to as elongation at break or yield point.
- the elongation at break is calculated as the quotient of the remaining change in length after the break divided by the initial length before the force was applied. This gives a dimensionless quantity and is often given as a percentage.
- a particularly advantageous improvement in tensile strength while maintaining a high degree of elongation compared to a cold forming process, which completely dispenses with annealing after cold forming, is achieved in a range from 410 ° C. to 450 ° C., preferably in a range from 435 ° C. to 445 ° C and particularly preferably at 440 ° C.
- this protective gas atmosphere advantageously has argon, preferably an argon content of more than 95% by volume.
- the oxygen content of the protective gas atmosphere during annealing is less than 50 ppm, preferably less than 15 ppm and particularly preferably less than 10 ppm. Then oxidation processes on the surface of the strand are negligible.
- the dew point of the protective gas atmosphere at atmospheric pressure (1013 mbar) is at a temperature of -40 ° C. or less, preferably -50 ° C. or less.
- an austenitic stainless steel is understood to mean a face-centered cubic mixed crystal of an iron alloy, in particular a y mixed crystal.
- a strand in the sense of the present application is in the form of a tube.
- the method according to the invention is used to manufacture a pipe.
- Tubes with a high tensile strength and, at the same time, high elongation are required above all in the field of medical implants, but also as high-pressure lines for a wide variety of applications.
- the work-hardened strand is a tube with an inner diameter and an outer diameter, the inner diameter being half the outer diameter or less, preferably one third of the outer diameter or less.
- FIG. 10 shows a flow diagram of the method for producing an austenitic stainless steel pipe according to an embodiment of the present invention.
- the hollow was first cold reduced by cold pilger rollers to a finished dimensioned stainless steel pipe.
- the tube rolled in this way has an elongation A (H) of 25.0% and a tensile strength Rp 0.2 of 762 N / mm 2 .
- This cold consist tube was then annealed under a protective gas atmosphere with an argon content of more than 95% by volume at a temperature of 440 ° C.
- the oxygen content in the protective gas atmosphere was less than 10 ppm.
- the annealed tube has an elongation A (H) of 15.1% after annealing.
- the tensile strength Rp 0.2 is 812 N / mm 2 .
- a tube made of austenitic stainless steel is provided as a shell as the starting material.
- stainless steel contains carbon with a proportion of not more than 0.06% by weight, manganese with a proportion of not more than 1.8% by weight, silicon with a proportion of not more than 0, 7% by weight, nickel with a proportion of 11% by weight, chromium with a proportion of 17% by weight and molybdenum with a proportion of 2.3% by weight.
- This shell is then cold-formed by cold pilger rolling in step 2 into a finished dimensioned tube.
- the finished tube is then annealed in step 3 under a protective gas atmosphere with an argon content of more than 95% by volume and an oxygen content in the protective gas atmosphere of less than 10 ppm at a temperature of 440 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines Strangs aus austenitischem Edelstahl durch Kaltfumformen einer Luppe zu dem kaltverfestigten Strang und nachfolgend Glühen des Strangs.The present invention relates to a method for producing a strand of austenitic stainless steel by cold-forming a shell to form the work-hardened strand and then annealing the strand.
Strangförmige Edelstahlprodukte, d.h. insbesondere Profile, Stäbe und Rohre werden häufig durch Kaltumformen eines in dieser Anmeldung als Luppe bezeichneten Halbzeugs zu dem eigentlichen Strang hergestellt.Strand-shaped stainless steel products, i.e. in particular profiles, rods and tubes, are often produced by cold forming a semi-finished product, referred to in this application as a hollow, into the actual strand.
Neben einer Änderung ihrer Abmessungen erfährt die Luppe bei einer Kaltumformung auch eine Kaltverfestigung.In addition to a change in its dimensions, the shell also experiences strain hardening during cold forming.
Durch die Kaltumformung erhält der Strang aus Edelstahl daher Eigenschaften, welche sich durch ein Warmumformen nicht erzielen lassen. Insbesondere können durch Kaltumformen Stränge mit hohen Zugfestigkeiten hergestellt werden, so wie sie auf andere Weise nicht oder nur schwer erreichbar sind. Dem gegenüber ist die Dehnung von kaltumgeformten Strängen aus Edelstahl verglichen mit durch andere Umformverfahren hergestellten Strängen eher gering.Cold forming gives the stainless steel strand properties that cannot be achieved through hot forming. In particular, strands with high tensile strengths can be produced by cold forming, which cannot or can only be achieved with difficulty in any other way. In contrast, the elongation of cold-formed strands made of stainless steel is rather low compared to strands made by other forming processes.
Aus der
Aus der
Aus der
Zumindest eine der vorgenannten Aufgaben wird durch ein Verfahren nach Anspruch 1 erreicht.At least one of the aforementioned objects is achieved by a method according to claim 1.
Ein kaltverfestigter Strang aus austenitischem Edelstahl, welcher auf diese Weise hergestellt wird, verfügt überraschenderweise über eine hohe Dehnung, wobei gleichzeitig die hohe durch das Kaltumformen erzielte Zugfestigkeit erhalten bleibt oder sogar noch verbessert wird.A work-hardened strand made of austenitic stainless steel, which is produced in this way, surprisingly has a high degree of elongation, while at the same time the high tensile strength achieved by cold forming is maintained or even improved.
Dies ist insofern überraschend, da ein Glühen eines Strangs aus Edelstahl im Stand der Technik immer zum sogenannten Weichglühen bzw. Rekristalisationsglühen verwendet wird, d.h. um die Zugfestigkeit, zumeist zu Gunsten einer Bearbeitbarkeit des Strangs in einem weiteren Kaltumformschritt, herabzusetzen.This is surprising insofar as annealing a strand made of stainless steel is always used in the prior art for so-called soft annealing or recrystallization annealing, i.e. to reduce the tensile strength, mostly in favor of the machinability of the strand in a further cold forming step.
Wenn im Sinne der vorliegenden Anmeldung Temperaturen des Strangs während dem Glühen beschrieben werden, so bezieht sich diese Angabe auf die Oberflächentemperatur des kaltverfestigten Strangs selbst.If, for the purposes of the present application, temperatures of the strand during annealing are described, this information relates to the surface temperature of the work-hardened strand itself.
Kaltumformverfahren im Sinne der vorliegenden Anmeldung sind alle Umformverfahren, bei welchen die Luppe, d.h. das Halbzeug, bei Temperaturen umgeformt wird, die unterhalb der Rekristalisationstemperatur des verwendeten austenitischen Edelstahls liegen.Cold forming processes in the sense of the present application are all forming processes in which the shell, i.e. the semi-finished product, is formed at temperatures that are below the recrystallization temperature of the austenitic stainless steel used.
Im Sinne der vorliegenden Anmeldung erfolgt das Kaltumformen insbesondere durch Kaltpilgerwalzen oder Kaltziehen.In the context of the present application, cold forming takes place in particular by cold pilger rolling or cold drawing.
Insbesondere zum Herstellen von präzisen Rohren aus austenitischem Edelstahl wird eine ausgedehnte hohle, rohartige Luppe als Halbzeug im vollständig erkalteten Zustand durch Druckspannungen kaltreduziert. Dabei wird die Luppe zu einem Rohr mit definiertem, reduziertem Außendurchmesser und einer definierten Wanddicke bzw. -stärke umgeformt.In particular for the production of precise tubes from austenitic stainless steel, an extended hollow, raw-like shell as a semi-finished product is cold-reduced by compressive stresses in the completely cooled state. The shell is formed into a tube with a defined, reduced outer diameter and a defined wall thickness or thickness.
Dazu wird beim Kaltpilgerwalzen (auch als Kaltpilgern bezeichnet) die Luppe über einen kalibrierten, d.h. den Innendurchmesser des fertigen Rohrs aufweisenden Walzdorn geschoben und dabei von außen von zwei kalibrierten, d.h. den Außendurchmesser des fertigen Rohrs definierenden Walzen umfasst und in Längsrichtung über den Walzdorn ausgewalzt.For this purpose, in cold pilger rolling (also known as cold pilgrimage), the hollow shell is pushed over a calibrated rolling mandrel, i.e. the inner diameter of the finished pipe, and encompassed from the outside by two calibrated rollers, i.e., the outer diameter of the finished pipe defining, and rolled out in the longitudinal direction over the rolling mandrel.
Während des Kaltpilgerns erfährt die Luppe einen schrittweisen Vorschub in Richtung auf den Walzdorn hin bzw. über diesen hinweg. Zwischen zwei Vorschubschritten werden die Walzen drehend über den Dorn und damit die Luppe bewegt und walzen die Luppe aus. An jedem Umkehrpunkt des Walzgerüsts mit den daran drehend befestigten Walzen geben die Walzen die Luppe frei und diese wird um einen weiteren Schritt in Richtung auf das Werkzeug, d.h. den Walzdorn bzw. die Walzen, hin vorgeschoben.During the cold pilgrimage, the billet is fed step-by-step in the direction of the rolling mandrel or over it. Between two feed steps, the rollers are rotated over the mandrel and thus moved over the billet and roll out the billet. At each reversal point of the roll stand with the rolls attached to it rotating, the rolls release the shell and this is advanced by a further step in the direction of the tool, ie the roll mandrel or the rolls.
Der Vorschub der Luppe über den Dorn erfolgt mit Hilfe eines translatorisch angetriebenen Vorschubspannschlittens, welcher eine Translationsbewegung in einer Richtung parallel zur Achse des Walzdorns ausführt und diese auf die Luppe überträgt.The billet is advanced over the mandrel with the aid of a translationally driven clamping slide, which executes a translational movement in a direction parallel to the axis of the rolling mandrel and transfers this to the billet.
Während dem Vorschub wird zudem die Luppe um ihre Längsachse gedreht, um ein gleichmäßiges Auswalzen der Luppe zu ermöglichen. Durch mehrfaches Überwalzen jedes Rohrabschnitts werden eine gleichmäßige Wanddicke und Rundheit des Rohrs sowie gleichmäßige Innen- und Außendurchmesser erreicht. Daher sind in der Regel die Vorschubschritte kleiner als der Gesamthub des Walzgerüsts zwischen den beiden Umkehrpunkten.During the feed, the billet is also rotated around its longitudinal axis in order to enable the billet to be rolled out evenly. By rolling over each pipe section several times, a uniform wall thickness and roundness of the pipe as well as uniform inner and outer diameters are achieved. Therefore, the feed steps are usually smaller than the total stroke of the roll stand between the two reversal points.
Im Gegensatz dazu wird beim Kaltziehen als einem weiteren hier beispielhaft zu betrachtenden Kaltumformverfahren eine strangförmige Luppe durch eine Ziehmatrize, welche einen Innendurchmesser aufweist, der geringer ist als der Außendurchmesser der Luppe, hindurchgezogen und damit umgeformt und neu dimensioniert.In contrast to this, in cold drawing, another cold forming process to be considered here as an example, a strand-shaped billet is pulled through a drawing die, which has an inner diameter that is smaller than the outer diameter of the billet, and thus reshaped and re-dimensioned.
In Abhängigkeit von dem verwendeten Werkzeug unterscheidet man beim Ziehen von Rohren den sogenannten Hohlzug, bei welchem die Umformung lediglich mit einer zuvor beschriebenen Ziehmatrize (auch als Ziehring, Ziehhohl oder Ziehstein bezeichnet) reduziert wird, und den sogenannten Kernzug oder Stangenzug, bei welchem auch der Innendurchmesser sowie die Wanddicke des gezogenen Rohrs durch einen im Inneren der Luppe angeordneten Ziehkern definiert werden.Depending on the tool used, a distinction is made when drawing tubes between the so-called hollow draw, in which the deformation is only reduced with a previously described drawing die (also referred to as a drawing ring, draw hollow or drawing die), and the so-called core draw or rod draw, in which the The inner diameter and the wall thickness of the drawn tube can be defined by a drawing core arranged in the interior of the shell.
Unter der Zugfestigkeit im Sinne der vorliegenden Anmeldung wird die Spannung verstanden, die im Zugversuch aus der maximal erreichten Zugkraft unmittelbar vor dem Bruch der Probe bezogen auf den ursprünglichen Querschnitt der Probe errechnet wird. Die Dimension der Zugfestigkeit ist Kraft pro Fläche.The tensile strength in the sense of the present application is understood to mean the stress that is calculated in the tensile test from the maximum tensile force achieved immediately before the sample breaks, based on the original cross-section of the sample. The dimension of tensile strength is force per area.
Unter Dehnung im Sinne der vorliegenden Anmeldung wird die bleibende Verlängerung eines Strangs, welcher unter Krafteinwirkung bis zum Bruch gezogen wird, bezogen auf die Anfangsmesslänge verstanden. Diese Dehnung wird auch als Bruchdehnung oder Dehngrenze bezeichnet. Berechnet wird die Bruchdehnung als Quotient aus der verbleibenden Längenänderung nach dem Bruch geteilt durch die Anfangslänge vor der Krafteinwirkung. Diese ergibt eine dimensionslose Größe und wird häufig als Prozentwert angegeben.Elongation in the context of the present application is understood to mean the permanent elongation of a strand, which is pulled under the action of force until it breaks, based on the initial measuring length. This elongation is also referred to as elongation at break or yield point. The elongation at break is calculated as the quotient of the remaining change in length after the break divided by the initial length before the force was applied. This gives a dimensionless quantity and is often given as a percentage.
Erstaunlich ist, dass in dem angegebenen Temperaturbereich von 400° C bis 460° C die Verfestigung des Strangs durch das Kaltumformen, d.h. die erzielte hohe Zugfestigkeit, durch das Glühen noch gesteigert wird, während gleichzeitig die Dehnung nicht nennenswert reduziert wird.It is astonishing that in the specified temperature range of 400 ° C to 460 ° C the solidification of the strand by the cold forming, ie the high tensile strength achieved, is increased by the annealing, while at the same time the elongation is not significantly reduced.
Eine makroskopische oder mikroskopische Veränderung von Strängen, welche von der Anmelderin nach dem Kaltumformen in diesem Temperaturbereich geglüht wurden, ist nicht feststellbar.A macroscopic or microscopic change in strands which were annealed by the applicant after cold forming in this temperature range cannot be ascertained.
Eine insbesondere vorteilhafte Verbesserung der Zugfestigkeit bei Gleichzeitiger Beibehaltung einer hohen Dehnung gegenüber einem Kaltumformverfahren, welches auf ein Glühen nach dem Kaltumformen vollständig verzichtet, wird in einem Bereich von 410° C bis 450° C, vorzugsweise in einem Bereich von 435° C bis 445° C und besonders bevorzugt bei 440° C erreicht."A particularly advantageous improvement in tensile strength while maintaining a high degree of elongation compared to a cold forming process, which completely dispenses with annealing after cold forming, is achieved in a range from 410 ° C. to 450 ° C., preferably in a range from 435 ° C. to 445 ° C and particularly preferably at 440 ° C. "
Um die Oxidation des Edelstahlmaterials beim Glühen minimal zu gestalten, erfolgt das Glühen in einer Schutzgasatmosphäre, welche den Strang während dem Glühen umgibt. Diese Schutzgasatmosphäre weist vorteilhafterweise in einer Ausführungsform Argon auf, vorzugsweise einen Anteil an Argon von mehr als 95 Vol.-%.In order to minimize the oxidation of the stainless steel material during annealing, the annealing takes place in a protective gas atmosphere, which surrounds the strand during annealing. In one embodiment, this protective gas atmosphere advantageously has argon, preferably an argon content of more than 95% by volume.
In einer Ausführungsform der Erfindung beträgt der Sauerstoffgehalt der Schutzgasatmosphäre beim Glühen weniger als 50 ppm, vorzugsweise weniger als 15 ppm und besonders bevorzugt weniger als 10 ppm. Dann sind Oxidationsprozesse zu der Oberfläche des Strangs zu vernachlässigen.In one embodiment of the invention, the oxygen content of the protective gas atmosphere during annealing is less than 50 ppm, preferably less than 15 ppm and particularly preferably less than 10 ppm. Then oxidation processes on the surface of the strand are negligible.
In einer Ausführungsform der Erfindung liegt der Taupunkt der Schutzgasatmosphäre bei Atmosphärendruck (1013 mbar) bei einer Temperatur von -40° C oder weniger, vorzugsweise von -50° C oder weniger.In one embodiment of the invention, the dew point of the protective gas atmosphere at atmospheric pressure (1013 mbar) is at a temperature of -40 ° C. or less, preferably -50 ° C. or less.
Während davon auszugehen ist, dass der beschriebene Effekt des Glühens bei den erfindungsgemäßen Temperaturen bei allen Edelstahlmaterialien eintritt, konnte er von den Erfindern insbesondere für austenitische Edelstähle explizit nachgewiesen werden.While it can be assumed that the described annealing effect occurs with all stainless steel materials at the temperatures according to the invention, the inventors were able to explicitly demonstrate it, in particular for austenitic stainless steels.
Dabei wird im Sinne der vorliegenden Anmeldung unter einem austenitischen Edelstahl ein kubisch-flächenzentrierter Mischkristall einer Eisenlegierung, insbesondere ein y-Mischkristall, verstanden.In the context of the present application, an austenitic stainless steel is understood to mean a face-centered cubic mixed crystal of an iron alloy, in particular a y mixed crystal.
Ein Strang im Sinne der vorliegenden Anmeldung ist in Form eines Rohres.A strand in the sense of the present application is in the form of a tube.
Das erfindungsgemäße Verfahren dient der Herstellung eines Rohrs. Rohre mit einer hohen Zugfestigkeit bei gleichzeitig hoher Dehnung werden vor allem auf dem Gebiet medizinischer Implantate aber auch als Hochdruckleitungen für die unterschiedlichsten Anwendungszwecke benötigt.The method according to the invention is used to manufacture a pipe. Tubes with a high tensile strength and, at the same time, high elongation are required above all in the field of medical implants, but also as high-pressure lines for a wide variety of applications.
Während man aber zunächst davon ausgehen könnte, dass der beschriebene Effekt des Glühens bei den erfindungsgemäßen Temperaturen nur bei dünnwandigen kaltverfestigten Edelstahlrohren eintritt, hat sich überraschenderweise gezeigt, dass dieser auch bei stabförmigen kaltverfestigten Strängen mit einem massiven Querschnitt und insbesondere auch bei dickwandigen Rohren auftritt. Solche dickwandigen Rohre werden in der Hochdrucktechnik zur Fluidführung benötigt. Bei einem rohrförmigen Strang weisen die Luppe und der fertige Strang einen Innendurchmesser und einen Außendurchmesser auf. Rohre, bei denen der Innendurchmesser die Hälfte des Außendurchmessers oder weniger, vorzugsweise ein Drittel des Außendurchmessers oder weniger, beträgt, gelten als hochdruckfest und werden im Sinne der vorliegenden Anmeldung als Hochdruckrohre bezeichnet.While one could initially assume that the annealing effect described at the temperatures according to the invention only occurs with thin-walled, cold-worked stainless steel tubes, it has surprisingly been shown that this also occurs with rod-shaped, cold-worked strands with a massive cross-section and, in particular, with thick-walled tubes. Such thick-walled tubes are required in high-pressure technology for guiding fluids. In the case of a tubular strand, the billet and the finished strand have an inside diameter and an outside diameter. Pipes in which the inside diameter is half the outside diameter or less, preferably a third of the outside diameter or less, are considered to be high-pressure-resistant and are referred to as high-pressure pipes in the context of the present application.
Erfindungsgemäß ist der kaltverfestigte Strang ein Rohr mit einem Innendurchmesser und einem Außendurchmesser, wobei der Innendurchmesser die Hälfte des Außendurchmessers oder weniger, vorzugsweise ein Drittel des Außendurchmessers oder weniger beträgt.According to the invention, the work-hardened strand is a tube with an inner diameter and an outer diameter, the inner diameter being half the outer diameter or less, preferably one third of the outer diameter or less.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung werden anhand der folgenden Beschreibung eines Beispiels deutlich.Further advantages, features and possible applications of the present invention will become clear from the following description of an example.
In einem Versuch wurde ein Rohr als Luppe aus einem austenitischen Edelstahl gemäß DIN1.44/41, das Kohlenstoff mit einem Anteil von nicht mehr als 0,06 Gew.-%, Mangan mit einem Anteil von nicht mehr als 1,8 Gew.-%, Silizium mit einem Anteil von nicht mehr als 0,7 Gew.-%, Nickel mit einem Anteil von 11 Gew.-%, Chrom mit einem Anteil von 17 Gew.-% und Molybdän mit einem Anteil von 2,3 Gew.-% aufweist mit einem Rest Eisen und unvermeidbaren Verunreinigungen hergestellt.In an experiment, a tube made of an austenitic stainless steel according to DIN 1.44 / 41, the carbon with a proportion of not more than 0.06 wt .-%, manganese with a proportion of not more than 1.8 wt .-% %, Silicon with a proportion of not more than 0.7% by weight, Nickel with a proportion of 11% by weight, chromium with a proportion of 17% by weight and molybdenum with a proportion of 2.3% by weight, with the remainder being made of iron and unavoidable impurities.
Die Luppe wurde zunächst durch Kaltpilgerwalzen zu einem fertig dimensionierten Edelstahlrohr kalt reduziert.The hollow was first cold reduced by cold pilger rollers to a finished dimensioned stainless steel pipe.
Das so gewalzte Rohr hat eine Dehnung A(H) von 25,0 % und eine Zugfestigkeit Rp 0,2 von 762 N/mm2.The tube rolled in this way has an elongation A (H) of 25.0% and a tensile strength Rp 0.2 of 762 N / mm 2 .
Nachfolgend wurde dieses kaltgepilgerte Rohr unter einer Schutzgasatmosphäre mit einem Anteil an Argon von mehr als 95 Vol.-% bei einer Temperatur von 440° C geglüht. Dabei war der Sauerstoffgehalt in der Schutzgasatmosphäre geringer als 10 ppm.This cold pilgrim tube was then annealed under a protective gas atmosphere with an argon content of more than 95% by volume at a temperature of 440 ° C. The oxygen content in the protective gas atmosphere was less than 10 ppm.
Das geglühte Rohr weist nach dem Glühen eine Dehnung A(H) von 15,1 % auf. Die Zugfestigkeit Rp 0,2 beträgt 812 N/mm2.The annealed tube has an elongation A (H) of 15.1% after annealing. The tensile strength Rp 0.2 is 812 N / mm 2 .
Zur Erläuterung wird nun anhand des Flussdiagramms aus
Zunächst wird in Schritt 1 als Ausgangsmaterial ein Rohr aus austenitischem Edelstahl als Luppe bereitgestellt. Der Edelstahl enthält neben Eisen und unvermeidbaren Verunreinigungen Kohlenstoff mit einem Anteil von nicht mehr als 0,06 Gew.-%, Mangan mit einem Anteil von nicht mehr als 1,8 Gew.-%, Silizium mit einem Anteil von nicht mehr als 0,7 Gew.-%, Nickel mit einem Anteil von 11 Gew.-%, Chrom mit einem Anteil von 17 Gew.-% und Molybdän mit einem Anteil von 2,3 Gew.-%. Diese Luppe wird dann durch Kaltpilgerwalzen in Schritt 2 zum fertig dimensionierten Rohr kaltumgeformt.First, in step 1, a tube made of austenitic stainless steel is provided as a shell as the starting material. In addition to iron and unavoidable impurities, stainless steel contains carbon with a proportion of not more than 0.06% by weight, manganese with a proportion of not more than 1.8% by weight, silicon with a proportion of not more than 0, 7% by weight, nickel with a proportion of 11% by weight, chromium with a proportion of 17% by weight and molybdenum with a proportion of 2.3% by weight. This shell is then cold-formed by cold pilger rolling in
Das fertige Rohr wird sodann in Schritt 3 unter einer Schutzgasatmosphäre mit einem Anteil an Argon von mehr als 95 Vol.-% und einem Sauerstoffgehalt in der Schutzgasatmosphäre von weniger als 10 ppm bei einer Temperatur von 440° C geglüht.The finished tube is then annealed in
Claims (8)
- A method of manufacturing a billet of stainless steel comprising:cold forming a bloom to give the strain-hardened billet; andsubsequent annealing of the billet,wherein upon annealing of the billet the billet is heated to a temperature in a range of from 400° C to 460° C,characterised in thatthe strain-hardened billet is surrounded by a protective gas atmosphere during heating,wherein the method further has the step of cooling the billet after heating, wherein the billet during cooling is surrounded by the protective gas atmosphere,wherein the bloom and the billet are in the form of a tube with an inside diameter and an outside diameter,wherein a tube is formed by the cold forming operation, the inside diameter of which is half of the outside diameter or less,wherein the material of the bloom is an austenitic stainless steel.
- A method according to claim 1 characterised in that the billet is heated to a temperature in a range of from 410° C to 450° C, preferably in a range of from 435° C to 445° C and particularly preferably to 440° C
- A method according to one of the preceding claims characterised in that the protective gas atmosphere comprises argon, preferably with a proportion of argon of more than 95% by volume.
- A method according to one of the preceding claims characterised in that the protective gas atmosphere has an oxygen content of less than 50 ppm, preferably less than 15 ppm and particularly preferably less than 10 ppm.
- A method according to one of the preceding claims characterised in that the dew point of the protective gas atmosphere at atmospheric pressure is at a temperature of -40° C or lower, preferably 50° C or lower.
- A method according to one of the preceding claims characterised in that the inside diameter is a third of the outside diameter or less.
- A method according to one of the preceding claims characterised in that the cold forming operation is carried out by cold pilger rolling.
- A method according to one of the preceding claims characterised in that the stainless steel is an austenitic stainless steel according to DIN 1.44/41.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015102255.9A DE102015102255A1 (en) | 2015-02-17 | 2015-02-17 | Method for producing a strand of stainless steel and strand of stainless steel |
PCT/EP2016/053114 WO2016131748A1 (en) | 2015-02-17 | 2016-02-15 | Method for producing a strand from stainless steel, and strand made of stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3259378A1 EP3259378A1 (en) | 2017-12-27 |
EP3259378B1 true EP3259378B1 (en) | 2021-10-13 |
Family
ID=55357992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16704447.8A Active EP3259378B1 (en) | 2015-02-17 | 2016-02-15 | Method for producing a strand from stainless steel |
Country Status (7)
Country | Link |
---|---|
US (1) | US10501820B2 (en) |
EP (1) | EP3259378B1 (en) |
JP (1) | JP7080639B2 (en) |
CN (1) | CN107406902A (en) |
DE (1) | DE102015102255A1 (en) |
ES (1) | ES2898762T3 (en) |
WO (1) | WO2016131748A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019102600A1 (en) * | 2019-02-01 | 2020-08-06 | Sandvik Materials Technology Deutschland Gmbh | Method and device for producing a rod-shaped element |
CN111850422B (en) * | 2020-04-30 | 2022-01-11 | 中科益安医疗科技(北京)股份有限公司 | High-nitrogen nickel-free austenitic stainless steel seamless thin-walled tube and preparation method thereof |
CN111840659B (en) * | 2020-04-30 | 2022-02-08 | 中科益安医疗科技(北京)股份有限公司 | High-safety blood vessel support without nickel metal medicine elution and its making method |
DE102020133779A1 (en) * | 2020-12-16 | 2022-06-23 | Sandvik Materials Technology Deutschland Gmbh | High-pressure pipe and method for its manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1157842A (en) * | 1997-08-27 | 1999-03-02 | Sumitomo Metal Ind Ltd | Method of manufacturing steel pipe which is superior in compressive strength in longitudinal direction of pipe shaft |
KR20110045184A (en) * | 2009-10-26 | 2011-05-04 | 금오공과대학교 산학협력단 | A method for heat treating 17-4 precipitation hardening stainless steel |
WO2014034522A1 (en) * | 2012-08-31 | 2014-03-06 | 新日鐵住金株式会社 | Duplex stainless steel tube and method for producing same |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3144132A (en) * | 1950-03-03 | 1964-08-11 | Anglo American Extrusion Compa | Production of extruded metal products |
US3639179A (en) * | 1970-02-02 | 1972-02-01 | Federal Mogul Corp | Method of making large grain-sized superalloys |
US3655459A (en) * | 1970-08-13 | 1972-04-11 | United States Steel Corp | METHOD FOR PRODUCING MINIMUM-RIDGING TYPE 430 Mo STAINLESS STEEL SHEET AND STRIP |
US3888119A (en) * | 1974-01-18 | 1975-06-10 | Armco Steel Corp | Process for cold-working and stress-relieving non-heat hardenable ferritic stainless steels |
JPS5276217A (en) | 1975-12-22 | 1977-06-27 | Nisshin Steel Co Ltd | Production of sheet spring stainless steel having good workability and ageing harhenability |
FR2550108B1 (en) * | 1983-08-01 | 1986-06-27 | Vallourec | PROCESS FOR COLD ROLLING OF TUBES USING A PILGRIM STEEL ROLLING MACHINE AND ROLLING MACHINE FOR IMPLEMENTING SAME |
JPH0157842U (en) | 1987-10-07 | 1989-04-11 | ||
JP2586274B2 (en) * | 1992-03-25 | 1997-02-26 | 住友金属工業株式会社 | Method for manufacturing seamless steel pipe of chromium-containing iron-based alloy |
DE4406052A1 (en) | 1993-11-30 | 1995-06-01 | Nippon Kokan Kk | Stainless steel sheet and process for its manufacture |
JPH07188867A (en) * | 1993-12-28 | 1995-07-25 | Nippon Metal Ind Co Ltd | Material for automotive antenna and its manufacture |
JP3119165B2 (en) | 1996-06-27 | 2000-12-18 | 住友金属工業株式会社 | Manufacturing method of stainless steel for high purity gas |
US20040261918A1 (en) * | 1999-05-20 | 2004-12-30 | Honda Giken Kogyo Kabushiki Kaisha | Billet for cold forging, method of manufacturing billet for cold forging, method of continuously cold-forging billet, method of cold-forging |
JP4319083B2 (en) * | 2004-04-14 | 2009-08-26 | 新日鐵住金ステンレス株式会社 | Metastable austenitic stainless steel wire for high strength steel wire for springs with excellent rigidity |
JP4751603B2 (en) * | 2004-06-29 | 2011-08-17 | 住友金属工業株式会社 | Stainless steel pipe manufacturing method |
US7985372B2 (en) * | 2005-06-09 | 2011-07-26 | Jfe Steel Corporation | Ferritic stainless steel sheet for use in raw material pipe for forming bellows pipe |
ATE556798T1 (en) * | 2008-09-12 | 2012-05-15 | Klein Ag L | ARTICLES MADE OF POWDER METALLURGICAL, LEAD-FREE FREE-MAKING STEEL AND PRODUCTION PROCESSES THEREOF |
WO2011092905A1 (en) * | 2010-02-01 | 2011-08-04 | 新日本製鐵株式会社 | Wire material, steel wire, and processes for production of those products |
JP5970796B2 (en) | 2010-12-10 | 2016-08-17 | Jfeスチール株式会社 | Steel foil for solar cell substrate and manufacturing method thereof, and solar cell substrate, solar cell and manufacturing method thereof |
BR112013023620B1 (en) * | 2011-03-24 | 2019-03-26 | Nippon Steel & Sumitomo Metal Corporation | AUSTENIC ALLOY PIPE AND METHOD FOR PRODUCING IT |
JP5659061B2 (en) | 2011-03-29 | 2015-01-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof |
CN102634740A (en) * | 2012-04-27 | 2012-08-15 | 宝山钢铁股份有限公司 | High-plasticity economical duplex stainless steel and manufacturing method thereof |
-
2015
- 2015-02-17 DE DE102015102255.9A patent/DE102015102255A1/en not_active Withdrawn
-
2016
- 2016-02-15 ES ES16704447T patent/ES2898762T3/en active Active
- 2016-02-15 EP EP16704447.8A patent/EP3259378B1/en active Active
- 2016-02-15 CN CN201680010357.5A patent/CN107406902A/en active Pending
- 2016-02-15 WO PCT/EP2016/053114 patent/WO2016131748A1/en active Application Filing
- 2016-02-15 US US15/551,545 patent/US10501820B2/en active Active
- 2016-02-15 JP JP2017542039A patent/JP7080639B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1157842A (en) * | 1997-08-27 | 1999-03-02 | Sumitomo Metal Ind Ltd | Method of manufacturing steel pipe which is superior in compressive strength in longitudinal direction of pipe shaft |
KR20110045184A (en) * | 2009-10-26 | 2011-05-04 | 금오공과대학교 산학협력단 | A method for heat treating 17-4 precipitation hardening stainless steel |
WO2014034522A1 (en) * | 2012-08-31 | 2014-03-06 | 新日鐵住金株式会社 | Duplex stainless steel tube and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP7080639B2 (en) | 2022-06-06 |
EP3259378A1 (en) | 2017-12-27 |
WO2016131748A1 (en) | 2016-08-25 |
JP2018510964A (en) | 2018-04-19 |
DE102015102255A1 (en) | 2016-08-18 |
US10501820B2 (en) | 2019-12-10 |
ES2898762T3 (en) | 2022-03-08 |
US20180223388A1 (en) | 2018-08-09 |
CN107406902A (en) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3259378B1 (en) | Method for producing a strand from stainless steel | |
EP3175004B1 (en) | Process for producing a stainless steel tube and stainless steel tube | |
DE60204082T2 (en) | Welded steel tube with excellent internal high-pressure formability and process for its production | |
EP3389887B1 (en) | Method for producing a high-pressure pipe | |
DE2654676C3 (en) | Process for improving the strength properties of wire or tape-shaped material | |
DE1758389C3 (en) | Process for improving the physical properties of cold-calibrated steel pipes produced by electrical resistance welding | |
EP3077556B1 (en) | Process for treatment a dispersion-hardened platinum composition | |
EP0820529A1 (en) | Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel | |
EP2682485A1 (en) | Method and device for producing steel pipes with special properties | |
DE2435463A1 (en) | HIGH PRESSURE VESSEL AND METHOD FOR ITS MANUFACTURING | |
EP3033186B1 (en) | Method for producing a quenched and tempered seamlessly hot-fabricated steel pipe | |
DE3507124C2 (en) | ||
EP0013331A1 (en) | Method for making profiles and the use of a fine grained steel for profiles | |
EP2064010B1 (en) | Autofrettage by means of a ball | |
EP3917696B1 (en) | Method and device for producing a rod-shaped element | |
DE102007034097B4 (en) | Process for extruding copper or copper alloy wires | |
WO1998001589A1 (en) | Process for producing weldless steel pipes | |
EP2543744A1 (en) | Method and device for treating a steel product and steel product | |
DE60116885T2 (en) | METHOD FOR PRODUCING A CLOSED PROFILE | |
WO2022128816A2 (en) | High-pressure tube and method for producing same | |
EP0761826B1 (en) | Method for manufacturing ODS seamless pipes | |
DE2208095A1 (en) | Combined drawing and extrusion process - for metal tubes | |
CH583300A5 (en) | High strength stainless steel - for springs and section, by complex heat treatment and cold work | |
DE1161930B (en) | Process for the heat treatment of concrete rods | |
DER0010327MA (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181009 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210622 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016013982 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1438231 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211013 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2898762 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220213 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220113 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016013982 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220215 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016013982 Country of ref document: DE Owner name: ALLEIMA GMBH, DE Free format text: FORMER OWNER: SANDVIK MATERIALS TECHNOLOGY DEUTSCHLAND GMBH, 40549 DUESSELDORF, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240306 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240125 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240116 Year of fee payment: 9 Ref country code: CH Payment date: 20240301 Year of fee payment: 9 Ref country code: GB Payment date: 20240104 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240110 Year of fee payment: 9 Ref country code: IT Payment date: 20240111 Year of fee payment: 9 Ref country code: FR Payment date: 20240123 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211013 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ALLEIMA GMBH Effective date: 20240930 |