EP3077556B1 - Process for treatment a dispersion-hardened platinum composition - Google Patents
Process for treatment a dispersion-hardened platinum composition Download PDFInfo
- Publication number
- EP3077556B1 EP3077556B1 EP14812166.8A EP14812166A EP3077556B1 EP 3077556 B1 EP3077556 B1 EP 3077556B1 EP 14812166 A EP14812166 A EP 14812166A EP 3077556 B1 EP3077556 B1 EP 3077556B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dispersion
- temperature
- hardened platinum
- hardened
- cold forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims description 180
- 229910052697 platinum Inorganic materials 0.000 title claims description 91
- 239000000203 mixture Substances 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 53
- 238000011282 treatment Methods 0.000 title claims description 19
- 230000008569 process Effects 0.000 title claims description 13
- 238000005096 rolling process Methods 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 29
- 239000010970 precious metal Substances 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910052706 scandium Inorganic materials 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 8
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 229910052703 rhodium Inorganic materials 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 230000007547 defect Effects 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 238000000137 annealing Methods 0.000 description 30
- 229910000510 noble metal Inorganic materials 0.000 description 30
- 239000011265 semifinished product Substances 0.000 description 20
- 239000002243 precursor Substances 0.000 description 18
- 230000009467 reduction Effects 0.000 description 17
- 239000007787 solid Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000005482 strain hardening Methods 0.000 description 11
- 238000001354 calcination Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 239000011148 porous material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/14—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1078—Alloys containing non-metals by internal oxidation of material in solid state
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0021—Matrix based on noble metals, Cu or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the invention relates to a method for processing a dispersion-hardened platinum composition. Further, the present invention describes a process for producing a product from a dispersion-hardened platinum composition. Furthermore, the present invention relates to a product obtainable from the methods set out above and the use of such platinum compositions.
- Platinum shaped bodies are frequently used in high-temperature processes in which the material must have high corrosion resistance.
- platinum components are used in the glass industry which are mechanically stressed, such as stirrers or glass fiber nozzle trays.
- a disadvantage of platinum as a material is its low mechanical strength at high temperatures. Therefore, dispersion hardened platinum compositions are generally used for the aforementioned high temperature processes.
- a billet is generally first produced which is hot-rolled.
- the resulting semi-finished product can then be cold-formed.
- the object of the invention is therefore to overcome the disadvantages of the prior art.
- the method should be a cost-effective adaptation of components of platinum compositions to individual needs while improving the mechanical Enable properties.
- the components obtained should show a long service life and the lowest possible wear.
- the method should be simple and inexpensive to carry out.
- the formed components should have a good processability, in particular weldability.
- the surface area of that surface is to be understood, which is formed at an (imaginary) section through the solid.
- the plane spanned by the cross-sectional area may or may not be perpendicular or substantially perpendicular to the longest extent of the solid.
- weight percentages set out above add up to 100%, the weight of the non-noble metals being based on the weight of metal.
- the non-noble metal or non-noble metals are at least 70%, preferably at least 90% oxidized with oxygen.
- all oxidation states of the non-noble metals are taken into account so that preferably at most 30 atomic%, particularly preferably at most 10 atomic% of the non-noble metal is present as metal, that is to say in the formal oxidation state 0.
- Solid bodies with low levels of non-noble metal oxides show advantages in terms of processability, for example weldability of the solid bodies.
- a solid is provided.
- the term solid is to be understood here comprehensively.
- a solid can be configured for example in the form of a sheet, a pipe or a wire.
- the sheets, tubes or wires provided may have a thickness in the range of 0.1 mm to 10 mm, preferably 0.3 to 5 mm.
- the thickness refers to the minimum extent of a solid.
- a wire this is the diameter and for a pipe, the difference between the outer and inner radius, which is also referred to as the wall thickness of the pipe.
- the platinum composition which can be used according to the invention comprises at least 70% by weight of platinum and a maximum of 29.95% by weight of other noble metals. Accordingly, the composition may consist essentially of platinum and the at least partially oxidized non-noble metals set forth above.
- the platinum material may therefore be pure platinum except for customary impurities, in which the at least partially oxidized non-noble metals are mixed in.
- the platinum composition may also comprise other precious metals, the platinum composition in this case being a platinum alloy.
- the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium.
- the provided solid is cold formed according to the inventive method.
- the term "cold working" is known in the art, which forming takes place at relatively low temperatures below the recrystallization temperature of the platinum composition, and particularly includes drawing, pressing, deep drawing, cold rolling, cold hammering and pressing.
- Deformation involves deformation of the bulk body over a large area.
- the volume body is subjected to deformation over at least 50%, more preferably over at least 75% and especially preferably over at least 95% of the volume.
- a sheet is preferably at least 50%, more preferably at least 75%, and more preferably at least 95% of the surface area of the sheet subjected to a force or pressure, for example, rolled.
- the surface can be simplified in relation to the surfaces, which is perpendicular to the minimum extent of the volume body (thickness).
- the solid is a wire or a tube, preferably at least 50%, more preferably at least 75%, and most preferably at least 95% of the length of the wire or tube is subjected to a force such as pulled.
- the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18%, and especially preferably by a maximum of 15%.
- These values are related to the cross-sectional area of the volume, which is maximally reduced.
- the reduced cross-sectional area results, for example, from the thickness and the unstretched expansion of the solid.
- the reduction of the cross-sectional area results from the change of the diameter or the wall thickness.
- the volume of the body is not changed by the deformation, at least one cross-sectional area must be increased during a forming.
- the length will increase during forming, so that the surface becomes larger in the direction of increasing the length.
- the directions in which the deforming forces act in particular parallel or perpendicular to the plane, which is spanned by the cross-sectional area.
- the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by at least 5%, preferably reduced by at least 8%, and particularly preferably reduced by at least 10%.
- a wire is drawn or pressed, wherein in the cold forming the cross-sectional area of the wire from the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15% or by cold forming a sheet is rolled, drawn, pressed or pressed, wherein in the cold forming, the cross-sectional area of the sheet or the thickness of the sheet of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15% or Cold forming a tube is rolled, drawn or pressed, wherein in the cold forming, the cross-sectional area of the tube of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15%.
- a temperature treatment of the cold-formed volume body is carried out, in which the cold-worked product is annealed at at least 1100 ° C for at least one hour.
- the annealing may preferably take place over a period of at least 90 minutes, preferably at least 120 minutes, more preferably at least 150 minutes, and especially preferably at least 180 minutes.
- the temperature at which the annealing is carried out may preferably be at least 1200 ° C, more preferably at least 1250 ° C, more preferably at least 1300 ° C, and most preferably at least 1400 ° C.
- the cold-formed solid is tempered at a temperature of at least 1250 ° C. for at least one hour, preferably at a temperature of 1400 ° C. for one to three hours.
- the costs of the process increase with the duration and the annealing temperature.
- the minimum temperature for the tempering process is 1100 ° C.
- the maximum temperature for the annealing process is 20 ° C below the melting temperature of the respective dispersion-hardened platinum composition.
- the temperature treatment or the temperature treatments of the cold-formed volume body are or will be used to heal defects of the bulk body.
- the cross-sectional area of the volume body is reduced by more than 20% due to the cold forming, the cross-sectional area of the volume body of the dispersion-hardened platinum composition being reduced by a maximum of 20% for each individual cold forming, more preferably at most 18% and more preferably at most 15% is reduced, and between each cold working, a temperature treatment of the cold-formed volume body is carried out at which the cold-worked product is annealed at at least 1100 ° C for at least one hour.
- each cold forming means that preferably after each cold forming a temperature treatment is carried out at at least 1100 ° C for at least one hour, so that the number of cold forming steps and the number of annealing steps is the same.
- the implementation of several cold forming and temperature treatments has the advantage that with the relatively easy and inexpensive to perform cold forming and temperature treatments and larger transformations are feasible without that the dispersion-hardened platinum composition is weakened, that is, without, for example, that the alloy is reduced in their creep strength , It has even been surprisingly found that the creep strength increasingly improves with increasing number of forming and annealing steps.
- the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by at least 5%, preferably reduced by at least 8%, and more preferably reduced by at least 10%.
- Forming steps involving only a minor reduction in the cross-sectional area of the dispersion-hardened bulk body of less than 5% per forming step and subsequent annealing do not significantly contribute to an improvement in creep rupture strength.
- the process is also consuming and therefore uneconomical. This is all the more the case, the greater the number of forming steps required in order to achieve the desired final dimension of the dispersion-hardened volume body.
- a number of 8 forming steps is preferred in order to obtain the desired final size. This number of forming steps is a good compromise between economy and improvement of mechanical properties.
- the cold worked product is annealed at at least 1550 ° C for at least 24 hours, at least 1600 ° C for at least 12 hours, at least 1650 ° C for at least one hour is annealed or at a temperature of 1690 ° C to 1740 ° C for at least 30 minutes.
- any dispersion-hardened platinum composition is suitable. Surprising advantages, however, result from the use of semi-finished products, which were generally subjected to hot working.
- the dispersion-hardened platinum composition may be hot worked at a temperature of at least 800 ° C prior to cold forming, preferably formed at a temperature of at least 1000 ° C, most preferably formed at a temperature of at least 1250 ° C.
- a further subject matter of the present invention is a process for producing a product from a dispersion-hardened platinum composition, which is characterized in that, prior to providing the dispersion-hardened platinum composition, it consists of a composition of at least 70% by weight of platinum and not more than 29.95% by weight. % of other noble metals, wherein the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium, and 0.05 wt .-% to 0.5 wt .-% of at least one non-noble metal selected from zirconium, cerium, scandium and Yttrium is prepared by at least partially oxidizing the non-noble metal or the non-noble metals.
- the non-noble metal or non-noble metals will be at least 70%, preferably at least 90%, reacted to metal oxides.
- a further subject matter of the present invention is a process for producing a product from a dispersion-hardened platinum composition, which is characterized in that, prior to providing the dispersion-hardened platinum composition, it consists of a composition of at least 70% by weight of platinum and not more than 29.95% by weight. % of other precious metals and from 0.05% to 0.5% by weight of at least one non-noble metal selected from ruthenium, zirconium, cerium, scandium and yttrium is prepared by at least partially oxidizing the non-noble metal or non-noble metals ,
- the non-noble metal or non-noble metals will be at least 70%, preferably at least 90%, reacted to metal oxides.
- the treatment of the non-noble metal or the non-noble metals may preferably be carried out at a temperature between 600 ° C and 1600 ° C in an oxidizing atmosphere, preferably between 800 ° C and 1000 ° C in an oxidizing atmosphere.
- the method of making a product from a dispersion-cured platinum composition may preferably be combined with the previously described method of processing and the embodiments of the invention described herein as preferred.
- a further subject of the present invention is a dispersion-hardened platinum material obtainable by a method for processing and / or a method for producing a product from a dispersion-hardened platinum composition.
- This article provides excellent mechanical properties in combination with excellent processability and low cost and inexpensive manufacturability.
- a cylindrical volume body of the dispersion-hardened platinum material withstands a tensile load of 9 MPa in the direction of the length of the volume at a temperature of 1600 ° C. for at least 40 hours without tearing, preferably withstands at least 50 hours without tearing, particularly preferably withstands at least 100 hours without tearing and / or that a sheet of the dispersion-hardened platinum material having a rectangular cross-section of 0.85 mm by 3.9 mm and a length of 140 mm, in a furnace chamber at 1650 ° C to two parallel cylindrical rods with a circular cross-section and 2 mm diameter are placed at a distance of 100 mm and the sheet in the middle with a weight of 30 g
- a dispersion-hardened platinum material with the mechanical properties described above for a cylindrical volume body is the subject of the present invention.
- the dispersion-hardened platinum material 0.05 wt .-% to 0.4 wt .-%, particularly preferably 0.05 wt .-% to 0.3 wt .-% of at least one at least partially oxidized non-noble metal selected from zirconium, cerium, scandium and yttrium.
- a material with excellent mechanical properties and very good processability can be provided by this embodiment.
- the dispersion-hardened platinum material may be a sheet, a tube or a wire or a product formed from a wire, tube and / or sheet.
- a further subject matter of the present invention is a use of a dispersion-hardened platinum material or of a reshaped volume body of a platinum composition obtainable or obtained by a method according to the invention for processing and / or with a method according to the invention for producing a product from a dispersion-hardened platinum composition the glass industry or equipment to be used in a laboratory.
- the invention is based on the surprising finding that it is possible by the low cold working (with at most 20% change in the cross-sectional area) to enter only such weak structural impairments, such as crystal lattice dislocations in the dispersion-hardened platinum composition that succeeds with the downstream temperature treatment, annealing them again to such an extent that the stability of the reformed platinum composition is significantly higher than in known methods for cold working dispersion-hardened platinum compositions. If stronger transformations are desired, they may be achieved either with an upstream hot working or a series of small cold forming operations are performed sequentially, with annealing of the structural degradation by a thermal treatment being performed between each cold working.
- the gentle, low cold forming internal damage such as microcracks, delaminations of the particle / matrix interfaces and pores are avoided on grain boundary surfaces, which can not be cured or only with great effort.
- Particularly damaging are microcracks and pores, which are formed by the deformation on the grain boundaries, since they particularly affect the mechanical stability of the dispersion-hardened platinum composition.
- the method according to the invention it is possible to avoid these impairments. This has made it possible for the first time to produce a dispersion-hardened platinum composition with very high mechanical stability and excellent processability, in particular weldability, which is likewise claimed according to the invention.
- Example 1 Based on the in EP 1 964 938 A1 In Example 1, a billet was cast with PtRh10 (alloy of 90 wt.% Pt and 10 wt.% Rh) and 2200 ppm of non-noble metals (1800 ppm Zr and 400 ppm Y). Subsequently, the ingot was treated mechanically and thermally. So this was rolled to a plate thickness of 2.2 mm, then recrystallization annealed and then rolled to a plate thickness of 2 mm. The sheet was then oxidized at 900 ° C for 18 days and then ductile annealed at 1400 ° C for 6 hours.
- Example 1 Based on the in EP 1 964 938 A1 In Example 1, a billet was cast with PtRh10 (alloy of 90 wt.% Pt and 10 wt.% Rh) and 2200 ppm of non-noble metals (1800 ppm Zr and 400 ppm Y). Subsequently, the ingot was treated mechanically and thermally. So this was rolled to a sheet thickness of 3.3 mm, then recrystallization annealed and then rolled to a plate thickness of 3 mm. The Sheet was then oxidized at 900 ° C for 27 days and then ductile annealed at 1400 ° C for 6 hours.
- Example 1 Based on the in EP 1 964 938 A1 In Example 1, a billet was cast with PtRh10 (alloy of 90 wt.% Pt and 10 wt.% Rh) and 2120 ppm of non-noble metals (1800 ppm Zr, 270 ppm Y and 50 ppm Sc). Subsequently, the ingot was treated mechanically and thermally. So this was rolled to a sheet thickness of 3.3 mm, then recrystallization annealed and then rolled to a plate thickness of 3 mm. The sheet was then oxidized at 900 ° C for 24 days and then ductile annealed at 1400 ° C for 6 hours.
- the semifinished product precursor 1 obtained according to the method set out above with a thickness of about 2 mm is further processed according to the invention after the following rolling and annealing steps.
- the sheet was rolled to 1.7 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.4 mm and annealed at 1400 ° C for 2 h. Then, further rolled to 1.2 mm and annealed again at 1400 ° C for 2 h. Then it is rolled to 1 mm and annealed again at 1400 ° C. Then it is rolled to the final thickness of 0.85 mm and a final annealing at 1100 ° C for 1 h carried out.
- the reduction in the cross-sectional area per rolling step is 20%.
- Example 1 is essentially repeated, but after rolling to a final thickness of 0.85 mm, a final annealing at 1700 ° C for 1 h is performed.
- the semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
- the sheet was rolled to 2.4 mm and then annealed at 1150 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1150 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1150 ° C.
- the rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1150 ° C.
- the reduction in the cross-sectional area per rolling step is 20%.
- the semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
- the sheet was rolled to 2.4 mm and then annealed at 1300 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1300 ° C for 4 h. Then it is rolled to 1.53 mm and annealed again for 4 h at 1300 ° C.
- the rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1300 ° C.
- the reduction in the cross-sectional area per rolling step is 20%.
- the semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
- the sheet was rolled to 2.4 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1400 ° C.
- the rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1400 ° C.
- the reduction in the cross-sectional area per rolling step is 20%.
- the semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
- the sheet was rolled to 2.55 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.16 mm and annealed at 1400 ° C for 4 h. Then it gets to 1.84 mm rolled and annealed again for 4 h at 1400 ° C.
- the rolling and annealing steps are repeated 5 more times, rolling first to 1.56 mm, then to 1.33 mm, then to 1.13 mm, then to 0.96 mm and then to 0.8 mm, and after each rolling step for 4 h at 1400 ° C is annealed.
- the reduction in cross-sectional area per rolling step is 15%.
- the semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
- the sheet was rolled to 2.4 mm and then annealed at 1150 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1150 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1150 ° C.
- the rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1150 ° C.
- the reduction in the cross-sectional area per rolling step is 20%.
- the semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
- the sheet was rolled to 2.55 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.16 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 1.84 mm and again annealed for 4 h at 1400 ° C.
- the rolling and annealing steps are repeated 5 more times, rolling first to 1.56 mm, then to 1.33 mm, then to 1.13 mm, then to 0.96 mm and then to 0.8 mm, and after each rolling step for 4 h at 1400 ° C is annealed.
- the reduction in cross-sectional area per rolling step is 15%.
- the semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
- the sheet was rolled to 2.7 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.43 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 2.19 mm and again annealed for 4 h at 1400 ° C.
- the rolling and annealing steps are repeated 9 more times, first at 1.97 mm, then at 1.77 mm, then at 1.60 mm, then at 1.44 mm, then 1.29 mm, then 1.16 mm, then 1.05 mm, then 0.94 mm and then 0.85 mm, and after each rolling step for 4 h at 1400 ° C is annealed.
- the reduction in the cross-sectional area per rolling step is 10%.
- Example 9 is essentially repeated, but after rolling to a final thickness of 0.85 mm, a final annealing at 1700 ° C for 1 h is performed.
- the semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
- the sheet was rolled at 1100 ° C (hot working) to 1.5 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.2 mm (1st cold working) and then annealed at 1250 ° C for 4 h. Then rolled 1.02 mm (2nd cold forming) and then again annealed at 1250 ° C for 4 h.
- the rolling and annealing steps are repeated 3 more times, rolling first to 0.94 mm (3rd cold working), then to 0.86 mm (4th cold working) and then to 0.8 mm (5th cold working), and after each rolling step for 4 h at 1250 ° C is annealed.
- the reduction in the cross-sectional area is 50% for the hot-forming step, 20% for the cold-forming steps, then 15% and then 8% each.
- the semifinished product precursor 1 obtained according to the method set out above with a thickness of about 2 mm is further processed according to a conventional method.
- the sheet is rolled directly to 1 mm and annealed at 1000 ° C. It is then rolled to 0.85 mm and a final annealing at 1000 ° C for 1 h carried out.
- the semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to a conventional method.
- the sheet is rolled to 1.5 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 0.8 mm.
- the reduction in cross-sectional area per rolling step is 50%.
- the semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to a conventional method.
- the sheet is rolled to 1.5 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 0.8 mm.
- the reduction in cross-sectional area per rolling step is 50%.
- Examples 1, 2, 9, 10 and Comparative Example 1 To measure the creep rupture strength is measured on a sheet sample with a cross section of 0.85 mm ⁇ 3.9 mm and a length of 120 mm (Examples 1, 2, 9, 10 and Comparative Example 1) or 0.8 mm x 3.9 mm and a length of 120 mm (Examples 3, 4, 5, 6, 7, 8, 11 and Comparative Examples 2 and 3) appended a weight corresponding to the desired load in MPa for said cross-section.
- the sample is brought to temperature by current flow and controlled by pyrometer measurement to the desired temperature.
- the time to break of the sample is determined and indicates the creep rupture strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Heat Treatment Of Steel (AREA)
- Powder Metallurgy (AREA)
- Adornments (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Bearbeitung einer dispersionsgehärteten Platinzusammensetzung. Ferner beschreibt die vorliegende Erfindung ein Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung. Weiterhin betrifft die vorliegende Erfindung ein Produkt erhältlich aus den zuvor dargelegten Verfahren und die Verwendung solcher Platinzusammensetzungen.The invention relates to a method for processing a dispersion-hardened platinum composition. Further, the present invention describes a process for producing a product from a dispersion-hardened platinum composition. Furthermore, the present invention relates to a product obtainable from the methods set out above and the use of such platinum compositions.
Formkörper aus Platin werden vielfach in Hochtemperaturprozessen eingesetzt, bei denen das Material eine hohe Korrosionsbeständigkeit aufweisen muss. Beispielsweise werden Bauteile aus Platin in der Glasindustrie verwendet, die mechanisch belastet sind, wie zum Beispiel Rührer oder Glasfaserdüsenwannen. Nachteilig an Platin als Werkstoff ist jedoch dessen geringe mechanische Festigkeit bei hohen Temperaturen. Daher werden im Allgemeinen für die zuvor genannten Hochtemperaturprozesse dispersionsgehärtete Platinzusammensetzungen eingesetzt.Platinum shaped bodies are frequently used in high-temperature processes in which the material must have high corrosion resistance. For example, platinum components are used in the glass industry which are mechanically stressed, such as stirrers or glass fiber nozzle trays. A disadvantage of platinum as a material, however, is its low mechanical strength at high temperatures. Therefore, dispersion hardened platinum compositions are generally used for the aforementioned high temperature processes.
Die Herstellung und Bearbeitung dieser Materialien ist beispielsweise aus den Druckschriften
Zur Herstellung von Bauteilen aus dispersionsgehärteten Platinzusammensetzungen wird im Allgemeinen zunächst ein Barren erzeugt, der heiß gewalzt wird. Das erhaltene Halbzeug kann anschließend kalt umgeformt werden.To produce components from dispersion-hardened platinum compositions, a billet is generally first produced which is hot-rolled. The resulting semi-finished product can then be cold-formed.
Ein Umformen bei niedrigen Temperaturen ermöglicht eine kostengünstige Anpassung an individuelle Vorgaben. Allerdings wurde festgestellt, dass die mechanischen Eigenschaften von dispersionsgehärteten Platinwerkstoffen insbesondere bei solchen Umformungstechniken noch nicht ausreichend gut sind oder zumindest besser sein könnten. Die Bauteile weisen für einige Anwendungen eine zu geringe Einsatzzeit auf oder müssen häufiger als gewünscht ausgetauscht werden. Dieser Austausch ist mit hohen Kosten verbunden. Eine Umformung bei hohen Temperaturen (eine sogenannte Warmumformung) ist jedoch sehr teuer und schwierig, da die hierfür benötigten Maschinen sehr aufwendig sind.Forming at low temperatures allows cost-effective adaptation to individual requirements. However, it has been found that the mechanical properties of dispersion-hardened platinum materials are not sufficiently good, or at least could be better, especially in such forming techniques. The components are too short for some applications or have to be replaced more frequently than desired. This exchange is associated with high costs. A conversion at high temperatures (a so-called hot forming) is very expensive and difficult, since the machines required for this are very expensive.
Die Aufgabe der Erfindung besteht also darin, die Nachteile des Stands der Technik zu überwinden. Insbesondere soll das Verfahren eine kostengünstige Anpassung von Bauteilen aus Platinzusammensetzungen an individuelle Bedürfnisse unter Verbesserung der mechanischen Eigenschaften ermöglichen. Gleichzeitig sollen die erhaltenen Bauteile eine lange Einsatzdauer und einen möglichst geringen Verschleiß zeigen. Ferner sollte das Verfahren einfach und kostengünstig durchführbar sein. Weiterhin sollten die umgeformten Bauteile eine gute Verarbeitbarkeit, insbesondere Schweißbarkeit aufweisen.The object of the invention is therefore to overcome the disadvantages of the prior art. In particular, the method should be a cost-effective adaptation of components of platinum compositions to individual needs while improving the mechanical Enable properties. At the same time, the components obtained should show a long service life and the lowest possible wear. Furthermore, the method should be simple and inexpensive to carry out. Furthermore, the formed components should have a good processability, in particular weldability.
Die Aufgaben der Erfindung werden gelöst durch ein Verfahren zur Bearbeitung einer dispersionsgehärteten Platinzusammensetzung gekennzeichnet durch die Schritte:
- Bereitstellen eines Volumenkörpers einer dispersionsgehärteten Platinzusammensetzung mit mindestens 70 Gew.-% Platin und maximal 29,95 Gew.-% anderen Edelmetallen sowie 0,05 Gew.-% bis 0,5 Gew.-% wenigstens eines zumindest teilweise oxidierten Nicht-Edelmetalls ausgewählt aus Zirkonium, Cer, Scandium und Yttrium;
- Kaltumformen der dispersionsgehärteten Platinzusammensetzung, wobei bei der Kaltumformung die Querschnittfläche des Volumenkörpers aus der dispersionsgehärteten Platinzusammensetzung um maximal 20% reduziert wird; und
- anschließendes Durchführen einer Temperaturbehandlung des kaltumgeformten Volumenkörpers, bei der das kaltumgeformte Produkt bei zumindest 1100 °C für zumindest eine Stunde getempert wird.
- Providing a bulk body of a dispersion-hardened platinum composition having at least 70% by weight of platinum and a maximum of 29.95% by weight of other noble metals and 0.05% by weight to 0.5% by weight of at least one at least partially oxidized non-noble metal of zirconium, cerium, scandium and yttrium;
- Cold working the dispersion hardened platinum composition, wherein in the cold working, the cross sectional area of the bulk body of the dispersion strengthened platinum composition is reduced by a maximum of 20%; and
- then subjecting the cold-worked volume body to a temperature treatment in which the cold-worked product is annealed at at least 1100 ° C for at least one hour.
Unter Querschnittsfläche im Sinne der Erfindung ist der Flächeninhalt derjenigen Fläche zu verstehen, die bei einem (gedachten) Schnitt durch den Volumenkörper gebildet wird. Die von der Querschnittsfläche aufgespannte Ebene kann, muss aber nicht, senkrecht oder im Wesentlichen senkrecht zur längsten Ausdehnung des Volumenkörpers liegen.Under cross-sectional area in the context of the invention, the surface area of that surface is to be understood, which is formed at an (imaginary) section through the solid. The plane spanned by the cross-sectional area may or may not be perpendicular or substantially perpendicular to the longest extent of the solid.
Die zuvor dargelegten Gewichtsprozente addieren sich auf 100%, wobei sich das Gewicht der Nicht-Edelmetalle auf das Gewicht an Metall bezieht.The weight percentages set out above add up to 100%, the weight of the non-noble metals being based on the weight of metal.
Bevorzugt ist das Nicht-Edelmetall oder sind die Nicht-Edelmetalle zu wenigstens 70%, bevorzugt zu wenigstens 90% mit Sauerstoff oxidiert. Hierbei werden alle Oxidationsstufen der Nicht-Edelmetalle berücksichtigt, sodass vorzugsweise höchstens 30 Atom-%, besonders bevorzugt höchstens 10 Atom-% des Nicht-Edelmetalls als Metall, das heißt in der formalen Oxidationstufe 0 vorliegen.Preferably, the non-noble metal or non-noble metals are at least 70%, preferably at least 90% oxidized with oxygen. In this case, all oxidation states of the non-noble metals are taken into account so that preferably at most 30 atomic%, particularly preferably at most 10 atomic% of the non-noble metal is present as metal, that is to say in the formal oxidation state 0.
Bevorzugt sind 0,05 Gew.-% bis 0,5 Gew.-%, besonders bevorzugt 0,1 Gew.-% bis 0,4 Gew.-% und speziell bevorzugt 0,15 Gew.-% bis 0,3 Gew.-% des zumindest teilweise oxidierten Nicht-Edelmetalls in der dispersionsgehärteten Platinzusammensetzung enthalten.Preference is given to from 0.05% by weight to 0.5% by weight, more preferably from 0.1% by weight to 0.4% by weight and especially preferably from 0.15% by weight to 0.3% by weight % of the at least partially oxidized non-noble metal in the dispersion-hardened platinum composition.
Hohe Anteile an Nicht-Edelmetalloxiden führen zu höheren Standzeiten der Volumenkörper bei mechanischer Belastung. Volumenkörper mit geringen Anteilen an Nicht-Edelmetalloxiden zeigen Vorteile hinsichtlich der Verarbeitbarkeit, beispielsweise Schweißbarkeit der Volumenkörper.High levels of non-noble metal oxides lead to longer service lives of the solids under mechanical stress. Solid bodies with low levels of non-noble metal oxides show advantages in terms of processability, for example weldability of the solid bodies.
Im Verfahren der vorliegenden Erfindung wird ein Volumenkörper bereitgestellt. Der Begriff Volumenkörper ist hierbei umfassend zu verstehen. Bevorzugt kann ein Volumenkörper beispielsweise in Form eines Blechs, eines Rohrs oder eines Drahts ausgestaltet sein.In the method of the present invention, a solid is provided. The term solid is to be understood here comprehensively. Preferably, a solid can be configured for example in the form of a sheet, a pipe or a wire.
Die Ausdehnung des Volumenkörpers in den drei Dimensionen unterliegt hierbei keinen besonderen Begrenzungen, sondern kann entsprechend den Anforderungen gewählt werden. So können beispielsweise die bereitgestellten Bleche, Rohre oder Drähte eine Dicke im Bereich von 0,1 mm bis 10 mm, vorzugsweise 0,3 bis 5 mm aufweisen. Die Dicke bezeichnet hierbei die minimale Ausdehnung eines Volumenkörpers. Bei einem Draht ist dies der Durchmesser und bei einem Rohr die Differenz zwischen Außen- und Innenradius, die auch als Wandstärke des Rohrs bezeichnet wird.The expansion of the solid in the three dimensions is not subject to any particular limitations, but can be selected according to the requirements. For example, the sheets, tubes or wires provided may have a thickness in the range of 0.1 mm to 10 mm, preferably 0.3 to 5 mm. The thickness refers to the minimum extent of a solid. For a wire, this is the diameter and for a pipe, the difference between the outer and inner radius, which is also referred to as the wall thickness of the pipe.
Die erfindungsgemäß einsetzbare Platinzusammensetzung umfasst mindestens 70 Gew.-% Platin und maximal 29,95 Gew.-% andere Edelmetalle. Demgemäß kann die Zusammensetzung im Wesentlichen aus Platin und den zuvor dargelegten zumindest teilweise oxidierten Nicht-Edelmetallen bestehen. Es kann sich bei dem Platinwerkstoff also um bis auf übliche Verunreinigungen reines Platin handeln, in dem die zumindest teilweise oxidierten Nicht-Edelmetalle eingemischt sind. Weiterhin kann die Platinzusammensetzung aber auch weitere Edelmetalle umfassen, wobei die Platinzusammensetzung in diesem Fall eine Platinlegierung ist.The platinum composition which can be used according to the invention comprises at least 70% by weight of platinum and a maximum of 29.95% by weight of other noble metals. Accordingly, the composition may consist essentially of platinum and the at least partially oxidized non-noble metals set forth above. The platinum material may therefore be pure platinum except for customary impurities, in which the at least partially oxidized non-noble metals are mixed in. However, the platinum composition may also comprise other precious metals, the platinum composition in this case being a platinum alloy.
Es ist erfindungsgemäß vorgesehen, dass die anderen Edelmetalle ausgewählt sind aus Ruthenium, Rhodium, Gold, Palladium und Iridium.It is inventively provided that the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium.
Der bereitgestellte Volumenkörper wird gemäß dem erfindungsgemäßen Verfahren kalt umgeformt. Der Begriff "Kaltumformung" ist in der Fachwelt bekannt, wobei diese Umformung bei relativ niedrigen Temperaturen unterhalb der Rekristallisationstemperatur der Platinzusammensetzung erfolgt und insbesondere Ziehen, Pressen, Tiefziehen, Kaltwalzen, kalt Hämmern und Drücken umfasst. Eine Umformung umfasst eine Verformung des Volumenkörpers über einen großen Bereich. Vorzugsweise kann vorgesehen sein, dass der Volumenkörper über mindestens 50 %, besonders bevorzugt über mindestens 75 % und speziell bevorzugt über mindestens 95 % des Volumens einer Verformung unterzogen wird. Falls der Volumenkörper beispielsweise ein Blech ist, wird demgemäß vorzugsweise mindestens 50 %, besonders bevorzugt mindestens 75 % und speziell bevorzugt mindestens 95 % der Oberfläche des Blechs einer Kraft beziehungsweise einem Druck ausgesetzt, beispielsweise gewalzt. Die Oberfläche kann bei einem Blech vereinfacht auf die Flächen bezogen sein, die senkrecht zu der minimalen Ausdehnung des Volumenkörpers (Dicke) steht. Falls der Volumenkörper beispielsweise ein Draht oder ein Rohr ist, wird vorzugsweise mindestens 50 %, besonders bevorzugt mindestens 75 % und speziell bevorzugt mindestens 95 % der Länge des Drahts oder des Rohrs einer Kraft ausgesetzt, beispielsweise gezogen.The provided solid is cold formed according to the inventive method. The term "cold working" is known in the art, which forming takes place at relatively low temperatures below the recrystallization temperature of the platinum composition, and particularly includes drawing, pressing, deep drawing, cold rolling, cold hammering and pressing. Deformation involves deformation of the bulk body over a large area. Preferably, it can be provided that the volume body is subjected to deformation over at least 50%, more preferably over at least 75% and especially preferably over at least 95% of the volume. For example, if the solid is Accordingly, a sheet is preferably at least 50%, more preferably at least 75%, and more preferably at least 95% of the surface area of the sheet subjected to a force or pressure, for example, rolled. In the case of a metal sheet, the surface can be simplified in relation to the surfaces, which is perpendicular to the minimum extent of the volume body (thickness). For example, if the solid is a wire or a tube, preferably at least 50%, more preferably at least 75%, and most preferably at least 95% of the length of the wire or tube is subjected to a force such as pulled.
Erfindungswesentlich ist, dass bei der Kaltumformung nur eine relativ geringe Umformung erfolgt. Vorzugsweise wird die Querschnittfläche des Volumenkörpers aus der dispersionsgehärteten Platinzusammensetzung um maximal 20 %, besonders bevorzugt um maximal 18 % und speziell bevorzugt um maximal 15 % reduziert. Diese Werte sind auf die Querschnittfläche des Volumenkörpers bezogen, die maximal reduziert wird. Bei einem Blech, welches lediglich in einer Richtung gewalzt wird, ergibt sich die reduzierte Querschnittfläche beispielsweise aus der Dicke sowie der nicht gedehnten Ausdehnung des Volumenkörpers. Bei einem Draht oder einem Rohr ergibt sich die Reduktion der Querschnittfläche aus der Änderung des Durchmessers beziehungsweise der Wandstärke. Da das Volumen des Körpers durch die Umformung nicht verändert wird, muss bei einer Umformung auch mindestens eine Querschnittfläche vergrößert werden. Bei einem Blech, einem Rohr oder einem Draht wird bei einer Umformung beispielsweise die Länge zunehmen, so dass die Fläche in Richtung der Zunahme der Länge größer wird. Die Richtungen, in der die verformenden Kräfte wirken, greifen insbesondere parallel oder senkrecht zur Ebene an, die von der Querschnittsfläche aufgespannt wird.Essential to the invention is that only a relatively small deformation takes place in the cold forming. Preferably, the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18%, and especially preferably by a maximum of 15%. These values are related to the cross-sectional area of the volume, which is maximally reduced. In the case of a sheet which is rolled only in one direction, the reduced cross-sectional area results, for example, from the thickness and the unstretched expansion of the solid. In the case of a wire or a tube, the reduction of the cross-sectional area results from the change of the diameter or the wall thickness. Since the volume of the body is not changed by the deformation, at least one cross-sectional area must be increased during a forming. In the case of a metal sheet, a pipe or a wire, for example, the length will increase during forming, so that the surface becomes larger in the direction of increasing the length. The directions in which the deforming forces act, in particular parallel or perpendicular to the plane, which is spanned by the cross-sectional area.
In einer bevorzugten Ausführungsform ist vorgesehen, dass bei der Kaltumformung die Querschnittfläche des Volumenkörpers aus der dispersionsgehärteten Platinzusammensetzung um wenigstens 5% reduziert wird, bevorzugt um wenigstens 8 % reduziert wird und besonders bevorzugt um wenigstens 10 % reduziert wird.In a preferred embodiment, it is provided that in the case of cold forming, the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by at least 5%, preferably reduced by at least 8%, and particularly preferably reduced by at least 10%.
Es wurde festgestellt, dass die inneren Schädigungen des dispersionsgehärteten Volumenkörpers bei Umformungen mit einer Reduzierung der Querschnittsfläche von jeweils weniger als 5 % und anschließender Glühung nicht wesentlich zu einer Verbesserung der Zeitstandsfestigkeit beitragen. Je geringfügiger die Änderung der Querschnittsfläche pro Umformschritt im genannten Bereich ist, desto geringfügiger ist die Auswirkung auf die Verbesserung der Zeitstandsfestigkeit im Vergleich zu Umformungen mit einer Reduktion der Querschnittsfläche von 5 % bis 20 %, bevorzugt von 8 % bis 18 % und speziell bevorzugt von 10 % bis 15 %.It has been found that the internal damage of the dispersion-hardened bulk body in the case of transformations with a reduction in the cross-sectional area of less than 5% each and subsequent annealing does not contribute significantly to an improvement in the creep rupture strength. The smaller the change in cross-sectional area per forming step in said region, the less impact on creep rupture improvement as compared to reductions in cross-sectional area of from 5% to 20%, preferably from 8% to 18%, and more preferably from 10% to 15%.
Ferner kann vorgesehen sein, dass beim Kaltumformen ein Draht gezogen oder gepresst wird, wobei bei der Kaltumformung die Querschnittfläche des Drahts aus der dispersionsgehärteten Platinzusammensetzung um maximal 20%, besonders bevorzugt um maximal 18% und speziell bevorzugt um maximal 15% reduziert wird oder beim Kaltumformen ein Blech gewalzt, gezogen, gepresst oder gedrückt wird, wobei bei der Kaltumformung die Querschnittfläche des Blechs oder die Dicke des Blechs aus der dispersionsgehärteten Platinzusammensetzung um maximal 20%, besonders bevorzugt um maximal 18% und speziell bevorzugt um maximal 15% reduziert wird oder beim Kaltumformen ein Rohr gewalzt, gezogen oder gepresst wird, wobei bei der Kaltumformung die Querschnittsfläche des Rohrs aus der dispersionsgehärteten Platinzusammensetzung um maximal 20%, besonders bevorzugt um maximal 18% und speziell bevorzugt um maximal 15% reduziert wird.Further, it can be provided that during cold forming a wire is drawn or pressed, wherein in the cold forming the cross-sectional area of the wire from the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15% or by cold forming a sheet is rolled, drawn, pressed or pressed, wherein in the cold forming, the cross-sectional area of the sheet or the thickness of the sheet of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15% or Cold forming a tube is rolled, drawn or pressed, wherein in the cold forming, the cross-sectional area of the tube of the dispersion-hardened platinum composition is reduced by a maximum of 20%, more preferably by a maximum of 18% and more preferably by a maximum of 15%.
Es kann erfindungsgemäß vorgesehen sein, dass bei der Kaltumformung im Inneren der dispersionsgehärteten Platinzusammensetzung keine Mikrorisse oder Poren entstehen oder weniger als 100 Mikrorisse und/oder weniger als 1000 Poren pro Kubikmillimeter entstehen.It may be provided according to the invention that during the cold forming in the interior of the dispersion-hardened platinum composition no microcracks or pores are formed or less than 100 microcracks and / or less than 1000 pores per cubic millimeter are formed.
Nach der Kaltumformung des Volumenkörpers wird eine Temperaturbehandlung des kaltumgeformten Volumenkörpers durchgeführt, bei der das kaltumgeformte Produkt bei zumindest 1100 °C für zumindest eine Stunde getempert wird. Das Tempern kann vorzugsweise über einen Zeitraum von mindestens 90 Minuten, bevorzugt mindestens 120 Minuten, besonders bevorzugt mindestens 150 Minuten und speziell bevorzugt mindestens 180 Minuten erfolgen. Die Temperatur bei der das Tempern durchgeführt wird, kann vorzugsweise mindestens 1200 °C, besonders bevorzugt mindestens 1250 °C, insbesondere bevorzugt mindestens 1300 °C und speziell bevorzugt mindestens 1400 °C betragen.After cold-forming the bulk body, a temperature treatment of the cold-formed volume body is carried out, in which the cold-worked product is annealed at at least 1100 ° C for at least one hour. The annealing may preferably take place over a period of at least 90 minutes, preferably at least 120 minutes, more preferably at least 150 minutes, and especially preferably at least 180 minutes. The temperature at which the annealing is carried out may preferably be at least 1200 ° C, more preferably at least 1250 ° C, more preferably at least 1300 ° C, and most preferably at least 1400 ° C.
Ferner kann vorgesehen sein, dass bei der Temperaturbehandlung der kaltumgeformte Volumenkörper bei einer Temperatur von zumindest 1250 °C für wenigstens eine Stunde getempert wird, bevorzugt bei einer Temperatur von 1400 °C für eine bis drei Stunden getempert wird.Furthermore, it can be provided that, during the temperature treatment, the cold-formed solid is tempered at a temperature of at least 1250 ° C. for at least one hour, preferably at a temperature of 1400 ° C. for one to three hours.
Je länger der Tempervorgang und je höher die Temperatur, bei der die Temperaturbehandlung durchgeführt wird ist, desto besser sind die mechanischen Eigenschaften des kaltumgeformten Formkörpers. Irgendwann läuft die Verbesserung der mechanischen Eigenschaften jedoch in eine Sättigung und es besteht die Gefahr von starkem Kornwachstum, was die mechanischen Eigenschaften wieder verschlechtert. Zudem steigen die Kosten für das Verfahren mit der Dauer und der Tempertemperatur an. Die Mindesttemperatur für den Tempervorgang liegt bei 1100 °C. Die Höchsttemperatur für den Tempervorgang liegt 20 °C unterhalb der Schmelztemperatur der jeweiligen dispersionsgehärteten Platinzusammensetzung.The longer the annealing process and the higher the temperature at which the temperature treatment is carried out, the better the mechanical properties of the cold-formed shaped body. At some point, however, the improvement in mechanical properties saturates and there is a risk of high grain growth, which degrades the mechanical properties again. In addition, the costs of the process increase with the duration and the annealing temperature. The minimum temperature for the tempering process is 1100 ° C. The maximum temperature for the annealing process is 20 ° C below the melting temperature of the respective dispersion-hardened platinum composition.
Vorzugsweise kann vorgesehen sein, dass die Temperaturbehandlung oder die Temperaturbehandlungen des kaltumgeformten Volumenkörpers zum Ausheilen von Defekten des Volumenkörpers angewendet wird oder werden.Preferably, it may be provided that the temperature treatment or the temperature treatments of the cold-formed volume body are or will be used to heal defects of the bulk body.
Es kann bei den erfindungsgemäßen Verfahren auch vorgesehen sein, dass mehrere Kaltumformungen nacheinander durchgeführt werden und durch die Kaltumformungen die Querschnittfläche des Volumenkörpers um mehr als 20% reduziert wird, wobei bei jeder einzelnen Kaltumformung die Querschnittfläche des Volumenkörpers aus der dispersionsgehärteten Platinzusammensetzung um maximal 20%, besonders bevorzugt um maximal 18% und speziell bevorzugt um maximal 15% reduziert wird und zwischen jeder Kaltumformung eine Temperaturbehandlung des kaltumgeformten Volumenkörpers durchgeführt wird, bei der das kaltumgeformte Produkt bei zumindest 1100 °C für wenigstens eine Stunde getempert wird.It can also be provided in the method according to the invention that several cold transformations are carried out successively and the cross-sectional area of the volume body is reduced by more than 20% due to the cold forming, the cross-sectional area of the volume body of the dispersion-hardened platinum composition being reduced by a maximum of 20% for each individual cold forming, more preferably at most 18% and more preferably at most 15% is reduced, and between each cold working, a temperature treatment of the cold-formed volume body is carried out at which the cold-worked product is annealed at at least 1100 ° C for at least one hour.
Dabei heisst "zwischen jeder Kaltumformung", dass bevorzugt nach einer jeden Kaltumformung eine Temperaturbehandlung bei zumindest 1100 °C für wenigstens eine Stunde durchgeführt wird, so dass die Anzahl der Kaltumform-Schritte und die Anzahl der Temper-Schritte gleich ist.In this case, "between each cold forming" means that preferably after each cold forming a temperature treatment is carried out at at least 1100 ° C for at least one hour, so that the number of cold forming steps and the number of annealing steps is the same.
Die Durchführung mehrerer Kaltumformungen und Temperaturbehandlungen hat den Vorteil, dass mit den relativ leicht und unaufwendig durchzuführenden Kaltumformungen und Temperaturbehandlungen auch größere Umformungen realisierbar sind, ohne, dass die dispersionsgehärtete Platinzusammensetzung geschwächt wird, das heißt, ohne, dass die Legierung beispielsweise in ihrer Zeitstandfestigkeit reduziert wird. Es wurde sogar überraschend gefunden, dass sich die Zeitstandsfestigkeit mit steigender Zahl der Umform- und Glühschritte zunehmend verbessert.The implementation of several cold forming and temperature treatments has the advantage that with the relatively easy and inexpensive to perform cold forming and temperature treatments and larger transformations are feasible without that the dispersion-hardened platinum composition is weakened, that is, without, for example, that the alloy is reduced in their creep strength , It has even been surprisingly found that the creep strength increasingly improves with increasing number of forming and annealing steps.
In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass bei mehreren Kaltumformungen nacheinander je einzelner Kaltumformung die Querschnittfläche des Volumenkörpers aus der dispersionsgehärteten Platinzusammensetzung um wenigstens 5% reduziert wird, bevorzugt um wenigstens 8 % reduziert wird und besonders bevorzugt um wenigstens 10 % reduziert wird.In a preferred embodiment of the invention, it is provided that, in the case of several cold forming operations, the cross-sectional area of the volume body of the dispersion-hardened platinum composition is reduced by at least 5%, preferably reduced by at least 8%, and more preferably reduced by at least 10%.
Umformschritte, die eine nur geringfügige Reduzierung der Querschnittsfläche des dispersionsgehärteten Volumenkörpers von weniger als 5 % pro Umformschritt und anschließender Glühung umfassen, tragen nicht wesentlich zu einer Verbesserung der Zeitstandsfestigkeit bei. Je geringfügiger die Änderung der Querschnittsfläche pro Umformschritt im genannten Bereich ist, desto geringfügiger ist die Auswirkung auf die Verbesserung der Zeitstandsfestigkeit im Vergleich zu Umformungen mit einer Reduktion der Querschnittsfläche von 5 % bis 20 %. Bei mehreren Umform- und Glüh-Schritten hintereinander wird das Verfahren zudem aufwendig und dadurch unwirtschaftlich. Dies ist umso mehr der Fall, je größer die Zahl der notwendigen Umformschritte ist, um das gewünschte Endmaß des dispersionsgehärteten Volumenkörpers zu erreichen. Bevorzugt ist eine Anzahl von 8 Umformschritten, um das gewünschte Endmaß zu erhalten. Diese Anzahl von Umformschritten ist ein guter Kompromiss aus Wirtschaftlichkeit und Verbesserung der mechanischen Eigenschaften.Forming steps involving only a minor reduction in the cross-sectional area of the dispersion-hardened bulk body of less than 5% per forming step and subsequent annealing do not significantly contribute to an improvement in creep rupture strength. The smaller the change in cross-sectional area per forming step within said range, the less impact on the improvement of creep rupture strength compared to the reduction in cross-sectional area of 5% to 20%. at several forming and annealing steps in a row, the process is also consuming and therefore uneconomical. This is all the more the case, the greater the number of forming steps required in order to achieve the desired final dimension of the dispersion-hardened volume body. A number of 8 forming steps is preferred in order to obtain the desired final size. This number of forming steps is a good compromise between economy and improvement of mechanical properties.
Vorzugsweise kann vorgesehen sein, dass bei der letzten Temperaturbehandlung nach der letzten Kaltumformung des Volumenkörpers, das kaltumgeformte Produkt bei zumindest 1550 °C für wenigstens 24 h, bei zumindest 1600 °C für wenigstens 12 Stunden, bei zumindest 1650 °C für zumindest eine Stunde getempert wird oder bei einer Temperatur von 1690 °C bis 1740 °C für zumindest 30 Minuten getempert wird.Preferably, it may be provided that at the last temperature treatment after the last cold forming of the bulk body, the cold worked product is annealed at at least 1550 ° C for at least 24 hours, at least 1600 ° C for at least 12 hours, at least 1650 ° C for at least one hour is annealed or at a temperature of 1690 ° C to 1740 ° C for at least 30 minutes.
Mit diesem letzten Schritt werden die auszuheilenden leichten Defekte der dispersionsgehärteten Platinzusammensetzung in ihrer finalen Form im Wesentlichen beseitigt und das so erzeugte Produkt weist dadurch eine sehr hohe Zeitstandfestigkeit auf.With this last step, the easy-to-heal slight defects of the dispersion-hardened platinum composition in its final form are substantially eliminated and the product thus produced has a very high creep strength.
Als Ausgangsprodukt für das vorliegende Bearbeitungsverfahren ist jede dispersionsgehärtete Platinzusammensetzung geeignet. Überraschende Vorteile ergeben sich jedoch durch den Einsatz von Halbzeugen, die im Allgemeinen einer Warmumformung unterzogen wurden. Die dispersionsgehärtete Platinzusammensetzung kann vor dem Kaltumformen mit einer Warmumformung bei einer Temperatur von mindestens 800 °C umgeformt werden, bevorzugt bei einer Temperatur von mindestens 1000 °C umgeformt werden, besonders bevorzugt bei einer Temperatur von mindestens 1250 °C umgeformt werden.As the starting material for the present processing method, any dispersion-hardened platinum composition is suitable. Surprising advantages, however, result from the use of semi-finished products, which were generally subjected to hot working. The dispersion-hardened platinum composition may be hot worked at a temperature of at least 800 ° C prior to cold forming, preferably formed at a temperature of at least 1000 ° C, most preferably formed at a temperature of at least 1250 ° C.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung, welches dadurch gekennzeichnet ist, dass vor dem Bereitstellen der dispersionsgehärteten Platinzusammensetzung diese aus einer Zusammensetzung aus mindestens 70 Gew.-% Platin und maximal 29,95 Gew.-% anderen Edelmetallen, wobei die anderen Edelmetalle ausgewählt sind aus Ruthenium, Rhodium, Gold, Palladium und Iridium, sowie 0,05 Gew.-% bis 0,5 Gew.-% wenigstens eines Nicht-Edelmetalls ausgewählt aus Zirkonium, Cer, Scandium und Yttrium durch zumindest teilweises Oxidieren des Nicht-Edelmetalls oder der Nicht-Edelmetalle hergestellt wird.A further subject matter of the present invention is a process for producing a product from a dispersion-hardened platinum composition, which is characterized in that, prior to providing the dispersion-hardened platinum composition, it consists of a composition of at least 70% by weight of platinum and not more than 29.95% by weight. % of other noble metals, wherein the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium, and 0.05 wt .-% to 0.5 wt .-% of at least one non-noble metal selected from zirconium, cerium, scandium and Yttrium is prepared by at least partially oxidizing the non-noble metal or the non-noble metals.
Bevorzugt wird das Nicht-Edelmetall oder werden die Nicht-Edelmetalle zu wenigstens 70 % bevorzugt zu wenigstens 90 % zu Metalloxiden umgesetzt.Preferably, the non-noble metal or non-noble metals will be at least 70%, preferably at least 90%, reacted to metal oxides.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung, welches dadurch gekennzeichnet ist, dass vor dem Bereitstellen der dispersionsgehärteten Platinzusammensetzung diese aus einer Zusammensetzung aus mindestens 70 Gew.-% Platin und maximal 29,95 Gew.-% anderen Edelmetallen sowie 0,05 Gew.-% bis 0,5 Gew.-% wenigstens eines Nicht-Edelmetalls ausgewählt aus Ruthenium, Zirkonium, Cer, Scandium und Yttrium durch zumindest teilweises Oxidieren des Nicht-Edelmetalls oder der Nicht-Edelmetalle hergestellt wird.A further subject matter of the present invention is a process for producing a product from a dispersion-hardened platinum composition, which is characterized in that, prior to providing the dispersion-hardened platinum composition, it consists of a composition of at least 70% by weight of platinum and not more than 29.95% by weight. % of other precious metals and from 0.05% to 0.5% by weight of at least one non-noble metal selected from ruthenium, zirconium, cerium, scandium and yttrium is prepared by at least partially oxidizing the non-noble metal or non-noble metals ,
Bevorzugt wird das Nicht-Edelmetall oder werden die Nicht-Edelmetalle zu wenigstens 70 % bevorzugt zu wenigstens 90 % zu Metalloxiden umgesetzt.Preferably, the non-noble metal or non-noble metals will be at least 70%, preferably at least 90%, reacted to metal oxides.
Die Behandlung des Nicht-Edelmetalls oder der Nicht-Edelmetalle kann vorzugsweise bei einer Temperatur zwischen 600 °C und 1600 °C in oxidierender Atmosphäre erfolgen, bevorzugt zwischen 800 °C und 1000 °C in oxidierender Atmosphäre.The treatment of the non-noble metal or the non-noble metals may preferably be carried out at a temperature between 600 ° C and 1600 ° C in an oxidizing atmosphere, preferably between 800 ° C and 1000 ° C in an oxidizing atmosphere.
Das Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung kann vorzugsweise mit dem zuvor beschriebenen Verfahren zur Bearbeitung und den hierin als bevorzugt beschriebenen Ausführungsformen desselben kombiniert werden.The method of making a product from a dispersion-cured platinum composition may preferably be combined with the previously described method of processing and the embodiments of the invention described herein as preferred.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein dispersionsgehärteter Platinwerkstoff, der mit einem Verfahren zur Bearbeitung und/oder mit einem Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung erhältlich ist. Dieser Gegenstand stellt hervorragende mechanische Eigenschaften in Kombination mit einer ausgezeichneten Verarbeitbarkeit beziehungsweise einer kostengünstigen und unaufwendigen Herstellbarkeit bereit.A further subject of the present invention is a dispersion-hardened platinum material obtainable by a method for processing and / or a method for producing a product from a dispersion-hardened platinum composition. This article provides excellent mechanical properties in combination with excellent processability and low cost and inexpensive manufacturability.
Erfindungsgemäß ist vorgesehen, dass ein zylindrischer Volumenkörper aus dem dispersionsgehärteten Platinwerkstoff bei einer Zug-Belastung von 9 MPa in Richtung der Länge des Volumenkörpers bei einer Temperatur von 1600 °C zumindest 40 Stunden ohne zu reißen widersteht, bevorzugt zumindest 50 Stunden ohne zu reißen widersteht, besonders bevorzugt zumindest 100 Stunden ohne zu reißen widersteht und/oder dass ein Blech aus dem dispersionsgehärteten Platinwerkstoff mit einem rechteckigen Querschnitt von 0,85 mm mal 3,9 mm und einer Länge von 140 mm, das in einer Ofenkammer bei 1650 °C auf zwei parallel angeordnete zylindrische Stäbe mit kreisrundem Querschnitt und 2 mm Durchmesser mit einem Abstand von 100 mm gelegt wird und das Blech in der Mitte mit einem Gewicht von 30 gAccording to the invention, it is provided that a cylindrical volume body of the dispersion-hardened platinum material withstands a tensile load of 9 MPa in the direction of the length of the volume at a temperature of 1600 ° C. for at least 40 hours without tearing, preferably withstands at least 50 hours without tearing, particularly preferably withstands at least 100 hours without tearing and / or that a sheet of the dispersion-hardened platinum material having a rectangular cross-section of 0.85 mm by 3.9 mm and a length of 140 mm, in a furnace chamber at 1650 ° C to two parallel cylindrical rods with a circular cross-section and 2 mm diameter are placed at a distance of 100 mm and the sheet in the middle with a weight of 30 g
Ferner ist ein dispersionsgehärteter Platinwerkstoff mit den zuvor für einen zylindrischen Volumenkörper beschriebenen mechanischen Eigenschaften Gegenstand der vorliegenden Erfindung.Furthermore, a dispersion-hardened platinum material with the mechanical properties described above for a cylindrical volume body is the subject of the present invention.
Vorzugsweise kann vorgesehen sein, dass der dispersionsgehärtete Platinwerkstoff 0,05 Gew.-% bis 0,4 Gew.-%, speziell bevorzugt 0,05 Gew.-% bis 0,3 Gew.-% wenigstens eines zumindest teilweise oxidierten Nicht-Edelmetalls ausgewählt aus Zirkonium, Cer, Scandium und Yttrium umfasst. Durch diese Ausgestaltung kann insbesondere ein Werkstoff mit ausgezeichneten mechanischen Eigenschaften und einer sehr guten Verarbeitbarkeit bereitgestellt werden.Preferably, it may be provided that the dispersion-hardened platinum material 0.05 wt .-% to 0.4 wt .-%, particularly preferably 0.05 wt .-% to 0.3 wt .-% of at least one at least partially oxidized non-noble metal selected from zirconium, cerium, scandium and yttrium. In particular, a material with excellent mechanical properties and very good processability can be provided by this embodiment.
In einer besonderen Ausgestaltung kann der dispersionsgehärtete Platinwerkstoff ein Blech, ein Rohr oder ein Draht oder ein aus einem Draht, Rohr und/oder Blech geformtes Produkt sein.In a particular embodiment, the dispersion-hardened platinum material may be a sheet, a tube or a wire or a product formed from a wire, tube and / or sheet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Verwendung eines dispersionsgehärteten Platinwerkstoffs oder eines umgeformten Volumenkörpers aus einer Platinzusammensetzung, der mit einem erfindungsgemäßen Verfahren zur Bearbeitung und/oder mit einem erfindungsgemäßen Verfahren zur Herstellung eines Produkts aus einer dispersionsgehärteten Platinzusammensetzung erhältlich ist oder erhalten wurde, für in der Glasindustrie oder in einem Laboratorium einzusetzende Geräte.A further subject matter of the present invention is a use of a dispersion-hardened platinum material or of a reshaped volume body of a platinum composition obtainable or obtained by a method according to the invention for processing and / or with a method according to the invention for producing a product from a dispersion-hardened platinum composition the glass industry or equipment to be used in a laboratory.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass es durch die geringe Kaltumformung (mit höchstens 20% Veränderung der Querschnittfläche) gelingt, nur derart schwache strukturelle Beeinträchtigungen, wie beispielsweise Kristallgitter-Versetzungen in die dispersionsgehärtete Platinzusammensetzung einzutragen, dass es mit der nachgelagerten Temperaturbehandlung gelingt, diese wieder so weit auszuheilen, dass die Stabilität der umgeformten Platinzusammensetzung deutlich höher ist, als bei bekannten Verfahren zur Kaltumformung von dispersionsgehärteten Platinzusammensetzungen. Falls stärkere Umformungen gewünscht sind können diese entweder mit einer vorgelagerten Warmumformung erreicht werden oder es werden mehrere geringe Kaltumformungen nacheinander durchgeführt, wobei zwischen jeder Kaltumformung ein Ausheilen der strukturellen Beeinträchtigung durch eine Temperaturbehandlung durchgeführt wird. Es wurde als Erkenntnis im Rahmen der vorliegenden Erfindung gefunden, dass die mechanische Schwächung kaltumgeformter dispersionsgehärteter Platinzusammensetzungen durch eine zu große Anzahl starker Defekte, wie Mikrorisse, Delaminationen der Partikel/Matrix Grenzflächen und Poren an Korngrenzen entsteht und dass diese auf einen zu hohen Umformungsgrad beziehungsweise eine zu große Verringerung der Querschnittfläche zurückzuführen sind.The invention is based on the surprising finding that it is possible by the low cold working (with at most 20% change in the cross-sectional area) to enter only such weak structural impairments, such as crystal lattice dislocations in the dispersion-hardened platinum composition that succeeds with the downstream temperature treatment, annealing them again to such an extent that the stability of the reformed platinum composition is significantly higher than in known methods for cold working dispersion-hardened platinum compositions. If stronger transformations are desired, they may be achieved either with an upstream hot working or a series of small cold forming operations are performed sequentially, with annealing of the structural degradation by a thermal treatment being performed between each cold working. It has been found in the context of the present invention that the mechanical weakening of cold-formed dispersion-hardened platinum compositions is caused by too great a number of strong defects, such as microcracks, delaminations of the particle / matrix interfaces and pores at grain boundaries, and these are at too high a degree of deformation Too large reduction of the cross-sectional area are due.
Insbesondere werden durch die schonende, geringe Kaltumformung innere Schädigungen wie Mikrorisse, Delaminationen der Partikel/Matrix Grenzflächen und Poren an Korngrenzflächen vermieden, die nicht oder nur mit sehr großem Aufwand ausgeheilt werden können. Besonders schädlich sind Mikrorisse und Poren, die durch die Umformung auf den Korngrenzen entstehen, da diese die mechanische Stabilität der dispersionsgehärteten Platinzusammensetzung besonders stark beeinträchtigen. Mit dem erfindungsgemäßen Verfahren gelingt es, diese Beeinträchtigungen zu vermeiden. Dadurch ist es erstmals gelungen eine dispersionsgehärtete Platinzusammensetzung mit sehr hoher mechanischer Stabilität und ausgezeichneter Verarbeitbarkeit, insbesondere Schweißbarkeit, zu erzeugen, die ebenfalls erfindungsgemäß beansprucht wird.In particular, the gentle, low cold forming internal damage such as microcracks, delaminations of the particle / matrix interfaces and pores are avoided on grain boundary surfaces, which can not be cured or only with great effort. Particularly damaging are microcracks and pores, which are formed by the deformation on the grain boundaries, since they particularly affect the mechanical stability of the dispersion-hardened platinum composition. With the method according to the invention, it is possible to avoid these impairments. This has made it possible for the first time to produce a dispersion-hardened platinum composition with very high mechanical stability and excellent processability, in particular weldability, which is likewise claimed according to the invention.
Im Folgenden werden weitere Ausführungsbeispiele der Erfindung anhand von Beispielen erläutert, ohne jedoch dabei die Erfindung zu beschränken.In the following, further embodiments of the invention will be explained by way of examples, without, however, limiting the invention.
In Anlehnung an das in
In Anlehnung an das in
In Anlehnung an das in
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 1 mit einer Dicke von ca. 2 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 1 obtained according to the method set out above with a thickness of about 2 mm is further processed according to the invention after the following rolling and annealing steps.
Das Blech wurde auf 1,7 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 1,4 mm gewalzt und bei 1400 °C für 2 h geglüht. Dann wird weiter auf 1,2 mm gewalzt und erneut bei 1400 °C für 2 h geglüht. Dann wird auf 1 mm gewalzt und wieder bei 1400 °C geglüht. Danach wird auf die Endstärke von 0,85 mm gewalzt und eine Schlussglühung bei 1100 °C für 1 h durchgeführt. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 20 %.The sheet was rolled to 1.7 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.4 mm and annealed at 1400 ° C for 2 h. Then, further rolled to 1.2 mm and annealed again at 1400 ° C for 2 h. Then it is rolled to 1 mm and annealed again at 1400 ° C. Then it is rolled to the final thickness of 0.85 mm and a final annealing at 1100 ° C for 1 h carried out. The reduction in the cross-sectional area per rolling step is 20%.
Beispiel 1 wird im Wesentlichen wiederholt, wobei jedoch nach dem Walzen auf eine Endstärke von 0,85 mm eine Schlussglühung bei 1700 °C für 1 h durchgeführt wird.Example 1 is essentially repeated, but after rolling to a final thickness of 0.85 mm, a final annealing at 1700 ° C for 1 h is performed.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 2 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
Das Blech wurde auf 2,4 mm gewalzt und anschließend bei 1150 °C für 4 h geglüht. Danach wird das Blech auf 1,92 mm gewalzt und bei 1150 °C für 4 h geglüht. Dann wird auf 1,53 mm gewalzt und wiederum für 4 h bei 1150 °C geglüht. Die Walz- und Glühschritte werden noch 3 mal wiederholt, wobei zuerst auf 1,22 mm, dann auf 0,99 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1150 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 20 %.The sheet was rolled to 2.4 mm and then annealed at 1150 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1150 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1150 ° C. The rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1150 ° C. The reduction in the cross-sectional area per rolling step is 20%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 2 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
Das Blech wurde auf 2,4 mm gewalzt und anschließend bei 1300 °C für 4 h geglüht. Danach wird das Blech auf 1,92 mm gewalzt und bei 1300 °C für 4 h geglüht. Dann wird auf 1,53 mm gewalzt und wiederum für 4 h bei 1300 °C geglüht. Die Walz- und Glühschritte werden noch 3 mal wiederholt, wobei zuerst auf 1,22 mm, dann auf 0,99 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1300 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 20 %.The sheet was rolled to 2.4 mm and then annealed at 1300 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1300 ° C for 4 h. Then it is rolled to 1.53 mm and annealed again for 4 h at 1300 ° C. The rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1300 ° C. The reduction in the cross-sectional area per rolling step is 20%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 2 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
Das Blech wurde auf 2,4 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 1,92 mm gewalzt und bei 1400 °C für 4 h geglüht. Dann wird auf 1,53 mm gewalzt und wiederum für 4 h bei 1400 °C geglüht. Die Walz- und Glühschritte werden noch 3 mal wiederholt, wobei zuerst auf 1,22 mm, dann auf 0,99 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1400 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 20 %.The sheet was rolled to 2.4 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1400 ° C. The rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1400 ° C. The reduction in the cross-sectional area per rolling step is 20%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 2 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcination steps.
Das Blech wurde auf 2,55 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 2,16 mm gewalzt und bei 1400 °C für 4 h geglüht. Dann wird auf 1,84 mm gewalzt und wiederum für 4 h bei 1400 °C geglüht. Die Walz- und Glühschritte werden noch 5 mal wiederholt, wobei zuerst auf 1,56 mm, dann auf 1,33 mm, dann auf 1,13 mm, dann auf 0,96 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1400 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 15 %.The sheet was rolled to 2.55 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.16 mm and annealed at 1400 ° C for 4 h. Then it gets to 1.84 mm rolled and annealed again for 4 h at 1400 ° C. The rolling and annealing steps are repeated 5 more times, rolling first to 1.56 mm, then to 1.33 mm, then to 1.13 mm, then to 0.96 mm and then to 0.8 mm, and after each rolling step for 4 h at 1400 ° C is annealed. The reduction in cross-sectional area per rolling step is 15%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 3 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
Das Blech wurde auf 2,4 mm gewalzt und anschließend bei 1150 °C für 4 h geglüht. Danach wird das Blech auf 1,92 mm gewalzt und bei 1150 °C für 4 h geglüht. Dann wird auf 1,53 mm gewalzt und wiederum für 4 h bei 1150 °C geglüht. Die Walz- und Glühschritte werden noch 3 mal wiederholt, wobei zuerst auf 1,22 mm, dann auf 0,99 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1150 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 20 %.The sheet was rolled to 2.4 mm and then annealed at 1150 ° C for 4 h. Thereafter, the sheet is rolled to 1.92 mm and annealed at 1150 ° C for 4 h. Then it is rolled to 1.53 mm and again annealed for 4 h at 1150 ° C. The rolling and annealing steps are repeated 3 more times, rolling first to 1.22 mm, then to 0.99 mm and then to 0.8 mm and annealing after each rolling step for 4 h at 1150 ° C. The reduction in the cross-sectional area per rolling step is 20%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 3 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
Das Blech wurde auf 2,55 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 2,16 mm gewalzt und bei 1400 °C für 4 h geglüht. Dann wird auf 1,84 mm gewalzt und wiederum für 4 h bei 1400 °C geglüht. Die Walz- und Glühschritte werden noch 5 mal wiederholt, wobei zuerst auf 1,56 mm, dann auf 1,33 mm, dann auf 1,13 mm, dann auf 0,96 mm und anschließend auf 0,8 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1400 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 15 %.The sheet was rolled to 2.55 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.16 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 1.84 mm and again annealed for 4 h at 1400 ° C. The rolling and annealing steps are repeated 5 more times, rolling first to 1.56 mm, then to 1.33 mm, then to 1.13 mm, then to 0.96 mm and then to 0.8 mm, and after each rolling step for 4 h at 1400 ° C is annealed. The reduction in cross-sectional area per rolling step is 15%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 3 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
Das Blech wurde auf 2,7 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 2,43 mm gewalzt und bei 1400 °C für 4 h geglüht. Dann wird auf 2,19 mm gewalzt und wiederum für 4 h bei 1400 °C geglüht. Die Walz- und Glühschritte werden noch 9 mal wiederholt, wobei zuerst auf 1,97 mm, dann auf 1,77 mm, dann auf 1,60 mm, dann auf 1,44 mm, dann auf 1,29 mm, dann auf 1,16 mm, dann auf 1,05 mm, dann auf 0,94 mm und anschließend auf 0,85 mm gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1400 °C geglüht wird. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 10 %.The sheet was rolled to 2.7 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 2.43 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 2.19 mm and again annealed for 4 h at 1400 ° C. The rolling and annealing steps are repeated 9 more times, first at 1.97 mm, then at 1.77 mm, then at 1.60 mm, then at 1.44 mm, then 1.29 mm, then 1.16 mm, then 1.05 mm, then 0.94 mm and then 0.85 mm, and after each rolling step for 4 h at 1400 ° C is annealed. The reduction in the cross-sectional area per rolling step is 10%.
Beispiel 9 wird im Wesentlichen wiederholt, wobei jedoch nach dem Walzen auf eine Endstärke von 0,85 mm eine Schlussglühung bei 1700 °C für 1 h durchgeführt wird.Example 9 is essentially repeated, but after rolling to a final thickness of 0.85 mm, a final annealing at 1700 ° C for 1 h is performed.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 3 mit einer Dicke von ca. 3 mm wird gemäß der Erfindung nach folgenden Walz- und Glühschritten weiterverarbeitet.The semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to the invention after the following rolling and calcining steps.
Das Blech wurde bei 1100 °C (Warmumformung) auf 1,5 mm gewalzt und anschließend bei 1400 °C für 4 h geglüht. Danach wird das Blech auf 1,2 mm gewalzt (1. Kaltumformung) und anschließend bei 1250 °C für 4 h geglüht. Dann wird 1,02 mm gewalzt (2. Kaltumformung) und anschließend wiederum bei 1250 °C for 4 h geglüht. Die Walz- und Glühschritte werden noch 3 mal wiederholt, wobei zuerst auf 0,94 mm (3. Kaltumformung), dann auf 0,86 mm (4. Kaltumformung) und anschließend auf 0,8 mm (5. Kaltumformung) gewalzt wird und nach jedem Walz-Schritt für 4 h bei 1250 °C geglüht wird. Die Reduktion in der Querschnittsfläche beträgt beim Warmumformschritt 50 %, bei den Kaltumformschritten zunächst 20 %, dann 15 % und danach jeweils 8 %.The sheet was rolled at 1100 ° C (hot working) to 1.5 mm and then annealed at 1400 ° C for 4 h. Thereafter, the sheet is rolled to 1.2 mm (1st cold working) and then annealed at 1250 ° C for 4 h. Then rolled 1.02 mm (2nd cold forming) and then again annealed at 1250 ° C for 4 h. The rolling and annealing steps are repeated 3 more times, rolling first to 0.94 mm (3rd cold working), then to 0.86 mm (4th cold working) and then to 0.8 mm (5th cold working), and after each rolling step for 4 h at 1250 ° C is annealed. The reduction in the cross-sectional area is 50% for the hot-forming step, 20% for the cold-forming steps, then 15% and then 8% each.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 1 mit einer Dicke von ca. 2 mm wird gemäß einem üblichen Verfahren weiterverarbeitet. Hierzu wird das Blech direkt an 1 mm gewalzt und bei 1000 °C geglüht. Danach wird auf 0,85 mm gewalzt und eine Schlussglühung bei 1000 °C für 1 h durchgeführt.The semifinished product precursor 1 obtained according to the method set out above with a thickness of about 2 mm is further processed according to a conventional method. For this purpose, the sheet is rolled directly to 1 mm and annealed at 1000 ° C. It is then rolled to 0.85 mm and a final annealing at 1000 ° C for 1 h carried out.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 2 mit einer Dicke von ca. 3 mm wird gemäß einem üblichen Verfahren weiterverarbeitet. Hierzu wird das Blech auf 1,5 mm gewalzt und bei 1400 °C für 4 h geglüht. Danach wird auf 0,8 mm gewalzt. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 50 %.The semifinished product precursor 2 obtained according to the method set out above with a thickness of about 3 mm is further processed according to a conventional method. For this purpose, the sheet is rolled to 1.5 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 0.8 mm. The reduction in cross-sectional area per rolling step is 50%.
Die gemäß dem zuvor dargelegten Verfahren erhaltene Halbzeugvorstufe 3 mit einer Dicke von ca. 3 mm wird gemäß einem üblichen Verfahren weiterverarbeitet. Hierzu wird das Blech auf 1,5 mm gewalzt und bei 1400 °C für 4 h geglüht. Danach wird auf 0,8 mm gewalzt. Die Reduktion in der Querschnittsfläche je Walz-Schritt beträgt 50 %.The semifinished product precursor 3 obtained according to the method set out above with a thickness of about 3 mm is further processed according to a conventional method. For this purpose, the sheet is rolled to 1.5 mm and annealed at 1400 ° C for 4 h. Then it is rolled to 0.8 mm. The reduction in cross-sectional area per rolling step is 50%.
Zur Messung der Zeitstandfestigkeit wird an einer Blechprobe mit einem Querschnitt von 0,85 mm x 3,9 mm und einer Länge von 120 mm (Beispiele 1, 2, 9, 10 und Vergleichsbeispiel 1) bzw. 0,8 mm x 3,9 mm und einer Länge von 120 mm (Beispiele 3, 4, 5, 6, 7, 8, 11 und Vergleichsbeispiele 2 und 3) ein Gewicht angehängt, das der gewünschten Belastung in MPa für den genannten Querschnitt entspricht. Die Probe wird durch Stromfluss auf Temperatur gebracht und per Pyrometermessung auf die gewünschte Temperatur konstant geregelt. Die Zeit bis zum Bruch der Probe wird bestimmt und gibt die Zeitstandfestigkeit an.
Eine weitere Methode zur Abschätzung der Zeitstandfestigkeit ist der Saggingtest. Hierfür werden Bleche mit einem Querschnitt von 0,85 mm x 10 mm und einer Länge von 140 mm (Beispiele 1, 2, 9, 10 und Vergleichsbeispiel 1) bzw. mit einem Querschnitt von 0,8 mm x 10 mm und einer Länge von 140 mm (Beispiele 3, 4, 5, 6, 7, 8, 11 und Vergleichsbeispiele 2 und 3) auf zwei parallele Keramikstäbe mit einem Abstand von 100 mm gelegt und in der Mitte mit Gewicht von 30 g belastet. Die Probenanordnung wird im Kammerofen auf 1650 °C erhitzt und nach 40 h die Durchbiegung der Proben gemessen.
Die zuvor dargelegten Beispiele zeigen, dass durch die erfindungsgemäßen Maßnahmen eine überraschende Verbesserung der mechanischen Eigenschaften erreicht werden kann, wobei diese Verbesserung zusätzlich durch einen Temperschritt bei einer Temperatur oberhalb von 1100 °C, insbesondere oberhalb von 1500 °C erhöht werden kann.The examples set out above show that a surprising improvement in the mechanical properties can be achieved by the measures according to the invention, wherein this improvement can additionally be increased by an annealing step at a temperature above 1100 ° C., in particular above 1500 ° C.
Die in der voranstehenden Beschreibung, sowie den Ansprüchen und Ausführungsbeispielen offenbarten Merkmale der Erfindung können sowohl einzeln, als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.The features of the invention disclosed in the foregoing description as well as the claims and embodiments may be essential both individually and in any combination for the realization of the invention in its various embodiments.
Claims (15)
- A method for processing a dispersion-hardened platinum composition, characterized by the steps:providing a three-dimensional body of a dispersion-hardened platinum composition comprising at least 70% by weight platinum, maximally 29.95% by weight other precious metals, wherein the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium, and 0.05% by weight to 0.5% by weight of at least one partially-oxidized non-precious metal selected from zirconium, cerium, scandium, and yttrium;cold forming the dispersion-hardened platinum composition, wherein a cross-sectional area of the three-dimensional body is reduced by maximally 20% during the cold forming; andsubsequently performing a temperature treatment on the cold-formed three-dimensional body by tempering at a temperature of at least 1,100 °C for at least one hour.
- The method according to claim 1, characterized in
before the cold forming step, forming the dispersion-hardened platinum composition by a hot forming process at a temperature of at least 800 °C, preferably at a temperature of at least 1,000 °C, particular preferably at a temperature of at least 1,250 °C. - The method according to claim 1 or 2, characterized in that
multiple consecutive cold forming steps are performed and the cross-sectional area of the three-dimensional body is reduced by more than 20% by the cold forming steps, wherein each individual cold forming step reduces a cross-sectional area of the three-dimensional body by maximally 20%, and wherein a temperature treatment is performed on the cold-formed three-dimensional body between each cold forming step by tempering at a temperature of at least 1,100 °C for at least one hour. - The method according any one of the preceding claims, characterized in that
the tempering comprises tempering at a temperature of at least 1,550 °C for at least 24 hours, at a temperature of at least 1,600 °C for at least 12 hours, at a temperature of at least 1,650 °C for at least one hour, or at a temperature of 1,690 °C to 1,740 °C for at least 30 minutes during the last temperature treatment after the last cold forming step. - The method according any one of the preceding claims, characterized in that
the cold forming comprises drawing or pressing a wire of the dispersion-hardened platinum composition, wherein a cross-sectional area of the wire is reduced by maximally 20% during the cold forming step, or
the cold forming comprises drawing, pressing, pushing or rolling a sheet of the dispersion-hardened platinum composition, wherein a cross-sectional area of the sheet or the thickness of the sheet is reduced by maximally 20% during the cold forming step, or
the cold forming comprises drawing, pressing or rolling a tube of the dispersion-hardened platinum composition, wherein a cross-sectional area of the tube is reduced by maximally 20% during the cold forming step. - The method according any one of the preceding claims, characterized in that the cold forming is performed at a temperature of 500 °C or less.
- The method according any one of the preceding claims, characterized in that the temperature treatment or the temperature treatments of the cold-formed three-dimensional body heals defects of the three-dimensional body.
- The method according any one of the preceding claims, characterized in that the tempering of the cold-formed three-dimensional body is performed at a temperature of at least 1,250 °C for at least one hour, preferably at a temperature of at least 1,400 °C for between one and three hours.
- A method for preparing a product from a dispersion-hardened platinum material according any one of the preceding claims, characterized in that before providing of the three-dimensional body of a dispersion-hardened platinum composition, the dispersion-hardened platinum composition is manufactured from a composition comprising at least 70% by weight platinum, maximally 29.95% by weight other precious metals, wherein the other precious metals are selected from ruthenium, rhodium, gold, palladium and iridium, and 0.05% by weight to 0.5% by weight of at least one non-precious metal selected from zirconium, cerium, scandium, and yttrium by at least partially oxidation of the at least one non-precious metal or the non-precious metals.
- A method according to claim 9, characterized in that
the oxidation of the at least one non-precious metal is performed at a temperature between 600 °C and 1,600 °C in an oxidizing atmosphere, preferably at a temperature between 800 °C and 1,000 °C in an oxidizing atmosphere. - A dispersion-hardened platinum material, characterized in that the dispersion-hardened platinum material is produced by a method according to any one of claims 1 to 8 or by a method according to claim 9 or 10, characterized in that a cylindrical volume body of the dispersion-hardened platinum material withstands at least 40 hours without tearing at a temperature of 1,600°C at a tensile load of 9 MPa in the direction of the length of the volume body and/or that a sheet of the dispersion-hardened platinum material with a rectangular cross-section of 0.85 mm by 3.9 mm and a length of 140 mm, which is placed in a furnace chamber at 1,650 °C on two parallel cylindrical bars of circular cross-section and 2 mm in diameter at a distance of 100 mm and which are loaded in the center with a weight of 30 g, is bent after 40 hours less than 40 mm.
- The dispersion-hardened platinum material according to claim 11, characterized in that a cylindrical volume body of the dispersion-hardened platinum material withstands at least 50 hours without tearing, preferably at least 100 hours without tearing, at a temperature of 1,600°C at a tensile load of 9 MPa in the direction of the length of the volume body and/or that a sheet of the dispersion-hardened platinum material with a rectangular cross-section of 0.85 mm by 3.9 mm and a length of 140 mm, which is placed in a furnace chamber at 1,650 °C on two parallel cylindrical bars of circular cross-section and 2 mm in diameter at a distance of 100 mm and which are loaded in the center with a weight of 30 g, is bent after 40 hours less than 30 mm, preferably less than 20 mm, particular preferably less than 14 mm.
- The dispersion-hardened platinum material according to claim 11 or 12, characterized in that
the dispersion-hardened platinum material is a sheet, a tube or a wire or a product made from a sheet, a tube or a wire. - The dispersion-hardened platinum material according to any one of claims 11 to 13, characterized in that
the dispersion-hardened platinum material comprises from 0.05% by weight to 0.3% by weight of at least one at least partially oxidized non-precious metal selected from zirconium, cerium, scandium, and yttrium. - Use of a dispersion-hardened platinum material according to any one of claims 11 to 14 or of a dispersion-hardened platinum material processed by a process according to any one of claims 1 to 8 or of a product prepared from a dispersion-hardened platinum material according to claim 9 or 10 for an apparatus to be used in the glass industry or in a laboratory.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013225187.4A DE102013225187B4 (en) | 2013-12-06 | 2013-12-06 | Method for processing a dispersion-hardened platinum composition |
PCT/EP2014/076600 WO2015082630A1 (en) | 2013-12-06 | 2014-12-04 | Method for processing a dispersion-hardened platinum composition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3077556A1 EP3077556A1 (en) | 2016-10-12 |
EP3077556B1 true EP3077556B1 (en) | 2019-06-19 |
Family
ID=52101298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14812166.8A Active EP3077556B1 (en) | 2013-12-06 | 2014-12-04 | Process for treatment a dispersion-hardened platinum composition |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160289808A1 (en) |
EP (1) | EP3077556B1 (en) |
JP (1) | JP6530402B2 (en) |
KR (1) | KR101831090B1 (en) |
CN (1) | CN105765092B (en) |
DE (1) | DE102013225187B4 (en) |
WO (1) | WO2015082630A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108165812B (en) * | 2017-11-16 | 2019-09-24 | 重庆材料研究院有限公司 | A kind of dispersion strengthening type material and its preparation method and application for platinum base vessel |
EP3971311B1 (en) * | 2020-09-17 | 2022-07-06 | Heraeus Deutschland GmbH & Co. KG | Improved dispersion-hardened precious metal alloy |
EP3978884B1 (en) | 2020-10-02 | 2024-05-29 | Heraeus Precious Metals GmbH & Co. KG | Wire with platinum composition for contacting temperature sensors |
EP4282526A1 (en) | 2022-05-25 | 2023-11-29 | Heraeus Deutschland GmbH & Co. KG | Catalyst network comprising a noble metal wire of a dispersion strengthened noble metal alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1280815A (en) | 1968-07-12 | 1972-07-05 | Johnson Matthey Co Ltd | Improvements in and relating to the dispersion strengthening of metals |
WO1981001013A1 (en) | 1979-10-04 | 1981-04-16 | Owens Corning Fiberglass Corp | Thermomechanical processing of dispersion-strengthened precious metal alloys |
EP1964938A1 (en) | 2007-02-14 | 2008-09-03 | W.C. Heraeus GmbH | Oxide dispersion-strengthened Pt, PtRh or PtAu substance produced through internal oxidation with high oxide content and good ductility |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US156A (en) * | 1837-03-30 | Improvement in machines for packing and pressing flour | ||
US2636819A (en) * | 1951-01-31 | 1953-04-28 | Baker & Co Inc | Grain stabilizing metals and alloys |
GB1340076A (en) | 1970-01-23 | 1973-12-05 | Johnson Matthey Co Ltd | Dispersion strengthening of platinum group metals platinum group metal based alloys gold and gold based alloys |
DE3030751A1 (en) | 1980-08-14 | 1982-03-18 | Degussa Ag, 6000 Frankfurt | METHOD FOR PRODUCING SEMI-PRODUCTS FROM DISPERSION-HARDENED PLATINUM |
US4507156A (en) * | 1984-04-09 | 1985-03-26 | Owens-Corning Fiberglas Corporation | Creep resistant dispersion strengthened metals |
DE4417495C1 (en) | 1994-05-19 | 1995-09-28 | Schott Glaswerke | Prodn. of pure platinum materials reinforced with yttrium oxide |
DE19714365A1 (en) * | 1997-04-08 | 1998-10-15 | Heraeus Gmbh W C | Dispersion strengthening platinum material, process for its production and its use |
US6569270B2 (en) * | 1997-07-11 | 2003-05-27 | Honeywell International Inc. | Process for producing a metal article |
DE19813988C1 (en) | 1998-03-28 | 1999-10-28 | Heraeus Gmbh W C | Process for the production of a welded molded body consisting of finely divided, small particles of base metal oxide and strengthened platinum material, in particular a tube, in particular having at least one inner wall |
JP3778338B2 (en) * | 2000-06-28 | 2006-05-24 | 田中貴金属工業株式会社 | Method for producing oxide dispersion strengthened platinum material |
DE10046456C2 (en) * | 2000-09-18 | 2003-04-10 | Heraeus Gmbh W C | Through finely divided, small particles of base metal oxide, dispersion-strengthened, gold-free platinum material |
JP4136914B2 (en) * | 2003-11-28 | 2008-08-20 | 田中貴金属工業株式会社 | Method for producing reinforced platinum material |
CN100500898C (en) * | 2006-09-08 | 2009-06-17 | 国内贸易部物资再生利用研究所 | Reinforced platinum material and method of manufacture and use thereof |
-
2013
- 2013-12-06 DE DE102013225187.4A patent/DE102013225187B4/en active Active
-
2014
- 2014-12-04 CN CN201480065977.XA patent/CN105765092B/en active Active
- 2014-12-04 KR KR1020167017985A patent/KR101831090B1/en active IP Right Grant
- 2014-12-04 US US15/100,809 patent/US20160289808A1/en not_active Abandoned
- 2014-12-04 WO PCT/EP2014/076600 patent/WO2015082630A1/en active Application Filing
- 2014-12-04 EP EP14812166.8A patent/EP3077556B1/en active Active
- 2014-12-04 JP JP2016536823A patent/JP6530402B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1280815A (en) | 1968-07-12 | 1972-07-05 | Johnson Matthey Co Ltd | Improvements in and relating to the dispersion strengthening of metals |
WO1981001013A1 (en) | 1979-10-04 | 1981-04-16 | Owens Corning Fiberglass Corp | Thermomechanical processing of dispersion-strengthened precious metal alloys |
EP1964938A1 (en) | 2007-02-14 | 2008-09-03 | W.C. Heraeus GmbH | Oxide dispersion-strengthened Pt, PtRh or PtAu substance produced through internal oxidation with high oxide content and good ductility |
US20100276646A1 (en) | 2007-02-14 | 2010-11-04 | W.C. Heraeus Gmbh | Pt or pt alloy materials hardened by oxide dispersion, produced by inner oxidation and having proportions of oxide and good ductility |
Non-Patent Citations (3)
Title |
---|
BERND FISCHER, ET AL: "Oxide Dispersion Hardened Platinum Alloys with Improved Strength at High Temperatures", 36TH INTERNATIONAL PRECIOUS METALS CONFERENCE, 9 June 2012 (2012-06-09), pages 1 - 32, XP055710438 |
DOMINIC MORRIS, ROB MCGRATH: "ZGS Platinum Materials for Improved Glass Manufacturing Equipment and Laboratory Ware", PLATINIUM METALS REVIEW., JOHNSON MATTHEY PLC, LONDON, GB, vol. 57, no. 3, 1 July 2013 (2013-07-01), LONDON, GB, pages 230 - 232, XP055710434, ISSN: 0032-1400, DOI: 10.1595/147106713X668901 |
YU N LOGINOV, ET AL: "Annealing Characteristics and Strain Resistance of 99.93 wt.% Platinum", PLATINUM METALS REVIEW, vol. 51, no. 4, 1 October 2007 (2007-10-01), pages 178 - 184, XP055710443 |
Also Published As
Publication number | Publication date |
---|---|
KR20160097249A (en) | 2016-08-17 |
WO2015082630A1 (en) | 2015-06-11 |
DE102013225187B4 (en) | 2018-07-19 |
JP2017502170A (en) | 2017-01-19 |
CN105765092A (en) | 2016-07-13 |
CN105765092B (en) | 2018-10-19 |
US20160289808A1 (en) | 2016-10-06 |
DE102013225187A1 (en) | 2015-06-11 |
KR101831090B1 (en) | 2018-02-21 |
JP6530402B2 (en) | 2019-06-12 |
EP3077556A1 (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3314031B1 (en) | High strength and easily reformable almg tape and method for producing the same | |
EP2386663B1 (en) | Method for producing a component and component from a gamma-titanium-aluminium base alloy | |
DE69511037T2 (en) | Process for the production of shape memory alloys with high transformation temperature | |
DE69108295T2 (en) | Process for the production of corrosion-resistant seamless titanium alloy tubes. | |
DE1558521C3 (en) | Use of a nickel-chromium wrought alloy as a superplastic material | |
EP2559779B1 (en) | High temperature Al-Cu-Mg-Ag alloy and method for producing a semi-finished product or product from such an aluminium alloy | |
DE102004056582B4 (en) | Alloy based on titanium aluminides | |
EP2449145B1 (en) | AlMgSi-sheet for applications with high shaping requirements | |
EP3077556B1 (en) | Process for treatment a dispersion-hardened platinum composition | |
WO2013037919A1 (en) | Method for producing almgsi aluminum strip | |
DE112008001968T5 (en) | Forming magnesium alloys with improved ductility | |
EP2192202A1 (en) | Aluminium sheet for lithographic printing plate support having high resistance to bending cycles | |
EP3259378A1 (en) | Method for producing a strand from stainless steel, and strand made of stainless steel | |
DE112020003615T5 (en) | PROCESSES FOR MIXED TREATMENT OF MAGNESIUM ALLOYS (VARIANTS) | |
EP1748088B1 (en) | Process for producing a semi-finished product or component for chassis or structural automotive applications | |
DE1533497B1 (en) | Process to improve the mechanical properties of AlCuMg panels in their short transverse direction | |
DE1290727B (en) | Process for the production of high strength niobium alloys | |
WO2020007437A1 (en) | Aluminum alloy and overaged aluminum alloy product made of such an alloy | |
DE4000270A1 (en) | METHOD FOR COLD FORMING UNALLOID TITANIUM | |
DE102019105598A1 (en) | Process for producing an aluminum strip with high strength and high electrical conductivity | |
EP2426228B1 (en) | Magnesium sheet semi-finished products with improved cold reforming characteristics | |
EP3763845B1 (en) | Magnesium alloy and its process of manufacture | |
WO2015144888A2 (en) | Highly formable, medium-strength aluminum alloy for producing semi-finished products or components of motor vehicles | |
EP4332260A1 (en) | Age-hardenable aluminium alloy, aluminium alloy metal strip or sheet, method for manufacturing this metal strip or sheet and its use in superplastic forming | |
DE1533481C3 (en) | Process for improving the mechanical properties of a dispersion-hardened metal or an alloy from the group consisting of copper and precious metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160408 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170811 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190307 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014012030 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1145607 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502014012030 Country of ref document: DE Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502014012030 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190920 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191021 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191019 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502014012030 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
26 | Opposition filed |
Opponent name: JOHNSON MATTHEY PUBLIC LIMITED COMPANY Effective date: 20200317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191204 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141204 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230728 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231228 Year of fee payment: 10 Ref country code: FR Payment date: 20231221 Year of fee payment: 10 Ref country code: DE Payment date: 20231214 Year of fee payment: 10 Ref country code: AT Payment date: 20231221 Year of fee payment: 10 |